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Matematica e Informatica, Università di Ferrara e INFN, Sezione di Ferrara, I-44122 Ferrara, Italy; nLaboratoire de Physique Théorique, École Normale
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We have performed a very accurate computation of the nonequi-
librium fluctuation–dissipation ratio for the 3D Edwards–Anderson
Ising spin glass, by means of large-scale simulations on the special-
purpose computers Janus and Janus II. This ratio (computed for
finite times on very large, effectively infinite, systems) is compared
with the equilibrium probability distribution of the spin overlap
for finite sizes. Our main result is a quantitative statics-dynamics
dictionary, which could allow the experimental exploration of
important features of the spin-glass phase without requiring
uncontrollable extrapolations to infinite times or system sizes.

spin glasses | fluctuation–dissipation relation | glasses |
statics-dynamics equivalence | out-of-equilibrium dynamics

Theory and experiment follow apparently diverging paths
when studying the glass transition. On the one hand, exper-

imental glass formers (spin glasses, fragile molecular glasses,
polymers, colloids, and . . .) undergo a dramatic increase of
characteristic times when cooled down to their glass temper-
ature, Tg (1). Below Tg, the glass is always out of equilib-
rium and “aging” appears (2). Consider a rapid quench from
a high temperature to the working temperature T (T <Tg),
where the system is left to equilibrate for time tw and probed
at a later time t + tw. Response functions such as the mag-
netic susceptibility turn out to depend on t/tµw, with µ≈ 1
(2–4). The age of the glass, tw, remains the relevant time
scale even for tw as large as several days. Relating the aging
experimental responses to equilibrium properties is an open
problem.

A promising way to fill the gap is to establish a statics-dynamics
dictionary (SDD) (5–8): nonequilibrium properties at “finite
times” t , tw, as obtained on samples of macroscopic size L→∞,
are quantitatively matched to equilibrium quantities computed
on systems of “finite size” L [the SDD is an L ↔ (t , tw) corre-
spondence]. Clearly, in order for it to be of any value, an SDD
cannot strongly depend on the particular pair of aging and equi-
librium quantities that are matched.

Some time ago, we proposed one such a SDD (6–8). However,
this SDD was unsatisfactory in two respects. First, L was matched
only to tw (irrespectively of the probing time t+ tw). Second, our

SDD matched spatial correlation functions whose experimental
study is only incipient (9, 10).

One could think (5) of building an SDD through the gen-
eralized fluctuation–dissipation relations (GFDRs) first intro-
duced in ref. 11 (for related developments, see refs. 12–19).
The GFDRs are correct at very large times. However, on time
scales that can be investigated in experiments, glassy systems
are not fully thermalized because the approach to equilibrium
is very slow. Strong corrections pollute GFDRs at finite times.

Significance

The unifying feature of glass formers (such as polymers, super-
cooled liquids, colloids, granulars, spin glasses, superconduc-
tors, etc.) is a sluggish dynamics at low temperatures. Indeed,
their dynamics are so slow that thermal equilibrium is never
reached in macroscopic samples: in analogy with living beings,
glasses are said to age. Here, we show how to relate experi-
mentally relevant quantities with the experimentally unreach-
able low-temperature equilibrium phase. This relation is made
quantitative via a statics-dynamics dictionary, established for
spin glasses. In our dictionary, the aging response to a mag-
netic field is related to the spin-glass order parameter as
obtained on samples small enough to equilibrate. We remark
that all of the observables we consider can be measured with
current experimental methods.
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Here we show how the SDD can be used in a particular case
to compute such corrections (that will be likely present in all
glassy systems). We find that the naive implementation of this
idea (5) does not work in general, and we introduce a modi-
fied SDD that works for spin glasses (and, hopefully, also for
glasses).

GFDRs carry crucial information (11, 14, 15): they provide
a promising experimental path toward measuring Parisi’s func-
tional order parameter (20). As a consequence, GFDRs have
attracted much attention. One encounters numerical studies for
both Ising (13, 16, 18) and Heisenberg (21, 22) spin glasses, as
well as for structural glasses (23–27). On the experimental side,
we have studies on atomic spin glasses (17, 19), superspin glasses
(10), polymers (9, 28), colloids (29–35) or DNA (36).

Here, we perform a detailed simulation of GFDRs in the 3D
Ising spin glass using the custom-made supercomputers Janus
(37) and Janus II (38). In fact, this study has been the launch-
ing simulation campaign of the Janus II machine, which was
designed with this sort of dynamical studies in mind. Our sim-
ulations stand out by the spanned time range (11 orders of mag-
nitude), by our high statistical accuracy and by the range of sys-
tem sizes, enabling us to control size effects (L=20, 40, 80 and
160). Thus, armed, we assess whether or not an SDD can be
built from the GFDR and compare the SDD proposed in this
paper with other proposals. We focus on spin glasses, rather than
on other model glasses, for a number of reasons: (i) their slug-
gish dynamics is known to be due to a thermodynamic phase
transition at Tc =Tg (39–41); (ii) the linear size of the mag-
netically correlated domains, ξ(tw), is experimentally accessible
(42, 43) (ξ∼ 100 lattice spacings (42), much larger than compa-
rable measurements for structural glasses (44)); (iii) a GFDR-
based SDD has been well established in the limit of large sizes
and times (11, 14, 15) (Eq. 4); (iv) GFDRs have been studied
experimentally (17); (v) well-developed, yet mutually contrast-
ing, theoretical scenarios are available for spin glasses in equi-
librium (45); (vi) magnetic systems are notably easier to model
and to simulate numerically [in fact, special-purpose comput-
ers have been built for the simulation of spin glasses (37, 38,
46–48)].

Results
GFDRs and the SDD. We suddenly cool a 3D spin-glass sample
of size L3 from high temperature to the working (subcritical)
temperature T =0.7=0.64Tc at the initial time tw =0 (see
Materials and Methods for more details and definitions). During
the nonequilibrium relaxation a coherence length ξ(tw) grows
(6, 42, 49), which is representative of the size of the spin-glass
domains. Then, from the waiting time tw on, we place the system
under a magnetic field of strength H , and consider the response
function at a later measuring time t + tw

χL(t + tw, tw) =
∂mL(t + tw)

∂H

∣∣∣∣
H=0

, [1]

where mL(t + tw) is the magnetization density in a sample of
linear size L. This susceptibility is then compared with the spin–
temporal correlation function CL(t + tw, tw). From now on, we
shall take the limits

χ(t + tw, tw) = lim
L→∞

χL(t + tw, tw), [2]

C (t + tw, tw) = lim
L→∞

CL(t + tw, tw), [3]

Fig. 1. Response function Tχ(t + tw, tw) versus C(t + tw, tw) at T = 0.7 [for
fixed tw, C(t+tw, tw) monotonically decreases from C = 1 at t = 0 to C = 0 at
t =∞]. Data for tw = 211 and tw = 230 were obtained on Janus II (the other
tw are from Janus). The five values of tw correspond to effective equilibrium
sizes Leff that, according to Eq. 6, span the size range investigated in ref. 7
(namely, 8≤ L≤ 32). (Inset) Growth of the spin-glass coherence length ξ(tw)
as a function of time, computed at zero magnetic field and following refs. 6
and 49, from simulations of L = 160 lattices at T = 0.7 on Janus II. In dashed
lines, we plot the scaling ξ(tw) ∝ t1/z(T)

w with z(T) = 11.64 from ref. 48.

which are easy to control numerically: if L & 7ξ(t + tw) size
effects are negligible (6)∗ (also see SI Appendix).

The Fluctuation–Dissipation Theorem (FDT) states that
Tχ(t+ tw, tw)= 1−C (t+ tw, tw), with both χ and C computed
at H = 0. However, for T < Tc the FDT does not hold. In fact,
GFDRs take the form (11, 14, 15) (the order of limits is crucial):

lim
tw→∞

Tχ(t + tw, tw) = lim
tw→∞

[ lim
L→∞

S(CL(t + tw, tw),L)], [4]

where t is scaled as tw grows, to ensure that the full range
0<C (t+tw, tw)< 1 gets covered, and S(C ,L) is given by a dou-
ble integral of P(q ,L), the equilibrium distribution function of
the spin overlap, whose explicit definition is provided in Materials
and Methods.

Here, we mimic an experimental protocol (17, 19) in that we
consider the nonequilibrium response on a very large system but
at finite times. We try to relate this response with the equilibrium
overlap for a system of finite effective size Leff

Tχ(t + tw, tw) = S
(
C (t + tw, tw),Leff(t + tw, tw)

)
, [5]

where we have assumed that both χ and C have reached their
thermodynamic limit. The same approach was followed for a 2D
spin glass by Barrat and Berthier (5) (note, however, that there
is no stable spin-glass phase at T > 0 in two spatial dimensions).

Eq. 5 provides a SDD relating both times t and tw with a single
effective equilibrium size Leff(t+ tw, tw). Note that it is not obvi-
ous a priori that our program can be carried out. For instance,
our SDD does not exist for ferromagnets, as explained in detail
in the SI Appendix, using data from refs. 50 and 51.

SDDs based on the comparison of aging and equilibrium cor-
relation functions (rather than on GFDRs) have been studied
in some detail (7, 8, 52). It was found that the effective length
depends solely on tw. Indeed,

Leff(t + tw, tw) = kξ(tw), [6]

∗In fact, the correlation functions decay exponentially with distance. Therefore, with
periodic boundary conditions, size effects should decay exponentially with L/ξ. Indeed,
an explicit computation shows that, to our accuracy level, size corrections are com-
pletely negligible when L > 7ξ (6).
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Fig. 2. Close-up of Fig. 1. (We only show data for three tw, for the sake of
clarity.) Lines are S(C, Leff); recall Eq. 5, with the effective equilibrium size as
in Eq. 6: Leff(t + tw, tw) = kξ(tw). Dotted lines correspond to k = 3.7, which
is the proportionality constant that was found by matching equilibrium and
nonequilibrium correlation functions (6–8). The continuous lines were found
by choosing the best possible k for each tw. This representation shows that
the single-time SDD Leff∼ ξ(tw) breaks down for large t, when ξ(t + tw) is
much larger than ξ(tw).

with k ≈ 3.7, was accurate enough to match the correlation func-
tions (7, 8). Ref. 5 also agreed with Eq. 6. In fact, Eq. 6 also
underlies the analysis of refs. 53 and 54. However, we shall show
below that Eq. 6 is oversimplified.

Numerical Data. The three basic quantities computed in this
work, namely χ(t + tw, tw),C (t + tw, tw), and ξ(tw), are dis-
played in Fig. 1. Full details about this computation are provided
in SI Appendix.

Let us remark that the Janus II supercomputer allows us to
probe unexplored dynamical regimes, either t/tw as large as
224≈ 1.4 × 107 (i.e., we follow the magnetic response for a very
long time, after the field was switched on at tw =211) or tw as
large as 230 (i.e., we study the response of a very old spin glass,
but we are limited to t/tw≈ 27 in this case).

It is also remarkable that we are able to compute both the
susceptibility χ and the correlation function C without worry-
ing about finite-size effects. Indeed, size effects become visible
when the coherence length reaches the threshold ξ(tw) ≈ L/7 (6)
which in our L = 160 lattice translates to ξ ≈ 23 lattice spacings.
As Fig. 1, Inset shows, we are quite far from this safety threshold.

With respect to previous measurements of the GFDR ratio, it
is worth stressing that now we are able to take the h → 0 limit
in a more controlled way. This extrapolation is far from trivial,
given that the linear response regime shrinks to very small field
when tw increases (SI Appendix).

The data in Fig. 1 also stand out by their statistical accuracy
(due to the large number of samples and large system sizes we
simulated, but also thanks to the analysis method described in
SI Appendix). As a consequence, a behavior different from the
one implied by FDT, Tχ(t , tw)= 1−C (t , tw), can be studied in
detail. In particular, the reader might be stricken by the linear
behavior at C (t + tw, tw)≈ 0.4. In fact, following refs. 11, 14,
and 15, this linear behavior could be interpreted as evidence for
one step of replica-symmetry breaking (see, for instance, ref. 55).
However, we shall argue below that the effective length in Eq. 5
evolves as time t grows, thus producing an upturn in the response
which is probably responsible for the linear behavior in Fig. 1.

Let us make a final remark. We know that S(C ,L) is upper
bounded by 1−〈|q |〉L=∞ ≥ 1−q

(L=∞)
EA (see Materials and Meth-

ods for definitions; the proof of the inequality is outlined in SI

Appendix). At T = 0.7 we know that 1− q
(L=∞)
EA =0.48(3) (8)

[or 0.46(3) (7)]. Therefore, the dynamic responses Tχ(t , tw) in
Fig. 1 are well below 1−q

(L=∞)
EA and Eq. 5 could be satisfied. The

general conditions under which Eq. 5 can be used are discussed
in SI Appendix.

The Effective Equilibrium Size. As we show in Fig. 2, our data
are too accurate to be quantitatively described by combining
Eq. 5 with Eq. 6. This simple description fails both at short
times t (i.e., when C (t , tw)≈ q

[L≈ 4ξ(tw)]
EA ) and also at very long

t , although one can find a constant k that works well for
intermediate t .

The discrepancy for long t seems easy to rationalize: because
the growth of ξ(tw) is very slow (recall Fig. 1, Inset) ξ(t+ tw) and
ξ(tw) are very similar to each other for small t and, therefore,
Leff ∝ ξ(tw) makes sense. However, because ξ(tw) grows without
bounds in the spin-glass phase, one should eventually have ξ(t +
tw)� ξ(tw). Under these circumstances, it is only natural that
Leff ∝ ξ(t + tw).

We can test this proposal by computing an exact Leff for each
(t , tw) pair (see SI Appendix for details), which we plot in Fig. 3:
in the main graph in units of ξ(t + tw) and in the inset in units
of ξ(tw).

The first important observation from the main panel in Fig. 3 is
that, for long enough times, we find Leff ≈ 2.6 ξ(t+tw), in agree-
ment with the intuition exposed above. This SDD is definitely
different from Eq. 6, used until now. The data in Fig. 3, Inset
explain why the previous relation in Eq. 6 passed many numeri-
cal tests until now: the nonmonotonic behavior of Leff/ξ(tw) for
short times t makes this ratio roughly compatible with a constant
k ≈ 4 as long as t/tw . 1000.

Surprisingly, the ratio Leff/ξ(t + tw), or equivalently
Leff/ξ(tw), becomes large as well when t→ 0, thus explain-
ing the inability of Eq. 5 in describing dynamical data at short
times t (Fig. 2). Nonetheless in the limit t→ 0, i.e., ξ(t +
tw)/ξ(tw)→ 1, the effective equilibrium size Leff seems to reach
a finite value; a divergence of Leff in this limit seems unlikely (SI
Appendix).

Fig. 3. For each tw, we show the effective equilibrium size Leff(t + tw, tw)
in units of the coherence length at the measuring time ξ(t + tw) versus the
ratio of coherence lengths ξ(t + tw)/ξ(tw) (recall that t is the time elapsed
since switching-on the magnetic field). The ratio of coherence lengths is 1
for t = 0 and goes as ξ(t + tw)/ξ(tw) ∝ (1 + t/tw)1/z(T) for large time, with
z(T = 0.7) = 11.64(15) (49). Let us stress that there is no extrapolation in this
figure, only interpolation (i.e., Leff falls within the simulated equilibrium
sizes, 8 ≤ Leff ≤ 32). The solid line is a fit to the scaling function h(x) in
Eqs. 7 and 9. (Inset) Leff(t + tw, tw) data from the main panel in units of the
coherence length at the initial time ξ(tw), as a function of the time ratio t/tw.
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Fig. 4. As in Fig. 2, but Leff is taken from the ansatz in Eqs. 7 and 9, which
improves on the single-time SDD based on ξ(tw) by considering a crossover
to a ξ(t + tw)-dominated regime.

Leff and the Spin-Glass Coherence Length. Now that it is clear
that both ξ(tw) and ξ(t + tw) are relevant for Leff one may
ask about the crossover between the ξ(tw)-dominated regime
and the ξ(t + tw)-dominated regime. Fig. 3 tells us that
Leff/ξ(t + tw) is, to a good approximation, a function of the ratio
ξ(t + tw)/ξ(tw).† Thus, we attempted to fit the crossover with the
functional form

Leff(t + tw, tw) = ξ(t + tw)h
(
ξ(t + tw)/ξ(tw)

)
, [7]

where the scaling function is

h(x ) = k1 + k2x
−c . [8]

Interpolation of data shown in Fig. 3 returns: k1 =2.58(2),
k2 =2.7(1) and c=5.9(2). Noticing that k2≈ k1 and c≈ z (T )/2,
where z (T ) is the exponent for the time growth of the coherence
length, z (T =0.7)= 11.64(15) (Fig. 1, Inset and refs. 6 and 49),
the scaling function h(x ) can be also rewritten in a much simpler
form as

h
(
ξ(t + tw)/ξ(tw)

)
= k1

(
1 +

√
tw

t + tw

)
. [9]

Fitting data in Fig. 3 with this simpler scaling function returns
k1 = 2.59(1) (see full curve in Fig. 3). Given that the fit with 3
adjustable parameters in Eq. 8 and the one in Eq. 9 with just 1
adjustable parameter have practically the same quality-of-fit, we
tend to prefer the simpler ansatz, as long as it interpolates the
numerical data well enough.

The ultimate check for the success of Eqs. 7 and 9 in reproduc-
ing the aging response is provided by Fig. 4, where the dynamical
measurements (data points with errors) are plotted together with
the equilibrium function S(C (t + tw, tw),Leff(t + tw, tw)). The
very good agreement in the whole range gives a strong support
in favor of an SDD based on Eqs. 7 and 9.

Note as well that Eq. 7 explains the previous success of the
simpler SDD in Eq. 6. In fact, at short times t , the two coherence
lengths ξ(t + tw) and ξ(tw) are very similar to each other, and
the amplitude k in Eq. 6 is essentially k = k1 + k2 ≈ 2k1.

The ansatz of Eq. 7 provides as well a simple explanation for
the upturn of the aging response at small values of C (recall
Fig. 1). Indeed, as time t increases, the correlation function

†The reader will note that data for tw = 219 are slightly off in Fig. 3. We attribute the
effect to a strong statistical fluctuation, enhanced by the fact that all data points with
the same tw are extremely correlated.

decays as C ∝ (t + tw)
−1/α, α≈ 7 (6). However, from ξ(t +

tw)∝ (t + tw)
1/z(T) we conclude that, even at fixed tw, Leff

diverges for large t as C−α/z(T). Now, to a first approximation,
one may expect that S(C ,L=∞) − S(C ,L)∝L−θ≈−0.38 (see
the description of the overlap distribution function in Materials
and Methods). We thus expect the susceptibility to approach its
C =0 limit in a singular way, as C θ/(αz(T))≈C 0.23.

Which Features of the P(q) Can Be Obtained from Dynamic Measure-
ments? One of the major gains of the present analysis would be
to obtain Parisi’s functional order parameter P(q) from experi-
mental dynamic data. In an ideal situation, one would have data
for χ, C and ξ, complemented by the ansatz in Eq. 9. Then, one
would like to know which features of the underlying S(C ,L) can
be retrieved from these dynamic measurements.

To answer this question, we have considered a very sim-
plified Psimpl(q ,L), that possesses the main features of the
P(q ,L) measured in numerical simulations (Materials and
Methods):

Psimpl(q ,L) =
(
P0 + P1q

2)
1
[
|q | < q

(L)
EA

]
+ w (L)(δ(q − q

(L)
EA ) + δ(q + q

(L)
EA )

)
/2, [10]

where P0 and P1 are constants, 1 is the indicator function and
w (L) is a weight enforcing normalization. [Note that the delta
peak in Eq. 10 is a reasonable expectation only for an infinite
system (Materials and Methods).] Integrating Psimpl(q ,L) twice
we get

Ssimpl(C ,L) = min

[
S0(L)− P0C

2 − P1

6
C 4, 1− C

]
. [11]

We take S0(L) = S(0,L) from the true P(q ,L). Recall that
S(0,L) = 1 − 〈|q |〉L (SI Appendix). Instead, the L-independent
P0 and P1 are fitted to obtain a Ssimpl(C ,L) as similar as possible
to the true S(C ,L): we get P0 = 0.167(1) and P1 = 0.46(3). In
other words, Psimpl(q) shares with the true distribution only four
numeric features: normalization, first absolute moment 〈|q |〉L,
P0 ' P(q = 0,L), which is essentially L-independent, and the
second derivative P1 ' P ′′(q = 0,L)/2. In particular, note that
having P0 > 0 is a crucial feature of the mean-field solution (56).
A direct measure for sizes 8 ≤ L ≤ 32 returns the L-independent
value P(q = 0,L) = 0.167(5) (7) confirming the validity of our
simplified description.

Fig. 5. As in Fig. 4, but, here, we use the simplified Ssimpl(C, L) from Eq. 11.
Note that dynamic data are well reproduced by Eqs. 7 and 9, even in this
simple approximation.
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The outcome of this analysis is given in Fig. 5. It turns out
that the simplified Ssimpl in Eq. 11 is almost as effective as the
true S(C ,L) in representing the nonequilibrium data through
the effective size Leff in Eq. 9. The only obvious disagree-
ment is that Eq. 11 predicts a nonanalytic behavior for the
susceptibility χ at C = q

(Leff )
EA , which is not found in the nonequi-

librium data. In other words, the effective size for times such that
C (t + tw, tw) ≈ q

(L≈4ξ(tw))
EA is large, but certainly Leff is not infi-

nite as demanded by Eq. 10.
Fortunately, even the crude description in Eq. 11 could lead

to some interesting analysis. For instance, one could select pairs
of times (t , tw) such that Leff(t + tw, tw)= constant . Then,
S(0,Leff) will be the same for all those points. Now, we note from
Eq. 9 that ξ(t + tw) can vary by as much as a factor of two, for
such points. It follows that C (t+ tw, tw) should vary significantly
over this set of times with fixed Leff(t + tw, tw). Hence, the cru-
cial parameters P0 and P1 could be extracted. For instance, if the
susceptibility χ(t , tw) turned out not to depend on C (t + tw, tw)
for fixed Leff , then we would have P0,P1≈ 0, in contrast with the
mean field prediction P0 > 0.

Discussion
It was discovered some twenty years ago that experimental aging
response functions carry information on Parisi’s functional order
parameter (11–13). We now know that this connection between
nonequilibrium and equilibrium physics relies on a very general
mathematical property, stochastic stability (14, 15), shared by
many glass models. However, experimental attempts to explore
this connection encountered a major problem (17, 19): an essen-
tially uncontrolled extrapolation to infinite waiting time tw is
required. (See ref. 57 for an experimental attempt to measure
Parisi’s functional order parameter, unrelated to GFDRs.)

Here, we have proposed using a SDD (5–8) to avoid uncon-
trolled extrapolations. Indeed, we have shown that the aging
responses at finite tw can be connected to the Parisi’s order
parameter as computed at equilibrium in a system of finite size.

We have shown that this GFDR-based SDD is essentially con-
sistent with previous proposals (6–8) that focused on spatial cor-
relation functions. This is an important consistency test. There is
a caveat, though: when the probing time t + tw is such that one
has ξ(t + tw) � ξ(tw) for the coherence lengths, the GFDR-
based SDD disagrees from previous dictionaries in that the size
of the equivalent equilibrium system is Leff ∼ ξ(t + tw) [rather
than Leff ∼ ξ(tw)]. In fact, we have found that the Leff depen-
dence on both length scales can be simply parameterized, recall
Eqs. 7 and 9.

At this point, the reader may wonder about the relationship
between Leff(t+tw, tw) and the two-time correlation length ζ(t+
tw, tw) obtained from the two-time/two-site correlation function
introduced in refs. 58 and 59. Indeed, we thoroughly studied the
two-time/two-site correlation function in ref. 49 because it was
a crucial ingredient for our previous SDD proposal (7, 8). We
found (figure 12 in ref. 49) that ζ(t + tw, tw) can grow, at most,
as large as ξ(tw). Instead, the Leff(t + tw, tw) introduced here is
asymptotically as large as ξ(t + tw).

On the other hand, the only previous SDD known to us that
was based on Eq. 5 misses the Leff ∼ ξ(t + tw) behavior (5).
There are a couple of possible reasons for this failure. For one,
the time scales in ref. 5 do not allow for length-scale separation
ξ(t+tw)� ξ(tw). Besides, the SDD from ref. 5 was obtained for
2D spin glasses (which only have a paramagnetic phase). There-
fore, the results of ref. 5 are probably a manifestation of finite-
time/finite-size scaling (52, 60).

Let us conclude by stressing that the three basic quantities
analyzed in this work, namely the susceptibility χ(t + tw, tw),
the correlation function C (t + tw, tw) and the coherence length
ξ(t + tw), have been obtained experimentally in a dynamic set-

ting very similar to simulations (for χ and C , see refs. 17 and 19;
for ξ, see refs. 42 and 43). We thus think that it should be pos-
sible to extract the spin-glass functional order parameter from
already existing experimental data. Furthermore, GFDRs have
been studied as well in superspin glasses (10) and in a variety of
soft condensed-matter systems (9, 28–36). We therefore expect
that our analysis will be of interest beyond the realm of spin
glasses.

Materials and Methods
We study the D = 3 Edwards–Anderson model, whose Hamiltonian is
given by

H = −
∑
〈x,y〉

Jx,yσxσy − H
∑
x

σx. [12]

The spins sx =±1 are placed on the nodes, x, of a cubic lattice of linear
size L, and we set periodic boundary conditions. The couplings Jx,y =±1,
which join nearest neighbors only, are chosen randomly with 50% proba-
bility and are quenched variables. For each choice of the couplings (one
“sample”), we simulate two independent copies of the system, {s(1)

x } and
{s(2)

x }. We denote by 〈· · ·〉 the average over the thermal noise and by (· · ·)
the subsequent average over the samples. The model described by Eq. 12
undergoes a SG transition at H = 0 and Tc = 1.102(3) (61).

For our dynamical data, we have run new nonequilibrium simulations on
Memento, Janus and Janus II. We use heat-bath dynamics, in which one
Monte Carlo step roughly corresponds to one picosecond of the experi-
mental system (62). See SI Appendix for technical details of these simula-
tions. The two main dynamical observables are the magnetization density
mL(t + tw) =

∑
x 〈sx(t + tw)〉/V and the spin–temporal correlation function

CL(t + tw,tw; H) =
∑

x 〈sx(tw)sx(t + tw)〉/V .
Equilibrium results at T = 0.7 are available for L≤ 8≤ 32 (7). In this case

the main quantity is the probability density function P(q, L) of the spin
overlap q:

q ≡
1

V

∑
x

s(1)
x s(2)

x , 〈qk〉L =

∫ 1

−1
dq′ (q′)kP(q′, L). [13]

In particular, we are interested in the integral

S(C,L) =
∫ 1

C
dC′ x(C′, L), x(C, L) =

∫ C

0
dq 2P(q, L). [14]

The P(q, L) curves are easily described for finite L. They are symmetric
under q↔−q, with two maxima at ±q(L)

EA and a flat central region. In the
thermodynamic limit, the two peaks turn into delta functions at ±q(∞)

EA ,
which mark the maximum possible value of |q|. The size evolutions, as
checked for L≤ 32 (7), are as follows: q(L)

EA− q(∞)
EA ∝ L−θ≈0.38 [at T = 0.7,

q(∞)
EA = 0.52(3) (8)], the width of the peaks at ±q(L)

EA scales as L−B≈0.28 while
P(q = 0,L) turns out to be greater than zero and L-independent.
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Our simulations. Using heat-bath dynamics on the Janus,
Janus II and Memento supercomputers, we consider the follow-
ing numerical experiment. Starting from a completely random
configuration of the spins at T = 0.7, we first let the system
evolve in absence of a magnetic field, i.e. H = 0, for a waiting
time tw. As this tw grows, the spins rearrange in amorphous
magnetic domains of increasing average size ξ, as we show
in Fig. S1 (ξ is computed with the ξ12 integral estimator de-
scribed in Refs. [1, 2]). After this time tw, we turn on a tiny
field H > 0 and follow the response at a later time t+ tw.

We have considered five different values of tw: tw = 211 and
tw = 230 were simulated on Janus II; tw = 226, 219 and 215 on
Janus (smaller systems were simulated on Memento, see below
our study of size effects). Times are measured in units of Monte
Carlo sweeps. The measuring times t were chosen as the integer
part of 2i/4 for integer i (discarding repetitions). For each tw
we repeat the procedure described above for four values of the
magnetic field: H ∈ {0, 0.02, 0.04, 0.08} in the case of Memento
and Janus I supercomputers and H ∈ {0, 0.01, 0.02, 0.04} on
Janus II. We considered exactly the same set of samples with
each H and reused the same sequences of random numbers in
an effort to eliminate sources of fluctuations.

Depending on the computer used, we simulated different
system sizes, either L = 80 (on Memento and Janus I) or
L = 160 (on Janus II). We simulated 647 samples for L = 80
(all tw and H values). For L = 160, we used 55 samples for
tw = 211 and 335 samples for tw = 230 [we also simulated
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ξ(
t w
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Fig. S1. Coherence length ξ(tw) versus waiting time tw at T = 0.7 for different
lattice sizes: L = 80 (data taken from [2]), L = 160 (new simulations) and L = 256
(Metropolis dynamics from [3], rescaling the x axis by a factor of 4 to compare with
our heat-bath dynamics). The dashed lines aim to point out the different tw (and their
corresponding ξ) considered in this work.

336 samples at H = 0 in order to compute ξ(tw)]. Notice
that self-averaging means that one needs fewer samples for
larger sizes. Previous works at H = 0 suggested that finite-size
effects should be negligible, compared to our typical statistical
accuracy, as long as we ensure that L > 7ξ(t + tw) [1]. As
a new test of the validity of this statement, we compare our
new results of ξ(tw) obtained with Janus II and L = 160 with
previous works corresponding to L = 80 [2] and L = 256 [3]
(see Fig. S1) finding no significant dependence on L in the
studied range of tw.

Computation of the linear susceptibility. The discussion on the
GFDR requires the computation of the linear susceptibility,

1
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Fig. S2. Extraction of the linear susceptibility as a function of t from the m(t +
tw, tw)/H data obtained at H = 0.02, 0.04 and 0.08. Data shown here corre-
sponds to tw = 226. For the sake of visibility, only one every two measured times
have been plotted in points.

that is, of

χ(t+ tw, tw) = ∂m(t+ tw)
∂H

∣∣∣∣
H=0

. [S1]

With this aim, we measure m(t, tw)/H at several values of
the external field, and use them to extract the H → 0 limit.
Indeed, since the Edwards-Anderson Hamiltonian is odd in
the field around H = 0, one can write the magnetization in
terms of odd powers of H, which allows us to separate the
linear response χ from the non-linear responses

m(t+ tw, tw;H) = Hχ(t+ tw, tw)− H3

3! χNL(t+ tw, tw;H).
[S2]

In order to make some progress, we Taylor-expand χNL =
χ3 + H2

20 χ5 +O(H4), thus finding:

m(t+ tw, tw)
H

=χ(t+ tw, tw)− H2

3! χ3(t+ tw, tw)

− H4

5! χ5(t+ tw, tw) +O(H6),
[S3]

Therefore, if we measure m for three small fields and neglect
higher-order contributions in H, we can extract χ(t+ tw, tw)
from a set of three equations and three unknowns [by the same
token, we obtain χ3(t+ tw, tw) and χ5(t+ tw, tw) as well, but
these magnitudes will not be discussed herein]. We show in
Fig. S2 m(t+ tw, tw)/H and χ(t+ tw, tw) for one of our values
of tw.

Alternatively, instead of performing simulations at different
H, one could have obtained χ(t + tw, tw) directly from sim-
ulations at H = 0 using methods such as those described in
Refs. [4, 5]. The drawback of this approach is that it would
have required a much larger amount of samples in order to
get equivalent statistical errors.

Smoothing and interpolating the data. The original data con-
sisted of pairs {C(t + tw, tw), χ(t + tw, tw)}, where t takes
some discrete values. However, if we reproduce Fig. 1 in
the main text but using the raw measurements (see Fig. S3)
we find much noisier curves. Indeed, data for successive
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times, although very correlated, displays random fluctuations.
Besides, the statistical errors for C(t + tw, tw;H = 0) and
C(t + tw, tw;H) are completely negligible compared to the
errors in Tm(t+ tw, tw;H)/H (they are indistinguishable in
the figure). We used these two facts to our benefit in order to
smooth and reduce the statistical errors of these curves. Let
us describe our smoothing procedure step by step.

We fit our data for Tm(t+ tw, tw;H)/H to a smooth func-
tion of

x̂(t+ tw, tw) = C(t+ tw, tw) + C(t+ tw, tw;H)
2 . [S4]

This choice [instead of just C(t+tw, tw)], although irrelevant in
the H → 0 limit, turns out to reduce the non-linear corrections
in H as we show in Fig. S4, and yields easier and more accurate
fits.

Our chosen functional form is as follows. Let the quantity
Tm(t + tw, tw;H)/H be approximated by f(x̂) (f depends
on H and tw, but we will write f nevertheless, to keep the
notation as light as possible):

f(x̂) = fL(x̂)1 + tanh[Q(x̂)]
2 + fS(x̂)1− tanh[Q(x̂)]

2 , [S5]
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Table S1. Information about the fits to Eqs. (S5,S6,S7).

tw H N N ′ χ2/DOF

0.01 2 1 51.6822/127
211 0.02 2 1 43.9926/127

0.04 2 1 45.6321/127

0.02 2 1 33.1259/90
215 0.04 2 1 43.3823/90

0.08 2 2 21.0832/89

0.02 3 2 27.6364/115
219 0.04 3 2 25.8737/115

0.08 3 3 31.6819/114

0.02 2 1 29.5259/118
226 0.04 2 1 36.5544/118

0.08 2 1 57.3693/118

0.01 2 1 31.7369/126
230 0.02 3 3 24.7701/122

0.04 3 2 33.0019/123

with Q(x̂) = (x̂− x̂∗)/w. In other words, there are two func-
tional forms: fS, adequate for small x̂ and fL, good for large
x̂. The crossover between the two functional forms takes place
at x̂∗ ≈ 0.7 in an interval of half-width w ≈ 0.04 (although we
keep x̂∗ and w as fitting parameters). The functional form for
small x̂ are diagonal [N,N ] Padè approximants,

fS(x̂) =
∑N

k=0 bkx̂
k∑N

k=0 akx̂
k
. [S6]

As for the region where deviations from the fluctuation-
dissipation theorem are tiny, we chose a polynomial in 1− x̂

fL(x̂) = (1− x̂) +
N′∑
k=2

ck(1− x̂)k. [S7]

We keep ak, bk, ck as fitting variables.
Following Refs. [1–3, 6], we perform a fit considering only

the diagonal part of the covariance matrix (we obtain χ2/DOF
significantly smaller than one, probably due to data correla-
tion). Errors are computed following a jackknife procedure
[we perform an independent fit for each jackknife block, and
compute errors from the jackknife fluctuations of the fitted
f(x̂)]. Our fits are reported in Table S1.

Once each curve Tm(t + tw, tw)/H is smoothed at each
H, we extract the linear susceptibility following the proce-
dure described in the previous Section. We show a compari-
son between the original and smoothed data in Fig. S5. We
found that in most the cases the extrapolated linear response
Tχ(t+tw, tw) was compatible within the error with the smaller
field considered. However, the extrapolation H → 0 becomes
particularly delicate and even changes the shape of the curve
at large values of the t/tw ratio, as we show in Fig. S6.

Fit of S(C, L) and computation of Leff . Part of our discussion
in the main text seeks to find a relation between the linear
response at finite tw with the overlap distribution P (q, L) in
equilibrium at a finite size Leff . That is,

Tχ(t+ tw, tw) = S
(
C(t+ tw, tw), Leff(t+ tw, tw)

)
, [S8]
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where

S(C,L) =
∫ 1

C

dC′ x(C′, L) , x(C,L) =
∫ C

0
dq 2P (q, L) .

[S9]
We computed S(C,L) by means of a numerical integration of
the P (q, L) discussed in Ref. [7] for L = 8, 12, 16, 24 and 32.
We show S(C,L) in the main panel of Fig. S7. In order to
identify Leff we needed a function S(q, x) that is continuous
both in C and in L, which we construct by computing a cubic
spline1 of the data along both variables (first in C and only
then in L). Errors are computed using the jackknife method.
We show some interpolation curves along the x variable in the
inset of Fig. S7. Once S(q, x) is at hand, Leff(t+ tw, tw) can be
extracted by looking for the x value that satisfies the Eq. (S8)
at each time t, fixing the off-equilibrium data Tχ(t+ tw, tw)
and C(t, tw).

1We do not used the so-called “natural” cubic spline. Instead, we fixed the first and last derivative of
the interpolating function from three points of a parabolic fit.
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Finite-size effects in the response. Up to now, finite-size ef-
fects have been investigated only for single-time correlation
functions [and the related extraction of ξ(tw)]. As far as we
know, size effects were not studied previously in the response
to a magnetic field χ(t + tw, tw). In this context, it is some-
what worrying that we have identified a large length scale
Leff ≈ 100 (discussed below) in the regime where deviations
from the FDT are incipient. For this reason, we have explicitly
checked that our data does not suffer from finite-size effects in
that region (as we show in Fig. S8) by comparing results from
three system sizes, L = 20, 40 and 80, in the case of tw = 215,
finding no finite-size dependence. For the smaller system sizes
we considered 28000 samples for L = 20 and 12000 samples
for L = 40.

A simple inequality. In the main text, we have used several
times the inequality

S(C,L) ≤ 1− 〈|q|〉L=∞ . [S10]
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Fig. S9. Upper lines with points are data for Tχ(t + tw, tw) versus C(t + tw, tw)
measured in the D = 2 ferromagnetic Ising model at T = 2 ≈ 0.88Tc (data
from Ref. [4]). Lower lines are the equilibrium S(C,L) for the same model and their
thermodynamic limit S(C,L =∞). For this model Eq. (5) of main text can not be
satisfied and the SDD does not exist.

Our purpose here is to remind the reader of its derivation, for
the sake of completeness.

Let us first recall the notations used in the main text:

S(C,L) =
∫ 1

C

dC′ x(C′, L) , [S11]

x(C,L) =
∫ C

0
dq 2P (q, L) . [S12]

We start by noticing

S(C,L) ≤ S(C = 0, L) , [S13]

due to the inequality x(C,L) ≥ 0 for the cumulative dis-
tribution. Next, we integrate by parts to find [recall that
P (q, L) = P (−q, L)]

S(C = 0, L) = 1−〈|q|〉L , 〈|q|〉L ≡
∫ 1

−1
dq|q|P (q, L) . [S14]

Finally, to obtain the upper bound in (S10), we remark that
〈|q|〉L is monotonically decreasing in L for a system with
periodic boundary conditions.

The ferromagnetic case and conditions for validity of Eq. (5)
of main text. Our SDD is based on Eq. (5) in the main text
that we repeat here for readers convenience

Tχ(t+ tw, tw) = S
(
C(t+ tw, tw), Leff(t+ tw, tw)

)
. [S15]

Although for the D = 3 Edwards-Anderson (EA) model the
above equation can be satisfied for all our data, it is not
obvious that this is the case for other models. In particular
we show in Fig. S9 a simple case where Eq. (S15) can not be
satisfied.

In Fig. S9 we show both equilibrium and non-equilibrium
data for the D = 2 ferromagnetic Ising model gathered at
temperature T = 2 ≈ 0.88Tc. For the non-equilibrium data
we reproduce correlation and responses already published
in Ref. [4], while the equilibrium data have been obtained
by running the Wolff algorithm [8]. The black line is the
thermodynamical limit for the equilibrium data

S(C,∞) = min(1−m(T )2, 1− C)
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where m(T ) is the remanent magnetization.
It is clear from data in Fig. S9 that there is no Leff size such

that the non-equilibrium data can be matched with the equilib-
rium ones. This is a direct consequence of the fact that finite
size effects in this model are such that S(C,L) ≤ S(C,∞),
while the dynamical curves show an excess of response, bring-
ing them above S(C,∞).

In general the condition for the applicability of Eq. (S15) is
that the dynamical curves must lie in the region of the (Tχ,C)
plane covered by the equilibrium functions S(C,L). In the
present case such a region is very narrow (as shown in Fig. S9
for L ≥ 5) and the dynamical curves miss it. Luckily enough
the analogous region for the D = 3 EA model is very wide,
and Eq. (S15) can be always satisfied on the timescales we
have probed.

The very different behaviour between the above two models
can be explained by noticing that there are at least two major
sources of finite times effects:

• the first is the one discussed thoroughly in the main text.
Its application to the ferromagnetic Ising model should
give a really tiny effect, because the S(C,L) converges
very fast to its thermodynamical limit;

• the second correction comes from the convergence of one-
time quantities (e.g. the energy density) to their large
time limit. This is the dominating one for the ferromag-
netic Ising model, where the energy density decays as
E(t)− E(∞) ∝ ξ(t)−b, with b = 1. We expect this con-
tribution to be much less important in the EA model,
since the exponent is b ' 2.6 [2]. The ferromagnetic Ising
model is very peculiar; in the general case, using the
hand-waiving argument that the exponent b equals the
lower critical dimension, we expect b > 1 (e.g. b = 2 in
models with continuous variables) and this correction to
be much less relevant.

Extrapolating the effective size. We have shown in the main
text that, for every tw and small enough t, Leff(t + tw, tw)
can be very large. This short-time but large-size effect arises
when C(t + tw, tw) ≈ q

L=4ξ(tw)
EA . In fact, for tw = 230 (our

largest) we can compute Leff without extrapolations only for
the largest t.

The above observation begs the question: how large can
Leff be in this small-t regime? We provide here a crude ex-
trapolation for our tw = 230 data, mostly based on the scaling
laws found in [7].

We start by noticing that one could be tempted to extract
the spin-overlap probability directly from the aging response.
One can define the dynamic overlap probability density func-
tion:

Pdyn(q; tw) = −1
2
∂2Tχ(C, tw)

∂C2

∣∣∣∣
C=q

. [S16]

Then, one could compare Pdyn with the equilibrium P (q, L)
at q = C(t+ tw, tw). The weak point in this approach is that
taking two derivatives of the curve Tχ(C, tw), which is subject
to random errors, is very difficult.

Our way out will be to recall that the area under the peak of
the P (q, L) is approximately L-independent [7]. Therefore, we
shall estimate the peak height (rather than the peak width).

Our efforts to locate the maximum (let alone the full curve)
for Pdyn(q; tw = 230) are documented in Fig. S10 (but the
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Fig. S10. Numerical attempt to locate the maximum of
Pdyn(q, tw = 230). In the top panel, we compare the dynamic response
Tχ(C, tw = 230) with the equilibrium curve S(C,L = 32). The range of C
covers the peak width of P (q, L = 32) [7]. Since the curvature is clearly larger
for Tχ than for S(C,L = 32), Eq. (S16) tells us that that the maximum of
Pdyn(q; tw = 230) is higher than the maximum of P (q, L = 32). The lines corre-
spond to diagonal fits to fourth order polynomials in C (we increased the order of the
polynomial until the figure of merit diagonal-χ2 for the fit of the dynamic response no
longer decreased). The bottom panel shows the second derivative of the interpolating
polynomials of the top panel, multiplied by −1/2. According to Eq. (S16), these
derivatives should give us Pdyn(q, tw) and P (q, L). Indeed, the peak position and
height in P (q, L = 32) is very reasonably reproduced by this approach, see Ref. [7].

reader is warned to take the results cum grano salis). We note
from Fig. S10 that the ratio of the height of the maxima for
tw = 230 and L = 32 is ∼ 3.6/2.5. Therefore, from the scaling
of the peak width, ∝ L−B≈0.28, we extrapolate

Leff ∼ 32× (3.6/2.5)
1
B ≈ 118 , [S17]

which is certainly larger than our maximum equilibrium size,
L = 32.

The simplified S(C, L). In the main text, we wondered about
the consequences of having at our disposal only a simplified
approximation for S(C,L):

Ssimpl(C,L) = min
[
S0(L)− P0C

2 − P1

6 C4, 1− C
]
. [S18]

In the above equation, P0 and P1 are L-independent constants.
All the depedence on the system size is in S0(L). In fact,
S0(L) was obtained by fitting the actual data S(C = 0, L =
8, 12, 16, 24, 32) to a quadratic polynomial in L−θ. We took
θ = 0.38 from Ref. [7] [recall that the maximum of the spin-
overlap probability, P (q, L) scales with L as q(L)

EA−q
(∞)
EA ∝ L

−θ].
Once S0(L) was known, we determined the constants P0 and
P1 from a least-squares minimization of the difference between
Ssimpl(C,L) and the actual data.
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