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Statistical inference problems arising within signal processing, data
mining, andmachine learning naturally give rise to hard combinatorial
optimization problems. These problems become intractable when the
dimensionality of the data is large, as is often the case for modern
datasets. A popular idea is to construct convex relaxations of these
combinatorial problems, which can be solved efficiently for large-scale
datasets. Semidefinite programming (SDP) relaxations are among the
most powerful methods in this family and are surprisingly well suited
for a broad range of problems where data take the form of matrices
or graphs. It has been observed several times that when the statistical
noise is small enough, SDP relaxations correctly detect the underlying
combinatorial structures. In this paper we develop asymptotic predic-
tions for several detection thresholds, as well as for the estimation
error above these thresholds. We study some classical SDP relaxations
for statistical problems motivated by graph synchronization and com-
munity detection in networks. We map these optimization problems
to statistical mechanics models with vector spins and use nonrigorous
techniques from statistical mechanics to characterize the correspond-
ing phase transitions. Our results clarify the effectiveness of SDP
relaxations in solving high-dimensional statistical problems.

semidefinite programming | phase transitions | synchronization |
community detection

Many information processing tasks can be formulated as
optimization problems. This idea has been central to data

analysis and statistics at least since Gauss and Legendre’s in-
vention of the least-squares method in the early 19th century (1).
Modern datasets pose new challenges to this centuries-old

framework. On one hand, high-dimensional applications require
the simultaneous estimation of millions of parameters. Examples
span genomics (2), imaging (3), web services (4), and so on. On
the other hand, the unknown object to be estimated has often a
combinatorial structure: In clustering we aim at estimating a
partition of the data points (5). Network analysis tasks usually
require identification of a discrete subset of nodes in a graph (6, 7).
Parsimonious data explanations are sought by imposing combina-
torial sparsity constraints (8).
There is an obvious tension between the above requirements.

Although efficient algorithms are needed to estimate a large num-
ber of parameters, the maximum likelihood (ML) method often
requires the solution of NP-hard (nondeterministic polynomial-time
hard) combinatorial problems. A flourishing line of work addresses
this conundrum by designing effective convex relaxations of these
combinatorial problems (9–11).
Unfortunately, the statistical properties of such convex relaxations

are well understood only in a few cases [compressed sensing being
the most important success story (12–14)]. In this paper we use tools
from statistical mechanics to develop a precise picture of the be-
havior of a class of semidefinite programming relaxations. Relaxa-
tions of this type appear to be surprisingly effective in a variety of
problems ranging from clustering to graph synchronization. For the
sake of concreteness we will focus on three specific problems.

Z2 Synchronization
In the general synchronization problem, we aim at estimating
x0,1, x0,2, . . . , x0,n, which are unknown elements of a known group
G. This is done using data that consist of noisy observations of

relative positions Yij = x−10,i x0,j + noise. A large number of practical
problems can be modeled in this framework. For instance, the
case G= SOð3Þ (the orthogonal group in three dimensions) is
relevant for camera registration and molecule structure re-
construction in electron microscopy (15).
Z2 synchronization is arguably the simplest problem in this

class and corresponds to G=Z2 (the group of integers modulo 2).
Without loss of generality, we will identify this with the group
ðf+1,−1g, ·Þ (elements of the group are +1, −1, and the group
operation is ordinary multiplication). We assume observations to
be distorted by Gaussian noise; namely, for each i< j we observe
Yij = ðλ=nÞ  x0,ix0,j +Wij, where Wij ∼Nð0, 1=nÞ are independent
standard normal random variables. This fits the general definition
because x−10,i = x0,i for x0,i ∈ f+1,−1g.
In matrix notation, we observe a symmetric matrix Y = Y * ∈Rn×n

given by

Y =
λ

n
  x0   x*0 +W . [1]

(Note that entries on the diagonal carry no information.) Here
x0 ∈ f+1,−1gn and xp0 denote the transpose of x0, andW = ðWijÞi,j≤n
is a random matrix from the Gaussian orthogonal ensemble
(GOE), i.e., a symmetric matrix with independent entries (up to
symmetry) ðWijÞ1≤i<j≤n∼ i.i.d.Nð0, 1=nÞ and ðWiiÞ1≤i≤n∼ i.i.d.Nð0, 2=nÞ.
A solution of the Z2 synchronization problem can be inter-

preted as a bipartition of the set f1, . . . , ng. Hence, this has been
used as a model for partitioning signed networks (16, 17).

U(1) Synchronization
This is again an instance of the synchronization problem. How-
ever, we take G=Uð1Þ. This is the group of complex number
of modulus one, with the operation of complex multiplication
G= ðfx∈C : jxj= 1g, ·Þ.
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As in the previous case, we assume observations to be dis-
torted by Gaussian noise; that is, for each i< j we observe
Yij = ðλ=nÞ  x0,i x0,j +Wij, where z denotes complex conjugation† and
Wij ∼CNð0, 1=nÞ.
In matrix notations, this model takes the same form as [1],

provided we interpret x*0 as the conjugate transpose of vector
x0 ∈Cn, with components x0,i, jx0,ij= 1. We will follow this con-
vention throughout.
Uð1Þ synchronization has been used as a model for clock

synchronization over networks (18, 19). It is also closely related
to the phase-retrieval problem in signal processing (20–22). An
important qualitative difference with respect to the previous
example (Z2 synchronization) lies in the fact that Uð1Þ is a
continuous group. We regard this as a prototype of synchroni-
zation problems over compact Lie groups [e.g., SOð3Þ].
Hidden Partition
The hidden (or planted) partition (also known as community
detection) model is a statistical model for the problem of finding
clusters in large network datasets (see refs. 7, 23, 24 and refer-
ences therein for earlier work). The data consist of graph
G= ðV ,EÞ over vertex set V = ½n�≡ f1,2, . . . , ng generated as
follows. We partition V =V+   ∪V− by setting i∈V+ or i∈V− in-
dependently across vertices with Pði∈V+Þ=Pði∈V−Þ= 1=2. Con-
ditional on the partition, edges are independent with

Pfði, jÞ∈EjV+,V−g=
�
a=n if   fi, jg⊆V+   or  fi, jg⊆V−.
b=n otherwise. [2]

Here a> b> 0 are model parameters that will be kept of order
one as n→∞. This corresponds to a random graph with bounded
average degree d= ða+ bÞ=2 and a cluster (also known as block
or community) structure corresponding to the partition V+ ∪V−.
Given a realization of such a graph, we are interested in estimat-
ing the underlying partition.
We can encode the partition V+, V− by a vector x0 ∈ f+1,−1gn,

letting x0,i =+1 if i∈V+ and x0,i =−1 if i∈V−. An important in-
sight, which we will further develop below (25, 26), is that this
problem is analogous to Z2 synchronization, with signal strength
λ= ða− bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða+ bÞp
. The parameters’ correspondence is obtained,

at a heuristics level, by noting that if AG is the adjacency matrix
of G, then Ehx0,AGx0i=ðnEkAGk2FÞ1=2 ≈ ða− bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða+ bÞp
. (Here

and below, ha, bi=Piaibi denotes the standard scalar product
between vectors.)
A generalization of this problem to the case of more than two

blocks has been studied since the 1980s as a model for social net-
work structure (27), under the name of “stochastic block model.”
For the sake of simplicity, we will focus here on the two-blocks case.

Illustrations
As a first preview of our results, Fig. 1 reports our analytical pre-
dictions for the estimation error in the Z2 synchronization problem,
comparing them with numerical simulations using semidefinite
programming (SDP). An estimator is a map x̂ :Rn×n →Rn, Y↦x̂ðY Þ.
We compare various estimators in terms of their per-coordinate
mean square error (MSE):

MSEnðx̂Þ≡ 1
n
E

�
min

s∈f+1,−1g
kx̂ðY Þ−s  x0k22

�
, [3]

where expectation is with respect to the noise model [1] and
x0 ∈ f+1,−1gn uniformly random. Note the minimization with

respect to the sign s∈ f+1,−1g inside the expectation: because
of the symmetry of [1], the vector x0 can only be estimated up to
a global sign. We will be interested in the high-dimensional limit
n→∞ and will omit the subscript n—thus writing MSEðx̂Þ—to
denote this limit. Note that a trivial estimator that always returns
0 has error MSEnð0Þ= 1.
Classical statistical theory suggests two natural reference es-

timators: the Bayes optimal and the maximum likelihood esti-
mators. We will discuss these methods first, to set the stage for
SDP relaxations.

Bayes Optimal Estimator. The Bayes optimal estimator (also known
as minimumMSE) provides a lower bound on the performance of
any other approach. It takes the conditional expectation of the
unknown signal given the observations:

x̂  BayesðY Þ=Efxjðλ=nÞxxp +W = Yg. [4]

Explicit formulas are given in SI Appendix. We note that x̂  BayesðY Þ
assumes knowledge of the prior distribution. The red dashed curve
in Fig. 1 presents our analytical prediction for the asymptotic MSE
for x̂  Bayesð · Þ. Notice that MSEðx̂  BayesÞ= 1 for all λ≤ 1 and
MSEðx̂  BayesÞ< 1 strictly for all λ> 1, with MSEðx̂  BayesÞ→ 0 quickly
as λ→∞. The point λBayesc = 1 corresponds to a phase transition
for optimal estimation, and no method can have nontrivial MSE
for λ≤ λBayesc .

Maximum Likelihood. The estimator x̂ MLðY Þ is given by the
solution of

x̂ MLðY Þ= cðλÞarg maxx∈f+1,−1gnhx, Yxi. [5]

Here cðλÞ is a scaling factor‡ that is chosen according to the
asymptotic theory as to minimize the MSE. As for the Bayes
optimal curve, we obtain MSEðx̂ MLÞ= 1 for λ≤ λML

c = 1 and
MSEðx̂ MLÞ< 1 (and rapidly decaying to 0) for λ> λML

c . (We refer
to SI Appendix for this result.)

Fig. 1. Estimating x0 ∈ f+1,−1gn under the noisy Z2 synchronization
model of Eq. 1. Curves correspond to (asymptotic) analytical predic-
tions, and dots correspond to numerical simulations (averaged over 100
realizations).

†Here and below, CNðμ, σ2Þ, with μ= μ1 + i  μ2 and σ2 ∈R≥0, denotes the complex normal dis-
tribution. Namely, X ∼CNðμ, σ2Þ if X =X1 + i   X2, with X1 ∼Nðμ1, σ2=2Þ and X2 ∼Nðμ2, σ2=2Þ
independent Gaussian random variables.

‡In practical applications, λ might not be known. We are not concerned by this at the
moment because maximum likelihood is used as a idealized benchmark here. Note that
strictly speaking, this is a scaled maximum likelihood estimator. We prefer to scale
x̂  MLðYÞ to keep MSEðx̂  MLÞ∈ ½0,1�.
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Semidefinite Programming. Neither the Bayes nor the maximum
likelihood approaches can be implemented efficiently. In par-
ticular, solving the combinatorial optimization problem in Eq. 5
is a prototypical NP-complete problem. Even worse, approximat-
ing the optimum value within a sublogarithmic factor is com-
putationally hard (28) (from a worst case perspective). SDP
relaxations allow us to obtain tractable approximations. Specifi-
cally, and following a standard lifting idea, we replace the problem
[5] by the following semidefinite program over the symmetric
matrix X ∈Rn×n (18. 29, 30):

maximize  hX , Y i,
subject  to    X ≽ 0, Xii = 1∀i∈ ½n�. [6]

We use h · , · i to denote the scalar product between matrices,
namely, hA,Bi≡TrðApBÞ, and A≽ 0 to indicate that A is positive
semidefinite§ (PSD). If we assume X = xx*, the SDP [6] reduces
to the maximum-likelihood problem [5]. By dropping this condi-
tion, we obtain a convex optimization problem that is solvable in
polynomial time. Given an optimizer Xopt = XoptðY Þ of this convex
problem, we need to produce a vector estimate. We follow a
different strategy from standard rounding methods in computer
science, which is motivated by our analysis below. We compute
the eigenvalue decomposition Xopt =

Pn
i=1ξi   viv

*
i , with eigenvalues

ξ1 ≥ ξ2 ≥⋯≥ ξn ≥ 0 and eigenvectors vi = viðXoptðY ÞÞ, with kvik2 = 1.
We then return the estimate

x̂ SDPðY Þ= ffiffiffi
n

p
  c SDPðλÞ  v1

�
XoptðY Þ

�
, [7]

with cSDPðλÞ a certain scaling factor (SI Appendix).
Our analytical prediction for MSEðx̂  SDPÞ is plotted as blue

solid line in Fig. 1. Dots report the results of numerical simu-
lations with this relaxation for increasing problem dimensions.
The asymptotic theory appears to capture these data very well
already for n= 200. For further comparison, alongside the above
estimators, we report the asymptotic prediction for MSEðx̂  PCAÞ,
the mean square error of principal component analysis (PCA).
This method simply returns the principal eigenvector of Y, suit-
ably rescaled (SI Appendix).
Fig. 1 reveals several interesting features.
First, it is apparent that optimal estimation undergoes a phase

transition. Bayes optimal estimation achieves nontrivial accuracy
as soon as λ> λBayesc = 1. The same is achieved by a method as
simple as PCA (blue-dashed curve). On the other hand, for λ< 1,
no method can achieve MSEðx̂Þ< 1 strictly [whereas MSEðx̂Þ= 1
is trivial by x̂= 0].
Second, PCA is suboptimal at large signal strength. PCA can

be implemented efficiently but does not exploit the information
x0,i ∈ f+1,−1g. As a consequence, its estimation error is signifi-
cantly suboptimal at large λ (SI Appendix).
Third, the SDP-based estimator is nearly optimal. The trac-

table estimator x̂  SDPðY Þ achieves the best of both worlds. Its
phase transition coincides with the Bayes optimal one λBayesc = 1,
and MSEðx̂  SDPÞ decays exponentially at large λ, staying close to
MSEðx̂  BayesÞ and strictly smaller than MSEðx̂  PCAÞ, for λ≥ 1.
We believe that the above features are generic: as shown in SI

Appendix, Uð1Þ synchronization confirms this expectation.
Fig. 2 illustrates our results for the community detection

problem under the hidden partition model of Eq. 2. Recall that
we encode the ground truth by a vector x0 ∈ f+1,−1gn. In the
present context, an estimator is required to return a partition of
the vertices of the graph. Formally, it is a function on the space
of graphs with n vertices Gn, namely, x̂ :Gn → f+1,−1gn, G↦x̂ðGÞ.

We will measure the performances of such an estimator through
the overlap,

Overlapnðx̂Þ=
1
n
Efjhx̂ðGÞ, x0ijg, [8]

and its asymptotic n→∞ limit (for which we omit the subscript).
To motivate the SDP relaxation we note that the maximum like-
lihood estimator partitions V in two sets of equal size to mini-
mize the number of edges across the partition (the minimum
bisection problem). Formally,

x̂ MLðGÞ≡ arg max
x∈f+1,−1gn

8<
:
X
ði, jÞ∈E

xixj : hx, 1i= 0

9=
;, [9]

where 1= ð1,1, . . . , 1Þ is the all-ones vector. Once more, this
problem is hard to approximate (31), which motivates the fol-
lowing SDP relaxation:

maximize 
X
ði, jÞ∈E

Xij,

subject  to  X ≽ 0, X1= 0,     Xii = 1  ∀i∈ ½n�.
[10]

Given an optimizer Xopt = XoptðGÞ, we extract a partition of the
vertices V as follows. As for the Z2 synchronization problem, we
compute the principal eigenvector v1ðXoptÞ. We then partition V
according to the sign of v1ðXoptÞ. Formally,

x̂  SDPðGÞ= sign
�
v1
�
X   optðGÞ��. [11]

Let us emphasize a few features of Fig. 2:
First, both the GOE theory and the cavity method are accu-

rate. The dashed curve of Fig. 2 reports the analytical prediction
within the Z2 synchronization model, with Gaussian noise (the
GOE theory). This can be shown to capture the large degree
limit: d= ða+ bÞ=2→∞, with λ= ða− bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða+ bÞp
fixed, and is

an excellent approximation already for d= 5. The continuous
curve is our prediction for d= 5, obtained by applying the cavity
method from statistical mechanics to the community detection
problem (see next section and SI Appendix). This approach de-
scribes very accurately the empirical data and the small dis-
crepancy from the GOE theory.

Fig. 2. Community detection under the hidden partition model of Eq. 2, for
average degree ða+bÞ=2= 5. Dots indicate performance of the SDP re-
construction method (averaged over 500 realizations). Dashed curve indi-
cates asymptotic analytical prediction for the Gaussian model (which
captures the large-degree behavior). Solid curve indicates analytical pre-
diction for the sparse graph case (within the vectorial ansatz; SI Appendix).

§Recall that a symmetric matrix A is said to be PSD if all of its eigenvalues are nonnegative.
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Second, SDP is superior to PCA. A sequence of recent papers
(ref. 7 and references therein) demonstrate that classical spectral
methods—such as PCA—fail to detect the hidden partition in
graphs with bounded average degree. In contrast, Fig. 2 shows
that a standard SDP relaxation does not break down in the
sparse regime. See refs. 25, 32 for rigorous evidence toward the
same conclusion.
Third, SDP is nearly optimal. As proven in ref. 33, no esti-

mator can achieve Overlapnðx̂Þ≥ δ> 0 as n→∞, if λ= ða− bÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða+ bÞp

< 1. Fig. 2 (and the theory developed in the next
section) suggests that SDP has a phase transition threshold.
Namely, there exists λSDP

c = λSDP
c ðdÞ such that if

λ=
a− bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða+ bÞp ≥ λSDP

c ðd= ða+ bÞ=2Þ, [12]

then SDP achieves overlap bounded away from zero:
Overlapðx̂  SDPÞ> 0. Fig. 2 also suggests λSDP

c ð5Þ≈ λBayesc = 1; that
is, SDP is nearly optimal.
Below we will derive an accurate approximation for the critical

point λSDP
c ðdÞ. The factor λSDP

c ðdÞ measures the suboptimality of
SDP for graphs of average degree d.
Fig. 3 plots our prediction for the function λSDP

c ðdÞ, together
with empirically determined values for this threshold, obtained
through Monte Carlo experiments for d∈ f2,5,10g (red circles).
These were obtained by running the SDP estimator on randomly
generated graphs with size up to n= 64,000 (total CPU time was
about 10 y). In particular, we obtain λSDP

c ðdÞ> 1 strictly, but the
gap λSDP

c ðdÞ− 1 is very small (at most of the order of 2%) for all
d. This confirms in a precise quantitative way the conclusion that
SDP is nearly optimal for the hidden partition problem.
Simulations results are in broad agreement with our predictions

but present small discrepancies (below 0.5%). These discrepancies
might be due to the extrapolation from finite-n simulations to
n→∞ or to the inaccuracy of our analytical approximation.

Analytical Results. Our analysis is based on a connection with
statistical mechanics. The models arising from this connection
are spin models in the so-called “large-N” limit, a topic of intense
study across statistical mechanics and quantum field theory (34).
Here we exploit this connection to apply nonrigorous but so-
phisticated tools from the theory of mean field spin glasses (35,
36). The paper (25) provides partial rigorous evidence toward
the predictions developed here.
We will first focus on the simpler problem of synchronization

under Gaussian noise, treating together the Z2 and Uð1Þ cases.
We will then discuss the new features arising within the sparse
hidden partition problem. Most technical derivations are pre-

sented in SI Appendix. To treat the real (Z2) and complex [Uð1Þ]
cases jointly, we will use F to denote any of the fields of reals or
complex numbers, i.e., either R or C.

Gibbs Measures and Vector Spin Models.We start by recalling that a
matrix X ∈Fn×n is PSD if and only if it can be written as X = σσ*
for some σ ∈Fn×m. Indeed, without loss of generality, one can
take m= n, and any m≥ n is equivalent.
Letting σ1, . . . σn ∈Fm be the rows of σ, the SDP [6] can be

rewritten as

maximize 
X
ði, jÞ

Yij
�
σ i, σ j

�
,

subject  to  σ i ∈ Sm−1   ∀i∈ ½n�,
[13]

with Sm−1 = fz∈Fm : kzk2 = 1g the unit sphere in m dimensions.
The SDP relaxation corresponds to any case m≥ n or, following
the physics parlance, m=∞. Note, however, that cases with
bounded (small) m are of independent interest. In particular,
for m= 1 we have σi ∈ f−1,+1g (for the real case) or σi ∈
Uð1Þ⊂C (for the complex case). Hence, we recover the max-
imum-likelihood estimator setting m= 1. It is also known that
(under suitable conditions on Y) for m>

ffiffiffiffiffi
2n

p
, the problem [13]

has no local optima except the global ones (37).
A crucial question is how the solution of [13] depends on the

spin dimensionality m, for m � n. Denote by OPTðY ;mÞ the
optimum value when the dimension ism (in particular, OPTðY ;mÞ
is also the value of [6] form≥ n). It was proven in ref. 25 that there
exists a constant C independent of m and n such that	

1−
C
m



OPTðY ;∞Þ≤OPTðY ;mÞ≤OPTðY ;∞Þ, [14]

with probability converging to one as n→∞ (whereby Y is chosen
with any of the distributions studied in the present paper). The
upper bound in Eq. 14 follows immediately from the definition.
The lower bound is a generalization of the celebrated Grothendieck
inequality from functional analysis (38).
The above inequalities imply that we can obtain information

about the SDP [6] in the n→∞ limit, by taking m→∞ after
n→∞. This is the asymptotic regime usually studied in physics
under the term “large-N limit.”
Finally, we can associate to the problem [13] a finite-temper-

ature Gibbs measure as follows:

pβ,mðdσÞ=
1
Z
exp

(
2mβ

X
i<j

ℜ
�
Yij
�
σi, σj

��)Yn
i=1

p0ðdσiÞ, [15]

where p0ðdσ iÞ is the uniform measure over the m-dimensional
sphere Sm−1 andℜðzÞ denotes the real part of z. This allows us to
treat in a unified framework all of the estimators introduced
above. The optimization problem [13] is recovered by taking
the limit β→∞ (with maximum likelihood for m= 1 and SDP
for m→∞). The Bayes optimal estimator is recovered by setting
m= 1 and β= λ=2 (in the real case) or β= λ (in the complex case).

Cavity Method: Z2 and U(1) Synchronization. The cavity method
from spin-glass theory can be used to analyze the asymptotic
structure of the Gibbs measure [15] as n→∞. Below we will state
the predictions of our approach for the SDP estimator x̂  SDP.
Here we list the main steps of our analysis for the expert

reader, deferring a complete derivation to the SI Appendix: (i) We
use the cavity method to derive the replica symmetric predictions
for the model (15) in the limit n→∞. (ii) By setting m= 1,
β= λ=2 (in the real case), or β= λ (in the complex case) we obtain
the Bayes optimal error MSEðx̂  BayesÞ: on the basis of ref. 39, we

Fig. 3. Phase transition for the SDP estimator: for λ> λSDPc ðdÞ, the SDP estimator
has positive correlation with the ground truth; for λ≤ λSDPc ðdÞ the correlation is
vanishing [here λ= ða−bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða+bÞp
and d = ða+bÞ=2]. Solid line indicates

prediction ~λSDPc ðdÞ from the cavity method (vectorial ansatz; SI Appendix) (com-
pare Eq. 25). Dashed line indicates ideal phase transition λ= 1. Red circles indicate
numerical estimates of the phase transition location for d =2, 5, and 10.
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expect the replica symmetric assumption to hold and these
predictions to be exact. (See also ref. 40 for related work.)
(iii) By setting m= 1 and β→∞ we obtain a prediction for the
error of maximum likelihood estimation MSEðx̂ MLÞ. Although
this prediction is not expected to be exact (because of replica
symmetry breaking), it should be nevertheless rather accurate,
especially for large λ. (iv) By settingm→∞ and β→∞, we obtain
the SDP estimation error MSEðx̂  SDPÞ, which is our main object
of interest. Notice that the inversion of limits m→∞ and n→∞
is justified (at the level of objective value) by Grothendieck in-
equality. Further, because the m=∞ case is equivalent to a
convex program, we expect the replica symmetric prediction to
be exact in this case.
The properties of the SDP estimator are given in terms of the

solution of a set of three nonlinear equations for the three scalar
parameters μ, q, and b∈R that we state next. Let Z∼Nð0,1Þ (in
the real case) or Z∼CNð0,1Þ (in the complex case). Define
ρ= ρðZ; μ, q, rÞ as the only nonnegative solution of the following
equation in ð0,∞Þ:

1=
jμ+ ffiffiffi

q
p

Zj2
ðρ+ rÞ2 +

1− q
ρ2

. [16]

Then μ, q, and r satisfy

μ= λE

�
μ+

ffiffiffi
q

p
 ℜðZÞ

ρ+ r

�
, q=E

(
jμ+ ffiffiffi

q
p

  Zj2
ðρ+ rÞ2

)
, [17]

r=E

(
1
ρ
−

μffiffiffi
q

p ℜðZÞ
ρ+ r

−
jZj2
ρ+ r

)
. [18]

These equations can be solved by iteration, after approximating
the expectations on the right-hand side numerically. The proper-
ties of the SDP estimator can be derived from this solution.
Concretely, we have

MSE
�
x̂  SDP�= 1−

μðλÞ2
λ2qðλÞ. [19]

The corresponding curve is reported in Fig. 1 for the real case
G=Z2. We can also obtain the asymptotic overlap from the so-
lution of these equations. The cavity prediction is

Overlap
�
x̂  SDP�= 1− 2Φ

 
−

μðλÞffiffiffiffiffiffiffiffiffi
qðλÞp

!
. [20]

The corresponding curve is plotted in Fig. 2.
More generally, for any dimension m and inverse temperature β,

we obtain equations that are analogous to Eqs. 17 and 18. The
parameters μ, q,  and  b characterize the asymptotic structure of the
probability measure pβ,mðdσÞ defined in Eq. 15, as follows. We as-
sume, for simplicity x0 = ð+1, . . . ,+1Þ. Define the following prob-
ability measure on unit sphere Sm−1, parametrized by ξ∈Rm, r∈R:

νξ,rðdσÞ= 1
zðξ, rÞ exp

n
2β mℜhξ, σi− β mrjσ1j2

o
  p0ðdσÞ. [21]

For ν a probability measure on Sm−1 and R an orthogonal (or
unitary) matrix, let νR be the measure obtained by¶ rotating ν.
Finally, let pðm, βÞ

ið1Þ,...,iðkÞ denote the joint distribution of σ ið1Þ,⋯, σiðkÞ

under pm,β. Then, for any fixed k, and any sequence of k-uples
ðið1Þ, . . . , iðkÞÞn ∈ ½n�, we have

pðm, βÞ
ið1Þ,...,iðkÞ ⇒

Z
νRξ1,rð · Þ×⋯× νRξk ,rð · ÞdR. [22]

Here dR denotes the uniform (Haar) measure on the orthogonal
group,⇒ denotes convergence in distribution (note that pðm, βÞ

ið1Þ,...,iðkÞ
is a random variable), and ξ1, . . . , ξk∼ iidNðμ e1,QÞ with Q=
diagðq, q0 . . . , q0Þ, q0 = ð1− qÞ=ðm− 1Þ.
Cavity Method: Community Detection in Sparse Graphs. We next con-
sider the hidden partition model, defined by Eq. 2. As above, we
denote by d= ða+ bÞ=2 the asymptotic average degree of the graph
G and by λ= ða− bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða+ bÞp
the signal-to-noise ratio. As illus-

trated by Fig. 2 (and further simulations presented in SI Appendix),
Z2 synchronization appears to be a very accurate approximation for
the hidden partition model already at moderate d.
The main change with respect to the dense case is that the

phase transition at λ= 1, is slightly shifted, as per Eq. 12. Namely,
SDP can detect the hidden partition with high probability if and
only if λ≥ λSDP

c ðdÞ, for some λSDP
c ðdÞ> 1.

Our prediction for the curve λSDP
c ðdÞ will be denoted by ~λSDP

c ðdÞ
and is plotted in Fig. 3. It is obtained by finding an approximate
solution of the RS cavity equations, within a scheme that we name
“vectorial ansatz” (see SI Appendix for details). We see that
~λSDP
c ðdÞ approaches very quickly the ideal value λ= 1 for d→∞.
Indeed, our prediction implies ~λSDP

c ðdÞ= 1+ 1=ð8dÞ+Oðd−2Þ.
Also, ~λSDP

c ðdÞ→ 1 as d→ 1. This is to be expected because the
constraints a≥ b≥ 0 imply ða− bÞ=2≤ d, with b= 0 at ða− bÞ=2= d.
Hence, the problem becomes trivial at ða− bÞ=2= d: it is suf-
ficient to identify the connected components in G, whence
λSDP
c ðdÞ≤ ffiffiffi

d
p

.
More interestingly, ~λSDP

c ðdÞ admits a characterization in terms
of a distributional recursion, which can be evaluated numerically
and is plotted as a continuous line in Fig. 3. Surprisingly, the SDP
detection threshold appears to be suboptimal at most by 2%. To
state this characterization, consider first the recursive distribu-
tional equation (RDE)

c=
d XL

i=1

ci
1+ ci

. [23]

Here =
d denotes equality in distribution, L∼PoissonðdÞ, and

c1, . . . , cL are independent and identically distributed (i.i.d.) cop-
ies of c. This has to be read as an equation for the law of the
random variable c (see, e.g., ref. 41 for further background on
RDEs). We are interested in a specific solution of this equation,
constructed as follows. Set c0 =∞ almost surely, and for ℓ≥ 0, let
cℓ+1=d

PL
i=1c

ℓ
i=ð1+ cℓiÞ. It is proved in ref. 42 that the resulting

sequence converges in distribution to a solution of Eq. 23: cℓ⇒
d
c*.

The quantity cp has a useful interpretation. Consider a
(rooted) Poisson Galton–Watson tree with branching number d,
and imagine each edge to be a conductor with unit conductance.
Then cp is the total conductance between the root and the
boundary of the tree at infinity. In particular, cp = 0 almost surely
for d≤ 1, and cp > 0 with positive probability if d> 1 (see ref. 42
and SI Appendix).
Next consider the distributional recursion

�
cℓ+1; hℓ+1

�
=
d

 XL++L−

i=1

cℓi
1+ cℓi

;
XL++L−

i=1

sihℓiffiffiffiffiffiffiffiffiffiffiffi
1+ cℓi

p
!
, [24]

where s1, . . . , sL+ =+1, sL+ +1, . . . , sL+ +L− =−1, and we use initial-
ization ðc0, h0Þ= ð+∞, 1Þ. This recursion determines sequentially¶Formally, νRðσ ∈AÞ≡ νðR−1σ ∈AÞ.
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the distribution of ðcℓ+1, hℓ+1Þ from the distribution of ðcℓ, hℓÞ.
Here L+ ∼Poissonððd+ λÞ=2Þ, L− ∼Poissonððd− λÞ=2Þ, and
ðcℓ1, hℓ1Þ, . . . , ðcℓL, hℓLÞ are i.i.d. copies of ðcℓ, hℓÞ, independent of
L+,L−. Notice that because L+ +L− ∼PoissonðdÞ, we have cℓ⇒

d
c*.

The threshold ~λSDP
c ðdÞ is defined as the smallest λ such that the ht

diverges exponentially:

~λSDP
c ðdÞ≡ inf

�
λ∈
h
0,

ffiffiffi
d

p i
: lim inf

t→∞

1
t
logE

�
jhtj2

�
> 0
�
. [25]

This value can be computed numerically, for instance, by sampling
the recursion [24]. The results of such an evaluation are plotted as
a continuous line in Fig. 3.

Final Algorithmic Considerations
We have shown that ideas from statistical mechanics can be used
to precisely locate phase transitions in SDP relaxations for high-
dimensional statistical problems. In the problems investigated
here, we find that SDP relaxations have optimal thresholds [in Z2
and Uð1Þ synchronization] or nearly optimal thresholds (in
community detection under the hidden partition model). Here
near-optimality is to be interpreted in a precise quantitative
sense: SDP’s threshold is suboptimal—at most—by a 2% factor.
As such, SDPs provide a very useful tool for designing compu-
tationally efficient algorithms that are also statistically efficient.

Let us emphasize that other polynomial–time algorithms can be
used for the specific problems studied here. In the synchronization
problem, naive PCA achieves the optimal threshold λ= 1. In the
community detection problem, several authors recently developed
ingenious spectral algorithms that achieve the information theo-
retically optimal threshold ða− bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða+ bÞp
= 1 (see, e.g., refs. 7,

23, 24, 43, 44).
However, SDP relaxations have the important feature of being

robust to model misspecifications (see also refs. 30, 45 for in-
dependent investigations of robustness issues). To illustrate this
point, we perturbed the hidden partition model as follows. For a
perturbation level α∈ ½0,1�, we draw nα vertices i1, . . . , inα uni-
formly at random in G. For each such vertex iℓ we connect by
edges all of the neighbors of iℓ. In our case, this results in adding
Oðnd2αÞ edges.
In SI Appendix, we compare the behavior of SDP and the

Bethe Hessian algorithm of ref. 44 for this perturbed model:
although SDP appears to be rather insensitive to the pertur-
bation, the performance of Bethe Hessian are severely de-
graded by it. We expect a similar fragility in other spectral
algorithms.
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Notice

Most of the derivations in this documents are based on non-rigorous method from statistical physics.
All the results that are rigorously proved will be stated as lemmas, propositions, and so on.

1 Notations

1.1 General notations

We will often treat Z2 and U(1) synchronization simultaneously. Throughout F = R or F = C
depending on whether we are treating the real case (Z2 synchronization) or the complex case (U(1)
synchronization).

We let Sm−1 denotes the radius one sphere in Rm or Cm depending on the context. Namely
Sm−1 = {z ∈ Fm : ‖z‖2 = 1}. In particular S0 = {+1,−1} in the real case, and S0 = {z ∈ C :
|z| = 1} in the complex case.

Some of our formulae depends upon the domain that we are considering (real or complex). In
order to write them in a compact form, we introduce the notation sG = 1 for G = Z2, and sG = 2
for G = U(1).

We write X ∼ Poisson(a) to indicate that X is a Poisson random variable with mean a.
A Gaussian random vector z with mean a = E(z) and covariance C = E((z − a)(z − a)∗) is
denoted by z ∼ N(a,C). Note that in the complex case, this means that C is Hermitian and
E((z−a)(z−a)T) = 0. Occasionally, we will write z ∼ CN(a, C) for complex Gaussians, whenever
it is useful to emphasize that z is complex.

The standard Gaussian density is denoted by φ(x) = e−x
2/2/
√

2π, and the Gaussian distribution
by Φ(x) =

∫ x
−∞ φ(t) dt.

Given two un-normalized measures p and q on the same space, we write p(s) ∼= q(s) if they are
equal up to an overall normalization constant. We use

.
= to denote equality up to subexponential

factors, i.e. f(n)
.
= g(n) if limn→∞ n

−1 log[f(n)/g(n)] = 0.
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1.2 Estimation metrics

We recall the definition of some estimation metrics used in the main text. For the sake of uniformity,
we consider estimators x̂ : Rn×n → Rn.

It is convenient to define a scaled MSE, with scaling factor c ∈ F:

MSEn(x̂; c) ≡ 1

n
E
{

min
s∈S0

∥∥x0 − s c x̂(Y )
∥∥2
2

}
. (1)

We also define the overlap as follows in the real case

Overlapn(x̂) ≡ 1

n
E
{
|〈sign(x̂(Y )),x0〉|

}
. (2)

In the complex case, we replace sign(z) by z/|z| (defined to be 0 at z = 0):

Overlapn(x̂) ≡ 1

n
E

{∣∣∣∣∣
n∑
i=1

x̂i(Y )

|x̂i(Y )|
x0,i

∣∣∣∣∣
}
. (3)

This formula applies to the real case as well. (Note that, in the main text, we defined the overlap
only for estimators taking values in {+1,−1}n, in the real case. Throughout these notes, we
generalize that definition for the sake of uniformity.)

We omit the subscript n to refer to the n→∞ limit of these quantities.

2 Preliminary facts

2.1 Some estimation identities

Lemma 2.1. Let p0( · ) be a probability measure on the real line R, symmetric around 0 (i.e.
p0((a, b)) = p0((−b,−a)) for any interval (a, b)). For γ ≥ 0, define f : R→ R as

f(y; γ) ≡
∫
σ e
√
γyσ− 1

2
γσ2

p0(dσ)∫
e
√
γyσ− 1

2
γσ2

p0(dσ)
. (4)

Then we have the identity

E{|σ| f(
√
γ|σ|+ Z; γ)} = E

{
f(
√
γ|σ|+ Z; γ)2

}
. (5)

where the expectation is with respect to the independent random variables Z ∼ N(0, 1), and σ ∼
p0( · ).

Analogously, let p0( · ) be a probability measure on C, symmetric under rotations (i.e. p0(e
iθR) =

p0(R), p0(R) = p0(R
∗) for any Borel set R ⊆ C and any θ ∈ (0, 2π]). For γ ≥ 0, define f : C→ R

as

f(y; γ) ≡
∫
σ e2

√
γ<(y∗σ)−γ|σ|2 p0(dσ)∫

e2
√
γ<(y∗σ)−γ|σ|2 p0(dσ)

. (6)

Then we have the identity (with Z ∼ CN(0, 1) a complex normal)

E{|σ| f(
√
γ|σ|+ Z; γ)} = E

{
|f(
√
γ|σ|+ Z; γ)|2

}
. (7)
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Proof. Consider, to be definite, the real case, and define the observation model

Y =
√
γ σ + Z , (8)

where σ ∼ p0( · ) independent of the noise Z ∼ N(0, 1). Then a straightforward calculation shows
that

f(y; γ) = E{σ|Y = y} . (9)

Then, by the tower property of conditional expectation E{σ f(Y ; γ)} = E{f(Y ; γ)2} or, equivalently

E{σ f(
√
γ σ + Z; γ)} = E{f(

√
γ σ + Z; γ)2} . (10)

The identity (5) follows by exploiting the symmetry of p0, which implies f(−y; γ) = −f(y; γ).
The proof follows a similar argument in the complex case.

We apply the above lemma to specific cases that will be of interest to us. Below, Ik(z) denotes
the modified Bessel function of the second kind. Explicitly, for k integer, we have the integral
representation

Ik(z) =
1

2π

∫ 2π

0
ez cos θ cos(kθ) dθ . (11)

Corollary 2.2. For any γ ≥ 0, we have the identities

E
{

tanh(γ +
√
γ Z)

}
= E

{
tanh(γ +

√
γ Z)2

}
, (12)

E
{
γ +
√
γ Z

|γ +
√
γ Z|

I1(2|γ +
√
γ Z|)

I0(2|γ +
√
γ Z|)

}
= E

{
I1(2|γ +

√
γ Z|)2

I0(2|γ +
√
γ Z|)2

}
, (13)

where the expectation is with respect to Z ∼ N(0, 1) (first line) or Z ∼ CN(0, 1) (second line).

Proof. These follows from Lemma 2.1. For the first line we apply the real case (5) with p0 =
(1/2)δ+1 + (1/2)δ−1, whence

f(y; γ) = tanh(
√
γ y) . (14)

For the second line we apply the complex case (6) with p0 the uniform measure over the unit
circle. Consider the change of variables y = |y|ejφ and σ = ej(φ+θ). Computing the curve integral,
we have

f(y; γ) =

∫ 2π
0 ej(φ+θ)e2

√
γ|y| cos(θ)dθ∫ 2π

0 e2
√
γy cos(θ)dθ

=
ejφ
∫ 2π
0 e2

√
γ|y| cos(θ) cos(θ)dθ∫ 2π

0 e2
√
γ|y| cos(θ)dθ

=
y

|y|
I1(2
√
γ|y|)

I0(2
√
γ|y|)

, (15)

where in the second equality we used the fact that
∫ 2π
0 e2

√
γ|y| cos(θ) sin(θ)dθ = 0.
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3 Analytical results for Z2 and and U(1) synchronization

As explained in the main text, our approach is based on defineing a probability measure in a space
that suitably ‘relaxes’ the posterior distribution of the unknown signal. In the present case, we are
interested in the following probability measure over σ = (σ1,σ2, . . . ,σn), where σi ∈ Sm−1:

pβ,m(dσ) =
1

Zn,Y (β,m)
exp

{
2mβ

∑
i<j

<(Yij〈σi,σj〉)
} n∏
i=1

p0(dσi) . (16)

Here p0(dσi) is the uniform measure over σi ∈ Sm−1.
We define a general m,β estimator as follows.

1. In order to break theO(m) symmetry, we add a term β
∑n

i=1〈h,σ〉 in the exponent of Eq. (16),
for h an arbitrary small vector. It is understood throughout that ‖h‖2 → 0 after n→∞.

As is customary in statistical physics, we will not explicitly carry out calculations with the
perturbation h 6= 0, but only using this device to select the relevant solution at h = 0.

2. We compute the expectation

z(Y ;β,m) =

∫
σ pβ,m(dσ) . (17)

Note that for β →∞ this amounts to maximizing the exponent term in equation (16).

3. Compute the empirical covariance

Q̂ ≡ 1

n

n∑
i=1

ziz
∗
i . (18)

Let û be its principal eigenvector.

4. Return x̂(β,m)

x̂
(β,m)
i = c 〈û, zi〉 , (19)

where c = c(λ) is the optimal scaling predicted by the asymptotic theory.

3.1 Derivation of the Gibbs measure

The Gibbs measure (16) encodes several estimators of interests. Here we briefly describe this
connections.

Bayes-optimal estimators. As mentioned in the main text, this is obtained by setting m = 1
and β = λ/2 (in the real case) or β = λ (in the complex case). To see this, recall our observation
model (for i < j)

Yij =
λ

n
x0,ix

∗
0,j +Wij , (20)
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with x0,i ∈ S0 and Wij ∼ N(0, 1/n). Hence, by an application of Bayes formula, the conditional
density of x0 = σ ∈ Fn given Y is becomes

p(dσ|Y ) =
1

Z ′Y
exp

{
− nsG

2

∑
i<j

∣∣∣Yij − λ

n
σiσ
∗
j

∣∣∣2} n∏
i=1

p0(dσi) , (21)

where we recall that sG = 1 for G = Z2 (real case), and sG = 2 for G = U(1) (complex case).
Further, p0(dσ) denotes the uniform measure over S0 ∈ F (in particular, this is the uniform measure
over {+1,−1} for G = Z2). Expanding the square and re-absorbing terms independent of σ in the
normalization constant, we get

p(dσ|Y ) =
1

ZY
exp

{
λsG

∑
i<j

<(Yijσ
∗
i σj)

} n∏
i=1

p0(dσi) . (22)

As claimed, this coincides with Eq. (16) if we set β = λ/2 (in the real case) or β = λ (in the
complex case).

Maximum-likelihood and SDP estimators. By letting β → ∞ in Eq. (16), we obtain that
pβ,m concentrates on the maximizers of the problem

maximize
∑
i<j

Yij〈σi,σj〉 , (23)

subject to σi ∈ Sm−1 ∀i ∈ [n] ,

In the case m ≥ n we recover the SDP relaxation. In the case m = 1, this is equivalent to the
maximum likelihood problem

maximize
∑
i<j

∣∣Yij − σiσ∗j ∣∣2 , (24)

subject to σi ∈ S0 ∀i ∈ [n] .

3.2 Cavity derivation for Z2 and U(1) synchronization

In this section we use the cavity method to derive the asymptotic properties of the measure (16).

3.2.1 General m and β

In the replica-symmetric cavity method, we consider adding a single variable σ0 to a problem with
n variables σ1,σ2, . . . ,σn. We compute the marginal distribution of σ0 in the system with n + 1
variables, to be denoted by νn+1

0 (dσ0). This is expressed in terms of the marginals of the other
variables in the system with n variables νn1 (dσ0), . . . νnn(dσ1). We will finally impose the consistency
condition that νn+1

0 is distributed as any of νn1 , . . . νnn in the n→∞ limit.
Assuming that σ1, . . .σn are, for this purpose, approximately independent, we get

νn+1
0 (dσ0) ∼= p0(dσ0)

n∏
k=1

∫
exp

{
2βm<(Y0k〈σ0,σk〉)

}
νnk (dσk) . (25)
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We will hereafter drop the superscripts n, n+ 1 assuming they will be clear from the range of the
subscripts.

Next we consider a fixed k ∈ [n] and estimate the integral by expanding the exponential term.
This expansion proceeds slightly different in the real and the complex cases. We give details for
the first one, leaving the second to the reader. Write∫

exp
{

2βmY0k〈σ0,σk〉)
}
νk(dσk) =

= 1 + 2βmY0k〈σ0,Ek(σk)〉+
1

2
4β2m2Y 2

0k〈σ0,Ek(σkσ
∗
k)σ0〉+O(n−3/2)

= exp
{

2βmY0k〈σ0,Ek(σk)〉+
1

2
4β2m2Y 2

0k〈σ0,
(
Ek(σkσ

∗
k)− Ek(σk)Ek(σ

∗
k)
)
σ0〉+O(n−3/2)

}
,

where Ek( · ) ≡
∫

( · ) νk(dσk) denotes expectation with respect to νk. Here, we used the fact that
Yij = O(1/

√
n), as per equation (20).

Substituting in Eq. (25), and neglecting O(n−1/2) terms, we get (both in the real and complex
case)

νi(dσi) =
1

zi
exp

{
2β m<〈ξi,σi〉+

2βm

sG
〈σi,Ciσi〉

}
p0(dσi) , (26)

where ξi ∈ Fm, Ci ∈ Fm×m, with C∗i = Ci, zi is a normalization constant, and sG = 1 (real case)
or sG = 2 (complex case). This expression holds for i = 0 and, by the consistency condition, for all
i ∈ {1, . . . , n}.

We further have the following equations for ξ0, C0:

ξ0 =
n∑
k=1

Y ∗0kEk(σk) , (27)

C0 = βm
n∑
k=1

|Y0k|2
(
Ek(σkσ

∗
k)− Ek(σk)Ek(σ

∗
k)
)
. (28)

Notice that the expectations Ek( · ) on the right-hand side are in fact functions of ξk, Ck through
Eq. (26).

We next pass to studying the distribution of {ξk} and {Ck}. For large n, the pairs {(ξk,Ck)}
appearing on the right-hand side of Eqs. (27), (28) can be treated as independent. By the law of
large numbers and central limit theorem, we obtain that

ξi ∼ N(µ,Q) , Ci = C , (29)

for some deterministic quantities µ, Q, C. Note that the law of ξi can be equivalently described
by

ξi = µ+Q1/2g , (30)

where g = (g1, g2, . . . , gm) ∼ N(0, Im).
Using these and the consistency condition in Eqs. (27), (28), we obtain the following equations

for the unknowns µ,Q,C:

µ = λE
{

Eξ,C(σ)
}
, (31)

Q = E
{

Eξ,C(σ)Eξ,C(σ)∗
}
, (32)

C = βmE
{

Eξ,C(σσ∗)− Eξ,C(σ)Eξ,C(σ)∗
}
. (33)
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Here E denotes expectation with respect to ξ ∼ N(µ,Q). Further Eξ,C denotes expectation with
respect to the following probability measure on Sm−1:

νξ,C(dσ) =
1

z(ξ,C)
exp

{
2β m<〈ξ,σ〉+

2β m

sG
〈σ,Cσ〉

}
p0(dσ) . (34)

The prediction of the replica-symmetric cavity methods have been summarized in the main text.
We generalize the discussion here. Assume, for simplicity x0 = (+1, . . . ,+1). For ν a probability
measure on Sm−1 and R an orthogonal (or unitary) matrix, let νR be the measure obtained by

‘rotating’ ν, i.e. νR(σ ∈ A) ≡ ν(R−1σ ∈ A) for any measurable set A. Finally, let p
(m,β)
i(1),...,i(k) denote

the joint distribution of σi(1), · · · ,σi(k) under pm,β. Then, for any fixed k, and any sequence of
k-tuples (i(1), . . . , i(k))n ∈ [n], we have

p
(m,β)
i(1),...,i(k) ⇒

∫
νRξ1,C( · )× · · · × νRξk,C( · ) dR (35)

Here dR denotes the uniform (Haar) measure on the orthogonal group, ‘⇒’ denotes convergence in
distribution, and ξ1, . . . , ξk ∼iid N(µ,Q) as above. Note that the original measure (16) is unaltered
under multiplication by a phase. Specifically, if we add an arbitrary phase φ` to coordinate ` of the
spins, the measure remains unchanged. In order to break this invariance, we consider marginals
νξ,C that corresponds to µ being real-valued. Henceforth, without loss of generality we stipulate
that µ is a real-valued vector.

While in general this prediction is only a good approximation (because of replica symmetry
breaking) we expect to be asymptotically exact for the Bayes-optimal, ML and SDP estimator. In
the next sections we will discuss special estimators.

3.2.2 Bayes-optimal: m = 1 and β ∈ {λ/2, λ}

For m = 1, σ = σ is a scalar satisfying σσ∗ = |σ|2 = 1. Hence, the term proportional to C in
Eq. (34) is a constant and can be dropped. Also ξ = ξ, µ = µ and Q = q are scalar in this case.

The expression (34) thus reduces to

νξ(dσ) =
1

z(ξ)
e2β<(ξ

∗σ) p0(dσ) , (36)

with p0(dσ) the uniform measure on {+1,−1} (in the real case) or on {z ∈ C : |z| = 1} (in the
complex case). Substituting in Eqs. (31), (32), we get

µ = λE
{

Eξ(σ)
}
, (37)

q = E
{
|Eξ(σ)|2

}
, (38)

with Eξ denoting expectation with respect to νξ, and E expectation with respect to ξ ∼ N(µ, q).
We will write these equations below in terms of classical functions both in the real and in the

complex cases. Before doing that, we derive expressions for the estimation error in the n → ∞
limit. The estimator x̂(Y ) is given in this case by x̂(Y ) = x̂β,m=1(Y ), cf. Eq. (17). Therefore, the
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scaled MSE, cf. Eq. (1), reads

MSE(x̂; c) = lim
n→∞

{
1− 2c

n

n∑
i=1

E
{
<(x0,ix̂i(Y ))

}
+
c2

n

n∑
i=1

E
{
|x̂i(Y )|2

}}
(39)

= 1− 2cE
{
<Eξ(σ)

}
+ c2E

{
|Eξ(σ)|2

}
(40)

= 1− 2cµ

λ
+ c2q . (41)

Note that the optimal scaling is c = µ/(λq), leading to minimal error –for the ideally scaled
estimator–

MSE(x̂) = 1− µ2

λ2q
. (42)

For the overlap we have, from Eq. (3),

Overlap(x̂) = lim
n→∞

1

n
E

{∣∣∣∣∣
n∑
i=1

x̂i(Y )

|x̂i(Y )|
x0,i

∣∣∣∣∣
}

(43)

= E
{ Eξ(σ)

|Eξ(σ)|

}
. (44)

Real case. In this case Eξ(σ) = tanh(2βξ) and therefore Eqs. (37), (38) yield

µ = λE
{

tanh
(
2βµ+ 2β

√
qZ
)}
, (45)

q = E
{

tanh
(
2βµ+ 2β

√
qZ
)2}

, (46)

where expectation is with respect to Z ∼ N(0, 1). As discussed in Section 3.1, the Bayes optimal
estimator is recovered by setting β = λ/2 above. Using the identity (12) in Corollary 2.2, we obtain
the solution

µ =
κ

λ
, q =

κ

λ2
. (47)

where κ satisfies the fixed point equation

κ = λ2E
{

tanh
(
κ+
√
κZ
)}

(48)

We denote by κ∗ = κ∗(λ) the largest non-negative solution of this equation. Using Eqs. (41) and
(44) we obtain the following predictions for the asymptotic estimation error

MSE(x̂Bayes) = 1− κ∗(λ)

λ2
, (49)

Overlap(x̂Bayes) = 1− 2Φ(−
√
κ∗(λ)) . (50)

(Note that in this case, the optimal choice of a scaling is c = 1.)

Complex case. In this case

Eξ(σ) =
ξ

|ξ|
I1(2β|ξ|)
I0(2β|ξ|)

, (51)
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where, as mentioned above, Ik(z) denotes the modified Bessel function of the second kind.
The general fixed point equations (37) and (38) yield

µ = λE
{µ+

√
q<(Z)

|µ+
√
qZ|

I1(2β|µ+
√
qZ|)

I0(2β|µ+
√
qZ|)

}
, (52)

q = λE
{ I1(2β|µ+

√
qZ|)2

I0(2β|µ+
√
qZ|)2

}
. (53)

As discussed in Section 3.1, the Bayes optimal estimator is recovered by setting β = λ in these
equations. In this case we can use the identity (13) in Corollary 2.2, to obtain the solution

µ =
κ

λ
, q =

κ

λ2
. (54)

where κ satisfies the fixed point equation

κ = λ2E
{κ+

√
κ<(Z)

|κ+
√
κZ|

I1(2|κ+
√
κZ|)

I0(2|κ+
√
κZ|)

}
, (55)

where the expectation is taken with respect to Z ∼ CN(0, 1). We denote by κ∗ = κ∗(λ) the largest
non-negative solution of these equations.

Using again Eqs. (41) and (44) , we obtain

MSE(x̂Bayes) = 1− κ∗(λ)

λ2
, (56)

Overlap(x̂Bayes) = E
{κ∗(λ) +

√
κ∗(λ)<(Z)

|κ∗(λ) +
√
κ∗(λ)Z|

}
. (57)

3.2.3 Maximum likelihood: m = 1 and β →∞

As discussed in Section 3.1, the maximum likelihood estimator is recovered by setting m = 1 and
β → ∞. Notice that in this case our results are only approximate because of replica symmetry
breaking.

We can take the limit β → ∞ in Eqs. (36), (37), (38). In this limit, the measure νξ( · )
concentrates on the single point σ∗ = ξ/|ξ| ∈ S0. We thus obtain

µ = λE
{<(ξ)

|ξ|

}
, (58)

q = 1 . (59)

We next specialize our discussion to the real and complex cases.

Real case. Specializing Eq. (58) to the real case, we get the equation

µ = λ
(
1− 2Φ(−µ)

)
. (60)

Taylor expanding near µ = 0, this yields µ = 2φ(0)λµ + O(µ2) which yields the critical point
(within the replica symmetric approximation)

λML,RS
c =

√
π

2
≈ 1.253314 . (61)
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We denote by µ∗ = µ∗(λ) the largest non-negative solution of Eq. (60). The asymptotic estimation
metrics (for optimally scaled estimator) at level λ are given by

MSE(x̂ML) = 1− µ∗(λ)2

λ2
, (62)

Overlap(x̂ML) =
µ∗(λ)

λ
. (63)

It follows immediately from Eq. (60) that, as λ→∞, µ∗(λ) = λ[1−2Φ(−λ) +O(Φ(−λ)2)], whence

MSE(x̂ML) = 4Φ(−λ) +O(Φ(−λ)2) =

√
8

πλ2
e−λ

2/2
(
1 +O(λ−1)

)
, (64)

Overlap(x̂ML) = 1− 2Φ(−λ) +O(Φ(−λ)2) = 1−
√

2

πλ2
e−λ

2/2
(
1 +O(λ−1)

)
. (65)

Complex case. Specializing Eq. (58), we get

µ = λE
{µ+ <(Z)

|µ+ Z|

}
, (66)

where the expectation is with respect to Z ∼ CN(0, 1). Taylor-expanding around µ = 0, we get
µ = (λµ/2)E{|Z|−1}+O(µ2). Using E{|Z|−1} =

√
π, we obtain the replica-symmetric estimate for

the critical point

λML,RS
c =

2√
π
≈ 1.128379 . (67)

Denoting by µ∗ = µ∗(λ) the largest non-negative solution of Eq. (66), the estimation metrics are
obtained again via Eqs. (62) and (63).

For large λ, it is easy to get µ∗(λ)/λ = 1− (4λ2)−1 +O(λ−3) whence

MSE(x̂ML) =
1

2λ2
+O(λ−3) , (68)

Overlap(x̂ML) = 1− 1

4λ2
+O(λ−3) . (69)

3.2.4 General m and β →∞

In the limit β →∞, the measure νξ,C( · ) of Eq. (34) concentrates on the single point σ∗(ξ,C) that
maximizes the exponent. A simple calculation yields

σ∗(ξ,C) =
(
ρI− (2/sG)C

)−1
ξ , (70)

where ρ is a Lagrange multiplier determined by the normalization condition ‖σ∗‖2 = 1, or

〈ξ,
(
ρI− (2/sG)C

)−2
ξ〉 = 1 . (71)

Further νξ,C( · ) has variance of order 1/β around σ∗.
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In order to solve Eqs. (31) to (33) we next assume that the O(m) symmetry is –at most– broken
vectorially to O(m − 1). Without loss of generality, we can assume that it is broken along the
direction e1 = (1, 0, . . . , 0). Further, since νξ,C( · ) is a measure on the unit sphere {σ : ‖σ‖2 = 1},
the matrix C is only defined up to a shift C − c0I. This leads to the following ansatz for the order
parameters.

µ =



µ
0
·
·
·
0

 , C =



−sGr/2
0
·
·
·

0

 , Q =



q1
q0
·
·
·
q0

 , (72)

where it is understood that out-of-diagonal entries vanish. Note that the above structure on
(µ,C,Q) is the only one that remains invariant under rotations in Fm that map e1 to itself.
We then can represent ξ as follows. For Z1, . . . , Zm ∼i.i.d. N(0, 1):

ξ =
(
µ+
√
q1 Z1,

√
q0 Z2, . . . ,

√
q0 Zm

)T
, (73)

and σ∗(ξ,C) reads

σ∗ =
(µ+

√
q1 Z1

ρ+ r
,

√
q0 Z2

ρ
, . . . ,

√
q0 Zm

ρ

)T
. (74)

Taking the limit β →∞ of Eqs. (31) to (33) we obtain the following four equations for the four
parameters µ, r, q0, q1:

µ = λE
[
µ+
√
q1<(Z1)

ρ+ r

]
, (75)

q1 = E
[
|µ+

√
q1 Z1|2

(ρ+ r)2

]
, (76)

q0 = q0E
[
|Z2|2

ρ2

]
, (77)

r = E
[
|Z2|2

ρ
− µ<(Z1)√

q1(ρ+ r)
− |Z1|2

ρ+ r

]
. (78)

Further, the normalization condition Tr(Q) = E(‖σ∗(ξ,C)‖22) = 1 yields

q1 + (m− 1)q0 = 1 . (79)

In the above expressions, expectation is with respect to the Gaussian vector Z = (Z1, . . . , Zm) ∼
N(0, Im), and ρ = ρ(Z1, . . . , Zm) is defined as the solution of the equation

1 =
|µ+

√
q1 Z1|2

(ρ+ r)2
+
q0
ρ2

m∑
i=2

|Zi|2 . (80)

The simplest derivation of these equations is obtained by differentiating the ground state energy,
for which we defer to Section 3.3.
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We can then compute the performance of the estimator x̂(β,m) defined at the beginning of this
section. Note that Q̂ → Q as n → ∞, and therefore its principal vector is û → e1 (within the
above ansatz), and therefore, for a test function f , we have

1

n

n∑
i=1

f(x0,i, x̂
(∞,m)
i ) = E

{
f
(
X0, c

µX0 +
√
q1Z1

ρ+ r

)}
, (81)

where X0 ∼ Unif(S0) independent of Z1.
Applying (81) and after a simple calculation we obtain

MSE(x̂(∞,m)) = 1− µ∗(λ)2

λ2q1,∗(λ)
, (82)

where µ∗(λ), q1,∗(λ) denote the solutions of the above equations. Also, invoking (81) the asymptotic
overlap is given by

Overlap(x̂(∞,m)) = E
{
X0

µ∗X0 +
√
q1,∗Z1

|µ∗X0 +
√
q1,∗Z1|

}
= 1− 2Φ

(
− µ∗(λ)√

q1,∗(λ)

)
. (83)

Spin-glass phase. The spin-glass phase is described by the completely symmetric solution with
µ = 0, b = 0 and q0 = q1 = 1/m. From Eq. (80) we get

ρ2 =
1

m
‖Z‖22 . (84)

Critical signal-to-noise ratio. We next compute the critical value of λ. We begin by expanding
Eq. (80). Define

F (s) ≡ q1
(s+ r)2

|Z1|2 +
q0
s2

m∑
i=2

|Zi|2 , (85)

and let ρ0 be the solution of the equation 1 = F (ρ0). Notice that ρ0 is unaltered under sign change
Z1 → −Z1. Further, comparing with the equation for ρ, see Eq. (80), we obtain the following
perturbative estimate

ρ = ρ0 −
1

F ′(ρ0)

2µ
√
q1<(Z1)

(ρ0 + r)2
+O(µ2) . (86)

By the results for the spin glass phase, we have q0, q1 → (1/m) and ρ, (ρ + r) → ‖Z‖2/
√
m as

µ→ 0, whence

ρ = ρ0 +
<(Z1)

‖Z‖2
µ+ o(µ) . (87)

13



Now consider Eq. (75). Retaining only O(µ) terms we get

µ = λµE
[

1

ρ+ r

]
+ λ
√
q1 E

[
<(Z1)

ρ+ r

]
(88)

= λµE
[ √

m

‖Z‖2

]
+ λ
√
q1 E

[
<(Z1)

ρ0 + r

]
− λ 1√

m
E
[
<(Z1)

(ρ0 + r)2
<(Z1)

‖Z‖2

]
µ+ o(µ) . (89)

where in the last step we used Eq. (87) and q1 = 1/m + o(1) as µ → 0. Now recalling that ρ0 is
even in Z1, the second term vanishes and we obtain

µ = λ
√
mE

{
1

‖Z‖2
− <(Z1)

2

‖Z‖32

}
µ+ o(µ) . (90)

We therefore get the critical point λc(m) by setting to 1 the coefficient of µ above. In the real case,
we get

λRS
c (m)−1 =

√
m
(

1− 1

m

)
E
{

1/‖Z‖2
}

(91)

=

√
2

m

Γ((m+ 1)/2)

Γ(m/2)
. (92)

In the complex case

λRS
c (m)−1 =

√
m
(

1− 1

2m

)
E
{

1/‖Z‖2
}

(93)

=

√
1

m

Γ(m+ (1/2))

Γ(m)
. (94)

Summarizing the (replica symmetric) critical point is

λRS
c (m) =

{√
m/2 Γ(m/2)Γ((m+ 1)/2)−1 for the real case,
√
mΓ(m)Γ(m+ (1/2))−1 for the complex case.

(95)

In particular, for m = 1 we recover λRS
c (1) =

√
π/2 for the real case, and λRS

c (1) = 2/
√
π for the

complex case. These are the values derived in Section 3.2.3. For large m, we get

λRS
c (m) = 1 +

1

4sGm
+O(m−2) , (96)

with sG = 1 (real case), or sG = 2 (complex case).
Let us emphasize once more: we do not expect the replica symmetric calculation above to

be exact, but only an excellent approximation. In other words, for any bounded m, we expect
λc(m) ≈ λRS

c (m) but λc(m) 6= λRS
c (m). However, as m → ∞ the problem becomes convex, and

hence we expect limm→∞ |λc(m)− λRS
c (m)| = 0. Hence

λSDP
c = lim

m→∞
λc(m) = 1 . (97)
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3.2.5 SDP: m→∞ and β →∞

In the limit m → ∞, Eqs. (75) to (78) simplify somewhat. We set q1 = q and eliminate q0 using
Eq. (79). Applying the law of large numbers, the equation for ρ reads

1 =
|µ+

√
q Z1|2

(ρ+ r)2
+

1− q
ρ2

. (98)

As a consequence, ρ becomes independent of Z2. Hence, Eqs. (75) to (78) reduce to

µ = λE
[
µ+
√
q<(Z1)

ρ+ r

]
, (99)

q = E
[
|µ+

√
q Z1|2

(ρ+ r)2

]
, (100)

r = E
[

1

ρ
− µ<(Z1)√

q(ρ+ r)
− |Z1|2

ρ+ r

]
, (101)

1 = E
{

1

ρ2

}
. (102)

Denoting by µ∗(λ) and q∗(λ) the solutions to the above equations, we have

MSE(x̂(∞,∞)) = 1− µ∗(λ)2

λ2q∗(λ)
, (103)

Further,

Overlap(x̂(∞,∞)) = 1− 2Φ
(
− µ∗(λ)√

q∗(λ)

)
. (104)

We solution of the above equations displays a phase transition at the critical point λSDP
c = 1,

which we next characterize.

Spin glass phase and critical point. The spin-glass phase corresponds to a symmetric solution
µ = q = r = 0.

In order to investigate the critical behavior, we expand the equations (99) to (101) for λ = 1+ε,
ε� 1. To leading order in ε, we get the following solution

µ = 2 ε3/2 +O(ε2) , (105)

q = sG ε
2 +O(ε5/2) , (106)

r = ε+O(ε3/2) , (107)

ρ = 1 + ε2 (|Z1|2 − 1) + o(ε3/2) . (108)

Hence

MSE(x̂SDP) = 1− µ2

q
= 1− 4

sG
ε+O(ε3/2) . (109)
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To check the above perturbative solution, note that expanding the denominator of Eq. (100)
and using ρ = 1 +O(ε2), we get

q = E|λµ+
√
qZ1|2(1− 2r +O(ε2)) , (110)

⇔ q = λ2µ2 + q(1− 2r) +O(ε4) (111)

⇔ µ2 = 2rq +O(ε4) . (112)

Multiplying Eq. (98) by ρ2 and expanding the right-hand side, we get

ρ2 = 1− q + q|Z1|2
(

ρ

r + ρ

)2

+O(µ
√
q) (113)

⇔ ρ = 1 +
q

2
(|Z1|2 − 1) +O(ε5/2) . (114)

Finally, expanding Eq. (101), we get

r = 1− µ
√
q
E
{ Z1

1 + b+ (q/2)(|Z1|2 − 1)

}
− E

{ |Z1|2

1 + b+ (q/2)(|Z1|2 − 1)

}
+O(ε5/2) , (115)

whence

(E|Z1|4 − 1) q = 2 r2 +O(ε5/2) . (116)

Finally, expanding Eq. (99) we get r = ε+O(ε3/2).

3.3 Free energy and energy

It is easier to derive the free energy using the replica method. This also give an independent
verification of the cavity calculations in the previous section.

3.3.1 Replica calculation

In this section, apply the replica method to compute the free energy of model (16). Our aim is to
compute asymptotics for the partition function

Z =

∫
exp

{
2mβ

∑
i<j

<(Yij〈σi,σj〉)
} n∏
i=1

p0(dσi) , (117)

where we recall that p0(dσi) is the uniform measure over σi ∈ Sm−1. The k-th moment is given by

E{Zk} =

∫ ∏
i<j

E exp
{

2βm
k∑
a=1

<(Yij〈σai ,σaj 〉)
}
p0(dσ) , (118)

where we introduced replicas σ1
i , . . . ,σ

k
i ∈ Sm−1, along with the notation p0(dσ) ≡

∏n
i=1

∏k
a=1 p0(dσ

a
i ).

Taking the expectation over Yij = (λ/n) +Wij , we get

E{Zk} =

∫ ∏
i<j

exp
{2βmλ

n

k∑
a=1

<〈σai ,σaj 〉+
2β2m2

sGn

∣∣∣ k∑
a=1

〈σai ,σaj 〉
∣∣∣2} p0(dσ) (119)

.
=

∫
exp

{βmλ
n

k∑
a=1

∥∥∥ n∑
i=1

σai

∥∥∥2
2

+
β2m2

sGn

k∑
a,b=1

∥∥∥ n∑
i=1

σai (σbi )
∗
∥∥∥2
F

}
p0(dσ) . (120)

16



We next use the identity

exp
{1

2
ζ2‖v‖2

}
.
=

∫
exp

{
− ‖w‖

2

2ζ2
+ <〈w,v〉

}
dw , (121)

where the vectors v and w take their entries in F. We apply this identity and introduce Gaussian
integrals over the variables µa ∈ Fm, Qab ∈ Fm×m (with Qba = Q∗ab)

E{Zk} .=
∫

exp
{
− βmn

λ

k∑
a=1

‖µa‖22 + 2βm
k∑
a=1

n∑
i=1

<〈µa,σai 〉 (122)

− β2m2n

sG

k∑
a,b=1

Tr(QabQ
∗
ab) +

2β2m2

sG

k∑
a,b=1

n∑
i=1

<〈σai ,Qabσ
b
i 〉
}
p0(dσ) dQdµ .

The final formula for the free energy density is obtained by integrating with respect to σ (now the
integrand is in product form) and taking the saddle point in Q, µ, and is reported in the next
section, see Eq. (124) below.

3.3.2 Non-zero temperature (β <∞)

The final result of the calculations in the previous section is obtaining the moments

lim
n→∞

1

n
logE{Zk} = extQ,µSk(Q,µ) , (123)

Sk(Q,µ) = −βm
λ

k∑
a=1

‖µa‖22 −
β2m2

sG

k∑
a,b=1

Tr(QabQ
∗
ab) + logWk(Q,µ) . (124)

Here, for each a, b ∈ {1, 2, . . . , k}, µa ∈ Rm, Qa,b ∈ Fm×m with Qb,a = Q∗a,b. In particular
Qa,a are Hermitian (or symmetric) matrices. The notation extQ,µ indicates that we need to take
a stationary point over Qab,µa. As usual in the replica method, this will be a local minimum
over some of the parameters, and local maximum over the others. Finally, the one-site replicated
partition function is

Wk(Q,µ) ≡
∫

exp
{

2β m

k∑
a=1

<〈µa,σa〉+
2β2m2

sG

k∑
a,b=1

<〈σa,Qa,bσb〉
} k∏

a=1

p0(dσa) , (125)

where we used the following identity in its derivation(∫
f(σ)p0(dσ)

)n
≡
∫
f(σ1)f(σ2) . . . f(σn) p0(dσ1) . . . p0(dσn) . (126)

Recall that sG = 1 for G = Z2 (real case), and sG = 2 for G = U(1) (complex case).

Replica-symmetric free energy. The replica-symmetric (RS) ansatz is

µa = µ , (127)

Qa,b =

{
Q+ 1

βm C if a = b,

Q if a 6= b.
(128)
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It follows from the above that C, Q ∈ Fm×m must be Hermitian (symmetric) matrices. We next
compute the RS free energy functional

φ(Q,C,µ) = lim
k→0

1

k
Sk(Q,µ) . (129)

By the RS ansatz we have

lim
k→0

βm

kλ

k∑
a=1

‖µa‖22 =
βm

λ
‖µ‖22 (130)

lim
k→0

β2m2

ksG

k∑
a,b=1

Tr(QabQ
∗
ab) = lim

k→0

β2m2

sG

{
Tr
((
Q+

1

βm
C
)2)

+ (k − 1)Tr(Q2)
}

=
β2m2

sG

{
Tr
((
Q+

1

βm
C
)2)
− Tr(Q2)

}
(131)

For computing the third term, we use the following identity. For a fixed arbitrary vector v,

E
{

exp(<〈v, ξ〉)
}

= exp
{
<〈v,µ〉+

1

2sG
<〈v,Qv〉

}
, (132)

where ξ ∼ N(µ,Q) in the real case, and ξ ∼ CN(µ,Q) in the complex case. Further, the expectation
E is with respect to ξ.

Applying this identity, we write

Wk(Q,µ)

=

∫
exp

{
2βm<〈µ,

k∑
a=1

σa〉+
2βm

sG

k∑
a=1

<〈σa,Cσa〉+
2β2m2

sG
<
〈 k∑
a=1

σa,Q
k∑
a=1

σa

〉} k∏
a=1

p0(dσa)

=

∫
E exp

{2βm

sG

k∑
a=1

<〈σa,Cσa〉+ 2βm

k∑
a=1

<〈σa, ξ〉
} k∏
a=1

p0(dσa)

= E
(∫

exp
{2βm

sG
<〈σ,Cσ〉+ 2βm<〈σ, ξ〉

}
p0(dσ)

)k
. (133)

Hence,

lim
k→0

1

k
logWk(Q,µ) = E log

(∫
exp

{
2βm<〈ξ,σ〉+

2βm

sG
〈σ,Cσ〉

}
p0(dσ)

)
. (134)

Combining Eqs. (130), (131) and (134) we arrive at

φ(Q,C,µ) = −βm
λ
‖µ‖22 −

1

sG
β2m2

{
Tr
((
Q+

1

βm
C
)2)
− Tr(Q2)

}
+ E log

(∫
exp

{
2βm<〈ξ,σ〉+

2βm

sG
〈σ,Cσ〉

}
p0(dσ)

)
, (135)

ξ ∼ N(µ,Q) .

In the complex case, the last line should be interpreted as ξ ∼ CN(µ,Q). Differentiating this
expression against µ,C,Q we recover Eqs. (31) to (33) as saddle point conditions.
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3.3.3 Zero temperature (β →∞)

As β →∞, the free energy behaves as

φ(Q,C,µ) = 2βmu(Q,C,µ) + o(β) , (136)

where u(Q,C,µ) is the replica-symmetric ground state energy

u(Q,C,µ) = − 1

2λ
‖µ‖22 −

1

sG
Tr(CQ) + E max

σ∈Sm−1

[
<〈ξ,σ〉+

1

sG
〈σ,Cσ〉

]
, (137)

ξ ∼ N(µ,Q) .

Let us stress that expectation is with respect to ξ. Denote by σM = σM(ξ,C) the solution of the
above maximization problem. It is immediate to see that this is given by

σM =
(
ρI− (2/sG)C

)−1
ξ , (138)

where ρ = ρ(ξ,C) ∈ R is a Lagrange multiplier determined by solving the equation

〈ξ,
(
ρI− (2/sG)C

)−2
ξ〉 = 1 . (139)

The equations for µ and Q are immediate by taking the β → ∞ limit on Eqs. (31), (32). In
zero temperature, measure νξ,C concentrates around σM(ξ,C).

µ = E{<σM(ξ,C)} , (140)

Q = E{σM(ξ,C)σM(ξ,C)∗} . (141)

Equivalently, we obtain the above equations by differentiating u(Q,C,µ) with respect to µ and
C, as follows. We write σM = σM(ξ,C) to lighten the notation. Since ρ is a Lagrange multiplier,
we have

∇σM

(
<〈ξ,σM〉+ (1/sG)〈σM,C,σM〉

)
= ρσM .

Hence,

∇Cu = − 1

sG
Q+ E

{ 1

sG
σMσ

∗
M + ρ

m∑
`=1

σM,`∇CσM,`

}
= − 1

sG
Q+ E

{ 1

sG
σMσ

∗
M

}
, (142)

where the second equation follows from the constraint ‖σM‖2 = 1.
We next substitute ξ = µ+Q1/2Z. By a similar calculation, we have

∇µu = − 1

λ
µ+ E{<σM} . (143)

∇Q1/2u = −[CQ1/2]s +
sG
2

E
{

[Z σM(ξ,C)∗]s
}
. (144)

Recall that expectation E is with respect to ξ ∼ N(µ,Q) or, equivalently, Z ∼ N(0, Im). Further
[A]s denotes the symmetric (Hermitian) part of the matrix A, i.e. [A]s = (A+A∗)/2.

19



Using the ansatz (72), we recover Eqs. (75) to (78). Specifically, Eq (75) follows readily from
Eq. (140), restricting to the (1, 1) entry and plugging in for σM from Eq. (74). Also, Eqs. (76)
and (77) follow from Eq. (141), restricting to (1, 1) and (2, 2) entries, respectively. Derivation of
Eq. (78) requires more care. Note that since νξ,C , given by (34), is a measure on the unit sphere,
the matrix C is only defined up to a diagonal shift. Let sGη/2 denote the slack shift parameter.
The ansatz (72) for C then becomes

C =



−sG(r + η)/2
−sGη/2

·
·
·
−sGη/2

 .

We set ∇Q1/2u = 0. Applying Eq. (144), this results in the following two equations for C11 and
C22:

−sG
2

(r + η)
√
q1 =

sG
2
E
{µ<(Z1)

ρ+ r
+

√
q1|Z1|2

ρ+ r

}
, (145)

−sG
2
η
√
q0 =

sG
2
E
{√q0|Z2|2

ρ

}
. (146)

Solving for η from Eq. (146) and substituting for that in Eq. (145), we obtain Eq. (78).

3.4 On the maximum likelihood phase transition

In Section 3.2.3 we computed the replica symmetric approximation for the phase tranition of the
maximum likelihood estimator. We obtained λML,RS

c (Z2) =
√
π/2 (real case), λML,RS

c (U(1)) = 2/
√
π

(complex case). This is somewhat surprising because it suggests that the maximum likelihood
estimator has a worse threshold than the Bayes optimal estimator.

It turns out that this is an artifact of the replica symmetric approximation and instead

λML
c (Z2) = λML

c (U(1)) = 1 . (147)

We next outline the heuristic argument that support this claim. (For the sake of simplicity, we will
consider the Z2 case.)

For a given noise realization W , the maximum likelihood estimator is

x̂ML(Y ) = arg max
x{+1,−1}n

{
λ

2n
〈x,x0〉2 +

1

2
〈x,Wx〉

}
. (148)

We then define the correlation

M(W ) ≡ 1

n

∣∣〈x0, x̂
ML(Y )〉

∣∣ , (149)

and recall that Overlapn(x̂ML) = E{M(W )}. We want to show that M(W ) is (with high proba-
bility) bounded away from 0 for λ > 1. Setting, without loss of generality, x0 = 1, we have

M(W ) = arg max
m∈[0,1]

{
FW ,n(m) +

λ

2
m2
}
, (150)

FW ,n(m) ≡ max
x∈{+1,−1}n

{ 1

2n
〈x,Wx〉 :

1

n

n∑
i=1

xi ∈
[
m,m+ 1/n

)}
. (151)
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We expect limn→∞ FW ,n(m) ≡ F (m) to exist and to be non-random. This implies that the asymp-
totic overlap is given by

Overlap(x̂ML) = arg max
m∈[0,1]

{
F (m) +

λ

2
m2
}

(152)

By symmetry we have F (m) = F (−m). Assuming m 7→ F (m) to be differentiable, this implies
F ′(0) = 0. Hence m = 0 is a local maximum for λ < −F ′′(0) and a local minimum for λ > −F ′′(0).
Since at λ = 0 we obviously have Overlap(x̂ML) = 0, F ′′(0) < 0. Further, if m = 0 is a local
minimum, we necessarily have Overlap(x̂ML) > 0. Hence λML

c ≤ −F ′′(0).
On the other hand, we know that we cannot estimate x0 with non-vanishing overlap for λ < 1.

This is a consequence –for instance– of [DAM15, Theorem 4.3] or can, in alternative, be proved
directly using the technique of [MRZ14]. This implies that λML

c ≥ 1. Summarizing, we have

1 ≤ λML
c ≤ −F ′′(0) . (153)

We next claim that earlier work on the Sherrington-Kirkpatrick model implies F ′′(0) = −1,
thus yielding λML

c = 1. Indeed, alternative expressions can be obtained by studying the modified
problem

F̂W ,n(h) ≡ 1

n
max

x∈{+1,−1}n

{
1

2
〈x,Wx〉+ h〈1,x〉

}
, (154)

where h is an added magnetic field. Then, we have limn→∞ F̂W ,n(h) = F̂ (h), the Legendre trans-
form of F , and we get the alternative upper bound

λML
c ≤ −F ′′(0) =

1

F̂ ′′(0)
. (155)

Note that F̂ (h) is the zero-temperature free energy density of the Sherrington-Kirkpatrick model
in a magnetic field h [MPV87], whose n→∞ limit exists by [GT02]. Using well-known thermody-
namic identities, we get

λML
c ≤ −F ′′(0) = = lim

β→∞
lim
n→∞

1

χ(β, h = 0+)
(156)

= lim
β→∞

lim
n→∞

1

βEβ,h=0+{1−Q}
, (157)

where χ(β, h) is the magnetic susceptibility of the Sherrington-Kirkpatrick model at inverse tem-
perature β, and magnetic field h, and Q is the random overlap.

To the best of our knowledge, the above connection between response to a magneric field, and
couplings with non-zero mean was first described by Gérard Toulouse1 in [Tou80].

The relation βEβ,h=0+{1 − Q} = 1 was derived in [Som83] from Sompolisky’s formulation of
mean field theory. This result is also confirmed by recent high-precision numerical approximations
of the ∞-RSB solution of the Sherrington-Kirkpatrick model [OS08].

1In [Tou80], this argument was put forward within the context of the so-called Parisi-Toulouse (PaT) scaling
hypothesis. Let us emphasize that here we are not assuming PaT to hold (and indeed, it has been convincingly
shown that PaT is not correct, albeit an excellent approximation, see e.g. [CRT03]).
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4 Analysis of PCA estimator for synchronization problem

Here, we study the PCA estimator for the synchronization problem. Recall the observation model

Y =
λ

n
x0x

∗
0 +W , (158)

with x0 ∈ Fn and ‖x0‖ = n, where ‖ · ‖ refers to the norm on F.
Let v1(Y ) denote the leading eigenvector of Y . The PCA estimator x̂PCA is defined as

x̂PCA(Y ) ≡
√
n cPCA(λ)v1(Y ) , (159)

with cPCA a certain scaling factor discussed below.
In order to characterize the error of x̂PCA, we use a simplified version of the main theorem

in [CDMF09].

Lemma 4.1 ([CDMF09]). Let Y = λv0v
∗
0 +W be a rank-one deformation of the Gaussian sym-

metric matrix W , with Wij ∼ N(0, 1/n) independent for i < j, and ‖v0‖ = 1. Then, we have,
almost surely

lim
n→∞

|〈v1(Y ),v0〉| =

{
0 if λ ≤ 1 ,√

1− λ−2 if λ > 1 .
(160)

Further, letting λ1(Y ) be the top eigenvalue of Y , the following holds true almost surely

lim
n→∞

λ1(Y ) =

{
2 if λ ≤ 1 ,

λ+ 1/λ if λ > 1 .
(161)

Applying this lemma, we compute MSE(x̂PCA; c) as follows

MSE(x̂PCA; c) = lim
n→∞

{
1− 2c

n
E{<〈x0, x̂

PCA〉}+
c2

n
‖x̂PCA‖2

}
= 1− 2c

√
1− λ−2 + c2 ,

(162)

which is optimized for c = cPCA(λ) ≡
√

max(1− λ−2, 0). Note that this choice can be written in
terms of λ1(Y ) as well and so knowledge of λ is not required. We then obtain

MSE(x̂PCA(Y ); cPCA(λ)) = min(1, λ−2) . (163)

5 Analytical results for community detection

In this Section we use the cavity method to analyze the semidefinite programming approach to
community detection. We refer, for instance, to [MM09] for general background on the cavity
method for sparse graphs. Also, see [BSS87, SW87] for early statistical mechanics work on the
related graph bisection problem.

While we focus on the cases of two communities, we believe that the methods developed here are
applicable to a significantly broader class of graph models. Semidefinite programming relaxations
for community detection problems where studied in [ABH16, HWX15a, Ban15]. for the case of two
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communities, and in [HWX15b, ABKK15] for multiple communities. These works focus however
on the regime in which the average node degree is of order Θ(log n) and exact reconstruction of
the vertex labels is possible. We are interested in bounded average dgree, a case that was studied
in [MS16, GV14].

Recall (from the main text) that we are interested in the hidden partition model. Namely,
consider a random graph Gn = (Vn, En) over vertex set Vn = [n], generated according to the
following distribution. We let x0 ∈ {+1,−1}n be uniformly random: this vector contains the
vertex labels (equivalently, it encodes a partition of the vertex set V = V+ ∪ V−, in the obvious
way). Conditional on x0, edges are independent with distribution

P
{

(i, j) ∈ En
∣∣x0

}
=

{
a/n if x0,ix0,j = +1,

b/n if x0,ix0,j = −1.
(164)

As explained in the main text, we tackle this problem via the semidefinite relaxation

maximize
∑

(i,j)∈En

Xij ,

subject to X � 0 ,

X1 = 0 , Xii = 1 ∀i ∈ [n] .

(165)

For our analysis, we use the non-convex formulation

maximize
∑

(i,j)∈En

〈σi,σj〉 ,

subject to
n∑
i=1

σi = 0 ,

σi ∈ Sm−1 ⊆ Rm ∀i ∈ [n] .

(166)

This is equivalent to the above SDP provided m ≥ n. Note that, throughout this section, the spin
variables σi are real vectors.

We introduce the following Boltzmann-Gibbs distribution

pβ,m(dσ) =
1

ZG(β,m)
exp

{
2mβ

∑
(i,j)∈E

〈σi,σj〉
}
p0(dσ) . (167)

Here p0(dσi) is the uniform measure over σ = (σ1,σ2, . . . ,σn) with σi ∈ Sm−1 and
∑n

i=1 σi = 0.
In order to extract information about the SDP (165), we take the limits m → ∞, β → ∞ after
n→∞.

As n → ∞, the graph Gn converges locally to a rooted multi-type Galton-Watson tree with
vertices of type + (corresponding to x0,i = +1) or − (corresponding to x0,i = −1). Each vertex
has Poisson(a/2) offsprings of the same type, and Poisson(b/2) offsprings of the other type (see,
e.g. [DM10] for background on local weak convergence in statistical mechanics).

We write the sum-product fixed point equations to compute the marginals at different nodes.

νi→j(dσi) ∼=
∏

`∈∂i\{j}

∫
e2βm〈σi,σ`〉 ν`→i(dσ`) , (168)
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where νi→j are the messages associated to the directed edges of the graph. The marginal ν0(dσ0),
for an arbitrary node 0, is given by

ν0(dσ0) ∼=
∏
i∈∂0

∫
e2βm〈σ0,σi〉 νi→0(dσi) . (169)

We rewrite the above equations from another perspective. We designate node 0 as the root of the
tree and denote its neighbors by {1, 2, . . . , k}. Let Ti be the subtree rooted at node i and induced
by its descendants. We call νi(dσi) the marginal for σi w.r.t the graphical model in the subtree Ti.
Replica symmetric cavity equations relate the marginal ν0(dσ0) to the marginals at the descendant
subtrees, i.e., νi(dσi). Note that, in the above notation, νi(dσi) ≡ νi→0(dσi) and therefore we
obtain

ν0(dσ0) ∼=
k∏
i=1

ν̂i(σ0) . (170)

ν̂i(σ0) ∼=
∫

e2βm〈σ0,σi〉 νi(dσi) . (171)

(The measures νi(dσi) are probability measures over Sm−1 and the right-hand side should be
interpreted as a density with respect to the uniform measure on Sm−1.)

We will use the notation of Eq. (170) but both interpretations are useful.
Notice that the (non-local) constraint

∑n
i=1 σi = 0 does not enter these equations. However,

it is enforced by selecting a solution of the cavity equations such that E{
∫
σ0ν0(dσ0)} = 0, where

E is expectation with respect to the underlying graph which is a Galton-Watson tree with Poisson
offspring distribution.

Remark 5.1. We will carry out our calculations within a simple ‘vectorial’ ansatz, whereby νi(dσi)
depends only on a two-dimensional projection of σi. The ansatz is defined in its most general
form in Eq. (227) below. It turns out that, for computing the critical point λSDP

c (d), the quadratic
coefficient ri can be set to 0, which is what we will do in Sections 5.1 through 5.3.

While this ansatz is not exact, it turns out to yield very accurate results. Also, it can be
systematically improved upon, a direction that we leave for future work.

5.1 Symmetric phase

For small (a − b), we expect the solution to the cavity equation to be symmetric (in distribution)
under rotations in O(m). By this we mean that, for any rotation R ∈ O(m), νRi ( · ) is distributed
as νi( · ). (νRi ( · ) is defined as the measure induced by action σ 7→ Rσ on Sm−1, cf. Section 3).

In the symmetric phase, assuming the ‘vectorial’ ansatz, cf. Remark 5.1, we look for an approx-
imate solution of the form

νi(dσi) ∼= exp
{

2β
√
mci 〈zi,σi〉+Om(1)

}
p0(dσi) (172)

∼= exp
{

2β
√
mci 〈zi,σi〉+Om(1)

}
δ
(
‖σi‖22 − 1

)
dσi , (173)

where zi ∼ N(0, Im), and Om(1) represents a term of order one as m→∞.
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Using the Fourier representation of the δ function (with associated parameter ρ), and performing
the Gaussian integral over σ, we get

ν̂i(σ0) ∼=
∫

exp
{

2βm〈σ0,σ〉+ βmρ+ 2β
√
mci 〈zi,σ〉 − βmρ‖σ‖22 +Om(1)

}
dρ dσ (174)

∼=
∫
ρ−m/2 exp

{ β

ρm

∥∥∥√mcizi +mσ0

∥∥∥2
2

+ βmρ+Om(1)
}

dρ (175)

∼=
∫

exp
{
βmSi(ρ) +

2β

ρ

√
mci 〈zi,σ0〉+

βci
ρ

(‖zi‖22 −m) +Om(1)
}

dρ , (176)

where

Si(ρ) ≡ ρ+
1

ρ

(
ci + 1

)
− 1

2β
log ρ . (177)

Here the indegral over ρ runs along the imaginary axis in the complex plane, from −i∞ and +i∞.
Note, for σ0 uniformly random on the unit sphere, the term (2βm/ρ)〈zi,σ0〉 is of order

√
m,

i.e. of lower order with respect to the term including S( · ). Also, the term (βmci/ρ)(‖zi‖22 − 1) is
of order

√
m and does not depend on σ0. Hence, up to an additional Om(1) term, we can reabsorb

this in the normalization constant. We therefore get

ν̂i(σ0) ∼=
∫

exp
{
βmSi(ρ) +

2β

ρ

√
mci 〈zi,σ0〉+Om(1)

}
dρ . (178)

We next perform integration over ρ by the saddle point method. Since 〈zi,σ0〉 = O(m−1/2) and
Si(ρ) = O(1), the saddle point is given by the stationary equation S′i(ρ) = 0. The saddle point
ρi,∗ lies on the real axis and is a minimum along the real axis but a maximum with respect to the
imaginary direction, i.e.,

ρi,∗(β) = arg min
ρ∈R+

Si(ρ) . (179)

By Cauchy’s theorem, we can deform the contour of integral to pass the saddle point along the
imaginary direction. This in fact corresponds to the path that descents most steeply from the
saddle point. The integral is dominated by ρ = ρi,∗ +O(m−1/2) and hence,

ν̂i(σ0) ∼= exp
{ 2β

ρi,∗

√
mci〈zi,σ0〉+Om(1)

}
. (180)

While this expression for ν̂i(σ0) is accurate when 〈zi,σ0〉 is small, it breaks down for large 〈zi,σ0〉.
In Section 5.5 we will discuss the regimes of validity of this approximation. Namely, we expect it
to be accurate for d large and for d close to one.

Substituting in Eq. (170), we get the recursion

c0 =
k∑
i=1

ci
ρ2i,∗

, (181)

ρ2i,∗ =
(
ci + 1

)
+

1

2β
ρi,∗ . (182)
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In particular, as β →∞, we get the simple equation

c0 =
k∑
i=1

ci
1 + ci

. (183)

Note that c0, c1, . . . , ck are random variables, because of the randomness in the underlying
limiting tree, which is Galton-Watson tree with Poisson offspring distribution. We get

c
d
=

L∑
i=1

ci
1 + ci

, (184)

where L ∼ Poisson(d), d = (a + b)/2, and c1, . . . , cL are i.i.d. copies of c. We are interested in
solutions supported on R≥0, i.e. such that P(c ≥ 0) = 1.

This recursion is connected to potential theory on Galton-Watson trees, see e.g. [LPP97, LP13].
The next proposition establishes a few basic facts about its solutions. For the readers’ convenience,
we provide a proof of the simplest statements, referring to [LPP97] for the other facts. Given two
random variables X,Y , we write X � Y if Y dominates stochastically X, i.e. if there exists a
coupling of X,Y such that P(X ≤ Y ) = 1.

Proposition 5.2 ([LPP97]). There exists random variables c0, c∗ supported on R≥0, that solve
Eq. (184) and such that:

1. c0 = 0 almost surely.

2. c∗ � L, L ∼ Poisson(d).

3. For d ≤ 1, c∗ = c0 = 0 identically. Hence the distributional equation (184) has a unique
solution.

4. For d > 1, c∗ > 0 with positive probability and further equation (184) admits no other solution
than c0, c∗.

Proof. Let P denote the space of probability measures over [0,∞], and Td : P→ P the map defined
by the right-hand side of Eq. (184). Namely Td(µ) is the probability distribution of the right-hand
side of Eq. (184) when ci ∼i.i.d. µ. Notice that this is well defined on the extended real line because
the summands are non-negative. It is immediate to see that this map is monotone, i.e.

µ1 � µ2 ⇒ Td(µ1) � Td(µ2) . (185)

We define c0 = 0 identically and c∗ ∼ µ+, where µ+ = lim`→∞ T`d(δ+∞) where “lim” refers to
the weak limit, which exists by monotonicity. Points 1, 2 follows from an immediate monotonicity
argument (see e.g. [AB05]).

For point 3, note that by Jensen inequality

Ec ≤ dEc
1 + Ec

, (186)

which implies Ec = 0, and hence c = 0 identically.
Point 4 is just Theorem 4.1 in [LPP97].
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The next proposition establishes an appealing interpretation of the random variable c∗. Again,
this puts together results of [Lyo90] and [LPP97]. We give here a proof of this connection for
the readers’ convenience. We refer to [LP13] for further background on discrete potential theory
(electrical networks) and trees.

Proposition 5.3 ([Lyo90, LPP97]). Let T be a rooted Galton-Watson tree with offspring distribu-
tion Poisson(d), and consider the associated (infinite) electric network, whereby each edge of T is
replaced by a conductor with unit resistance. Let C(0↔ `) be the conductance between the root and
vertices at level ` (when nodes at level ` are connected together). Let C(0↔∞) ≡ lim`→∞ C(0↔ `).
Then:

c∗
d
= C(0↔∞) . (187)

In particular, if d > 1, then c∗ > 0 with positive probability.

Proof. Let 0 denote the root of T , and {1, 2, . . . , k} be its children. Let the conductance between
the root and level ` on T be γ0(`),. Also, let T1, . . . Tk denote the subtrees rooted at 1, . . . , k. Let
the conductance between the root and level ` on Ti (i.e. between vertex i and vertices at distance `
from i on Ti) be denoted by γi(`). Let γ̂i(`), i ∈ {1, . . . , k} be the conductance of the tree obtained
from T by removing edges {(0, j) : j ∈ [k] \ {k}}. Equivalently γ̂i(`) is the conductance of the tree
obtained from Ti by connecting the root of Ti (vertex i) to 0 and moving the root to 0. Since the
resistance of a series is the sum of resistances of each component, we have

1

γ̂i(`+ 1)
= 1 +

1

γi(`)
. (188)

This is of course equivalent to γ̂i(`+ 1) = γi(`)/(1 + γi(`)).
Now since the conductance of several resistances in parallel is equal to the sum of the conduc-

tances of the components, we get

γ0(`+ 1) =
k∑
i=1

γ̂i(`+ 1) =
k∑
i=1

γi(`)

(1 + γi(`))
, (189)

with boundary condition γ0(0) =∞. Notice that this coincides with the recursion for c`, included
the boundary condition, thus proving our claim.

It follows from Theorem [Lyo90, Theorem 4.3] and [Lyo90, Proposition 6.4] that c∗ > 0 with
positive probability whenever d > 1.

We will hereafter consider the case d > 1 and focus on the maximal solution c∗.
We first study the behavior of c∗ for large d limit. When d→∞, by the law of large numbers

the right-hand of Eq. (184) concentrates around a deterministic value, and hence so does c. In
order to characterize this value for large d, we write c = c + ∆c where E(∆c) = 0 and c = E(c) is
deterministic. Further, we expect ∆c = Θ(

√
d) and c = Θ(d). Expanding Eq. (184), we get

c + ∆c
d
=

L∑
i=1

{ c

1 + c
+

∆ci
(1 + c)2

− ∆c2i
(1 + c)3

+
∆c3i

(1 + c)4
+O(d−3)

}
(190)

=
L c

1 + c
+
d (E(∆c2))1/2

(1 + c)2
Z1 −

dE(∆c2)

(1 + c)3
+O(d−3/2) , (191)

27



where Z1 ∼ N(0, 1) is independent of L ∼ Poisson(d). Note that we used central limit theorem and
law of large numbers in obtaining (191).

Taking expectation we get

c =
d c

1 + c
− dE(∆c2)

(1 + c)3
+O(d−3/2) , (192)

whence

c = d− 1− E(∆c2)

d2
+O(d−3/2) . (193)

On the other hand, taking the variance, we obtain

E(∆c2) = d
( c

1 + c

)2
+
d2 E(∆c2)

(1 + c)4
+O(d−3) . (194)

Therefore,

E(∆c2) = d− 2 +O(d−1) . (195)

Using equation (195) in equation (193), we get

c = d− 1− 1

d
+O(d−3/2) . (196)

Summarizing, we found that

c∗ = d− 1− 1

d
+
√
d− 2 Z +O(d−3/2) , (197)

for Z ∼ N(0, 1).

5.2 Linear stability of the symmetric phase and critical point

We next study the stability of the symmetric solution (172). We break the O(m) symmetry by
letting

νi(dσi) ∼= exp
{

2β
√
mci 〈zi, τi〉+ 2βmhi si +Om(1)

}
δ
(
‖τi‖22 + s2i − 1

)
dsid

m−1τi , (198)

where σi = (si, τi) and zi ∼ N(0, Im−1) is (m− 1)-dimensional. Note that each coordinate of zi is
of order 1, and is multiplied by a factor

√
m in the above expression. We will consider hi ≪ 1,

and expand all expressions to linear order in hi.
Proceeding as in the symmetric phase, we get

ν̂i(σ0) ∼= −j
∫

exp
{

2βms0s+ βmρ− βmρs2 + 2βmhis

+ 2βm〈τ0, τ 〉+ 2β
√
mci〈zi, τ 〉 − βmρ‖τ‖22 +Om(1)

}
dρdm−1τ ds

∼= −j
∫
ρ−m/2 exp

{ β

ρm

∥∥∥√mcizi +mτ0

∥∥∥2
2

+
βm

ρ

(
hi + s0

)2
+ βmρ+Om(1)

}
dρ

∼= −j
∫

exp
{
βmSi(ρ) +

2β

ρ

√
mci 〈zi, τ0〉+

2βm

ρ
his0 +

βci
ρ

(‖zi‖22 −m) +
βm

ρ
h2i +Om(1)

}
dρ ,

(199)
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where Si(ρ) is defined as in the symmetric phase, namely

Si(ρ) = ρ+
1

ρ

(
ci + 1

)
− 1

2β
log ρ . (200)

We perform the integral by saddle point, around ρi,∗(β) = arg minρ∈R+ Si(ρ). Proceeding as in the
symmetric case, and neglecting terms quadratic in hi, we have

ν̂i(σ0) ∼= exp
{2βm

ρi,∗
his0 +

2β

ρi,∗

√
mci 〈zi, τ0〉+Om(1) +O(h2)

}
. (201)

Substituting in Eq. (170), we obtain the equations

c0 =
k∑
i=1

ci
ρ2i,∗

, h0 =
k∑
i=1

hi
ρi,∗

, (202)

which simplify at zero temperature to

c0 =

k∑
i=1

ci
1 + ci

, h0 =

k∑
i=1

hi√
1 + ci

. (203)

Recall that the graph Gn converges locally to a two-types Galton-Watson tree, whereby each
vertex has Poisson(a/2) vertices of the same type, and Poisson(b/2) vertices of the opposite type.
We look for solutions that break the symmetry +1↔ −1. If (ci, hi) is the pair of random variables

introduced above, for vertex i, we therefore assume (ci(+), hi(+))
d
= (ci(−),−hi(−)) for i(+) ∈ V+,

i(−) ∈ V−. This leads to the following distributional recursion for the sequence of random vectors
{(ct, ht)}t≥0:

(
ct+1;ht+1

) d
=
( L++L−∑

i=1

cti
1 + cti

;

L++L−∑
i=1

sih
t
i√

1 + cti

)
, (204)

where L+ ∼ Poisson(a/2), L− ∼ Poisson(b/2), s1, . . . , sL+ = +1, sL++1, . . . , sL++L− = −1, and
{(cti, hti)} are i.i.d. copies of (ct, ht)

Let us pause for two important remarks:

1. The recursion (204) is invariant under the rescaling ht → a ht for a ∈ R. Hence, only
properties that are invariant under thus rescaling are meaningful.

2. It admits the fixed point (ct, ht)
d
= (c∗,

√
c∗ Z) where c∗ is the distributional fixed point of

the symmetric phase, constructed in the previous section, and Z ∼ N(0, 1) is independent of
c∗. This is a fixed point2 that corresponds to the symmetric phase, and does not break the
+1↔ −1 symmetry.

Therefore, in order to investigate stability, we initialize the above recursion in a way that breaks
the symmetry, (c0, h0) = (∞, 1). Note that by monotonicity property (185), starting with c0 =∞,

2Indeed, by the scaling invariance, (ct, ht)
d
= (c∗, a

√
c∗ Z) is a fixed point for any fixed scale factor a ∈ R.
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we have ct
d⇒ c∗. We ask whether this perturbation grows, by computing the exponential growth

rate

Gα(d, λ) ≡ lim inf
t→∞

1

tα
logE(|ht|α) , (205)

where d = (a + b)/2, and λ = (a − b)/
√

2(a+ b) parametrize the model. We define the critical
point as the smallest λ such that the growth rate is strictly positive:

λ̃SDP
c (d) ≡ inf

{
λ ∈ [0,

√
d] : G2(d, λ) > 0

}
. (206)

Notice that in the definition we used the second moment, i.e. set α = 2. However, the result appear
to be insensitive to the choice of α. In the next section we will discuss the numerical solution of
the above distributional equations and our analytical prediction for λSDP

c (d).
In the rest of this section we analyze the behavior of λ̃SDP

c (d) for large d. Along the way, we
analyze the behavior of perturbation ht, which in turn clarifies why the critical point λ̃SDP

c is defined
based on the exponential growth rate of the perturbation.

For the sake of simplicity we assume the initialization (c0, h0)
d
= (c∗, 1). Since with initialization

c0 = ∞ we have ct
d⇒ c∗, this should be equivalent to our initialization (c0, h0) = (∞, 1). We let

ct = c + ∆ct, c = E(c∗) = E(ct) as in the previous section. Note that although ct is distributed as
per c∗, joint distribution of (ct, ht) varies over time and so we make the iteration number explicit
in ∆ct.

We start by taking expectation of Eq. (204).

E(ht+1) =
a− b

2
E
{ ht√

1 + ct

}
(207)

=
a− b

2
E
{
ht
[ 1

(1 + c)1/2
− ∆ct

2(1 + c)3/2
+

3(∆ct)2

8(1 + c)5/2
+O(d−2)

]}
. (208)

By taking the covariance of ht and ct, we obtain

E(∆ctht) = Cov(ct;ht) =
a− b

2
E
{ ht−1ct−1

(1 + ct−1)3/2

}
(209)

=
a− b

2

c

(1 + c)3/2
E(ht−1)

(
1 +O(d−1)

)
. (210)

Further we have

E{ht(∆ct)2} = E{ht}E{(∆ct)2}
(
1 +O(d−1/2)

)
(211)

= dE{ht}
(
1 +O(d−1/2)

)
. (212)

Substituting in Eq. (208), using a− b = 2λ
√
d, and setting h

t
= E{ht}, we get

h
t+1

= λ
√
d
{ 1

(1 + c)1/2
h
t − cλ

√
d

2(1 + c)3
h
t−1

+
3d

8(1 + c)5/2
h
t
+O(d−2h

t
)
}

(213)

= λ
{(

1 +
3

8d

)
h
t − 1

2d
h
t−1

+O(d−3/2h
t
)
}
, (214)

30



Hence, to this order

λ̃SDP
c (d) = ρsp(Md)

−1 +O(d−3/2) , (215)

Md ≡
[
1 + 3/(8d) −1/2d

1 0

]
. (216)

where ρsp( · ) denotes the spectral radius of a matrix. A simple calculation yields

λ̃SDP
c (d) = 1 +

1

8d
+O(d−3/2) . (217)

5.3 Numerical solution of the distributional recursions

We solved numerically the distributional recursions (184), (204) through a sampling algorithm that
is known as ‘population dynamics’ within spin glass theory [MP01]. The algorithm updates a
sample that, at iteration t, is meant to be an approximately iid samples with the same law as the
one defined by the distributional equation, at iteration t. For concreteness, we define the algorithm
here in the case of the iteration corresponding to Eq. (184):

ct+1 d
=

L∑
i=1

cti
1 + cti

. (218)

The distribution of ct will be approximated by a sample ct ≡ (ct1, c
t
2, . . . , c

t
N ) (we represent this by

a vector but ordering is irrelevant).

Algorithm 1 Population dynamics algorithm

Input: Sample size N ; Number of iterations T
Output: Samples c1, c2, . . . , cT

1: c1 ← (L1, L2, . . . , LN ), with Li ∼i.i.d. Poisson(d)
2: for t = 1, 2, . . . , T = 1 do
3: ct+1 ← ( )
4: for i = 1, 2, . . . , N do
5: Generate L ∼ Poisson(d)
6: Generate i(1), . . . , i(L) ∼i.i.d. Unif({1, 2, . . . , N})
7: Compute

cnew =

L∑
a=1

cti(a)
1 + cti(a)

. (219)

8: Set ct+1 ← [ct+1|cnew] (append entry cnew to vector ct+1)
9: return c1, . . . , cT

The notation [a|b] in the step 8 of the algorithm denotes appending element b to vector a. Note
that with initial point c0 =∞, we have c1 = L ∼ Poisson(d). In the population dynamic algorithm
we start from c1.

As an illustration, Figure 1 presents the results of some small-scale calculations using this
algorithm.
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Figure 1: Solution of the recursive distributional equation (184) using the population dynamics algorithm.
Left frame: evolution of the mean E{ct} versus the number of iterations t, as estimated by the algorithm.
Various curves refer (from bottom to top) to d = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2. Here sample size is N = 5·103.
Right frame: histogram of the samples at convergence, for d = 2. Here N = 5 · 103.
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Figure 2: Local stability of the O(m) symetric phase. We evaluate G2(d, λ) defined by Eq. (205) using
the population dynamics algorithm. Data here reder to average degree d = 6. The phase transition point
λ̃SDP
c (d) (within the vectorial ansatz) is determined by a local linear fit to the estimated G2(d, λ), when it is

significantly larger than 0.

We used the obvious modification of this algorithm to implement the recursion (204), whereby a
population is now formed of pairs (ct1, h

t
1), . . . (ctN , h

t
N ). An important difference is that the overall
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Figure 3: Theoretical prediction of the phase transition location for detecting hidden partition in sparse
graphs using semidefinite programming. here the phase transition location is reported in the rescaled variable
λ = (a− b)/

√
2(a+ b) as a function of the average degree d = (a+ b)/2. Points with error bars correspond

to the definition (206), evaluated numerically by approximating the recursion (204) with the population
dynamics algorithm. The continuous curve is a rational fit to the data, constrained at d = 1, and for large
d.

scaling of the hti is immaterial. We hence normalize them at each iteration as follows

(hti)
new =

hti√
Mt

, Mt ≡
1

N

N∑
i=1

(hti)
2 . (220)

The normalization constant Mt also allow us to estimate G2(d, λ), namely

Ĝ2(d, λ) ≡ 1

2(tmax − tmin + 1)

tmax∑
t=tmin

logMt . (221)

Figure 2 presents the typical results of this calculation, using N = 107, tmin = 100, tmax = 400, at
average degree d = 6.

The behavior in Figure 2 is generic. For small λ, the estimate Ĝ2(d, λ) is statistically indistin-
guishable from 0. Above a critical point, that we identify with λ̃SDP

c (d), Ĝ2(d, λ) is strictly positive,
and essentially linear in λ, close to λ̃SDP

c (d). In order to estimate λ̃SDP
c (d) we use a local linear fit,

with parameters g0, g1

Ĝ2(d, λ) = g0 + g1λ , (222)
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d λ̃SDP
c (d)

1.25 1.0059± 0.0002
1.5 1.0100± 0.0002
2 1.0143± 0.0002
3 1.0169± 0.0004
4 1.0168± 0.0004
5 1.0162± 0.0004
6 1.0147± 0.0004
7 1.0131± 0.0004
8 1.0124± 0.0004
10 1.0115± 0.0004
20 1.0055± 0.0004
40 1.0029± 0.0004

Table 1: Numerical determination of the critical point λ̃SDP
c (d) (within the vectorial ansatz) for a few values

of d.

and set λ̃SDP
c (d) = −ĝ0/ĝ1. In the fit we include only the values of λ such that Ĝ2(d, λ) is significantly

different from 0. Note that the linear fit here is in a local neighborhood of λ = 1. By equation (214),
it is easy to see that for large fixed d, G2(d, λ) is logarithmic in λ.

The resulting values of λ̃SDP
c (d) are plotted in Figure 3, together with statistical errors. We

report the same values in Table 1 (note that the value for d = 10 appears to be an outlier).
In order to interpolate these results, we fitted a rational function, with the correct asymptotic

behavior at d = 1 (namely, λ̃SDP
c (d = 1) = 1) and at d→∞ (namely, λ̃SDP

c (d) = 1+1/(8d)+o(d−1)).
This fit is reported as a continuous line in Figure 2, and is given by

λFIT
c (d) = 1 +

a1(d− 1) + a2(d− 1)2

1 + b1(d− 1) + (8a1 + 19.5a2)(d− 1)2 + 8a2(d− 1)3
, (223)

with parameters

a1 = 0.0307569 , (224)

a2 = 0.030035 , (225)

b1 = 2.16454 . (226)

This is also the curve reported in the main text.

5.4 The recovery phase (broken O(m) symmetry)

In this section we describe an approximate solution of the cavity equations within the region
λ > λSDP

c (d). In this regime the SDP estimator has positive correlation with the ground truth
(in the n → ∞ limit). We will work within a generalization of the vectorial ansatz introduced in
Section 5.2. Namely, we look for a solution which breaks the O(m) symmetry to O(m − 1) along
the first direction, as follows. Letting σi = (si, τi), si ∈ R, τi ∈ Rm−1, we adopt the ansatz

νi(dσi) ∼= exp
{

2β
√
mci 〈zi, τi〉+ 2βmhi si − βmris2i +Om(1)

}
δ
(
s2i + ‖τi‖22 − 1

)
dmσi , (227)
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where we will assume zi ∼ N(0, Im−1). In the following, we let P1 = e1e
T
1 be the projector along

the first direction and P⊥1 = I− P1 denote the orthogonal projector.
Recalling the cavity equations (170), and using the Fourier representation of the delta function,

we get

ν̂i(σ0) ∼=
∫

exp
{
βmρ− βm

(
(ρ+ ri)s

2
i + ρ‖τi‖22

)
(228)

+ 2βm
(
s0si + 〈τ0, τi〉

)
+ 2βmhisi + 2β

√
mci〈zi, τi〉

}
dρdm−1τidsi

∼=
∫
ρ−m/2 exp

{
βmρ+

(2βms0 + 2βmhi)
2

4βm(ρ+ ri)
+
‖2βmτ0 + 2β

√
mcizi‖22

4βmρ

}
dρ (229)

∼=
∫

exp
{
βmSi(ρ; s0) +

2β
√
mci
ρ

〈zi, τ0〉
}

dρ , (230)

where

Si(ρ; s0) = Si,0(ρ) + Si,1(ρ) s0 +
1

2
Si,2(ρ) s20 , (231)

Si,0(ρ) ≡ ρ− 1

2β
log ρ+

h2i
ρ+ ri

+
1 + ci
ρ

, (232)

Si,1(ρ) =
2hi
ρ+ ri

, (233)

Si,2(ρ) =
2

ρ+ ri
− 2

ρ
. (234)

where we approximated ‖zi‖22/m ≈ 1, and used the identity ‖τ0‖22 = 1− s20. In the m→∞ limit,
we approximate the integral over ρ by its saddle point. In order to obtain a set of equations for
the parameters of the ansatz (227), we will expand the exponent to second order in s0. The saddle
point location is given by

ρi,∗(s0) ≡ arg min
ρ∈R>0

Si(ρ; s0) = ρi + ρi,1s0 +O(s20) . (235)

Here ρi solves the equation S′i,0(ρi) = 0. Henceforth we shall focus on the β → ∞ limit, in which
the equation S′i,0(ρi) = 0 reduces to

1 =
h2i

(ρi + ri)2
+

1 + ci
ρ2i

. (236)

The first order correction is given by ρi,1 = −S′i,1(ρi)/S′′i,0(ρi). Substituting in Eq. (231), we get
the saddle point value of Si(ρi; s0):

min
ρ∈R>0

Si(ρ; s0) = Si,0(ρi) + Si,1(ρi) s0 + ∆2s
2
0 +O(s30) , (237)

∆2 =
1

2

[
Si,2(ρi)−

S′i,1(ρi)
2

S′′i,0(ρi)

]
(238)

= − 1

ρi
+

1

ρi + ri
−
(

h2i
(ρi + ri)3

+
1 + ci
ρ3i

)−1
h2i

(ρi + ri)4
(239)

= − 1

ρi
+

1

ρi + ri
−
(

1 +
(1 + ci)ri

ρ3i

)−1 h2i
(ρi + ri)3

, (240)
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where in the last expression we used Eq. (236). Substituting in Eq. (170), we get a recursion for
the triple hi, ci, ri:

c0 =

k∑
i=1

ci
ρ2i
, (241)

h0 =
k∑
i=1

hi
ρi + ri

, (242)

r0 =
k∑
i=1

{
1

ρi
− 1

ρi + ri
+

(
1 +

(1 + ci)ri
ρ3i

)−1 h2i
(ρi + ri)3

}
(243)

If Gn is distributed according to the two-groups stochastic block model, the distributions of this

triples on different type vertices are related by symmetry (ci(+), hi(+), ri(+))
d
= (ci(−),−hi(−), ri(−))

for i(+) ∈ V+, i(−) ∈ V−. This leads to the following distributional recursion for the sequence of
random vectors {(ct, ht, rt)}t≥0:

ct+1 d
=

L++L−∑
i=1

cti
ρ2i
, (244)

ht+1 d
=

L++L−∑
i=1

sih
t
i

ρi + rti
, (245)

rt+1 d
=

L++L−∑
i=1

{
1

ρi
− 1

ρi + rti
+

(
1 +

(1 + cti)r
t
i

ρ3i

)−1
(hti)

2

(ρi + rti)
3

}
, (246)

where L+ ∼ Poisson(a/2), L− ∼ Poisson(b/2), s1, . . . , sL+ = +1, sL++1, . . . , sL++L− = −1, and
{(cti, hti, rti)} are i.i.d. copies of (ct, ht, rt). Finally, ρi is a function of (cti, h

t
i, r

t
i) implicitly defined

as the solution of

1 =
(hti)

2

(ρi + rti)
2

+
1 + cti
ρ2i

. (247)

Finally, the asymptotic overlap achieved by SDP is given, in terms of the distributional fixed point
h∗ of this recursion, by

Overlap(x̂SDP) = E
{

sign(h∗)
}
. (248)

As a check of the above derivation, we next verify that we recover the correct d → ∞ limit,
captured by the Z2 synchronization model, cf. Section 3.2.5. We will focus on the fixed point of
recursions (244) to (246), and hence omit iteration index t. For large degree, we expect central
limit theorem to imply the following asymptotic behaviors:

ci = dµc +O(
√
d) , (249)

hi
d
=
√
d
(
µh + σh Z

)
+ o(
√
d) , (250)

ri =
√
dµr +O(1) , (251)
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where µc, µh, σh, µr are deterministic parameters to be determined. Equation (247) thus implies
ρi =

√
dρ, with ρ solution of

1 =
(µh + σhZ)2

(ρ+ µr)2
+
µc
ρ2
. (252)

Equations (244) to (246) then yield the following. From Eq. (244) we get

µc = µcE
{

1

ρ2

}
, (253)

i.e., assuming µc 6= 0, E{ρ−2} = 1. From Eq. (245) we get

µh = λE
{(

µh + σhZ

ρ+ µr

)}
, (254)

σ2h = E

{(
µh + σhZ

ρ+ µr

)2
}
. (255)

Finally, from Eq. (246) we get

µr = E

{
1

ρ
− 1

ρ+ µr
+

(
1 +

µcµr
ρ3

)−1 (µh + σhZ)2

(ρ+ µr)3

}
. (256)

We claim that these equations are equivalent to the ones for the Z2 synchronization problem,
derived using the replica method, namely Eqs. (99) to (102). Indeed Eq. (102) coincides with
Eq. (253), for µc 6= 0. Setting µh = µ, σ2h = q, and µr = r, we obtain that Eqs. (99), (100) coincide
with Eqs. (254), (255). Further, taking expectation of Eq. (252), and using E{ρ−2} = 1, we get
µc = 1− q. Hence, we obtain that Eq. (252) coincides with Eq. (98).

Substituting the values of various parameters in Eq. (256), we obtain

r = E

{
1

ρ
− 1

ρ+ r
+

(
1 +

r(1− q)
ρ3

)−1 (µ+
√
qZ)2

(ρ+ r)3

}
. (257)

We claim that this is equivalent to Eq. (101). To see this, notice that differentiating Eq. (252) with
respect to Z we get

∂ρ

∂Z
=

[
(µ+

√
qZ)2

(ρ+ r)3
+

(1− q)
ρ3

]−1
·

(µ+
√
qZ)
√
q

(ρ+ r)2
(258)

=

(
1 +

r(1− q)
ρ3

)−1 (µ+
√
qZ)
√
q

ρ+ r
, (259)

where the second equality follows again from Eq. (252). Using this identity, we can rewrite Eq. (257)
as

r = E
{

1

ρ
− 1

ρ+ r
+

1
√
q

(µ+
√
qZ)

(ρ+ r)2
∂ρ

∂Z

}
, (260)

or

r = E
{

1

ρ
− 1
√
q

∂

∂Z

µ+
√
qZ

ρ+ r

}
, (261)

Using Gaussian integration by parts in the second term we finally obtain Eq. (101). This concludes
our verification for the case of d→∞.
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5.5 Limitations of the vectorial ansatz

Our analytical estimate of the SDP phase transition location, λ̃SDP
c (d) was carried out within the

vectorial ansatz in Eqs. (172), (198). Let us stress once again that this ansatz is only approximate.
The origin of this approximation can be gleaned from the calculation in Section 5.1. As we have

seen Eq. (180) is only accurate when 〈σ0, zi〉 is small. However, according to the same ansatz, σ0

will be aligned to z0, which –in turn– can be aligned with zi.
We expect this approximation to be accurate in the following regimes:

• For large average degree d. Indeed, in this case, z0 is weakly correlated with zi.

• For d close to 1. In this case c0 is small and hence, under ν0, σ0 is approximately uniformly
distributed, and hence has a small scalar product 〈zi,σ0〉.

Let us also notice that the vectorial ansatz can be systematically improved upon by considering
quadratic terms tepending in two-dimensional projections, and so on. We leave this direction for
future work.

6 Numerical experiments for community detection

In this section we provide details about our numerical simulations with the SDP estimator for the
community detection problem. For the reader’s convenience we begin by recalling some definitions.

We denote by Gn = (Vn, En) the random graph over vertex set Vn = [n], generated according
the hidden partition model, and by x0 ∈ {+1,−1}n the vertex labels. Conditional on x0, edges
are independent with distribution

P
{

(i, j) ∈ En
∣∣x0

}
=

{
a/n if x0,ix0,j = +1,

b/n if x0,ix0,j = −1.
(262)

We denote by d = (a+ b)/2 the average degree, and by λ = (a− b)/
√

2(a+ b) the ‘signal strength.’
Throughout this section, ∂i indicates the set of neighbors of vertex i, i.e. ∂i ≡ {j ∈ [n] : (i, j) ∈

E}.
We next recall the SDP relaxation for estimating community memberships:

maximize
∑

(i,j)∈E

Xij ,

subject to X � 0 ,

X1 = 0 , Xii = 1 ∀i ∈ [n] .

(263)

Denote by Xopt = Xopt(G) an optimizer of the above problem. The estimated membership vector
is then obtained by ‘rounding’ the principal eigenvector of Xopt as follows. Letting v1 = v1(Xopt)
be the principle eigenvector of Xopt, the SDP estimate is given by

x̂SDP(G) = sign
(
v1(Xopt(G))

)
. (264)

We measure the performance of such an estimator via the overlap:

Overlapn(x̂SDP) =
1

n
E
{∣∣〈x̂SDP(G),x0〉

∣∣} , (265)
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where x0 ∈ {−1,+1}n encodes the ground truth memberships with x0,i = +1 if i ∈ V+ and
x0,i = −1 if i ∈ V−. Note that Overlapn(x̂SDP) ∈ [0, 1] and a random guessing estimator yields
overlap of order O(1/

√
n).

The majority of our calculations were run on a cluster with 160 cores (Intel Xeon), taking
roughly a month (hence total CPU time was roughly 10 years).

6.1 Optimization algorithms

We write SDP optimization (263) in terms of the vector spin model. Let σi ∈ Rm be the vector
spin assigned to node i, for i ∈ [n], and define σ ≡ (σ1,σ2, . . . ,σn). We then rewrite the SDP (263)
as

maximize
σ

F (σ) ≡
∑

(i,j)∈E

〈σi,σj〉 ,

subject to σ ∈M(n,m) ,

(266)

where the manifold M(n,m) is defined as below:

M(n,m) =
{
σ = (σ1, . . . ,σn) ∈ (Rm)n : ‖σi‖2 = 1 ,

n∑
i=1

σi = 0
}
. (267)

We will omit the dimensions when they are clear from the context.
As discussed in the main text, the two optimization problems (263) and (266) have a value that

differ by a relative error of O(1/m), uniformly in the size n. In particular, the asymptotic value of
the SDP is the same, if we let m→∞ after n→∞.

In fact the following empirical findings (further discussed below) point at a much stronger
connection:

1. With high probability, the optimizer appears to be essentially independent of m already for
moderate values of m (in practice, already for m = 40 ∼ 100, when n . 104).

2. Again, for moderate values of m, optimization methods do not appear to be stuck in local
minima. Roughly speaking, while the problem is non-convex from a worst case perspective,
typical instances are nearly convex.

Motivated by these findings, we solve optimization problem (266) in lieu of SDP problem (263),
using the two algorithms described below: (i) Projected gradient ascent; (ii) Block-coordinate
ascent.

The rank-constrained formulation also allows to accelerate the rounding step to compute x̂SDP(G),
which can be obtained in time O(nm2+m3), instead of the naive O(n3). Namely, given an optimizer
σopt, we compute the m×m empirical covariance matrix

Σ̂ ≡ 1

n

n∑
i=1

σopt

i (σopt

i )T . (268)

Denoting by ϕ the principal eigenvector of Σ̂, we obtain the estimator x̂SDP(G) ∈ {1,−1}n via

x̂SDP
i = sign

(
〈ϕ,σopt

i 〉
)
. (269)

This approach allows us to carry out high-precision simulations for large instances, namely up
to n = 64, 000. By comparison, standard SDP solvers are based on interior-point methods and
cannot scale beyond n of the order of a few hundreds.
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6.1.1 Projected gradient ascent

The tangent space at σ ∈M is given by

TσM'
{
z = (z1, . . . ,zn) : 〈σi, zi〉 = 0 ,

n∑
i=1

zi = 0
}
. (270)

Define the orthogonal projectors in Rm:

Pi ≡ σiσT
i , P⊥i ≡ I− σiσT

i . (271)

By identification (270), the manifold gradient of F reads

∇F (σ) =
(
∇F (σ)1, . . . ,∇F (σ)n

)
,

∇F (σ)i = P⊥i (vi − vi) ,
(272)

where

vi(σ) ≡
∑
j∈∂i

σj ,

v ≡
( n∑
i=1

P⊥i

)−1( n∑
i=1

P⊥i vi
)
.

(273)

We next define the convex envelope of M:

conv(M) =
{
σ = (σ1, . . . ,σn) ∈ (Rm)n : ‖σi‖ ≤ 1 ,

n∑
i=1

σi = 0
}
, (274)

and the corresponding orthogonal projector

PM(y) ≡ arg min
z∈conv(M)

‖y − z‖2 . (275)

The projected gradient method alternates between a step in the direction of∇F (σ) and a projection
onto conv(M). Pseudocode is given as Algorithm 2.

The projected gradient method requires a subroutine for computing the projection PM onto
conv(M). In order to compute this projection, we write the Lagrangian corresponding to problem
(275):

L ≡ 1

2

n∑
i=1

‖yi − zi‖22 +wT
n∑
i=1

zi +

n∑
i=1

µi
2

(‖zi‖22 − 1) , (278)

with µ ≥ 0 for 1 ≤ i ≤ n. Setting ∇ziL = 0, we obtain

zi =
yi −w
µi + 1

. (279)

Further, the constraint
∑n

i=1 zi = 0 implies

w =
( n∑
i=1

1

µi + 1

)−1( n∑
i=1

yi
µi + 1

)
. (280)
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Algorithm 2 Projected gradient ascent for relaxed min bisection

Input: n,m, edge set E ⊆ [n]× [n], tol2
Output: σopt ≡ (σopt

1 , . . . ,σopt
n )

1: Initialize σ0 ∈M at random
(e.g. by letting σi ∈ {±e1,±e2, . . . ,±em} uniformly random conditional on

∑n
i=1 σ

0
i = 0).

2: for t = 0, 1, 2, . . . do
3: Gradient step

σ̃t+1 = σt + εt∇F (σt) , (276)

with εt = 1/
√
t the step size.

4: Projection step:

σt+1 = PM(σ̃t+1) . (277)

5: if ‖∇F (σt+1)‖2/
√
n ≤ tol2 then

6: set T = t
7: break
8: return σopt = σt

Due to constraint ‖zi‖ ≤ 1, we have µi ≥ ‖yi − w‖ − 1. Also, by the KKT conditions, if the
inequality is strict we have µi = 0. Therefore,

µi = max(‖yi −w‖2 − 1, 0) . (281)

Substituting for µi from Eq. (281) into (280) we arrive at

w =
( n∑
i=1

1

max(‖yi −w‖2, 1)

)−1( n∑
i=1

yi
max(|yi −w‖, 1)

)
. (282)

We compute the Lagrange multiplier w in an iterative manner as described in Algorithm 3.

6.1.2 Block coordinate ascent

We present here a second algorithm to solve problem (266), that uses block-coordinate descent.
This provides independent check of numerical results. Further, this second method appears to be
faster than projected gradient ascent.

We start by considering an unconstrained version of the optimization problem (with AG the
adjacency matrix of the graph G):

maximize 〈σ,
(
AG − η11T

)
σ〉 . (285)

Equivalently, this objective function can be written as F (σ) − η‖M(σ)‖22/2, where M(σ) ≡∑n
i=1 σi. As η →∞, this is of course equivalent to problem (266).
For G distributed according to the hidden partition model (262), with random vertex labels x0,

we have E{(AG)ij} = d/n. This suggests that η ≥ d/n should be sufficient to obtain a balanced
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Algorithm 3 Algorithm for computing the projection PM(y)

Input: y, tol1
Output: PM(y)

1: w0 ← 0
2: for t = 0, 1, 2, . . . do
3: update

wt+1 =
( n∑
i=1

1

max(‖yi −wt‖2, 1)

)−1( n∑
i=1

yi
max(‖yi −wt‖2, 1)

)
. (283)

4: if ‖wt+1 −wt‖2 ≤ tol1 then
5: set T = t
6: break
7: return

PM(y)i =
yi −wT

max(‖yi −wT ‖, 1)
, for i = {1, 2, . . . , n} . (284)

partition. In practice we will take η ≈ 1 and check that this yields well balanced partitions (i.e.
M ≈ 0), cf. Section 6.3.1 below.

We maximize the objective by iteratively maximizing over each of the vectors σi. The latter
optimization has a close form expression. More precisely, at each step of this dynamics, we sort
the variables in a random order and we update them sequentially, by maximizing the objective
function. This is easily done by aligning σi along the ‘local field’

hi ≡ −ηM(σ) +
∑

j:(i,j)∈E

σj . (286)

We check the convergence by measuring the largest variation in a spin variable during the last
iteration. Namely we define

∆max(t) = max
i∈[n]
‖σt+1

i − σti‖2 , (287)

and we use as convergence criterion ∆max < tol3. The corresponding pseudocode is presented as
Algorithm 4.

The resulting algorithm is very simple and depends on two parameters (η and tol3) that will
be discussed in the Section 6.3, together with dependence on the number m of spin components.

6.2 Numerical experiments with the projected gradient ascent

In this section we report our results with the projected gradient algorithm. As mentioned above,
we found that the block coordinate ascent method was somewhat faster, and therefore we used
the latter for large-statistics simulations, and high-precision determinations of the critical point
λSDP
c (d). We defer to the next section for further discussion.
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Algorithm 4 Block coordinate ascent for relaxed min bisection

Input: n, m, edge set E ⊆ [n]× [n], η, tol3
Output: σopt ≡ (σopt

1 , . . . ,σopt
n )

1: Initialize σ0 ∈M at random
(e.g. by letting σi ∈ {±e1,±e2, . . . ,±em} at random so that

∑
i σ

0
i = 0).

2: for t = 1, 2, . . . do
3: Choose a random permutation π : [n]→ [n]
4: for i = 1, 2, . . . , n do
5: Update spins, aligning to the local field

σt+1
π(i) =

−ηM(σt) +
∑

j:(π(i),j)∈E σ
t
j

‖ − ηM(σt) +
∑

j:(π(i),j)∈E σ
t
j‖2

, (288)

6: if ∆max(t) ≤ tol3 then
7: set T = t
8: break
9: return σopt = σT

We use the projected gradient ascent discussed in Section 6.1.1, with tol1 = tol2 = 10−6.
For each value of d ∈ {5, 10, 15, 20, 25, 30} and n ∈ {2000, 4000, 8000, 16000}, we generate 500
realizations of graph G from the stochastic block model defined in Eq. (262). In these experiments,
we observed that the estimated membership vector does not change for m ≥ 40, cf. Section 6.2.1.
The results reported here correspond to m = 40.

Figure 4 reports the estimated overlap Overlapn(x̂SDP) (across realizations) achieved by the SDP
estimator, for different values of d and n. The solid curve corresponds to the cavity prediction,
cf. equation (104), for large d. As we see the empirical results are in good agreement with the
analytical curve even for small average degrees d = 5, 10.

In Figure 2 in the main text, we also plot the prediction from the cavity method in the sparse
graph model, cf. Section 5.4, Eq. (248), with the cavity equations solved by population dynam-
ics. This approach appears to capture wery well the small discrepancy between the large-degree
(Gaussian) theory, and the small degree behavior.

In particular, the phase transition location seems indistinguishable, on this scale, from (a −
b)/
√

2(a+ b) = 1.

6.2.1 Dependence on m

As we explained before, optimization problem (266) and SDP (263) are equivalent provided m ≥ n.
In principle, one can solve (266) applying Algorithm 2 with m = n. However, this choice leads to a
computationally expensive procedure. On the other hand, we expect the solution to be essentially
independent of m already for moderate values of m. Several theoretical arguments point to this
(in particular, the Grothendieck-type inequality of [MS16]). We provide numerical evidence in this
section (supporting in particular the choice m = 40).

In the first experiment, we set the average degree d = (a + b)/2 = 5, n = 4000 and vary
λ = (a − b)/

√
2(a+ b) ∈ {0.9, 1, 1.1, 1.2}. For each λ, we solve for a and b and generate 100
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Figure 4: Community detection under the hidden partition model of Eq. (262), for several average degree
d = (a + b)/2. Dots corresponds to the performance of the SDP reconstruction method (averaged over 500
realizations). The continuous curve is the asymptotic analytical prediction for the Gaussian model (which
captures the large-degree behavior).
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realizations of the graph as per model (262) with parameters a, b. For several values of m, we
solve optimization (266) and report the average overlap and its standard deviation. The results are
summarized in Table 2. As we see, for m ≥ 40 the changes in average overlaps are comparable with
the corresponding standard deviations. An interesting observation is that error bars for smaller m
are larger, indicating more variations of overlaps across different realizations.

Table 3 demonstrates the results for an analogous experiment with d = 10.
We observe a similar trend for other several values of a, b, n. Based on these observations, we

use m = 40 in our numerical experiments throughout this section.

λ = 0.9 λ = 1 λ = 1.1 λ = 1.2

m = 5 0.1231± 0.0037 0.0898± 0.0059 0.2637± 0.0074 0.4627± 0.0017
m = 10 0.1544± 0.0008 0.0659± 0.0045 0.3303± 0.0018 0.4612± 0.0006
m = 20 0.1663± 0.0002 0.1363± 0.0008 0.3358± 0.0005 0.4598± 0.0002
m = 40 0.1668± 0.0001 0.1398± 0.0002 0.3358± 0.0002 0.4599± 0.0001
m = 80 0.1669± 0.0001 0.1397± 0.0002 0.3358± 0.0002 0.4596± 0.0001
m = 160 0.1669± 0.0001 0.1397± 0.0002 0.3358± 0.0002 0.4596± 0.0001

Table 2: We fix d = (a+ b)/2 = 5 and vary λ = (a− b)/
√

2(a+ b) ∈ {0.9, 1, 1.1., 1.2}. The reported values
are the average overlaps (over 100 realizations) with one standard deviations, for several values of m. As we
see for m ≥ 40, the changes in the average overlaps are comparable to the corresponding standard deviations.

λ = 0.9 λ = 1 λ = 1.1 λ = 1.2

m = 5 0.0875± 0.0035 0.1385± 0.0072 0.3760± 0.0021 0.5045± 0.0008
m = 10 0.1322± 0.0007 0.1943± 0.0014 0.3873± 0.0006 0.5050± 0.0003
m = 20 0.1346± 0.0002 0.2100± 0.0003 0.3890± 0.0001 0.5070± 0.0001
m = 40 0.1353± 0.0001 0.2089± 0.0001 0.3885± 0.0001 0.5088± 0.0001
m = 80 0.1354± 0.0000 0.2090± 0.0000 0.3885± 0.0000 0.5089± 0.0000
m = 160 0.1354± 0.0000 0.2090± 0.0000 0.3885± 0.0000 0.5089± 0.0000

Table 3: We fix d = (a + b)/2 = 10 and vary λ = (a − b)/
√

2(a+ b) ∈ {0.9, 1, 1.1., 1.2}. The reported
values are the average overlaps (over 100 realizations) with one standard deviations, for several values of m.
As we see for m ≥ 40, the changes in the average overlaps are comparable to the corresponding standard
deviations.

6.2.2 Robustness and comparison with spectral methods

Spectral methods are among the most popular nonparametric approaches to clustering. These
methods classify nodes according to a the eigenvectors of a matrix associated with the graph, for
instance its adjacency matrix or Laplacian. While standard spectral clustering works well when
the graph is sufficiently dense or is regular, it is significantly suboptimal for sparse graphs. The
reason is that the leading eigenvector of the adjacency matrix is localized around the high degree
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nodes.3

Recently, [KMM+13] proposed a class of very interesting spectral methods based on the non-
backtracking walk on the directed edges of the graphG. The spectrum of non-backtracking matrix is
more robust to high-degree nodes because a walk starting at a node cannot return to it immediately.
Later, [SKZ14] proposed another spectral method, based on the Bethe Hessian operator, that is
computationally more efficient than the non-backtracking operator. Further, the (determinant of
the) Bethe Hessian is closely related to the spectrum of the non-backtracking operator and exhibits
the same convenient properties for the aim of clustering. Rigorous analysis of spectral methods
under the model (262) was carried out in [Mas14, MNS13, BLM15]. The main result of these papers
is that spectral methods allow to estimate the hidden partition significantly better than random
guessing immediately above the ideal threshold λ = (a− b)/

√
2(a+ b) = 1.

As we saw in the previous section, the threshold of the SDP-based method is extremely close
to the ideal one. Here, we compare the Bethe Hessian algorithm with SDP approach in terms of
robustness to model miss-specification. We perturb the hidden partition model (262) as follows.
For a perturbation level α ∈ [0, 1], we draw nα vertices i1, i2, . . . , inα uniformly at random and for
each vertex i`, we add to graph G connecting all of the neighbors of i`. This results in adding
O(nd2α) edges to the underlying model (262). This perturbation mimics an important feature of
real networks that is absent from the stochastic block model (262), the so-called triangle closure
property [EK10] (two friends of a person are often friends).

For perturbation levels α ∈ {0, 0.025, 0.05}, we compare the performance of SDP and Bethe
Hessian algorithms in terms of Overlap, defined by (265). Figure 5 summarizes the results for
n = 16, 000 and average degree d = (a + b)/2 = 10. The reported overlaps are averaged over 100
realizations of the model.

In absence of any perturbation (curves α = 0), the two algorithms have nearly equivalent
performances. However, already for α = 0.025, SDP is substantially superior. While SDP appears
to be rather insensitive to the perturbation, the performance of the Bethe Hessian algorithm is
severely degraded by it. This is because the added triangles perturb the spectrum of the non-
backtracking operator (and similarly of the Bethe Hessian operator) significantly, resulting in poor
classification of the nodes.

6.3 Numerical experiments with block coordinate ascent

In this section we present our simulations with the block coordinate ascent algorithm, cf. Algorithm
4. We first discuss the choice of the algorithm parameters η and tol3. cf. Section 6.3.2. In Section
6.3.2 we analyze the dependence on the number of dimensionsm and the behavior of the convergence
time. We conclude by determining the phase transition point in Section 6.3.3, and comparing this
location with our analytical predictions.

6.3.1 Selection of the algorithm parameters

Algorithm 4 requires specifying the parameters η (that penalizes M(σ) 6= 0) and tol3 (for the
convergence criterion). In order to investigate the dependance on these parameters, we set m = 100
which, as we will see, is large enough to approximate the behavior at m = n.

3Note that for sparse stochastic block models as in (262), node degrees do not concentrate and we observe highly
heterogeneous degrees.

46



0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SDP, α = 0
BH, α = 0
SDP, α = 0.025
BH, α = 0.025
SDP, α = 0.05
BH, α = 0.05

O
ve
rl
ap

a− b/
√

2(a+ b)

Figure 5: Comparison of SDP and Bethe Hessian algorithm on perturbed hidden partition model. Here,
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√
n) since the initial configuration is randomly chosen. The asymptotic value

is always very small for the sizes studied and decreases as 1/η and 1/
√
n.

In Figure 6 we plot the evolution of the norm of the ‘global magnetization,’ ‖M(σt)‖2, as a
function of the number of iterations t. Notice that each iteration corresponds to n updates, one
update of each vector σi, i ∈ [n]. We used d = 5 and λ = 1.1, and we averaged over a number of
samples ranging from 100 (for n = 8000) to 400 (for n = 2000).

We observe three regimes:

(i) Initially the magnetization decays exponentially, ‖M(σt)‖2 ≈ ‖M(σ0)‖2 2−t. Further, it
increases slowly with n. Indeed from central limit theorem, we have ‖M(σ0)‖2 = Θ(

√
n).

The same behavior ‖M(σt)‖2 = Θ(
√
n) is found empirically at small t.

(ii) In an intermediate interval of times, we have a power law decay ‖M(σt)‖2 ∝ t−a, with
exponent a ≈ 1.1. This intermediate regime is present only for η large enough.

(iii) For large t, ‖M(σt)‖2 reaches a plateau whose value scales like ‖M(σt)‖2 = Θ(1/
√
n) with

the system size and is proportional to 1/η.

Already for η = 1, the value of the plateau is very small, namely∥∥∥∥∥
n∑
i=1

σti

∥∥∥∥∥
2

. 0.1 . (289)

Further, this value is decreasing with n. Given that ‖σi‖2 = 1, we interpret the above as evidence
that the constraint X1 = 0 is satisfied with good approximation. We will therefore use η = 1 in
our simulations.
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As an additional remark, notice that there is no special reason to enforce the constraint X1 = 0
strictly. Indeed the SDP (165) can be replaced by

maximize 〈
(
AG − η11T

)
,X〉 , (290)

subject to X � 0 , (291)

Xii = 1 ∀i ∈ [n] , (292)

with an arbitrary value of η. Of course this is useful provided η is large enough to rule out the
solution X = 11T. As mentioned above, η ≥ d/n should be already large enough [MS16].

In Figure 7 we show how ∆max(t) decreases with time in Algorithm 4, again with d = 5 and
λ = 1.1.

In the left panel we fix n = 8000 and study the dependence on the Lagrange parameter η. We
observe two regimes. While for η . 1, the convergence rate is roughly independent of η, for η & 1,
it becomes somewhat slower with η. This supports the choice η = 1.

In the right we fix η = 1 and study the dependence of the convergence time on the graph size
n. The number of iterations appears to increase slowly with n (see also Figure 9). Both datasets
are consistent with a power law convergence

∆max(t) ≈ C(n) t−b , (293)

with b ≈ 1.75 (dotted line), and C(n) polynomially increasing with n (see below for a discussion of
the overall scaling of computational complexity with n).

In order to select the tolerance parameter for convergence, tol3, we study the evolution of
estimation error. Define the overlap achieved after t iteration as follows. First estimate the vertex
labels by computing the top-left singular vector of σt, namely

x̂t(G) = sign
(
v1(σ

t(σt)T)
)
. (294)

Then define, as before

Overlapn(x̂t) =
1

n
E
{∣∣〈x̂t(G),x0〉

∣∣} . (295)
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Figure 8: The mean overlap does not depend on the value of E∆max at which the greedy algorithm is stopped,
as soon as δmax . 10−3.

Of course, the accuracy of the SDP estimator is given by

Overlapn(x̂SDP) = lim
t→∞

Overlapn(x̂t) . (296)

In Figure 8, we plot Overlapn(x̂t) as a function of E∆max(t) for several values of n, d = 5 and
λ = 1.1. These data suggest that tol3 = 10−3 is small enough to approximate the t→∞ behavior.
We will fix such a value hereafter.

6.3.2 Selection of m and scaling of convergence times

The last important choice is the value of the dimension (rank) parameter m. We know from [MS16]
that the optimal value of the rank constrained problem (266) is within a relative error of order
O(1/m) of the value of the SDP (263). Also, a result by Burer and Monteiro [BM03] implies that,
for m ≥ 2

√
n, the objective function (266) has no local maxima that are not also global maxima

(barring accidental degeneracies).
We empirically found that m of the order of 10 or larger is sufficient to obtain accurate results.

Through most of our simulations, we fixed however m = 100, and we want to provide evidence that
this is a safe choice

For each realization of the problem we compute the convergence time tconv as the first time such
that the condition ∆max(t) ≤ tol3 = 10−3 is met. In Figure 9 we plot histograms of log(tconv) for
n ∈ {2000, 4000, 8000, 16000, 24000} and m ∈ {20, 40, 100}. Here d = 10 and λ = 1, but tconv does
not seems to depend strongly on λ, d in the range we are interested in.

We observe that, for m large enough (in particular m = 100, see also data in Figure 10), the
histogram of log(tconv) concentrates around its median. We interpret this as evidence of convergence
towards a well defined global minimum, whose properties concentrate for n large. On the other
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hand, for m small, e.g. m = 20, the histogram broadens as n increases. This is a typical signature
of convergence towards local minima, whose properties fluctuate from one graph realization to the
other.

Intermediate values of m display a mixed behavior, with the histogram of convergence times
concentrating for small n and broadening for larger n. This crossover behavior is consistent with
the analytical results of [BA06]. Extrapolating this crossover suggests that m = 100 is sufficient
for obtaining very accurate results for the range n . 105 of interest to us (and most likely, well
above).

Focusing on m = 100 (data in Figure 10), we computed the mean and variance of log(tconv), for
each value of n. These appear to be well fitted by the following expressions

E log(tconv) ≈ 4.3 + 0.22 log n , (297)

Var
(

log(tconv)
)
≈ 0.063 · n−1/2 . (298)

In other words the typical time complexity of our block coordinate ascent algorithm is –empirically–
O(mn1.22) (recall that each iteration comprises n updates).

6.3.3 Determination of the phase transition location

As already shown in Section 6.2, the overlap Overlapn(x̂SDP) undergoes a phase transition at a
critical point λSDP

c (d) close to 1. Namely limn→∞Overlapn(x̂SDP) = 0 for λ ≤ λSDP
c (d), while

limn→∞Overlapn(x̂SDP) > 0 strictly for λ > λSDP
c (d). In order to determine more precisely the

phase transition location, we use the Binder’s cumulant method, which is standard in statistical
physics [Bin81, LB14]. We summarize the main ideas of this method for the readers that might not
be familiar with this type of analysis.

For a given graph realization G, we define Q(G) to be the overlap achieved by the SDP estimator
on that realization, i.e.

Q(G) ≡ 1

n
〈x̂SDP(G),x0〉 , (299)

Notice that Q(G) is a random variable taking values in [−1, 1]. Also, by the symmetry of the model,
its distribution is symmetric around 0. Further Overlapn(x̂SDP) = E{|Q(G)|}.

We define the Binder cumulant by

Bind(n, λ, d) ≡
E
{
Q(G)4

}
E
{
Q(G)2

}2 . (300)

For λ > λSDP
c (d), we expect |Q(G)| to concentrate around its expectation Overlapn(x̂SDP), which

converges to a non-zero limit. Hence limn→∞ Bind(n, λ, d) = 1. On the other hand, for λ > λSDP
c (d),

Q(G) concentrates around 0, and we expect it to obey a central limit theorem asymptotics, namely
Q(G) ≈ N(0, σ2Q(n)), with σ2Q(n) ≈ σ2Q,∗/n. This implies limn→∞ Bind(n, λ, d) = 3. Summarizing

lim
n→∞

Bind(n, λ, d) =

{
3 if λ < λSDP

c (d),

1 if λ > λSDP
c (d).

(301)
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Figure 11: Empirical estimates of the Binder cumulant for d = 5.

We carried out extensive simulations with the block coordinate ascent, in order to evaluate the
Binder cumulant, and will present our data in the next plots. In order to approximate the ex-
pectation over the random graph G, we computed empirical averages over Nsample random graph
samples, with Nsample chosen so that Nsample × n = 6.4 108. (The rationale for using less samples
for larger graph sizes is that we expect statistical uncertainties to decrease with n.)

Figure 11 reports a first evaluation of Bind(n, λ, d) for d = 5 and a grid of values of λ. The
results are consistent with the prediction of Eq. (301). The approach to the n→∞ limit is expected
to be described by a finite-size scaling ansatz [Car12, LB14]

Bind(n, λ, d) ≈ F
(
n1/ν(λ− λSDP

c (d))
)
, (302)

for a certain scaling function F , and exponent ν. Formally, the above approximation is meant to be
asymptotically exact in the sense that, for any z fixed, letting λ(z, n) = λSDP

c (p) + n−1/νz, we have
limn→∞ Bind(n, λ(z, n), d) = F(z). We refer to [BBC+01, DM08] for recent examples of rigorous
finite-size scaling results in random graph problems.

In particular, finite size scaling suggests to estimate λSDP
c by the value of λ at which the curves

λ 7→ Bind(n, λ, d), corresponding to different values of n, intersect. In Figure 12 we report our data
for d = 2, 5, 10, focusing on a small window around the crossing point. Continuous lines are linear
fit to the data, and vertical lines correspond to the analytical estimates of Section 5.3.

We observe that, for large n, the crossing point is roughly independent of the the value of n,
in agreement with the finite-size scaling ansatz. As a nominal estimate for the critical point, we
use the crossing point λ#(d) of the two Binder cumulant curves corresponding to the two largest
values of n, see Fig. 12. These are n = 32, 000 and 64, 000 for d = 2, and n = 16, 000 and 32, 000
for d = 5, 10. We obtain

λ#(d = 2) = 1.010 , (303)

λ#(d = 5) = 1.016 , (304)

λ#(d = 10) = 1.012 . (305)
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Figure 12: Crossings of the Binder parameters mark the critical value of λ. Vertical lines are the analytical
estimates for the critical point λ̃SDP

c (d) (with dashed lines indicating the uncertainty in this estimate, due to
numerical solution of the recursive distributional equation).
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These values are broadly consistent with our analytical prediction for λ̃SDP
c (d). There appear to be

some discrepancy, especially for d = 2. This might be due to the graph-size being still too small
for extrapolating to n→∞, or to the inaccuracy of our calculation based on the vectorial ansatz.

6.4 Improving numerical results by restricting to the 2-core

In order to accelerate our numerical experiments presented in Section 6.2 and 6.3, we preprocessed
the graph G by reducing it to its 2-core. Recall that the k-core of a graph G is the largest subgraph
of G, with minimum degree at least k. It can be constructed in linear time by recursively removing
vertices with degree at most (k − 1).

In numerical experiments we first generated G0 according to the model (262), then reduced G0

to its 2-core G, and finally solved the SDP (263) on G. If G0 has size n, and d > 1, the size of G
is still of order n albeit somewhat smaller [PSW96].

The pruned graph G \ G0 is formed with high probability by a collection of trees with size of
order 1. It is not hard to see that the SDP estimator can achieve strictly positive overlap on G0

(as n→∞) if and only if it does on G. Hence, this reduction does not change the phase transition
location. We confirmed numerically this argument as well.
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