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Abstract. The analytical description of the dynamics in models with discrete 
variables (e.g. Ising spins) is a notoriously difficult problem, which can only be 
tackled under some approximation. Recently a novel variational approach to 
solve the stationary dynamical regime has been introduced by Pelizzola (2013 
Eur. Phys. J. B 86 120), where simple closed equations are derived under mean-
field approximations based on the cluster variational method. Here we propose 
to use the same approximation based on the cluster variational method also for 
the non-stationary regime, which has not been considered up to now within this 
framework. We check the validity of this approximation in describing the non-
stationary dynamical regime of several Ising models defined on Erdős–Rényi 
random graphs: we study ferromagnetic models with symmetric and partially 
asymmetric couplings, models with random fields and also spin glass models. A 
comparison with the actual Glauber dynamics, solved numerically, shows that 
one of the two studied approximations (the so-called ‘diamond’ approximation) 
provides very accurate results in all the systems studied. Only for the spin glass 
models do we find some small discrepancies in the very low temperature phase, 
probably due to the existence of a large number of metastable states. Given the 
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simplicity of the equations to be solved, we believe the diamond approximation 
should be considered as the ‘minimal standard’ in the description of the non-
stationary regime of Ising-like models: any new method pretending to provide 
a better approximate description to the dynamics of Ising-like models should 
perform at least as good as the diamond approximation.

Keywords: slow relaxation, glassy dynamics, aging, cavity and replica method

1. Introduction

Dynamics is an important issue in almost every field of science, ranging from physics 
and biochemistry to neuroscience and social engineering [1–3]. Nature and society have 
been shown to be rich of systems presenting the collective behavior of many interact-
ing agents. Neural networks and brain behavior, gene regulatory networks, flocking or 
generally living systems and active matter are just a few examples. Within statistical 
mechanics, a fundamental theory for the study of these systems, a satisfactory descrip-
tion of the time evolution of a many-particle system remains one of the most difficult 
subjects [4, 5]. The core challenge is that even in cases where the microscopic processes 
guiding the dynamics are given, going from a very general statement like a master 
equation to a practical solution is usually unfeasible. This is due to the unavoidable 
difficulties of the exponential growth of the size of the state space with the number of 
particles and time intervals considered [6, 7].
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For what concerns graphical models [8, 9], as for instance the disordered model 
defined on graph topologies [10, 11], in recent years there has been a sustained effort 
in the modeling of their dynamical behavior for both dense and dilute networks [12]. 
Many concepts have been introduced in a natural analogy with the equilibrium theory, 
e.g. dynamical replica analysis [13, 14], the cavity method [15], the dynamic message-
passing algorithm [6, 7, 16, 17], large deviation [18, 19], TAP approaches [20] and 
extended Plefka expansion for continuous variables [21]. Despite all these advances, 
the issue is far from being settled and there is an active community searching for 
approximate methods that accurately reproduce numerical results from stochastic 
simulations [22].

Recently Pelizzola in [23] has extended a simple variational technique based on a 
generalization of the cluster variational method (CVM) [24] to describe the station-
ary dynamical regime of Ising-like systems. The results obtained in [23] are extremely 
accurate, given the simplicity of the equations to be solved.

Here we claim that the same approximation based on CVM should be equally good 
in describing the non-stationary/transient regime, which is far more important in many 
applications, where the system under study is strongly out-of-equilibrium or in a chang-
ing environment.

To prove our claim we compare the analytical approximate solution with the actual 
Glauber dynamics solved running a large number of Monte Carlo (MC) simulations. 
The comparison we make is extremely accurate since we check several microscopic 
observables (single spin magnetizations and two-point correlations in space and time), 
and not only macroscopic observables (global magnetization and energy).

The manuscript is organized as follows. In section 2 we review the main ideas of a 
variational formulation of dynamics in discrete time. In section 3 we define the kinetic 
Ising model and its dynamic evolution. In section 4 the main numerical results obtained 
after applying the variational formulation to this model are presented and discussed 
in relation to MC simulations and another recently proposed approximation called 
dynamic message passing (DMP) with one-step Markov memory [6]. Finally, we dis-
cuss our findings in section 5 and close with two appendices including complementary 
technical details.

2. A variational formulation of dynamics in discrete time

In this section we briefly sketch the approach formalized by Kikuchi in [24] and recently 
adapted and improved by Pelizzola in [23]. The method relies on a generalization of the 
equilibrium cluster expansion technique (also known as the cluster variational method 
[25, 26]) to include dynamical processes. One of the advantages of this approach is that 
it gives a scheme for a hierarchy of approximations with increasing accuracy, always 
deducing the dynamical equations from a variational principle. Hereafter we will follow 
the notation of [23].

Let s sst t
N
t

1{ }= …  be the set of variables that describe the state of a system at time 
t t0 f[ ]∈ … . If the evolution in time is stochastic, all the statistical information up to 
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time tf is contained in the joint probability distribution of the histories, P s s, , t0 f( )… . 
This object is in itself untractable for large systems since it takes a number of values 
O qN tf( )×  where q is the typical cardinality of the variable si. Several probability distri-
butions depending on different subsets of variables will be used in this paper, all being 
marginals of the master probability P. In order to lighten notation, all of them will be 
written with the symbol P and distinguished only by their arguments.

We will focus on the commonly studied case of Markovian dynamics:

P W Ps s s s s s s, , , , ,t t t t t0 1 1 0 1( ) ( ) ( )… = | …− − − (1)
or, equivalently:

P W P Ps s s s s, given .t t t t

s

1 1 0

t 1

( ) ( ) ( )   ( )∑= | − −
− (2)

Equations (1) and (2) are assumed valid for any t t1, , f[ ]∈ … .
In physics it is always convenient to derive the fundamental relations from a varia-

tional principle. The cost in terms of abstraction is greatly compensated by the compre-
hension of the internal structure of the theory in question. In this case, the central role 
is played by a functional P s s, , t0 f[ ( )]…F  introduced by Kikuchi in [24] and defined as:

P P W Ps s s s s s s s, , , , ln ln , , .t t

t

t
t t t

s s

0

, ,

0

1

1 0f

tf

f

f

f

0

[ ( )] ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∑ ∑… = … − | + …

… =

−F

 

(3)

The functional F  takes as an argument the joint probability distribution P and has a 
structure resembling that of a Gibbs free energy from equilibrium statistical mechanics. 
The most interesting property of (3) is that if it is minimized in the space of P taking 
into account the marginalization constraint:

P Ps s s, , t

s s, ,

0 0

tf

f

1

( ) ( )∑ … =
… (4)

the time evolution equation (1) is recovered. This is, the probability distribution that 
minimizes F  is actually the one corresponding to the dynamic of the system. For com-
pleteness this procedure is described in appendix A.

The technical difficulty of computing P s s, , t0 f( )…  exactly is not reduced by the 
previous result, but it suggests a possible source of approximations. For example, some 
kind of mean field or factorization of P can be proposed, which amounts to minimiz-
ing F  in a restricted subspace of distributions. In Kikuchi’s original paper [24], the 
joint probability distribution was parametrized in terms of two-time and single-time 
probabilities. Cluster expansion of the functional was then used to find approximations 
to the real probability distribution. An approach that appears more promising was 
proposed recently in [23]. The latter, also inspired by the cluster variational method, 
makes an approximation to (3) obtained as a sum of the contributions of similar func-
tionals written for the most correlated variables. Let us see this in more detail for a 
specific example.

In what follows we focus on locally tree-like topologies (i.e. random graphs) since 
we are interested in applications where dynamical discrete variables do interact via a 
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diluted graphical model. For our purposes, it is useful to think of the dynamic evo lution 
as a set of copies of the original system, one for each time, that interact according to 
the transition matrix W s st t 1( )| − . Furthermore, for a model with short range interactions 
and Markovian dynamics the probability distribution of si

t depends only on the previ-
ous time state of the variables it interacts with (s si

t
k
t

k i
1 1{ }≡∂
− −

∈∂ ), where i∂  denotes the 
subset of variables neighbors of i. For ease of computation, we assume the state of si

t 
not to depend on si

t 1− : this is what happens, for example, in the heat-bath dynamics. 
Dependence of si

t on si
t 1−  can be introduced without any conceptual change [27] and 

must be included if one is interested in other dynamics, as for example those in epi-
demic models.

We also assume that the spin transitions are independent events, or equivalently, 
that the transition matrix can be factorized as follows

W W s ss s .t t

i

N

i i
t

i
t1

1

1( ) ( )∏| = |−

=
∂
−

 (5)

This choice corresponds to the so-called ‘parallel dynamics’ in Monte Carlo simula-
tions. Under the above assumptions we can write

P s s W s s P s, .i
t

i
t

i i
t

i
t

i
t1 1 1( ) ( ) ( )= |∂

−
∂
−

∂
−

 (6)
According to the prescription of the CVM, a first attempt to approximate the com-

plete F  may start from approximating the probability distribution in (3) as a product 
of cluster probabilities. In the case of Markovian dynamics, we expect that the largest 
correlations between the variable i at time t and its neighbors at the previous time are 
encoded in clusters A s s,i

t
i
t

i
t 1( )= ∂
− . Therefore, following the CVM prescription, one can 

take Ai
t as the maximal cluster and expand the entropy term in (3). The result is a new 

definition for an approximated functional SF  that is variational in the set of all cluster 

probability distributions P s s,i
t

i
t

t t
1

1, , f
{ ( )}∂

−
= … :

[{ ( )} ] ( ) [ ( ) ( )]

( ) ( ) ( ) ( ) ( )

F ∑ ∑

∑ ∑ ∑ ∑

= − | +

− − −

∂
−

= …
>

∂
−

∂
−

∂
−

>

−
∂
−

P s s P s s W s s P s s

d P s P s d P s P s

, , ln ln ,

ln 1 ln ,

S i
t

i
t

t t
i t

t

s s
i
t

i
t

i i
t

i
t

i
t

i
t

i t

t

i

s

i
t

i
t

i
i

s
i i

1
1, ,

, 0 ,

1 1 1

, 0

1
0 0

f

f

i
t

i
t

f

i

t

1

0

 

(7)

where di is the degree of vertex i, that is the number of neighbors of spin si. First note 
that the first term on the RHS of (7) is just a sum of functionals identical in structure 
to (3) but each one is restricted to the set of variables A s s,i

t
i
t

i
t 1( )= ∂
− . These sets, in the 

CVM language, are the maximal regions at this level of approximation. The meaning 
of the second and third term is simple: since the sets of Ai

t overlap, some single vari-
able contributions must be substracted in order to count each only once. This is the 
standard situation in the context of CVM. This particular choice of variables included 
in Ai

t is called the star approximation in [23].
The next step is to minimize this functional constrained to a set of consistency rela-

tions which are equivalent to (4):

https://doi.org/10.1088/1742-5468/aa5d22
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P s P s s,i
t

s

i
t

i
t 1

i

t 1

( ) ( )∑= ∂
−

∂
− (8)

P s P s s, .j
t

s s
i
t

i
t1

,

1

i
t

i j
t 1

( ) ( )
\

∑=−
∂
−

∂
− (9)

The final result is that the minimizing probabilities obey the following equations:

P s s W s s P s,i
t

i
t

i i
t

i
t

j i
j
t1 1 1( ) ( ) ( )∏= |∂

−
∂
−

∈∂

−
 (10)

P s W s s P s .i
t

s

i i
t

i
t

j i
j
t1 1

i

t 1

( ) ( ) ( )∑ ∏= | ∂
−

∈∂

−

∂
− (11)

A convenient feature of equation (11) is that once the probabilities at a given time are 
known, the next generation of distributions are generated using this simple prescrip-
tion. The aforementioned relations have been obtained before [28–30] as an improved 
mean field theory but the approximations were then made on intuitive grounds. The 
comparison between the approximate equation (10) and the exact dynamics (6) shows 
that the star approximation amounts to assume that all the spins s i∂ , neighbors of i, 
are probabilistically independent and therefore one expects it to be more accurate in 
the high temperature regime.

Much in the same way, the diamond approximation [23] is derived. The fundamen-
tal idea is to include longer correlations in the time dynamics. This can be done, to 
some extent, taking into account correlations coming from s i

t 1
∂
−  and previous interac-

tions with other variables in the network. As can be easily seen, all variables in s i
t 1
∂
−  

interact with si
t 2−  so, for the variable i, this should be the main source of correlation. 

The new region-based functional will take as fundamental elements of all the groups 

in the maximal set, the diamond cluster B s s si
t

i
t

i
t

i
t1 2{ }= ∪ ∪∂

− − . So, following the CVM 

recipe, one can approximate the full joint probability by a product of cluster probabili-
ties with the new maximal set Bi

t. The final result after constraint minimization reads

P s s s W s s P s s P s, , ,i
t

i
t

i
t

i i
t

i
t

j i
j
t

i
t

i
t d1 2 1 1 2 2 1 i( ) ( ) ( ) [ ( )]

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏= |∂

− −
∂
−

∈∂

− − − −
 (12)

and can be turned, alternatively, in

P s s s W s s P s s P s, , ,i
t

i
t

i
t

i i
t

i
t

j i
j
t

i
t

i
t1 2 1 1 2 2( ) ( ) ( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏= | |∂

− −
∂
−

∈∂

− − −
 (13)

where the standard definition for conditional probabilities = |− − − −P s s P s s,j
t

i
t

j
t

i
t1 2 1 2( ) ( )

( )−P si
t 2  is used.
As for the previous cluster expansion, we get a set of equations that can be iterated 

in time. The results obtained using this second proposal are expected to improve those 
from the star approximation, the reason being that the factorization in the star anzats 

https://doi.org/10.1088/1742-5468/aa5d22
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is refined by conditioning on the state of the common neighbor, compared with (10) 
and (13).

Let us observe that neither the maximal cluster in the star approximation, i.e. 

A s s,i
t

i
t

i
t 1( )= ∂
− , nor the maximal cluster in the diamond approach B s s si

t
i
t

i
t

i
t1 2{ }= ∪ ∪∂

− −  

includes the state si
t 1− . This is because one of our working assumptions is that the state 

of a spin at time t does not depend on the same spin at time t  −  1. For other dynamical 
rules where the state si

t 1−  can determine directly the state of si
t, e.g. in epidemic models, 

one would need to include also si
t 1−  in the cluster constructions to account for the effect 

of such interaction [27].

3. The kinetic Ising model

The numerical test of the approximations introduced in the previous section that we 
perform, in this contribution, is made for the kinetic Ising model, typically used as a 
prototype to investigate spin dynamics. This model is defined as a set of N Ising spins 
s 1i =±  placed on the vertices of a graph G that describes the topology of the interac-
tions Jij, plus a rule for the time evolution of these variables4. We will consider a par-
allel Glauber dynamic [31] by means of a transition matrix of the form (5), where for 
each spin i we have:

W s s
s h J s

h J s

exp

2 cosh
i i

t
i

t
i
t

i
t

j i ji j
t

i
t

j i ji j
t

1

1

1

( )
( )( )

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
β

β
| =

+∑

+∑
∂
− ∈∂

−

∈∂
− (14)

with β and hi
t being respectively the inverse temperature and an external local field 

at time t. The behavior of this model depends essentially on two features. On the one 
hand, the topology of the interaction graph G, whether it is a lattice, a random graph, 
fully connected, etc and on the other, the symmetry of the interactions Jij. Hereafter, 
according to the literature, we denote symmetric those graphs having J Jij ji=  and par-
tially asymmetric or asymmetric those graphs for which J Jij ji≠ . Depending on these 
properties, the system may, for example, not satisfy detailed balance conditions or 
reach a stationary state different from thermal equilibrium [32]. In any case, the varia-
tional formalism can be straighforwardly applied to different levels of approximation. 
In the rest of this section we present the results of the star and the diamond for this 
model.

All equations in the star approximation can be expressed in terms of single site 

probabilities, which are parametrized using local magnetizations: P si
t m s1

2
i
t

i
t

( ) = +
 where 

m s P si
t

s i
t

i
t

i

t ( )= ∑ . Local magnetizations are then all the information that is kept at this 

4 In general G could be a directed graph and J Jij ji≠ .

https://doi.org/10.1088/1742-5468/aa5d22
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level. The time propagation in this case can be recast from (11) in the following com-
pact form:

m h J s
m s

tanh
1

2
.i

t

s

i
t

j i
ji j

t

j i

j
t

j
t

1
1 1

i

t 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑ ∏β= +

+

∈∂

−

∈∂

− −

∂
−

 (15)

Some non-trivial correlations can be estimated once we obtain single site magnetiza-
tions, for example, nearest neighbor disconnected correlation at consecutive times is 
directly derived from equation (10) if k i∈∂

c s s s s W s s
m s1

2i k
t t

i
t

k
t

s s
i
t

k
t

i
t

i
t

j i

j
t

j
t

,
, 1 1

,

1 1
1 1

i
t

i
t1

⟨ ⟩ ( )∑ ∏= = ⏐
+− − −

∂
−

∈∂

− −

∂
−

 (16)

and the connected correlation can be computed accordingly to

c c m m .i k
t t

i k
t t

i
t

k
t

,
, 1

c ,
, 1 1( ) = −− − −

 (17)
For the diamond approximation, in addition to single site probabilities we need to 
consider the joint distribution of nearest neighbors at consecutive times. The evolution 
of the system is reduced to the propagation in time of a set of equations relating these 
variables (see (12)):

P s s W s s P s s P s, , .i
t

j
t

s s
i i

t
i

t

j i
j
t

i
t

i
t d1

,

1 1 2 2 1

i j
t

i
t

i

1 2

( ) ( ) ( ) [ ( )]
\

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∏= |−

∂
−

∈∂

− − − −

∂
− −

 (18)

The correlation between nearest neighbors is, in this case, part of the set of variables 
and not a deduced quantity as in the star case. This is a fundamental advantage 
that will provide much more accurate predictions, as will be shown with numerical 
simulations in section 4 . An algorithm can be easily written to iterate equation (18). 
Alternatively, one can use the magnetization and correlation instead of propagating 
probabilities, which are always a bit redundant because of normalization constraints. 
The choice is a tradeoff between space in memory (larger when storing probabilities) 
and simulation time (longer when marginalizing to find magnetization and correlation). 
Probabilities and moments are related as usual by the following

P s s m s m s c s s,
1

4
1 .i

t
j
t

i
t

i
t

j
t

j
t

i j
t t

i
t

j
t1 1 1

,
, 1 1( ) ( )= + + +− − − − −

 (19)

This last expression can be plugged in (18) to obtain iterative equations for the magne-
tization and correlations which we use for the numerical implementation.

4. Results

In this section we numerically test the accuracy of the star and diamond approximation 
illustrated in section 2 on the kinetic Ising model presented in section 3 and relate these 
results with MC simulations. The numerical analysis is done on a Erdő–Rényi random 

https://doi.org/10.1088/1742-5468/aa5d22
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graph topology for two ferromagnetic models and two different disorder models as the 
random field Ising model [33] and the Viana–Bray spin glass [34].

In general, the only exact procedure available for a statistical description of the 
set of states generated by the dynamic evolution of a system is precisely the explicit 
construction of this set of states. This is usually done via stochastic simulations, i.e. 
Monte Carlo (MC), or molecular dynamics. Accuracy in both methods is obtained by 
paying a cost in terms of computational effort. For example, in non-equilibrium MC 
simulations, accurate averages are computed by summing over a very large number 
of dynamical trajectories. This amounts to running the algorithms many times with 
different choices for the initial conditions and different sets of random numbers for the 
acceptance-rejection rule. All of this has a cost that increases linearly with the number 
of runs Nr, more precisely a computational cost O d Nt Nf r(⟨ ⟩ ) with d⟨ ⟩ being the graph 

mean degree, whereas statistical errors decrease as Nr
1 2/− .

At this point approximate algorithms like the ones described in the previous sec-
tions become very useful. These are one-run algorithms in the sense that, given the 
initial condition P(s0), the corresponding set of equations is solved only once, moving 
forward in time. For example, the more elaborated diamond approximation requires a 

computational cost O q ti
N d

f1
2 i( )∑ =
+ , where q is the cardinality of the spin variables. In 

the case of Erdős–Rényi random graphs with mean degree d⟨ ⟩ this expression simplifies 
to O q e Ntd q

f
2 1( )⟨ ⟩( )− .

Despite the great gain in running times, the use of these approximated algorithms 
comes at the cost of having only a reduced set of parameters, like the local magne-
tizations and/or the nearest neighbors correlations, to describe the joint statistics of 
the system variables. It is worth investigating the conditions and models where these 
approximations can be useful. In [23] some results are shown for the stationary behav-
ior of the star and diamond approximation in comparison to MC simulations and other 
inference methods. A kinetic Ising spin model with asymmetric interactions is analyzed 
on finite dimensional lattices as well as on a random regular graph. Those results show 
that for the stationary state (for asymmetric interactions a true equilibrium state is not 
attained) the diamond approximation gives the best estimates of single site magnetiza-
tion among all approaches considered.

In what follows we show that this family of approximations based on the CVM 
also well describes the transient regime of several symmetric and asymmetric tree-like 
networks.

4.1. Symmetric and partially asymmetric ferromagnet

In this section we compare numerical results for the star, diamond and DMP one-step 
Markov memory [6] approximations on an Erdős–Rényi random graph (ERRG) with 
N  =  103 sites and a mean connectivity c  =  3. The accuracy of these methods is then 
compared with MC simulations averaged on 106 runs.

The typical computational time of the approximations described in the previous 
sections with the aforementioned simulation parameters is of the order of a few minutes 
on a desktop PC whereas the MC simulation time takes much longer, of the order of 
several hours.
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Simulations are started from a state far from equilibrium; all spins are set in the 
same direction. In figure 1(a) we report the time evolution of the global magnetization 

for a ferromagnet with symmetric interactions (J Jij ji c

1= = ) at low temperature. The 

predictions for the first time steps are almost the same for all methods considered. 
However, for longer times the diamond approximation obtains a much better estimate 
of this global average. In the high temperature phase all of the three approximations 
are almost indistinguishable to MC and therefore we do not report these results here.

To test the accuracy of the approximations for local observables, in figure 1(b) we 
report a plot of an overall measure of the distance between the set of approximated 
local magnetizations computed with the different approaches and the MC results for 
the same quantities. The initial conditions are the same as those in figure 1(a). The 
mean deviation m t( )δ  is defined as:

m t
m t m t

N
i
N

i
A

i
MC

1
2

( ) ( ( ) ( ))
δ =

∑ −= (20)

where m ti
A( ) stands for the approximated local magnetization by using one of the 

approaches reported. It confirms that the diamond approximation typically finds local 
magnetization with an error around 10−3 for a quantity that is 1( )O  in a ferromagnetic 
state. For a MC simulation with 106 runs the statistical error for the local magnetiza-
tion is also near 10−3, which means that the error made by the diamond approach is 
almost indistinguishable from MC fluctuations. The long-term agreement for the sym-
metric network is indeed not surprising since the diamond solution in the stationary 
case coincides with the belief propagation solution [23], known to be very accurate on 
tree-like topologies. The transient behavior, on the other hand, is usually more difficult 
to reproduce and this simple method gives very good estimates in this region.

Since the basic variable sets defined in the context of each approximation contain 
several spins at different positions and times, some two-point correlations are easily 
derived. For instance, in figure 2(a) nearest neighbor correlations are computed accord-
ing to (16) for the star, to (18) for the diamond and by using the formulation described 
in appendix B for the dynamic-message passing approach. At this stage it is worth 
remembering that parallel dynamics runs two histories that are independent from each 
other, e.g. nearest neighbors at the same time never have a common spin in their respec-
tive histories. Therefore the only possible source of correlation between them is the ini-
tial condition. On the other hand, a spin and its nearest neighbor at one-time distance 
are strongly correlated since they appear simultaneously in the updated equations for 
the probabilities (see equation (6)). Figure 2(a) shows that the diamond approx imation, 
contrary to the other methods, in addition to the magnetization well reproduces also 
the out-of-equilibrium behavior of correlation functions for this symmetric model. The 
same method also allows a straightforward computation of the autocorrelations at 
time t and t  −  2, as reported in equation (12), and results for this quantity are shown 
in figure 2(b). The same observables cannot be computed by using the star approx-
imation, because it is not included in any CVM region.

A similar numerical analysis as the one presented for the ferromagnet with symmet-
ric interactions can be done for asymmetric networks. We consider here the dynamic 
evolution of the kinetic Ising model for a partially asymmetric ferromagnet. This model 
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Figure 1. Left panel: results for global magnetization on a network with symmetric 
interactions at temperature T  =  0.5 below the critical ferromagnetic transition 
T 0.962c =  [35]. Different lines refer to different methods. MC stands for Monte 
Carlo simulations averaged over 106 runs, DMP for dynamic message-passing one-
step Markov memory, diamond and star for the approximations presented in the 
main text. At the initial time the configuration of the spins is such that the global 
magnetization m0  =  1. Right panel: error in the estimation of local magnetizations 
in comparison with MC simulations (see (20)). (a) Global magnetization.  
(b) Distance from MC prediction.

Figure 2. Symmetric network. Left panel: estimation of connected correlation 
function Cij(t, t  −  1) between a spin i with a degree equal to the mean degree 
c  =  3 at time t and one of its neighbors j at time t  −  1. Results refer to a given 
pair of spins. Different lines refer to the different methods according to the caption 
of figure 1. Right panel: autocorrelation of spin i at two time steps, Ci(t, t  −  2), 
estimated by the diamond approximation. Results refer to a given spin. In both 
panels the initial conditions are the same of figure 1. Error bars correspond to the 
standard error of the mean estimated from 106 MC runs. (a) Nearest neighbors 
correlation. (b) Two time steps connected autocorrelation.

https://doi.org/10.1088/1742-5468/aa5d22


A simple analytical description of the non-stationary dynamics in Ising spin systems

12https://doi.org/10.1088/1742-5468/aa5d22

J. S
tat. M

ech. (2017) 033303

is best described by a directed graph where interacting spins (i, j) are connected by two 
directed edges with opposite directions and different interaction strengths, say Jij  =  1/c 
and Jji  =  1/4c. For each edge, the direction with the stronger coupling is chosen uni-
formly, randomly and independently from the other edges. Results for the dynamic 
evolution of the global magnetization at low temperature are illustrated in figure 3(a). 
The diamond approximation, as in the previous symmetric case, outperforms the other 
methods. Comparing to the symmetric ferromagnet case (see figure 1(a)), the DMP 
approach with one-step Markov memory improves the dynamic reconstruction, whereas 
the star approximation worsens. In the high temperature regime the star approx-
imation quantitatively deviates from the MC simulations whereas both diamond and 
DMP provide more accurate results. We do not report these outcomes here because 
they are of less interest compared to the low temperature case. In figure 3(b) we also 
report the error in the computation of local magnetizations. As for the symmetric case, 
the diamond approximation outperforms the other approximations and typically finds 
local magnetization with a relative error of less than 0.5%.

The dynamics of connected correlations at high and low temperature for this model 
is reported respectively in figures 4(a) and (b). The star approximation deviates from 
MC simulations already for high temperatures and its numerical results get pro-
gressively worse by lowering the temperature. The DMP one-step Markov memory 
performs better at high temperatures but deviate from MC simulations at low temper-
ature, especially in the out-of-equilibrium transient. The diamond approximation per-
forms very well in both cases being almost indistinguishable from MC simulations 
for the high temperature case. Note that the equilibration value of the correlation in 
figure 4(a) is not negligible, signaling the vicinity of a phase transition where correla-
tions are larger.

Figure 3. Results for global and local magnetization of a kinetic Ising model with 
asymmetric interactions (J J 1 4ij ji/ /= ). The temperature, T  =  0.833, corresponds 
to a magnetized phase (in this model ergodicity breaks at T 1.7c≈ ). Left panel: 
dynamic evolution of the global magnetization. Different lines corresponds to the 
different approaches listed in figure 1. Right panel: error in the estimation of 
local magnetizations in comparison with MC simulations (see (20)). (a) Global 
magnetization. (b) Distance from MC prediction.
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4.2. Random field Ising model and Viana–Bray spin glass

In this section we report the numerical results obtained by applying the variational 
approach illustrated in section 2 on the random field Ising model [33] and the Viana–
Bray spin glass [34] compared with the dynamic message-passing approach and MC 
simulations.

The RFIM is a paradigmatic disordered model where the disorder is not encoded 
topologically in the randomness of the coupling interactions Jij but rather in a random 
external local field hi acting on each spin within the network. It represents one of the 
simplest models that exhibits cooperative behavior with quenched disorder and can be 
considered, somehow, complementary to the Ising spin glass. The energy function at 
equilibrium for this model is sH Js s h sij i j i i i( ) ( )= −∑ −∑ . The presence of the random 
external local field antagonizes the ordering effect due to ferromagnetic couplings and 
therefore one expects a lowering of the transition temperature increasing the magni-
tude of the local field. For low enough fields, or low enough temperatures, the system 
is found in a ferromagnetic phase, whereas, in the opposite limits, it is found in a para-
magnetic one. For the dynamical simulations of this model, we use the Glauber trans-
ition rate of equation (14) with J J c1ij ji /= =  and a random local external field constant 
in time, i.e. = =±h h 0.3i

t
i , extracted from a bimodal distribution.

Similarly to the symmetric ferromagnetic case of section 4.1, the dynamics of the 
global magnetization at high temperature is well recovered by all the approximations 
at any time and therefore is not reported here. In figure 5(a) we show the global mag-
netization at low temperatures, i.e. below the critical transition, which by a population 
dynamics calculation [36] can be estimated around T 0.78c =  for the value of hi used. 
Except for very short times, both the star and the DMP one-step Markov memory 
approximation deviates from MC simulations whereas the diamond approximations 

Figure 4. Partially asymmetric network (J J 1 4ij ji/ /= ). Estimation of the dynamical 
evolution of the connected correlation function Cij(t, t  −  1) between a given pair of 
spins, by using the different approaches discussed in the main text. Different lines 
refer to the different methods listed in figure 1. Left panel: high temperature regime, 
T  =  2. Right panel: low temperature regime, T  =  0.833. Error bars correspond to 
the standard error of the mean estimated from 106 MC runs. (a) Cij(t, t  −  1) at 
high temperature. (b) Cij(t, t  −  1) at low temperature.
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well reproduce the behavior of this, observable at every time in the dynamics. Two-
times connected correlation functions are illustrated in figure 5(b). The diamond 
approx imation, also in this case, remains the most performing approximation, almost 
indistinguishable from MC simulations.

As the last example for the numerics, we test the accuracy of the approximation on 
the dynamics of the Ising spin glass Viana–Bray model [34]. Contrarily to the RFIM, 
the Ising spin glass presents a topological disorder in the quenched couplings Jij which 
are sampled randomly from either a gaussian or a bimodal distribution. The presence of 
both positive and negative couplings in the networks generates a very irregular energy 
landscape. This difference—with respect to the previous analyzed models—very much 
enriches the physics of this system which shows a spin glass phase transition in addition 
to the ferromagnetic transition seen for the previous models.

For our dynamical investigation, we study the time evolution of the kinetic Ising 
spin glass with the transition rate defined in (14) with couplings =±J c1ij /  chosen 
from a bimodal distribution and zero external local field, in the spin glass phase for 
the temper ature T  =  0.25. The critical temperature for the spin glass transition is 
T 0.506SG = . In figure 6 we report the dynamical evolution of the global magnetization 
for this case obtained by starting from an initial configuration with mi  =  0.5 for each 
site i. Due to the parallel dynamic update rule used in this contribution and discussed 
in section 3, both the global and the local magnetization show an oscillatory behavior 
for the spin glass case therefore, in figure 6 we only show the behavior for even times. 
The DMP one-step Markov memory approach well recovers the transient behavior only 
for very short times of the dynamics and then very quickly converges to the equilibrium 
value of the global magnetization m  =  0. Also the star approximation shows a good 

Figure 5. Estimation of the dynamical evolution of the RFIM at temperature 
T  =  0.5 below the critical transition temperature T h 0.3 0.78c( )= ≈ . Left panel: 
dynamics of the global magnetization. Different lines represent different methods 
presented in the main text and listed in figure 1. Right panel: estimation of the 
dynamics for the two-times connected correlation function between a randomly 
chosen spin i and one of its neighbor j, i.e. Cij(t, t  −  1). (a) Global magnetization. 
(b) Nearest neighbors correlation.
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accuracy only for very short times and its results for long-time behavior are far from 
MC simulations (as in the other models the star approximation always returns a too 
large magnetization).

At variance with these methods, the diamond approximation shows a much better 
agreement with MC results, both for the short- and long-time dynamics. In the high 
temperature regime (see figure 6(a)) its results are almost indistinguishable from MC 
simulations whereas, lowering the temperature, its performances becomes progressively 
worse for long-time dynamics (see figure 6(b)).

The decrease of accuracy of the diamond approximation in the SG phase, compared 
to all the previous cases where it works perfectly, can be understood by the following 
argument. Spin glass models are known to have many different states, i.e. kinds of long 
range order, in the low temperature phase. Although in each state the local magnetiza-
tions are strongly different from zero, their sign change chaotically from state to state; 
such that, if an average over the states is performed, mean local magnetizations are 
very close to zero. So, while the dynamics locally develops one (or few) type of order, 
having a sensibly non-zero magnetization, the diamond approximation takes the aver-
age over all possible dynamical trajectories and predicts a much smaller magnetization 
(see right panel in figure 6(b)).

The CVM-based approximations we are studying here are not designed to take into 
account the many states present in a spin glass phase; they assume the joint probability 
distribution can be factorized as in a single thermodynamical pure state. In the spin 
glass jargon, these approximations are replica symmetric. The replica symmetry can 
be broken within the CVM framework [37] and this probably leads to a better approx-
imation for the dynamics in a spin glass phase [38]. We leave this subject for a future 
study.

Figure 6. Spin glass model with /=±J c1ij . Dynamical behavior of the magnetization 
for two different temperatures. Different lines correspond to MC and the different 
approximate methods discussed in the main text. Due to the oscillatory behavior 
of the parallel dynamics only even times are shown. (a) Global magnetization at 
T  =  0.5. (b) Global magnetization at T  =  0.25.
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5. Discussion

In this contribution we have proposed to extend to the non-stationary/transient dynam-
ical regime of Ising-like models the simple variational approach introduced in [24] and 
recently improved in [23] so far used to approximate only the stationary regime.

This simple variational formulation is based on two key steps: (i) the construction 
of a non-equilibrium functional depending on the joint probability distribution of spin 
histories and (ii) the approximation of this probability according to the prescription 
given by the cluster variational method. The minimization of the approximated func-
tional, under the constraint of marginalization consistency for the probabilities, leads 
to simple iterative equations for the joint probabilities of local variables. These itera-
tive equations allow for a computationally very efficient estimation of both macroscopic 
observables (e.g. global magnetization and energy) and microscopic local observables 
(e.g. single spin magnetizations, two-times and two-points correlations).

In [23] this approach was shown to give good results for the equilibrium (or in gen-
eral, stationary) states and to outperform existing methods in the literature. Here we 
have tested this approximation for the analytical description of non-stationary dynam-
ics of several Ising models defined on a random graph topology: ferromagnets with both 
symmetric and partially asymmetric couplings, random field models and spin glasses.

The numerical validation has been achieved by a detailed comparison of local micro-
scopic observables (single spin magnetizations and two-times and/or two-spins corre-
lations) with data obtained from extensive Monte Carlo simulations of the dynamics. 
We have found that the star approximation in general predicts a too large magnetiza-
tion: this is probably due to the fact it enforces only self-consistency between single 
spin magnetizations and, since mean-field approximations tend to stabilize metastable 
states, the evolution under the star approximation may get easily stuck in a meta-
stable state with a too large magnetization. In contrast the diamond approximation is 
extremely accurate in all the models studied even at low temperature. The only situa-
tion where it fails to follow the exact dynamical evolution is the low temperature phase 
of a spin glass model: we believe this is due to the presence of many states, a feature 
not taken into account by the diamond approximation (which is essentially a replica 
symmetric approximation in the spin glass jargon).

We have included in the comparison also a method presented in [6] known as 
dynamic message-passing one-step Markov memory, that generally performs worse 
than the diamond approximation. Instead the method presented in [22] has not been 
included in the comparison because it is computationally much more demanding; it 
would be not very fair to compare the goodness of methods that require very different 
computational resources.

It is worth stressing that the vast majority of the computational time in this work 
has been dedicated to run a very large number of Monte Carlo simulations to achieve a 
small error on microscopic observables; the solution of the mean-field equations for star 
and diamond approximations takes roughly the same running time of a single Monte 
Carlo trajectory, and the latter approximation outputs mean values for microscopic 
observables as accurate as Monte Carlo in many cases. So, in situations where the 
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mean-field approximation is not too crude, the use of the computationally heavy Monte 
Carlo method can be safely avoided.

The main conclusion is that the diamond approximation is extremely effective 
in describing the non-stationary regime of the dynamics of Ising models on random 
graphs. We think that the prominence of the approach studied here, besides its good 
results, resides in its simplicity, the intuitive ground from which it is derived, on its 
cheap computational cost and the possibility of extending it to include high order cor-
relations (ignored in the simplest mean-field approximations). We believe that these 
features may allow for an easy and immediate application of the method to the invest-
igation of non-equilibrium dynamics of other systems, as for instance biological and 
social systems.

Acknowledgments

We thank Erik Aurell for comments and a careful reading of the manuscript. We 
also acknowledge Alejandro Lage-Castellanos, Roberto Mulet, Alessandro Pelizzola 
and Marco Pretti for useful comments and discussions. This work has been partially 
supported by the STINT project ‘Enhancing cooperation opportunities with Havana 
University through the Erasmus Programme actions’ (ED) and has been funded under 
FP7/2007-2013/Grant No. 290038 (GDF) and by the European Research Council 
(ERC) under the European Unions Horizon 2020 research and innovation programme 
(grant agreement No (694925)).

Appendix A. Constrained minimization of F  functional

As stated in section 2, the dynamic obeyed by a system can be obtained from a con-
strained minimization of the P[ ]F  functional, defined in equation (3). We will rewrite 
it here for more clarity:

P P W Ps s s s s s s s, , , , ln ln , , .t t
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(A.1)

The argument of this functional is the joint probability distribution of the histories 
of all variables. This probability must be consistent to the initial condition P(s0) from 
which the system evolves:
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(A.2)

The standard procedure to solve this kind of problem is the method of Lagrange mul-
tipliers. The Lagrange function in this case reads:
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and the stationary points are the solutions to the system of equations:
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The first equation in (A.4) gives just the constraining relation. On the other hand, 
for the second, it should be noticed that the derivatives are taken with respect to the 
specific value of P for each set of histories s s, , t0 f( )…′ ′ . After derivation, this second 
condition leads to:
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which, using the constraint (A.2), reduces to an equivalent of the original dynamic of 
the system (compare to (1) and (2)):
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Appendix B. Computation of correlations within the dynamic message passing 
formalism

In this appendix we want to show how to explicitly compute the correlation functions 
between spin i and its neighbors by using the dynamic message-passing approach pre-
sented in [6] in order to reproduce the results illustrated in section 4. The computation 
of these observables is indeed not shown explicitly in [6] although the math ingredi-
ents to compute them are all already present there. We therefore believe it is useful to 
review these contents in order to clarify how to compute correlation functions within 
this formalism. The approach is quite general and allows us, in principle, to compute 
correlation functions both at the same time or at different times in the dynamics. 
Equation (19) of [6], that we report below, illustrates how to compute the joint prob-
ability distribution of spin i and its neighbors at the same time t:
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Note that we here adapted the notation of [6] to the symbols adopted in this manu-
script. According to (B.1) the joint probability P s s,t

i
t

i
t( )( )
∂  between a given spin and its 

neighbors at time t can be computed iteratively starting from the initial conditions for 

P(t) at time zero. Above W s si i
t

i
t 1( )| ∂
−  is the same transition rate for spin i which appears 

in the main text, whereas T s s s,j ij j
t

j
t

i
t1 1→ ( )( ) | − −  represents the two-times message that 

comes from the one-step Markov ansatz taken in [6] and which can be computed also 
iteratively according to equation (13) in [6]. A partial marginalization of (B.1) allows 

then to compute same-time correlations as c s s,ij
t

i
t

j
t⟨ ⟩=  with j in the neighborhood of i 

(j i∈∂ ), which are not investigated in this work where we rather focus on correlations 
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at different time. Removing the sum on the RHS of (B.1) gives the more general two-
times joint probability distribution
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which can be marginalized to obtain the joint probability function between spin i at 
time t and its neighbors at time t  −  1 as follows
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As it is easy to see, the joint probabilities appearing on both sides of (B.3) are not 
the same. For each time of the dynamics the same-time probability on the RHS has 
indeed to be determined using the iterative equation (B.1) which can then be plugged 
into (B.3) to obtain the two-times joint probability P s s,t t

i
t

i
t, 1 1( )( )−
∂
− . This latter can then 

be used to compute two-times correlations as c s s,ij
t t

i
t

j
t, 1 1⟨ ⟩( ) =− −  with j in the neighbor-

hood of i. This is the procedure used to compute such correlation functions appearing 
in section 4.
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