A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements

*Instituto de Física Teórica, Dirección de la Investigación Fundamental, Comisión para la Energía Atómica y sus Energías Alternativas, Saclay, F-91911 Gif-sur-Yvette Cedex, France; †Dipartimento di Fisica e Scienze della Terra, Università di Ferrara e Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Ferrara, I-44122 Ferrara, Italy; ‡Dipartimento di Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza, Spain; ††Istituto di Biocomputazione y Fisica de Sistemas Complejos, 50009 Zaragoza, Spain; ‡‡Dipartimento di Fisica Teorica I, Universidad Complutense, 28040 Madrid, Spain; †††Departamento de Ingeniería Electrónica, Electrónica y Automática, Universidad de Extremadura, 10071 Cáceres, Spain; ‡‡‡Fundación Agencia Aragonesa para la Investigación y Desarrollo, Diputación General de Aragón, 50003 Zaragoza, Spain; ‡‡§Dipartimento di Fisica, Sapienza Università di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, I-00185 Rome, Italy; ‡‡‖Dipartimento di Fisica, Università di Roma, Istituto Nazionale delle Ricerche, I-00185 Rome, Italy; ‡‡¶Dipartimento di Fisica, Università di Roma, Istituto Nazionale delle Ricerche, I-00185 Rome, Italy; ‡‡‖‖Centro Universitario de la Defensa, 50090 Zaragoza, Spain; ‡‡¶¶Dipartimento di Fisica and Istituto di Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain; ‡‡‖‖‖Dipartimento di Matematica e Informatica, Università di Ferrara e INFN, Sezione di Ferrara, I-44122 Ferrara, Italy; ‡‡‖‖‖‖Laboratoire de Physique Théorique, École Normale Supérieure, Université de Paris Sciences et Lettres, Pierre et Marie Curie, Sorbonne Universités, UMR 8549 CNRS, 75005 Paris, France; and ‡‡‖‖‖‖‖Department of Physics and Soft Matter Program, Syracuse University, Syracuse, NY 13244

Contributed by Giorgio Parisi, December 30, 2016 (sent for review October 4, 2016; reviewed by Leticia F. Cugliandolo and Hikaru Kawamura)

We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap (irrespectively of the probing time t+tw). This ratio (computed for finite sizes). Our main result is a quantitative statics-dynamics equivalence through the fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap (irrespectively of the probing time t+tw). Second, our SDD matched spatial correlation functions whose experimental study is only incipient (9, 10).

One could think (5) of building an SDD through the generalization of fluctuation–dissipation relations (GFDRs) first introduced in ref. 11 (for related developments, see refs. 12–19). The GFDRs are correct at very large times. However, on time scales that can be measured in experiments, glassy systems are not fully thermalized because the approach to equilibrium is very slow. Strong corrections pollute GFDRs at finite times.

Significance

The unifying feature of glass formers (such as polymers, supercooled liquids, colloids, granulars, spin glasses, superconductors, etc.) is a sluggish dynamics at low temperatures. Indeed, their dynamics are so slow that thermal equilibrium is never reached in macroscopic samples: in analogy with living beings, glasses are said to age. Here, we show how to relate experimentally relevant quantities with the experimentally unreachable low-temperature equilibrium phase. This relation is made quantitative via a statics-dynamics dictionary, established for spin glasses. In our dictionary, the aging response to a magnetic field is related to the spin-glass order parameter as obtained on samples small enough to equilibrate. We remark that all of the observables we consider can be measured with current experimental methods.

Reviewers: L.F.C., Université Pierre et Marie Curie Paris VI; and H.K., Osaka University.

The authors declare no conflict of interest.

Data deposition: All data shown in the figures of this article are accessible at the Janus/Janus II collaboration website, www.janus-computer.com/sites/default/files/Janus/Janus II.pdf/JANUS sources.tar.

1To whom correspondence may be addressed. Email: giorgio.parisi@roma1.infn.it or beaseobar@gmail.com.

This article contains supporting information online at www.pnas.org/lookup/supp/doi/10.1073/pnas.1621242114/-/DCSupplemental.
Here we show how the SDD can be used in a particular case to compute such corrections (that will be likely present in all glassy systems). We find that the naive implementation of this idea (5) does not work in general, and we introduce a modified SDD that works for spin glasses (and, hopefully, also for glasses).

GFDNs carry crucial information (11, 14, 15): they provide a promising experimental path toward measuring Parisi’s functional order parameter (20). As a consequence, GFDNs have attracted much attention. One encounters numerical studies for both Ising (13, 16, 18) and Heisenberg (21, 22) spin glasses, as well as for structural glasses (23–27). On the experimental side, we have studies on atomic spin glasses (17, 19), superspin glasses (10), polymers (9, 28), colloids (29–35) or DNA (36).

Here, we perform a detailed simulation of GFDNs in the 3D Ising spin glass using the custom-made supercomputers Janus (37) and Janus II (38). In fact, this study has been the launching simulation campaign of the Janus II machine, which was designed with this sort of dynamical studies in mind. Our simulations stand out by the spanned time range (11 orders of magnitude), by our high statistical accuracy and by the range of system sizes, enabling us to control size effects (L = 20, 40, 80 and 160). Thus, armed, we assess whether or not an SDD can be built from the GFDR and compare the SDD proposed in this paper with other proposals. We focus on spin glasses, rather than on other model glasses, for a number of reasons: (i) their sluggish dynamics is known to be due to a thermodynamic phase transition at \(T_c = T_g \) (39–41); (ii) the linear size of the magnetically correlated domains, \(\xi(t_0) \), is experimentally accessible \((\xi \approx 100 \text{ lattice spacings}) \), much larger than comparable measurements for structural glasses (44); (iii) a GFDN-based SDD has been well established in the limit of large sizes and times (11, 14, 15) (Eq. 4); (iv) GFDNs have been studied experimentally (17); (v) well-developed, yet mutually contrasting, theoretical scenarios are available for spin glasses in equilibrium (45); (vi) magnetic systems are notably easier to model and to simulate numerically [in fact, special-purpose computers have been built for the simulation of spin glasses (37, 38, 46–48)].

Results

GFDNs and the SDD. We suddenly cool a 3D spin-glass sample of size \(L^3 \) from high temperature to the working (subcritical) temperature \(T = 0.7 = 0.64 T_{c0} \) at the initial time \(t_0 = 0 \) (see Materials and Methods for more details and definitions). During the nonequilibrium relaxation a coherence length \(\xi(t_0) \) grows \((6, 42, 49) \), which is representative of the size of the spin-glass domains. Then, from the waiting time \(t_0 \) on, we place the system under a magnetic field of strength \(H \), and consider the response function at a later measuring time \(t + t_w \)

\[
\chi_L(t + t_w, t_0) = \frac{\partial m_L(t + t_w)}{\partial H} \bigg|_{H=0},
\]

where \(m_L(t + t_w) \) is the magnetization density in a sample of linear size \(L \). This susceptibility is then compared with the spin-temporal correlation function \(C_L(t + t_w, t_0) \). From now on, we shall take the limits

\[
\chi(t + t_w, t_0) = \lim_{L \to \infty} \chi_L(t + t_w, t_0),
\]

\[
C(t + t_w, t_0) = \lim_{L \to \infty} C_L(t + t_w, t_0),
\]

where \(\chi(t + t_w, t_0) \) is the susceptibility and \(C(t + t_w, t_0) \) the correlation function at a later measuring time \(t + t_w \). This susceptibility is then compared with the spin-temporal correlation function \(C_L(t + t_w, t_0) \). From now on, we shall take the limits

\[
\left.\begin{array}{l}
\chi(t + t_w, t_0) = \lim_{L \to \infty} \chi_L(t + t_w, t_0), \\
C(t + t_w, t_0) = \lim_{L \to \infty} C_L(t + t_w, t_0),
\end{array}\right\}
\]

which are easy to control numerically if \(L \geq 7 \xi(t + t_w) \) size effects are negligible (6) (also see SI Appendix).

The Fluctuation–Dissipation Theorem (FDT) states that

\[
\chi(t + t_w, t_0) = \chi(t + t_w, t_0) = 1 - C(t + t_w, t_0),
\]

with both \(\chi \) and \(C \) computed at \(H = 0 \). However, for \(T < T_c \), the FDT does not hold. In fact, GFDNs take the form (11, 14, 15) (the order of limits is crucial):

\[
\lim_{t_w \to \infty} T \chi(t + t_w, t_0) = \lim_{t_w \to \infty} T \chi(t + t_w, t_0) = L \to \infty
\]

where \(t_0 \) is scaled as \(t_0 \) grows, to ensure that the full range \(0 < C(t + t_w, t_0) < 1 \) gets covered, and \(S(C, L) \) is given by a double integral of \(P(q, L) \), the equilibrium distribution function of the spin overlap, whose explicit definition is provided in Materials and Methods.

Here, we mimic an experimental protocol (17, 19) in that we consider the nonequilibrium response on a very large system but at finite times. We try to relate this response with the equilibrium overlap for a system of finite effective size \(L_{\text{eff}} \)

\[
T \chi(t + t_w, t_0) = T \chi(t + t_w, t_0) = S(C(t + t_w, t_0)), \quad L_{\text{eff}}(t + t_w, t_0),
\]

where we have assumed that both \(\chi \) and \(C \) have reached their thermodynamic limit. The same approach was followed for a 2D spin glass by Barrat and Berthier (5) (note, however, that there is no stable spin-glass phase at \(T > T_c \) in two spatial dimensions).

Eq. 5 provides a SDD relating both times \(t \) and \(t_w \) with a single effective equilibrium size \(L_{\text{eff}}(t + t_w, t_0) \). Note that it is not obvious a priori that our program can be carried out. For instance, our SDD does not exist for ferromagnets, as explained in detail in the SI Appendix, using data from refs. 50 and 51.

SDDs based on the comparison of aging and equilibrium correlation functions (rather than on GFDNs) have been studied in some detail (7, 8, 52). It was found that the effective length depends solely on \(t_0 \). Indeed,

\[
L_{\text{eff}}(t + t_w, t_0) = k \xi(t_0),
\]

In fact, the correlation functions decay exponentially with distance. Therefore, with periodic boundary conditions, size effects should decay exponentially with \(L/\xi \). Indeed, an explicit computation shows that, to our accuracy level, size corrections are completely negligible when \(L > 7 \xi(0) \).
However, we shall argue below that the effective length in Eq. 5 evolves as time \(t \) grows, thus producing an upturn in the response which is probably responsible for the linear behavior in Fig. 1.

Let us make a final remark. We know that \(S(C, L) \) is upper bounded by \(1 - q_{EA}^{(L=\infty)} \geq 1 - q_{EA}^{(L=\infty)} \) (see Materials and Methods for definitions; the proof of the inequality is outlined in SI Appendix). At \(T = 0.7 \) we know that \(1 - q_{EA}^{(L=\infty)} = 0.48(3) \) (8) [or 0.46(3) (7)]. Therefore, the dynamic responses \(T_X(t, t_w) \) in Fig. 1 are well below \(1 - q_{EA}^{(L=\infty)} \) and Eq. 5 could be satisfied. The general conditions under which Eq. 5 can be used are discussed in SI Appendix.

The Effective Equilibrium Size. As we show in Fig. 2, our data are too accurate to be quantitatively described by combining Eq. 5 with Eq. 6. This simple description fails both at short times \(t \) (i.e., when \(C(t, t_w) \approx q_{EA}^{(L=\infty)} \)) and also at very long \(t \), although one can find a constant \(k \) that works well for intermediate \(t \).

The discrepancy for long \(t \) seems easy to rationalize: because the growth of \(\xi(t_w) \) is very slow (recall Fig. 1, Inset) \(\xi(t + t_w) \) and \(\xi(t) \) are very similar to each other for small \(t \) and, therefore, \(\xi(t) \approx \xi(t_w) \) makes sense. However, because \(\xi(t_w) \) grows without bounds in the spin-glass phase, one should eventually have \(\xi(t + t_w) \gg \xi(t_w) \). Under these circumstances, it is only natural that \(L_{\text{eff}} \approx \xi(t + t_w) \).

We can test this proposal by computing an exact \(L_{\text{eff}} \) for each \((t, t_w) \) pair (see SI Appendix for details), which we plot in Fig. 3: in the main graph in units of \(\xi(t + t_w) \) and in the inset in units of \(\xi(t_w) \).

The first important observation from the main panel in Fig. 3 is that, for long enough times, we find \(L_{\text{eff}} \approx 2.6 \xi(t + t_w) \), in agreement with the intuition exposed above. This SDD is definitely different from Eq. 6, used until now. The data in Fig. 3, Inset explain why the previous relation in Eq. 6 passed many numerical tests until now: the nonmonotonic behavior of \(L_{\text{eff}}/\xi(t_w) \) for short times \(t \) makes this ratio roughly compatible with a constant \(k \approx 4 \) as long as \(t/t_w \lesssim 100 \).

Surprisingly, the ratio \(\xi_{\text{eff}}/\xi(t + t_w) \), or equivalently \(L_{\text{eff}}/\xi(t_w) \), becomes large as well when \(t \rightarrow 0 \), thus explaining the inability of Eq. 5 in describing dynamical data at short times \(t \) (Fig. 2). Nonetheless in the limit \(t \rightarrow 0 \), i.e., \(\xi(t + t_w)/\xi(t_w) \rightarrow 1 \), the effective equilibrium size \(L_{\text{eff}} \) seems to reach a finite value; a divergence of \(L_{\text{eff}} \) in this limit seems unlikely (SI Appendix).

The data in Fig. 1 also stand out by their statistical accuracy (due to the large number of samples and large system sizes we simulated, but also thanks to the analysis method described in SI Appendix). As a consequence, a behavior different from the one implied by FDT, \(T_X(t, t_w) = 1 - C(t, t_w) \), can be studied in detail. In particular, the reader might be stricken by the linear behavior at \(C(t + t_w, t_w) \approx 0.4 \). In fact, following refs. 11, 14, and 15, this linear behavior could be interpreted as evidence for one step of replica-symmetry breaking (see, for instance, ref. 55).

However, we shall argue below that the effective length in Eq. 5 evolves as time \(t \) grows, thus producing an upturn in the response which is probably responsible for the linear behavior in Fig. 1.

Numerical Data

The three basic quantities computed in this work, namely \(\chi(t + t_w, t_w) \), \(C(t + t_w, t_w) \), and \(\xi(t_w) \), are displayed in Fig. 1. Full details about this computation are provided in SI Appendix.

Let us remark that the Janus II supercomputer allows us to probe unexplored dynamical regimes, either \(t/w_0 \) as large as \(2^{24} \approx 1.4 \times 10^{7} \) (i.e., we follow the magnetic response for a very long time), after the field was switched on at \(t_w = 2^{11} \) or \(t_w \) as large as \(2^{30} \) (i.e., we study the response of a very old spin glass, but we are limited to \(t/w_0 \approx 27 \) in this case).

It is also remarkable that we are able to compute both the susceptibility \(\chi \) and the correlation function \(C \) without worrying about finite-size effects. Indeed, size effects become visible when the coherence length reaches the threshold \(\xi(t_w) \approx L/T \) (6) which in our \(L = 160 \) lattice translates to \(\xi \approx 23 \) lattice spacings. As Fig. 1, Inset shows, we are quite far from this safety threshold.

With respect to previous measurements of the GFDR ratio, it is worth stressing that now we are able to take the \(h \rightarrow 0 \) limit in a more controlled way. This extrapolation is far from trivial, given that the linear response regime shrinks to very small field when \(t_w \) increases (SI Appendix).

Let us make a final remark. We know that \(S(C, L) \) is upper bounded by \(1 - q_{EA}^{(L=\infty)} \geq 1 - q_{EA}^{(L=\infty)} \) (see Materials and Methods for definitions; the proof of the inequality is outlined in SI Appendix). At \(T = 0.7 \) we know that \(1 - q_{EA}^{(L=\infty)} = 0.48(3) \) (8) [or 0.46(3) (7)]. Therefore, the dynamic responses \(T_X(t, t_w) \) in Fig. 1 are well below \(1 - q_{EA}^{(L=\infty)} \) and Eq. 5 could be satisfied. The general conditions under which Eq. 5 can be used are discussed in SI Appendix.

The Effective Equilibrium Size

As we show in Fig. 2, our data are too accurate to be quantitatively described by combining Eq. 5 with Eq. 6. This simple description fails both at short times \(t \) (i.e., when \(C(t, t_w) \approx q_{EA}^{(L=\infty)} \)) and also at very long \(t \), although one can find a constant \(k \) that works well for intermediate \(t \).

The discrepancy for long \(t \) seems easy to rationalize: because the growth of \(\xi(t_w) \) is very slow (recall Fig. 1, Inset) \(\xi(t + t_w) \) and \(\xi(t) \) are very similar to each other for small \(t \) and, therefore, \(\xi(t) \approx \xi(t_w) \) makes sense. However, because \(\xi(t_w) \) grows without bounds in the spin-glass phase, one should eventually have \(\xi(t + t_w) \gg \xi(t_w) \). Under these circumstances, it is only natural that \(L_{\text{eff}} \approx \xi(t + t_w) \).

We can test this proposal by computing an exact \(L_{\text{eff}} \) for each \((t, t_w) \) pair (see SI Appendix for details), which we plot in Fig. 3: in the main graph in units of \(\xi(t + t_w) \) and in the inset in units of \(\xi(t_w) \).

The first important observation from the main panel in Fig. 3 is that, for long enough times, we find \(L_{\text{eff}} \approx 2.6 \xi(t + t_w) \), in agreement with the intuition exposed above. This SDD is definitely different from Eq. 6, used until now. The data in Fig. 3, Inset explain why the previous relation in Eq. 6 passed many numerical tests until now: the nonmonotonic behavior of \(L_{\text{eff}}/\xi(t_w) \) for short times \(t \) makes this ratio roughly compatible with a constant \(k \approx 4 \) as long as \(t/t_w \lesssim 100 \).

Surprisingly, the ratio \(\xi_{\text{eff}}/\xi(t + t_w) \), or equivalently \(L_{\text{eff}}/\xi(t_w) \), becomes large as well when \(t \rightarrow 0 \), thus explaining the inability of Eq. 5 in describing dynamical data at short times \(t \) (Fig. 2). Nonetheless in the limit \(t \rightarrow 0 \), i.e., \(\xi(t + t_w)/\xi(t_w) \rightarrow 1 \), the effective equilibrium size \(L_{\text{eff}} \) seems to reach a finite value; a divergence of \(L_{\text{eff}} \) in this limit seems unlikely (SI Appendix).

![Fig. 2. Close-up of Fig. 1. (We only show data for three \(t_w \) for the sake of clarity.) Lines are \(S(C, L) \); recall Eq. 5, with the effective equilibrium size as in Eq. 6: \(L_{\text{eff}}(t + t_w, t_w) = \chi(t_w) \). Dotted lines correspond to \(k = 3.7 \), which is the proportionality constant that was found by matching equilibrium and nonequilibrium correlation functions (6–8). The continuous lines were found by choosing the best possible \(k \) for each \(t_w \). This representation shows that the single-time SDD \(L_{\text{eff}} \approx \xi(t_w) \) breaks down for large \(t \), when \(\xi(t + t_w) \) is much larger than \(\xi(t_w) \). With \(k \approx 3.7 \), was accurate enough to match the correlation functions (7, 8). Ref. 5 also agreed with Eq. 6. In fact, Eq. 6 also underlies the analysis of refs. 53 and 54. However, we shall show below that Eq. 6 is oversimplified.](image-url)
Functional form and the ξ_{L} lengths simplify SDD in Eq. 6 where the scaling function is $\xi(t + t_w)/\xi(t_w)$. This allows us to ask about the crossover between the $\xi(t_w)$-dominated regime and the $\xi(t + t_w)$-dominated regime. Fig. 3 tells us that $\xi(t + t_w)/\xi(t_w)$ is, to a good approximation, a function of the ratio $z(t + t_w)/t_w$. Thus, we attempted to fit the crossover with the functional form

$$\xi(t + t_w, t_w) = \xi(t + t_w)h(\xi(t + t_w)/\xi(t_w)), \tag{[7]}$$

where the scaling function is

$$h(x) = k_1 + k_2 x^{-c}. \tag{[8]}$$

Interpolation of data shown in Fig. 3 returns: $k_1 = 2.58(2)$, $k_2 = 2.7(1)$ and $c = 5.9(2)$. Noticing that $k_2 \approx k_1$ and $c \approx z(T)/2$, where $z(T)$ is the exponent for the time growth of the coherence length, $z(T = 0.7) = 11.64(15)$ (Fig. 1, Inset and refs. 6 and 49), the scaling function $h(x)$ can be also rewritten in a much simpler form as

$$h(\xi(t + t_w)/\xi(t_w)) = k_1 \left(1 + \frac{t_w}{t + t_w}\right). \tag{[9]}$$

Fitting data in Fig. 3 with this simpler scaling function returns $k_1 = 2.59(1)$ (see full curve in Fig. 3). Given that the fit with 3 adjustable parameters in Eq. 8 and the one in Eq. 9 with just 1 adjustable parameter have practically the same quality-of-fit, we tend to prefer the simpler ansatz, as long as it interpolates the numerical data well enough.

The ultimate check for the success of Eqs. 7 and 9 in reproducing the aging response is provided by Fig. 4, where the dynamical measurements (data points with errors) are plotted together with the equilibrium function $S(C(t + t_w, t_w), L_{\text{eff}}(t + t_w, t_w))$. The very good agreement in the whole range gives a strong support in favor of an SDD based on Eqs. 7 and 9.

Note as well that Eq. 7 explains the previous success of the simpler SDD in Eq. 6. In fact, at short times t, the two coherence lengths $\xi(t + t_w)$ and $\xi(t_w)$ are very similar to each other, and the amplitude k in Eq. 6 is essentially $k = k_1 + k_2 \approx 2k_1$.

The ansatz of Eq. 7 provides as well a simple explanation for the upturn of the aging response at small values of C (recall Fig. 1). Indeed, as time t increases, the correlation function decays as $C \propto (t + t_w)^{-1/\alpha}$, $\alpha \approx 7$ (6). However, from $\xi(t + t_w) \propto (t + t_w)^{1/\alpha(T)}$ we conclude that, even at fixed t_w, L_{eff} diverges for large t as $C^{-\alpha/2(T)}$. Now, to a first approximation, one may expect that $S(C, L = \infty) \propto S(C, L) \propto L^{-0.38}$ (see the description of the overlap distribution function in Materials and Methods). We thus expect the susceptibility to approach its $C = 0$ limit in a singular way, as $C^{0.23}$.

Which Features of the $P(q)$ Can Be Obtained from Dynamic Measurements? One of the major gains of the present analysis would be to obtain Parisi’s functional order parameter $P(q)$ from experimental dynamical data. In an ideal situation, one would have data for χ, C and ξ, complemented by the ansatz in Eq. 9. Then, one would like to know which features of the underlying $S(C, L)$ can be retrieved from these dynamic measurements.

To answer this question, we have considered a very simplified $S_{\text{simpl}}(q, L)$, that possesses the main features of the $P(q, L)$ measured in numerical simulations (Materials and Methods):

$$S_{\text{simpl}}(C, L) = \min \left[S_0(L) - P_0 C^2 - \frac{P_1}{6} C^4, 1 - C \right]. \tag{[11]}$$

We take $S_0(L) = S(0, L)$ from the true $P(q, L)$. Recall that $S(0, L = 1) = 1 - \langle |q| \rangle_L \ (\text{SI Appendix})$. Instead, the L-independent P_0 and P_1 are fitted to obtain a $S_{\text{simpl}}(C, L)$ as similar as possible to the true $S(C, L)$: we get $P_0 = 0.167(1)$ and $P_1 = 0.46(3)$. In other words, $S_{\text{simpl}}(q)$ shares with the true distribution only four numeric features: normalization, first absolute moment $\langle |q| \rangle_L$, $P_0 \propto P(q = 0, L)$, which is essentially L-independent, and the second derivative $P_1 \propto P''(q = 0, L)/2$. In particular, note that having $P_0 > 0$ is a crucial feature of the mean-field solution (56). A direct measure for sizes $8 \leq L \leq 32$ returns the L-independent value $P(q = 0, L) = 0.167(5)$ (7) confirming the validity of our simplified description.

1. The reader will note that data for $t_w = 2^{15}$ are slightly off in Fig. 3. We attribute the effect to a strong statistical fluctuation, enhanced by the fact that all data points with the same t_w are extremely correlated.

[Image 4]: Fig. 4. As in Fig. 2, but L_{eff} is taken from the ansatz in Eqs. 7 and 9, which improves on the single-time SDD based on $\xi(t_w)$ by considering a crossover to a $(t + t_w)$-dominated regime.

[Image 5]: Fig. 5. As in Fig. 4, but, here, we use the simplified $S_{\text{simpl}}(C, L)$ from Eq. 11. Note that dynamic data are well reproduced by Eqs. 7 and 9, even in this simple approximation.
The outcome of this analysis is given in Fig. 5. It turns out that the simplified S_{simpl} in Eq. 11 is almost as effective as the true $S(C,L)$ in representing the nonequilibrium data through the effective size L_{eff} in Eq. 9. The only obvious disagreement is that Eq. 11 predicts a nonanalytic behavior for the susceptibility χ at $C = 9e_{\text{EA}}^2$, which is not found in the nonequilibrium data. In other words, the effective size for times such that $C(t + t_w, t_w) \approx 9e_{\text{EA}}^2(w\epsilon_{t_w})$ is large, but certainly L_{eff} is not infinite as demanded by Eq. 10.

Fortunately, even the crude description in Eq. 11 could lead to some interesting analysis. For instance, one could select pairs of times (t, t_w) such that $L_{\text{eff}} = 2C(t, t_w, t_w) = \text{constant}$. Then, $S(0, L_{\text{eff}})$ will be the same for all those points. Now, we note from Eq. 9 that $\xi(t + t_w)$ can vary by as much as a factor of two, for such points. It follows that $C(t + t_w, t_w)$ should vary significantly over this set of times with fixed $L_{\text{eff}}(t + t_w, t_w)$. Hence, the crucial parameters P_0 and P_1 could be extracted. For instance, if the susceptibility $\chi(t, t_w)$ turned out not to depend on $C(t + t_w, t_w)$ for fixed L_{eff}, then we would have $P_0, P_1 \approx 0$, in contrast with the mean field prediction $P_0 > 0$.

Discussion

It was discovered some twenty years ago that experimental aging response functions carry information on Parisi’s functional order parameter (11–13). We now know that this connection between nonequilibrium and equilibrium physics relies on a very general mathematical property, stochastic stability (14, 15), shared by many glass models. However, experimental attempts to explore this connection encountered a major problem (17, 19): an essentially uncontrollable extrapolation to infinite waiting time t_w is required. (See ref. 57 for an experimental attempt to measure Parisi’s functional order parameter, unrelated to GFDRs.)

Here, we have proposed using a SDD (5–8) to avoid uncontrollable extrapolations. Indeed, we have shown that the aging responses at finite t_w can be connected to the Parisi’s order parameter as computed at equilibrium in a system of finite size.

We have shown that this GFDR-based SDD is essentially consistent with previous proposals (6–8) that focused on spatial correlation functions. This is an important consistency test. There is a caveat, though: when the probing time $t + t_w$ is such that one has $\xi(t + t_w) > \xi(t_w)$ for the coherence lengths, the GFDR-based SDD disagrees from previous dictionaries in that the size of the equivalent equilibrium system is $L_{\text{eff}} \sim \xi(t + t_w) [\text{rather than } L_{\text{eff}} \sim \xi(t_w)]$. In fact, we have found that the L_{eff} dependence on both length scales can be simply parameterized, recalling Eqs. 7 and 9.

At this point, the reader may wonder about the relationship between $L_{\text{eff}}(t + t_w, t_w)$ and the two-time correlation length $\xi(t + t_w)$ obtained from the two-time/site-correlation function introduced in refs. 58 and 59. Indeed, we thoroughly studied the two-time/site-correlation function in ref. 49 because it was a crucial ingredient for our previous SDD proposal (7, 8). We found (figure 12 in ref. 49) that $\xi(t + t_w, t_w)$ can grow, at most, as large as $\xi(t_w)$. Instead, the $L_{\text{eff}}(t + t_w, t_w)$ introduced here is asymptotically as large as $\xi(t_w)$.

On the other hand, the only previous SDD known to us that was based on Eq. 5 misses the $L_{\text{eff}} \sim \xi(t + t_w)$ behavior (5). There are a couple of possible reasons for this failure. For one, the time scales in ref. 5 do not allow for length-scale separation $\xi(t + t_w) > \xi(t_w)$. Besides, the SDD from ref. 5 was obtained for 2D spin glasses (which only have a paramagnetic phase). Therefore, the results of ref. 5 are probably a manifestation of finite-time/finite-size scaling (52, 60).

Let us conclude by stressing that the three basic quantities analyzed in this work, namely the susceptibility $\chi(t + t_w, t_w)$, the correlation function $C(t + t_w, t_w)$ and the coherence length $\xi(t + t_w)$, have been obtained experimentally in a dynamic setting very similar to simulations (for χ and C, see refs. 17 and 19; for ξ, see refs. 42 and 43). We thus think that it should be possible to extract the spin-glass functional order parameter from already existing experimental data. Furthermore, GFDRs have been studied as well in superspin glasses (10) and in a variety of soft condensed-matter systems (9, 28–36). We therefore expect that our analysis will be of interest beyond the realm of spin glasses.

Materials and Methods

We study the $D = 3$ Edwards–Anderson model, whose Hamiltonian is given by

$$H = -\sum_{\langle x,y \rangle} J_{x,y} s_x s_y - H \sum_x s_x.$$ \[12\]

The spins $s_x = \pm 1$ are placed on the nodes, x, of a cubic lattice of linear size L, and we set periodic boundary conditions. The couplings $J_{x,y} = \pm 1$, which join nearest neighbors only, are chosen randomly with 50% probability and are quenched variables. For each choice of the couplings (one “sample”), we simulate two independent copies of the system, $(\{s\}^1)$ and $(\{s\}^2)$. We denote by (\cdot) the average over the thermal noise and by $(\cdot;\cdot)$ the subsequent average over the samples. The model described by Eq. 12 undergoes a SG transition at $H = 0$ and $T = 1.102(3)$ (61).

For our dynamical data, we have run new nonequilibrium simulations on Memento, Janus and Janus II. We use heat-bath dynamics, in which one Monte Carlo step roughly corresponds to one picosecond of the experimental system (62). See SI Appendix for technical details of these simulations. The two main dynamical observables are the magnetization density $m(t + t_w) = \langle \sum_x s_x(t + t_w) / V \rangle$ and the spin–temporal correlation function $C(t + t_w, t_w) = \langle \sum_x s_x(t + t_w) s_x(t + t_w) / V \rangle$.

Equilibrium results at $T = 0.7$ are available for $L \leq 8 \leq 32$ (7). In this case the main quantity is the probability density function $P(q, L)$ of the spin overlap q:

$$q = \frac{1}{V} \sum_x |s_x|^2, \langle q^2 \rangle = \int_{-1}^1 dq q^2 P(q, L).$$ \[13\]

In particular, we are interested in the integral

$$S(C,L) = \int_C^{\infty} dC \chi(C, L), \chi(C, L) = \int_C^{\infty} dq 2P(q, L).$$ \[14\]

The $P(q, L)$ curves are easily described for finite L. They are symmetric under $q \leftrightarrow -q$, with two maxima at q_{max}^0 and a flat central region. In the thermodynamic limit, the two peaks turn into delta functions at $\pm q_{\text{EA}}^0$, which mark the maximum possible value of $|q|$. The size evolutions, as checked for $L \leq 32$ (7), are as follows: $q_{\text{max}}^0 - q_{\text{EA}}^0 \propto L^{-0.98}$ at $T = 0.7$, $q_{\text{EA}}^0 = 0.52(3)$ (8), the width of the peaks at $\pm q_{\text{max}}^0$ scales as $L^{-0.28}$ while $P(q = 0, L)$ turns out to be greater than zero and L-independent.

Acknowledgments. Some of the simulations in this work (the $L = 80$ system, to check for size effects) were carried out on the Memento cluster; we thank the staff from the supercomputing center at the Instituto de Biocomputación y Física de Sistemas Complejos for their assistance. We thank Giancarlo Ruocco for guidance on the experimental literature. We thank M. Pivanti for his contribution to the early stages of the development of the Janus II computer. We also thank Link Engineering for its role in the technical aspects related to the construction of Janus II. We thank the European Union, the government of Spain, and the government of Aragon for the financial support [Fonds Européen de Développement Régional (FEDER)] of Janus II development. This work was partially supported by Ministerio de Economía, Industria y Competitividad (Spain) Grants FIS2012-35719-C02, FIS2013-42840-P, and FIS2015-65078-C2 and Junta de Extremadura (Spain) through Grant GRU10158 (partially funded by FEDER). This project has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant 654957. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant 694925). D.Y. acknowledges support from National Science Foundation Division of Materials Research Grant 305184 and from the Soft Matter Program at Syracuse University. M.B.-I. acknowledges financial support from ERC Grant Non Perturbative Renormalization Group Theory of Glassy Systems.

Supporting information for “Probing the spin-glass phase with non-equilibrium measurements: statics-dynamics equivalence through the fluctuation-dissipation ratio”

Contents

Our simulations
Computation of the linear susceptibility
Smoothing and interpolating the data
Fit of $S(C, L)$ and computation of L_{eff}
Finite-size effects in the response
A simple inequality
The ferromagnetic case and conditions for validity of Eq. (5) of main text
Extrapolating the effective size
The simplified $S(C, L)$

Our simulations. Using heat-bath dynamics on the Janus, Janus II and Memento supercomputers, we consider the following numerical experiment. Starting from a completely random configuration of the spins at $T = 0.7$, we first let the system evolve in absence of a magnetic field, i.e. $H = 0$, for a waiting time t_w. As this t_w grows, the spins rearrange in amorphous magnetic domains of increasing average size ξ, as we show in Fig. S1 (ξ is computed with the ξ_{12} integral estimator described in Refs. [1, 2]). After this time t_w, we turn on a tiny field $H > 0$ and follow the response at a later time $t + t_w$.

We have considered five different values of t_w: $t_w = 2^{11}$ and $t_w = 2^{30}$ were simulated on Janus II; $t_w = 2^{26}$, 2^{19} and 2^{15} on Janus (smaller systems were simulated on Memento, see below our study of size effects). Times are measured in units of Monte Carlo sweeps. The measuring times t were chosen as the integer part of $2^{i/4}$ for integer i (discarding repetitions). For each t_w we repeat the procedure described above for four values of the magnetic field: $H \in \{0, 0.02, 0.04, 0.08\}$ in the case of Memento and Janus I supercomputers and $H \in \{0, 0.01, 0.02, 0.04\}$ on Janus II. We considered exactly the same set of samples with each H and reused the same sequences of random numbers in an effort to eliminate sources of fluctuations.

Depending on the computer used, we simulated different system sizes, either $L = 80$ (on Memento and Janus I) or $L = 160$ (on Janus II). We simulated 647 samples for $L = 80$ (all t_w and H values). For $L = 160$, we used 55 samples for $t_w = 2^{11}$ and 335 samples for $t_w = 2^{30}$ (we also simulated 336 samples at $H = 0$ in order to compute $\xi(t_w)$). Notice that self-averaging means that one needs fewer samples for larger sizes. Previous works at $H = 0$ suggested that finite-size effects should be negligible, compared to our typical statistical accuracy, as long as we ensure that $L > 7\xi(t + t_w)$ [1]. As a new test of the validity of this statement, we compare our new results of $\xi(t_w)$ obtained with Janus II and $L = 160$ with previous works corresponding to $L = 80$ [2] and $L = 256$ [3] (see Fig. S1) finding no significant dependence on L in the studied range of t_w.

Computation of the linear susceptibility. The discussion on the GFDR requires the computation of the linear susceptibility,
that is, of

$$\chi(t + t_w, t_w) = \frac{\partial m(t + t_w)}{\partial H} \bigg|_{H=0}. \quad [S1]$$

With this aim, we measure $m(t, t_w)/H$ at several values of the external field, and use them to extract the $H \to 0$ limit. Indeed, since the Edwards-Anderson Hamiltonian is odd in the field around $H = 0, \,$ one can write the magnetization in terms of odd powers of H, which allows us to separate the linear response χ from the non-linear responses

$$m(t + t_w, t_w; H) = H\chi(t + t_w, t_w) - \frac{H^3}{3!}\chi_{NL}(t + t_w, t_w; H). \quad [S2]$$

In order to make some progress, we Taylor-expand $\chi_{NL} = \chi_3 + \frac{H^2}{3!}\chi_5 + O(H^4)$, thus finding:

$$\frac{m(t + t_w, t_w)}{H} = \chi(t + t_w, t_w) - \frac{H^2}{3!}\chi_3(t + t_w, t_w) - \frac{H^4}{3!}\chi_5(t + t_w, t_w) + O(H^6), \quad [S3]$$

Therefore, if we measure m for three small fields and neglect higher-order contributions in H, we can extract $\chi(t + t_w, t_w)$ from a set of three equations and three unknowns [by the same token, we obtain $\chi_3(t + t_w, t_w)$ and $\chi_5(t + t_w, t_w)$ as well, but these magnitudes will not be discussed herein]. We show in Fig. S2 $m(t + t_w, t_w)/H$ and $\chi(t + t_w, t_w)$ for one of our values of t_w.

Alternatively, instead of performing simulations at different H, one could have obtained $\chi(t + t_w, t_w)$ directly from simulations at $H = 0$ using methods such as those described in Refs. [4, 5]. The drawback of this approach is that it would have required a much larger amount of samples in order to get equivalent statistical errors.

Smoothing and interpolating the data. The original data consisted of pairs $(C(t + t_w, t_w), \chi(t + t_w, t_w))$, where t takes some discrete values. However, if we reproduce Fig. 1 in the main text but using the raw measurements (see Fig. S3) we find much noisier curves. Indeed, data for successive times, although very correlated, displays random fluctuations. Besides, the statistical errors for $C(t + t_w, t_w; H = 0)$ and $C(t + t_w, t_w; H)$ are completely negligible compared to the errors in $Tm(t + t_w, t_w; H)$ (they are indistinguishable in the figure). We used these two facts to our benefit in order to smooth and reduce the statistical errors of these curves. Let us describe our smoothing procedure step by step.

We fit our data for $Tm(t + t_w, t_w; H)$ to a smooth function of $\hat{x}(t + t_w, t_w)$ to a smooth function of

$$\hat{x}(t + t_w, t_w) = \frac{C(t + t_w, t_w) + C(t + t_w, t_w; H)}{2}. \quad [S4]$$

This choice [instead of just $C(t + t_w, t_w)$], although irrelevant in the $H \to 0$ limit, turns out to reduce the non-linear corrections in H as we show in Fig. S4, and yields easier and more accurate fits.

Our chosen functional form is as follows. Let the quantity $Tm(t + t_w, t_w; H)$ be approximated by $f(\hat{x})$ (f depends on H and t_w, but we will write f nevertheless, to keep the notation as light as possible):

$$f(\hat{x}) = f_L(\hat{x})\frac{1 + \tanh(Q(\hat{x}))}{2} + f_S(\hat{x})\frac{1 - \tanh(Q(\hat{x}))}{2}, \quad [S5]$$

Fig. S2. Extraction of the linear susceptibility as a function of t from the $m(t + t_w, t_w)/H$ data obtained at $H = 0.02, 0.04$ and 0.08. Data shown here corresponds to $t_w = 2^{26}$. For the sake of visibility, only one every two measured times have been plotted in points.

Fig. S3. Linear response $T\chi(t, t_w)$ versus $C(t + t_w, t_w)$ at $T = 0.7$ and five values of t_w, using raw processed data (to be compared with Fig. 1 in the main text, which was obtained only after the smoothing of the simulation data at fixed H and an extrapolation to $H \to 0$).

Fig. S4. Non-linear corrections in H to $T\chi(t + t_w, t_w)$ when plotted versus $C(t + t_w, t_w)$ (left) or $x(t + t_w, t_w) = C(t + t_w, t_w) + C(t + t_w, t_w; H)/2$ (right). Data corresponds to $t_w = 2^{26}$ and $T = 0.7$.

Baily-Jesi et al.
with $Q(\hat{x}) = (\hat{x} - \hat{x}^*)/w$. In other words, there are two functional forms: f_S, adequate for small \hat{x} and f_L, good for large \hat{x}. The crossover between the two functional forms takes place at $\hat{x}^* \approx 0.7$ in an interval of half-width $w \approx 0.04$ (although we keep \hat{x}^* and w as fitting parameters). The functional form for small \hat{x} are diagonal $[N,N]$ Padé approximants,

$$f_S(\hat{x}) = \frac{\sum_{k=0}^{N} b_k \hat{x}^k}{\sum_{k=0}^{N} a_k \hat{x}^k}.$$ \[S6\]

As for the region where deviations from the fluctuation-dissipation theorem are tiny, we chose a polynomial in $1 - \hat{x}$

$$f_L(\hat{x}) = (1 - \hat{x}) + \sum_{k=2}^{N'} c_k (1 - \hat{x})^k.$$ \[S7\]

We keep a_k, b_k, c_k as fitting variables.

Following Refs. [1–3, 6], we perform a fit considering only the diagonal part of the covariance matrix (we obtain χ^2/DOF significantly smaller than one, probably due to data correlation). Errors are computed following a jackknife procedure [we perform an independent fit for each jackknife block, and compute errors from the jackknife fluctuations of the fitted $f(\hat{x})$]. Our fits are reported in Table S1.

![Table S1. Information about the fits to Eqs. (S5,S6,S7).](image)

Once each curve $Tm(t + t_w, t_w)/H$ is smoothed at each H, we extract the linear susceptibility following the procedure described in the previous Section. We show a comparison between the original and smoothed data in Fig. S5. We found that in most the cases the extrapolated linear response $T'(t + t_w, t_w)$ was compatible within the error with the smaller field considered. However, the extrapolation $H \to 0$ becomes particularly delicate and even changes the shape of the curve at large values of the t/t_w ratio, as we show in Fig. S6.

Fit of $S(C, L)$ and computation of L_{eff}. Part of our discussion in the main text seeks to find a relation between the linear response at finite t_w with the overlap distribution $P(q, L)$ in equilibrium at a finite size L_{eff}. That is,

$$T'(t + t_w, t_w) = S\left(C(t + t_w, t_w), L_{\text{eff}}(t + t_w, t_w)\right),$$ \[S8\]

where

$$S(C, L) = \int_{C}^{1} dq' P(q, L'), \quad x(C, L) = \int_{0}^{C} dq 2P(q, L).$$ \[S9\]

We computed $S(C, L)$ by means of a numerical integration of the $P(q, L)$ discussed in Ref. [7] for $L = 8, 12, 16, 24$ and 32. We show $S(C, L)$ in the main panel of Fig. S7. In order to identify L_{eff} we needed a function $S(q, x)$ that is continuous both in C and in L, which we construct by computing a cubic spline\(^1\) of the data along both variables (first in C and only then in L). Errors are computed using the jackknife method. We show some interpolation curves along the x variable in the inset of Fig. S7. Once $S(q, x)$ is at hand, $L_{\text{eff}}(t + t_w, t_w)$ can be extracted by looking for the x value that satisfies the Eq. (S8) at each time t, fixing the off-equilibrium data $T'(t + t_w, t_w)$ and $(C(t + t_w, t_w))$.

\(^{1}\)We do not used the so-called “natural” cubic spline. Instead, we fixed the first and last derivative of the interpolating function from three points of a parabolic fit.

![Fig. S5. Comparison between the original (in color and empty dots) and smoothed data (in black full dots) in the Linear response $T'(t + t_w, t_w)$ versus $C(t + t_w, t_w)$ curves. Data corresponds to $T = 0.7$ and five values of t_w.](image)

![Fig. S6. $T'(t + t_w, t_w)/H$ versus $\hat{x}(t + t_w, t_w)$ for several values of H (in color empty dots) and $t_w = 2^{11}$, together with the extrapolation $H \to 0$ (in black crosses). The inset is a blow up of the region for large t/t_w in the square box.](image)
Finite-size effects in the response. Up to now, finite-size effects have been investigated only for single-time correlation functions [and the related extraction of \(\xi(t_w)\)]. As far as we know, size effects were not studied previously in the response to a magnetic field \(\chi(t + t_w, t_w)\). In this context, it is somewhat worrying that we have identified a large length scale \(L_{\text{eff}} \approx 100\) (discussed below) in the regime where deviations from the FDT are incipient. For this reason, we have explicitly checked that our data does not suffer from finite-size effects in that region (as we show in Fig. S8) by comparing results from three system sizes, \(L = 20, 40\) and \(80\), in the case of \(t_w = 2^{15}\), finding no finite-size dependence. For the smaller system sizes we considered 28000 samples for \(L = 20\) and 12000 samples for \(L = 40\).

A simple inequality. In the main text, we have used several times the inequality

\[
S(C, L) \leq 1 - \langle |q| \rangle_{L=\infty}.
\]

[S10]

Our purpose here is to remind the reader of its derivation, for the sake of completeness.

Let us first recall the notations used in the main text:

\[
S(C, L) = \int_C dC' x(C', L),
\]

[S11]

\[
x(C, L) = \int_0^C dq 2P(q, L).
\]

[S12]

We start by noticing

\[
S(C, L) \leq S(C = 0, L),
\]

[S13]

due to the inequality \(x(C, L) \geq 0\) for the cumulative distribution. Next, we integrate by parts to find [recall that \(P(q, L) = P(-q, L)\)]

\[
S(C = 0, L) = 1 - \langle |q| \rangle_{L}, \quad \langle |q| \rangle_{L} = \int_{-1}^{1} dq |q| P(q, L).
\]

[S14]

Finally, to obtain the upper bound in (S10), we remark that \(\langle |q| \rangle_{L}\) is monotonically decreasing in \(L\) for a system with periodic boundary conditions.

The ferromagnetic case and conditions for validity of Eq. (5) of main text. Our SDD is based on Eq. (5) in the main text that we repeat here for readers convenience

\[
T\chi(t + t_w, t_w) = S(C(t + t_w, t_w), L_{\text{eff}}(t + t_w, t_w)).
\]

[S15]

Although for the \(D = 3\) Edwards-Anderson (EA) model the above equation can be satisfied for all our data, it is not obvious that this is the case for other models. In particular we show in Fig. S9 a simple case where Eq. (S15) can not be satisfied.
where $m(T)$ is the remanent magnetization.

It is clear from data in Fig. S9 that there is no L_{eff} size such that the non-equilibrium data can be matched with the equilibrium ones. This is a direct consequence of the fact that finite size effects in this model are such that $S(C, L) \leq S(C, \infty)$, while the dynamical curves show an excess of response, bringing them above $S(C, \infty)$.

In general the condition for the applicability of Eq. (S15) is that the dynamical curves must lie in the region of the (χ, C) plane covered by the equilibrium functions $S(C, L)$. In the present case such a region is very narrow (as shown in Fig. S9 for $L \geq 5$) and the dynamical curves miss it. Luckily enough the analogous region for the $D = 3$ EA model is very wide, and Eq. (S15) can be always satisfied on the timescales we have probed.

The very different behaviour between the above two models can be explained by noticing that there are at least two major sources of finite times effects:

- the first is the one discussed thoroughly in the main text. Its application to the ferromagnetic Ising model should give a really tiny effect, because the $S(C, L)$ converges very fast to its thermodynamical limit;

- the second correction comes from the convergence of one-time quantities (e.g. the energy density) to their large time limit. This is the dominating one for the ferromagnetic Ising model, where the energy density decays as $E(t) - E(\infty) \propto \xi(t)^{-b}$, with $b = 1$. We expect this contribution to be much less important in the EA model, since the exponent is $b \approx 2.6$ [2]. The ferromagnetic Ising model is very peculiar; in the general case, using the hand-waiving argument that the exponent b equals the lower critical dimension, we expect $b > 1$ (e.g. $b = 2$ in models with continuous variables) and this correction to be much less relevant.

Extrapolating the effective size. We have shown in the main text that, for every t_w and small enough t, $L_{\text{eff}}(t + t_w, t_w)$ can be very large. This short-time but large-size effect arises when $C(t + t_w, t_w) \approx q_\text{EA}(t_w)$. In fact, for $t_w = 2^{30}$ (our largest) we can compute L_{eff} without extrapolations only for the largest t.

The above observation begs the question: how large can L_{eff} be in this small-t regime? We provide here a crude extrapolation for our $t_w = 2^{30}$ data, mostly based on the scaling laws found in [7].

We start by noticing that one could be tempted to extract the spin-overlap probability directly from the aging response. One can define the dynamic overlap probability density function:

$$P_{\text{dyn}}(q; t_w) = -\frac{1}{2} \frac{\partial^2 \chi(C, t_w)}{\partial C^2} \Big|_{C=q}.$$ \[S16\]

Then, one could compare P_{dyn} with the equilibrium $P(q, L)$ at $q = C(t + t_w, t_w)$. The weak point in this approach is that taking two derivatives of the curve $\chi(C, t_w)$, which is subject to random errors, is very difficult.

Our way out will be to recall that the area under the peak of the $P(q, L)$ is approximately L-independent [7]. Therefore, we shall estimate the peak height (rather than the peak width).

Our efforts to locate the maximum (let alone the full curve) for $P_{\text{dyn}}(q; t_w = 2^{30})$ are documented in Fig. S10 (but the reader is warned to take the results cum grano salis). We note from Fig. S10 that the ratio of the height of the maxima for $t_w = 2^{30}$ and $L = 32$ is $\sim 3.6/2.5$. Therefore, from the scaling of the peak width, $\propto L^{-c_{\text{dyn}}}$, we extrapolate

$$L_{\text{eff}} \sim 2 \times (3.6/2.5)^{2/5} \approx 118,$$ \[S17\]

which is certainly larger than our maximum equilibrium size, $L = 32$.

The simplified $S(C, L)$. In the main text, we wondered about the consequences of having at our disposal only a simplified approximation for $S(C, L)$:

$$S_{\text{simp}}(C, L) = \min \left[S_0(L) - P_0 C^2 - \frac{P_1}{6} C^4, 1 - C \right].$$ \[S18\]

In the above equation, P_0 and P_1 are L-independent constants. All the dependence on the system size is in $S_0(L)$. In fact, $S_0(L)$ was obtained by fitting the actual data $S(C = 0, L = 8, 12, 16, 24, 32)$ to a quadratic polynomial in L^{-d}. We took $d = 0.38$ from Ref. [7] [recall that the maximum of the spin-overlap probability, $P(q, L)$ scales with L as $q_{k\chi}^{(L)} - q_{k\chi}^{(\infty)} \propto L^{-d}$]. Once $S_0(L)$ was known, we determined the constants P_0 and P_1 from a least-squares minimization of the difference between $S_{\text{simp}}(C, L)$ and the actual data.