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Abstract. We have introduced a variational method to improve the 
computation of integrated correlation times in parallel tempering dynamics, 
obtaining a better estimate (a lower bound, at least) of the exponential correlation 
time. Using this determination of the correlation times, we revisited the problem 
of the characterization of the chaos in temperature in finite dimensional spin 
glasses, by way of the study of correlations between various chaos indicators 
computed in the static and the correlation times of the parallel tempering 
dynamics. The sample-distribution of the characteristic time for the parallel 
tempering dynamics turns out to be fat-tailed, and to obey finite-size scaling.
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1. Introduction

Markov-chain Monte Carlo methods are a crucial tool to study non-perturbative prob-
lems in statistical mechanics and quantum field theory [1–4]. A major problem arises, 
however, when studying systems with rugged free-energy landscapes: we have in mind, 
for example, spin glasses [5, 6], or glass-forming liquids [7]). The presence of many 
free-energy local minima often causes the numerical simulation to get trapped and, as 
a consequence, does not allow a correct sampling of the phase space.

The parallel tempering method—connected to the original simulated tempering 
method [8], and also known as the replica exchange method—was devised to overcome 
these difficulties [9–11]. One considers NT copies (or clones) of the system, and uses 
for each of them a different temperature Ti, with T1 < T2 < · · · < TNT . As explained in 
appendix E, the target probability distribution for the NT systems is the product of the 
Boltzmann distributions at the various temperatures. A parallel tempering numerical 
simulation is based on two alternating sets of steps. First, each system copy indepen-
dently undergoes standard Monte Carlo dynamics (for example Metropolis) at its own 
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temperature: one can use one or more Monte Carlo steps each time. Second, pairs of 
spin configurations attempt to exchange their temperatures10.

The rationale behind parallel tempering is simple. Each system copy undergoes a 
random walk in temperature space. When a system copy is at a low temperature, it 
only explores the nearby free-energy local minima. When its temperature is high, how-
ever, free-energy barriers disappear: the copy can freely wander in phase space, and 
when it cools again it will typically fall in a different free energy valley, with different 
local minima. For parallel tempering to effectively thermalize, it is crucial that any 
copy of the system spends its time roughly evenly at every temperature: high temper-
atures are needed to ensure visiting all the phase space; low temperatures are needed to 
visit its low free energy regions. In fact, parallel tempering is currently used in a very 
large number of very different applications (for example in physics, biology, chemistry, 
engineering, statistics), and considerable efforts have been devoted to improving it, 
from various communities. Various temperature-exchange rules have been developed 
and tested [12–17]. Furthermore, it has been suggested that a significant gain can be 
achieved by optimizing the choice of the NT temperatures [18, 19].

In order to assess the relative merits of the above suggestions, one needs a quanti-
tative method. The theory of Markov chains suggests considering the exponential auto-
correlation time τexp of the Monte Carlo dynamics as a relevant figure of merit [2]. 
τexp tells us how long we should wait before equilibrium is reached. Unfortunately, τexp 
is an elusive quantity. In the context of a parallel tempering simulation, it has been 
suggested that τexp is best computed by studying the temperature-flow of the system 
copies [20, 21]: the exchange of temperatures is, indeed, the slow mode of the combined 
numerical simulation based on parallel tempering and Metropolis moves, and it is an 
interesting process to quantify. We will focus here on the determination of τexp for a 
parallel tempering simulation of a spin glass. Our choice entails no generality loss, 
because the problem of finding the ground state (or low-temperature configurations) in 
a spin glass is NP-complete [22]: understanding it sheds light on a large class of very 
interesting phenomena. Furthermore, spin glasses show very clearly the major prob-
lems that a parallel tempering simulation faces.

To be specific, we shall be considering the three dimensional Edwards–Anderson 
model [23, 24]. Ising variables (si = ±1) occupy the nodes of a cubic lattice of size L 
with periodic boundary conditions. Spins interact with their nearest lattice-neighbors 
through the Hamiltonian

H = −
∑

⟨i,j⟩

Jijsisj , (1)

where the quenched couplings Jij are drawn from a bimodal probability distribution 
(so that Jij = ±1 with 1/2 probability) at the beginning of the simulation. A choice of 
couplings {Jij} will be called a (disorder) sample (or realization) hereafter.

A major complication in the numerical study of the Hamiltonian (1) is that a large 
number of samples of the system (the larger, the better) needs to be studied due to the 

10 The temperature-exchange rule is designed to have the target probability distribution as the unique equilibrium 
measure. In other words, the restriction of the total measure to a single temperature is exactly the appropriate 
Boltzmann distribution at that temperature—see appendix E.
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non-self-averaging property of the system11. Besides, below the critical temperature 
Tc, the value of τexp (i.e. the computational difficulty that characterizes the physical 
system) presents huge sample to sample fluctuations [20, 21] (see also figure B1). The 
presence of these fluctuations makes the problem of computing τexp very relevant for 
saving CPU time (allowing, in this way, larger and more accurate simulations for a 
given cost): knowing the value of τexp for each individual sample makes it possible to 
save a huge amount of computer time by setting the chain length for a given sample 
proportional to its own τexp.

There is a fairly general physical mechanism behind the dramatic dispersion of τexp 
(and behind its severe growth with the system size)—the so called temperature chaos 
[25–42]. Temperature chaos consists of a major reorganization of the typical equilib-
rium configurations upon tiny temperature changes. A detailed inspection shows how 
the effect arises on finite systems [39, 42, 43]. Indeed, for some samples, one encounters 
chaotic events taking place at well defined temperatures, in the form of major changes 
of the spin configurations as the temperature is lowered. Chaotic events are reminis-
cent of first-order phase transitions (rounded in a finite system). In a fixed temperature 
interval, TA < T < TB with TB < Tc, a given sample may undergo zero, one or even 
more chaotic events (the temperature location of the chaotic events is also random). 
Given TA < T < TB, the larger the system, the larger is the probability of finding 
samples displaying chaotic events in that temperature region [39]. Lowering TA while 
keeping the size fixed also increases the probability of encountering a chaotic event.

As is intuitively obvious, temperature chaos turns out to be a major obstacle for 
the parallel tempering temperature flow [21, 39, 42, 43]. The main point is that equilib-
rium in parallel tempering implies equilibrium at all temperatures. Now, let us assume 
that the typical equilibrium spin-configurations at two neighboring temperatures in 
the temperature grid are vastly different. Clearly, if one spin configuration of the low-
temper ature type is momentarily placed at the high temperature, it will have a hard 
time traveling to the highest temperatures in the temperature grid (because the clones 
at the higher temperatures are fitter, and the local spin-flip dynamics is obviously 
inefficient to remediate this problem). Furthermore, temperature chaos is relevant in 
the analysis of crucial experimental results [44–51], and in the performance analysis of 
commercial quantum annealers [43, 52, 53].

Here, we revisit the problem of estimating τexp, and present a variational method 
that can potentially save a large amount of computation time. Very often, a numer-
ical simulation needs to be extended just because of the difficulties encountered in the 
computation of τexp. Having in our hands a safe mechanism to estimate τexp in an auto-
mated way (the number of samples needed in a state-of-the-art numerical simulation 
goes by the thousands) can avoid unnecessary extensions of the simulation length. We 
also investigate further the relationship between temperature chaos, which is a static 
equilibrium feature, and τexp, which characterizes a Markov chain dynamics.

This paper is organized as follows. In section 2, we introduce two different time 
scales that characterize a Monte Carlo Markov chain. Our simulations are described 
in section 3. We present our characterization of temperature chaos in section 4. The 
variational method for the computation of the autocorrelation time τexp is discussed in 

11 Strictly speaking, non-self-averaging occurs only when the correlation length reaches the order of magnitude of 
the system size (which is usually the case at the temperatures of interest).
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section 4.1. Section 4.2 is devoted to the study of the scaling properties of the parallel 
tempering method τexp. We study in very precise detail the thermodynamic equilib-
rium features that characterize temperature chaos [39] in section 4.3. The relationship 
between static and dynamic chaos indicators is studied in section 4.4. Our discussion 
of results concludes the paper in section 5. We provide in appendix A a description 
of the parameters of our simulations. In appendix B, we discuss the particular choice 
of samples we use [54]. In appendix C, we describe in detail the geometry used in our 
implementation of the synchronous multispin coding. In appendix D, we discuss some 
quantities which are surprisingly unrelated to chaos. Finally, in appendix E, we discuss 
in some detail the relationship between time-correlations and system equilibration.

2. Time scales in a Markov chain

This section is a quick reminder of some basic concepts. The interested reader is 
referred to [2] for further details. Specific examples and computational recipes will be 
discussed in section 4.1 (see also appendix E).

Almost all the Monte Carlo methods used in statistical physics are based on the 
theory of Markov chains. A Markov chain starts from some initial configuration and 
we need to know how long the Markov dynamics must be run in order to reach equilib-
rium. This time scale is the exponential autocorrelation time (τexp). In addition to this 
time scale, we can define for any physical quantity f a second time scale: the integrated 
autocorrelation time (τint,f). This controls statistical errors in measuring f: two already 
equilibrated configurations whose time difference is 2τint,f  are statistically independent 
in an effective sense (but only as far as the quantity f is concerned).

Under very mild assumptions (see below) it is possible to show that the following 
inequality holds for any f:

τint,f ! τexp. (2)
The crucial point is that τint,f is relatively easy to compute. τexp, on the other hand, is 
rather elusive. Hence, we shall use equation (2) for a variational method analogous to 
the Rayleigh–Ritz variational principle in quantum mechanics. In section 4.1, we shall 
try different quantities f and compute τint,f for each of them. The largest value of τint,f 
will be our variational estimate for τexp.

Let us recall that the equilibrium autocorrelation function for quantity f is

Cf (t) = E [ f(t1) f(t2)]− E [ f(t1)]
2 , t = t1 − t2, (3)

where E[. . .] stands for the expectation value and the two times t1 and t2 are large 
enough to reach equilibrium (hence E [ f(t1)] = E [ f(t2)] and Cf (t) = Cf (−t)). The inte-

grated autocorrelation time is defined from the normalized correlation function Ĉf (t):

Ĉf (t) ≡
Cf (t)

Cf (0)
, τint,f =

1

2
+

∞∑

t=1

Ĉf (t). (4)

https://doi.org/10.1088/1742-5468/aaa387
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The normalized autocorrelation function can be expressed in terms of the eigenvalues 
λn of the transition probability matrix projected onto the subspace orthogonal to its 
eigenvector of eigenvalue 1 (1 > |λ1| ! |λ2| ! . . .) (see [2]):

Ĉf (t) =
∑

n

An,fλ
|t|
n ,

∑

n

An,f = 1,
 (5)

where the index n runs from 1 to NT !2NTLD − 1, in our case.
The amplitudes An,f depend on f, while the λn are f-independent. In terms of An,f 

and λn, one has

τint,f =
1

2
+

∑

n

An,f
λn

1− λn
. (6)

Now, in practical applications the (leading) An,f and λn values are real positive. Hence, 
λn = e−1/τn defines the characteristic time τn. The exponential autocorrelation time 
of the Markov chain τexp is just τ1, the largest of the τn. Now, for τn ≫ 1, one has 
λn/(1− λn) = τn +O(1/τn) and equations (5) and (6) become

Ĉf (t) =
∑

n

An,fe
−|t|/τn , τint,f =

1

2
+
∑

n

An,fτn. (7)

The variational method in equation (2) follows immediately from equation (7). The 
optimal choice for the observable f would have A1,f  =  1 (and An>1,f  =  0) in its decompo-
sition in characteristic times.

3. Numerical simulations

We develop our study in the context of [54], in which the metastate was studied. For 
this reason, our realizations of disorder {Jij} (samples) are particular. In appendices A 
and B, we explain how the samples have been chosen, and argue that this choice does 
not affect the results.

We have simulated this model using the parallel tempering method with Metropolis 
updates. See appendices A and B for the reasons behind our choice of the minimal 
temperature in the parallel tempering. Regarding the Metropolis updates, we have used 
either the multisample multispin coding (MUSA-MSC) [3] or the multisite multispin 
coding (MUSI-MSC) [55] techniques, which we will briefly describe.

Intel and AMD CPUs support 128 and 256-bit words in their streaming extensions. 
It is known that we can perform the Metropolis update of a single spin by using a 
sequence of Boolean operations [3], so we can take advantage of current CPU technol-
ogy to simulate 128 or 256 systems simultaneously. This method is widely used in com-
putational physics [3], [56–61], and it is denominated MUSA-MSC. The most efficient 
version of our MUSA-MSC code turned out to be the one with 128 bits.

However, there exist certain samples with such sluggish dynamics that MUSA-MSC 
ceases to be efficient. Indeed, if only a few of the 128 samples coded in a computer 
word are not yet thermalized, continuing the simulation of the already equilibrated 
samples is a waste of computer time. This problem is particularly acute for L  =  16 and 

https://doi.org/10.1088/1742-5468/aaa387
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24, because the width of the autocorrelation time distribution increases with L (see sec-
tion 4.2). For those misbehaving instances, we turn to MUSI-MSC: the 256 bits in a 
computer word now code 256 distinct spins of a single replica of a single sample [55]. 
In this way, we execute the Metropolis algorithm in L3/256 steps. Our implementation 
for L  =  24 use a geometric arrangement differing from [55], as explained in appendix C.

The simulations were carried out using either Intel Xeon E5-2680 or AMD Opteron 
6272 processors. 12 800 samples were simulated (and four replicas per sample). More 
details of the simulations are given in appendix A.

4. Characterizations of temperature chaos

Temperature chaos will be studied from two complementary viewpoints. The perspec-
tive offered by the parallel tempering dynamics is considered in section 4.1. The finite-
size scaling of the parallel tempering dynamics is studied in section 4.2. The static 
viewpoint is considered in section 4.3. Finally, in section 4.4, we will study the correla-
tion between the parallel tempering dynamics and temperature chaos.

4.1. Dynamics: the variational method

Our scope here is to use equation (2) in a variational method to estimate the exponen-
tial autocorrelation time. Consider the eigenmode expansion in equation (7). The opti-
mal choice for the observable f would have A1,f  =  1 (and An>1,f  =  0) in its decomposition 
in characteristic times12. We shall use our physical intuition to approach this ideal.

As explained in the Introduction, the temperature chaos effect suggests focusing our 
attention on the temperature flow along the parallel tempering dynamics [21, 42, 43]. 
Let us consider one of the NT system copies in the parallel tempering dynamics. We 
shall describe the temperature random-walk through the index it that indicates that, at 
time t, our system copy is at temperature Tit. The equilibrium probability for it is just 
the uniform probability over the set {1, 2, . . . ,NT}. If we consider an arbitrary function 
of it its equilibrium expectation value will be

E( f) =
1

NT

NT∑

i=0

f(i). (8)

We shall consider, as well, pairs of system copies. These pairs will be described by two 
integer indices, it ̸= jt. The equilibrium value of an arbitrary function of a pair of sys-
tem copies is

E( f) =
1

NT (NT − 1)

NT∑

i=0

NT∑

j ̸=i

f(i, j) . (9)

12 The reader is probably used to applying this formalism to the evolution of a single spin configuration. Here, we 
shall need to enlarge this viewpoint to a parallel tempering simulation that involves several spin chains, and to a 
function f that is related to the temperature of a given chain. More details can be found in appendix E.

https://doi.org/10.1088/1742-5468/aaa387
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We will optimize three parameters: the type of function f, the temperature T∗ where 
f is zero, and a Wilson–Kadanoff renormalization block length, lblo. We will describe 
these three parameters in the following paragraphs.

We consider variational test-functions f belonging to eight different classes—see 
table 1. One of these classes contains the linear functions studied in [21]. All our test-
functions have a vanishing expectation value E( f) = 0. We also request f(T∗)  =  0 for 
some T ∗ ∈ {T1,T2, . . . TNT }. The location of T∗ is our second variational parameter. 
Specifically, our linear test-functions are

T > T ∗ : fT ∗(T ) = a+(T − T ∗), (10)

T < T ∗ : fT ∗(T ) = a−(T − T ∗). (11)
We require the two amplitudes a+ and a− to be positive. Their ratio is fixed by impos-
ing E( fT ∗) = 0. Indeed, we need to fix only the ratio a+/a−, because the overall scale 
of the test function fT ∗ is irrelevant. Besides these, we consider quadratic (p  =  2) and 
cubic (p  =  3) test-functions:

T > T ∗ : fT ∗(T )=a+(T − T ∗) p(2TNT − T ∗− T ), (12)

T < T ∗ : fT ∗(T )=a−(T
∗− T ) p(2T1 − T ∗− T ). (13)

We choose again a+, a− > 0, and the ratio a+/a− is fixed by imposing E( fT ∗) = 0. Note 
that all our test-functions are continuous at T∗ (the cubic fT ∗ are even differentiable 
at T∗).

Now, for each f and T∗, we need to estimate the autocorrelation function 
Cf ,T ∗(t), recall equation (3), and the related integrated autocorrelation time (4). Let 
f̃T ∗ ≡ fT ∗ − E( fT ∗). Cf ,T ∗(t) is estimated as

Cf ,T ∗(t) =
nMet

Ns − t0 − t

Ns−t∑

t′=t0

f̃T ∗(it′)f̃T ∗(it′+t) . (14)

Here, NS is the number of times we have stored the state of the PT indices it in the hard 
drive. Note that t0 must be much greater than τint, in order to be safely in the equi-
librium regime. The parameter nMet is the periodicity with which we record the time 
indices it (in most of this work, nMet = 250 00 Metropolis sweeps). Note that Cf ,T ∗(t) 
is independent of the system copy. Therefore, we can average over the NT numerical 
estimations of Cf ,T ∗(t) (as well as over the four independent replicas), which greatly 

Table 1. Different choices of the function f used in the variational method.

Identifier Function

0 Piecewise constant
1 Piecewise linear
2 Piecewise quadratic
3 Piecewise cubic
| OR in couples
& AND in couples
∧ XOR in couples
∗ Multiplication in couples

https://doi.org/10.1088/1742-5468/aaa387
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enhances the statistics. The computation for functions f depending on a pair of system 
copies is analogous.

Once we have computed Cf ,T ∗(t), the normalized correlation function is just Ĉf ,T ∗(t), 
and the integrated autocorrelation time can be computed in the standard way [2]

τint,f ,T ∗ ≈ nMet

[
1

2
+

W∑

t=0

Ĉf (t)

]
, (15)

where W is a self-consistent window [2] that avoids the divergence of the variance of 
τint,f ,T ∗ (we impose τint,f ,T ∗ < 10W ).

We have found it advantageous to consider a third variational parameter lblo, 
which we now describe. We build Wilson–Kadanoff blocks: the Monte Carlo sequence 
fT ∗(i1), fT ∗(i2), . . . fT ∗(iNs) is divided into blocks of lblo consecutive data (see e.g. [62]). 
We take the average of the fT ∗(it) within a single block. This operation defines a new 
sequence of NS/lblo renormalized times, over which the integrated autocorrelation time 
can be estimated just as we did for the original data lblo = 1. The estimated autocor-
relation time should be rescaled by lblo in order to recover the original time units. The 
purpose of the blocking is to reduce high-frequency fluctuations.

There is a danger in the use of Wilson–Kadanoff blocks, though. Formula (15) 
was obtained assuming that τint,f ,T ∗ is much larger than the time step in the right-
hand side. In fact, lblo can be made much greater than the τexp that we aim to 
estimate. As a consequence, the renormalized correlation function will vanish for 
times t ̸= 0. This means that the integrated autocorrelation time will be 1/2 (over 
the renormalized time-mesh). When turning back to physical time units, we shall 
find τint = nMet lblo/2, which diverges for large lblo. Hence, we need a practical way 
to ensure that lblo is not so large that all the physical information has been erased. 
Our solution imposes

τint,f ,T ∗,lblo <
5

2
nMet lblo, (16)

in order to consider the results of a given lblo.
We obtain, for each sample, a huge number of values of τint corresponding to the 

eight different functions and the different choices of T∗. We have tried for T∗ all the 
temperatures Ti in the lower half of the set of temperatures in our parallel tempering 
simulation. The values of lblo are taken from the list {1, 2, 5, 10, 20, 50, 100, 200, 500, 
1000, 2000}.

Our variational estimate τint,var is the largest of these numbers. This is a robust 
estimate (i.e. this methodology does not provide spurious values), and thus can be 
implemented in an automatic way in the analysis, and allows for a precise estimate of 
the thermalization time needed.

We shall also consider below the temperature Td which is the T∗ for which the varia-
tional maximum is attained.

An example of the improvement obtained in the computation of the autocorrelation 
function is shown in figure 1. As can be inferred from equation (7), a major difficulty is 
that the amplitude for τexp, namely A1,f, can be very small. Indeed, the correlation func-
tion considered in a previous work [21] (which is our piece-wise linear f, identifier #1 in 

https://doi.org/10.1088/1742-5468/aaa387
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table 1, and T∗ set to the critical temperature), has A1,f ≈ 0.1. Instead, the optimized 
autocorrelation function has an amplitude A1,f almost ten times larger.

We observe in table 2 that, for almost all samples, the variational method chooses 
a function f depending on one system copy only. Moreover, this variational method in 
many cases substantially improves the results obtained previously with a linear func-
tion and a parameter T∗ chosen at the critical temperature [21].

We can do a quantitative comparison between the variational method proposed 
here and the old approach. Let us histogram the ratio τint,old/τint,var, conditioned to the 
value of τint,var (which is a good indicator of how chaotic a sample is). We represent the 
result of this study in figure 2, where τint,old/τint,var is represented for the first and last 
deciles of τint,var13. The advantages of the variational estimator are evident when one 
focuses on decile 10 (i.e. for the most chaotic samples), where we observe a significant 
fraction of samples with τint,old/τint,var < 0.1.

4.2. The finite size scaling behavior of the parallel tempering dynamics

In this section, we study the parallel tempering dynamics for L  =  8,12,16,24 and 32, 
and we investigate temperature chaos from a dynamical point of view. In the following 

Figure 1. Auto-correlation function for the most chaotic sample for L  =  16 (left) 
and L  =  24 (right): (top) auto-correlation function computed using the method of 
[21] and (bottom) using the variational method presented here. Inset: linear-log 
plot showing the small t behavior of the autocorrelation function.

Table 2. Number of times the variational method has picked one of the eight 
choices among the functions f described in the text. L denotes the lattice size.

L 0 1 2 3 | & ∧ ∗ Total

16 2032 5320 3875 1374 4 115 74 6 12 800
24 1556 7196 3089 820 0 127 11 1 12 800

13 Deciles are similar to percentiles. First, samples are ordered according to their τ. Then, we divide the samples 
among 10 sets (deciles) of equal size. Those samples with the lowest τ belong to decile 1, and so on.
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we will denote the mimimal temperature allowed in a parallel tempering simulation as 
Tmin (it was T1 in the previous section). We will focus on the variational estimate of 
τint,var (that we will call simply τ from now on).

An implicit assumption of our study, corroborated by the results in section 4.4, is 
that the scaling behavior of τ is mostly decided by the value Tmin. Other details, such 
as the number of temperatures in the parallel tempering mesh, are expected to play a 
minor role (if kept in a reasonable range). For the comparative analysis of the dynam-
ics we use the simulations at Tmin ≈ 0.7 shown in table A1. This is the lowest value of 
T we have thermalized for all our lattice sizes. An important advantage of Tmin ≈ 0.7 
is that temperature chaos has already been characterized at such temperatures, in 
the equilibrium setting [39]. Lowering Tmin would increase chaos effects, which would 
have been good in principle, but it would also have made it extremely difficult to 
reach thermal equilibrium. On the other hand, increasing Tmin to approach the criti-
cal point would make the results irrelevant, because samples displaying temperature 
chaos would be too scarce (besides, we want to study the spin glass phase, rather than 
critical effects).

For L ! 16 we have NT  =  13. For L  =  24 we needed to increase NT in order to keep 
constant the acceptance rate of the temperature exchange step of the parallel temper-
ing simulation. The L  =  32 data are from [21], and have been obtained with the dedi-
cated Janus computer [63]. The Janus simulation used heat bath dynamics, rather than 
Metropolis, and the parallel tempering there had NT  =  34 and Tmin = 0.703. In order to 
be sure that heat bath autocorrelation times are consistent with Metropolis times (as 
we would expect), we simulated with Janus ten randomly selected samples with both 
algorithms, finding that τMetropolis ≈ τheat−bath/3.

We show in figure 3 the cumulative distribution function of τ, F (τ). The maximum 
slope of F decreases with L for the small systems, and stabilizes between L  =  24 and 

Figure 2. Conditional probability density function of the ratio τint,old/τint,var, given 
that τint,var belongs to a given decile. We show the data for the first decile (left) and 
the tenth decile (right) for L  =  16 (top) and L  =  24 (bottom).

https://doi.org/10.1088/1742-5468/aaa387


Dynamic variational study of chaos: spin glasses in three dimensions

12https://doi.org/10.1088/1742-5468/aaa387

J. S
tat. M

ech. (2018) 033302

L  =  32; indeed, these two distributions can be approximately superposed by a simple 
translation. This is reminiscent of a critical slowing-down [64]:

τ ∼ LzPT(Tmin). (17)
It is not obvious a priori that such a simple scaling should hold in the spin glass phase. 
As a working, simplifying hypothesis, we assume that the exponent zPT only depends 
on the value of the lowest temperature in the parallel tempering grid, Tmin (and not on 
the number of temperatures).

As a first test of equation (17), we compute an effective z exponent by comparing 
the probability distributions for two lattice sizes (L1,L2), by means of the definition

zPT(L1,L2, p) =
log(τ(L1, p)/τ(L2, p))

log(L1/L2)
, (18)

where τ(Li, p) is determined by the implicit equation F (τ(Li, p)) = p/100 where 
p = 1, . . . , 100 is the so-called percentile rank (i.e. τ(Li, p) is the pth percentile of the 
distribution for the size Li). We have computed zPT for three pairs of lattice sizes, 
(12,24), (16,24) and (24,32); in figure 4 we show the results as a function of the rank. 
The values for the largest pair, (24, 32), are independent of the rank, within statistical 
errors, in agreement with the ansatz. Smaller size couples give smaller estimates (in 
the same ball park) for low ranks, but converge to the (24, 32) value for high ranks (i.e. 
for the harder samples), and the coincidence improves and extends to smaller ranks 
for larger lattices. We remark that this dynamic behavior is consistent with the static 
findings in this temperature range [39]: for L  =  8 it is almost impossible to find samples 
displaying strong temperature chaos. One needs to go to systems as large as L  =  24,32 
to find chaotic samples with a significant probability.

An interesting coincidence with the results of non-equilibrium simulations [55, 65–
67] could have a deep meaning. Indeed in non-equilibrium conditions one finds that the 
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Figure 3. Empirical probability distribution of τ for L  =  8, 12, 16, 24 and 32. For 
L  =  8 and L  =  12 some of the samples have τ smaller than our minimal resolution 
(if τ < nMet we cannot compute it safely). We show only the part of the distribution 
function that can be safely computed.
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spin glass correlation length ξ, in a lattice of size L ≫ ξ , at temperature T  =  0.7 grows 
with the simulation time tw as [66]

ξ(tw) ∝ t1/z(T )
w , z(T = 0.7) = 11.64(15), (19)

where z(T ) is the so-called dynamic critical exponent, that turns out to be strongly 
temperature dependent in the spin glass phase z(T ) ∝ Tc/T . Our results for the lattice 
pair (24, 32) suggest that

z(T = 0.7) ≈ zPT(Tmin = 0.7). (20)
As a further test we can rescale the whole probability distribution by using equa-

tions (17) and (20). This is done in figure 5 (main) that shows F (τ) as a function of 
y = τ/Lz. As expected, the data for L  =  24 and L  =  32 present a nice collapse. The 
curve corresponding to L  =  16 collapses with them only for percentile ranks higher than 
80, and the curve corresponding to L  =  12 collapses for percentile ranks higher than 90. 
This is a nice, smooth behavior. On the larger lattice sizes, we reach a perfect scaling, 
but already on smaller lattices we see a partial scaling, which improves for increasing 
size. In figure 5 (inset), we show a log–log plot of 1−F (τ) as a function of τ/Lz, that 
emphasizes the large τ tail of the distribution. The fit presented shows that the probabil-
ity density function of τ behaves, asymptotically for large y, like a fat-tailed distribution:

ρ(y ≡ τ/Lz) ∼ y−1−a1 , a1 ≈ 1.38. (21)
The distribution seems to reach its asymptotic form for L ! 24. Perhaps unsurprisingly, 
the thermodynamic (i.e. equilibrium) effective potential that characterizes temper ature 
chaos also turns out to be asymptotic for L ! 24 [39].

In order to study how the range of temperatures in the parallel tempering affects the 
dynamics, we have performed an extra simulation for L  =  16. In the new simulation we 
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Figure 4. The effective exponent zPT(L1,L2, p) for three different pairs of lattice 
sizes (12, 24), (16, 24) and (24,32) as a function of the percentile rank p. The two 
horizontal lines are the bounds for the off-equilibrium value z = 11.64(15) (see 
equation (19)). The numerical values of zPT for the largest pair are compatible with 
the off-equilibrium value.
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take a lower minimum temperature (Tmin = 0.479 instead of Tmin = 0.698) increasing NT 
from 13 to 16 in order to keep the interval between adjacent temperatures fixed—see 
table A1. Since the simulation with NT  =  16 reaches a lower minimum temper ature 
than the simulation with NT  =  13 we expect to find chaos events (i.e a jam in the 
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Figure 5. Probability distribution function of the rescaled variable y = τ/Lz, (z is 
the dynamic exponent corresponding to Tmin = 0.7, namely z(T = 0.7) = 11.64(15)). 
(Inset) plot of log(1− F (τ)) versus log (τ/Lz); the straight black line is a fit to the 
form a0 − a1 log(τ/Lz) yielding a0  =  −29.33 and a1  =  −1.38.
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Figure 6. Scatter plot of log(τint,16/τint,13) versus Td. The lattice size is L  =  16, τint,16 
is the relaxation time for NT  =  16 (Tmin = 0.479), τint,13 is the relaxation time for 
NT  =  13 (Tmin = 0.698), Td is the temperature of chaos from a dynamical point of 
view (defined in the variational method) of the simulation with NT  =  16. Disorder 
samples are the same in the two simulations. The vertical black line represents 
the minimum temperature simulated in the NT  =  13 simulation. (We have added 
a small Gaussian white noise to Td, which is a discrete variable, to avoid the 
cluttering of data in vertical lines).
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parallel tempering temperature flow) that the simulation with NT  =  13 cannot see. In 
figure 6 we show a scatter plot of log(τint,16/τint,13) versus Td for the 12 800 samples 
(τint,16 and τint,13 are the autocorrelation times for NT  =  16 and 13 respectively. Td is the 
temperature T∗ where the variational estimate τint,f reaches its maximum).

For Td  >  0.698, the ratio takes values of order one for most samples, while for 
Td  <  0.698 there is a huge number of samples with τint,16 ≫ τint,13, i.e. there are a lot of 
samples with a chaotic behavior in a temperature range below Tmin = 0.698.

The same idea can be analyzed from a different point of view. Imagine that we 
have studied with great care a given sample down to some temperature Tmin. Can we 
say something about possible chaotic effects at lower temperatures? The question is 
answered negatively in figure 7: the probability that a sample has a large τint for the 
simulation with a lower Tmin is not correlated to the value of τint for the first simulation.

4.3. Statics

In the infinite volume limit, static temperature chaos is the complete rearrangement 
of the equilibrium configuration under any change of temperature. It has been studied 
numerically mostly through the disorder average of the probability density function of 
the overlap between the spin configurations at temperatures T1 and T2,

qT1,T2 =
1

V

∑

x

sT1
x sT2

x , (22)

or through ratio of moments of this distribution. However, because of the size of the 
systems that can be currently simulated, the overlap is strongly influenced by finite 
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Figure 7. The empirical probability distribution as a function of τ for the NT  =  16 
simulation, conditional to the τ obtained from NT  =  13 simulation belonging to a 
given quintile. The non-conditional probability distribution function is also shown 
(L16 curve). Inset: Blow-up of the top right part of the main figure. For the hard 
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size effects. It has been suggested that static temperature chaos is a rare-event driven 
phenomenon, that should be studied via the distribution of the sample-dependent cha-
otic parameter [39, 40]:

XJ
T1,T2

=
⟨q2T1,T2

⟩J√
⟨q2T1,T1

⟩J⟨q2T2,T2
⟩J
,

 (23)

where ⟨· · ·⟩J  is the thermal average within a given sample (J). Notice that 0 < XJ
T1,T2

! 1; 

XJ
T1,T2

= 1 means that equilibrium spin configuration of the J sample at temperature T1 
and temperature T2 are indistinguishable, while XJ

T1,T2
= 0 means that the equilibrium 

spin configurations are completely different.

The temperature evolution of XJ
T1,T2

 is shown in figure 8 for selected samples (in 
the figure, T1 is kept fixed to T1 = Tmin, while T2 is made to vary). In some samples, 

we find chaotic events, namely sharp drops of XJ
T1,T2

 at very well defined temperatures, 
implying that the typical spin configurations significantly differ at the two sides of the 
chaotic event. It was empirically observed in [39] that chaotic events occurring at low 
temperatures are most harmful to the performance of parallel tempering. To quantify 
the effect, the chaotic integral I was introduced

I =

∫ Tmax

Tmin

XJ
Tmin,T2

dT2 . (24)

Note that a sharp drop of XJ
Tmin,T2

 at a low T2 will result in a very low value of the 
chaotic integral I. Furthermore, a study of the temperature behavior of the chaotic 

0
0.2
0.4
0.6
0.8

1
L = 16

0
0.2
0.4
0.6
0.8

1

0.5 0.8 1.1 1.4

L = 16L = 16 L = 24

0.8 1.1 1.4

L = 16 L = 24
X

T
m

in
T

X
T

m
in

T

T T

Figure 8. Plot of XJ
Tmin,T
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parameter leads to the conclusion that chaos events happen only at low temperatures, 
wherefore the high temperatures introduce only noise in the estimate of I. In order to 
eliminate this noise, we introduce a new integrated chaotic parameter I2 that involves 
only the lower half of the temperature range.

Nevertheless, there exist certain samples that exhibit a huge τint, and have a rela-
tively large chaotic integral, so the correlation between statics and dynamics is more 
complicated than one could hope. Therefore, in order to improve our thermodynamic 
understanding of the parallel tempering dynamics, we need to look elsewhere. We have 
found it useful to consider the temperature derivative of the chaotic parameter. Indeed, 
it is easy to prove that

dXJ
T1,T2

/dT2

∣∣
T2=T1

= 0 . (25)
for any temperature T1. However, if we focus on these outlier samples, we notice that 

these samples present a sharp drop in XJ
T1,T2

 at two consecutive temperatures. This 
observation will motivate the definition in equation (26), below.

4.4. Correlations dynamics-static

Once we have characterized the chaos phenomena from both dynamical and static 
point of view, we are interested in knowing how these static and dynamic estimators 
are correlated.

Besides the chaos integrals I and I2, we introduce a new quantity for further use:

Ki = 1−XJ
Ti,Ti+1

. (26)
After some trials, we have finally defined a last parameter:

IX = aI2 − bmin
i

(
− log

(
K2

i

))
− c

∑

i

(
− log

(
K2

i

))
,

 (27)

where the coefficients a, b and c, that depend on the lattice size, are obtained through a 
minimization of the correlation coefficient r between IX and log(τint) (r is negative, and 
it would be r  =  −1 if we managed to achieve a perfect understanding of our dynamical 
data). The values of these coefficients are given in table 3.

This finding is supported by figure 8. We see that the most chaotic samples in terms 
of the integrated autocorrelation time (figure 8, top), present a sharp fall in the chaotic 
parameter. On the other hand, we can see that less chaotic samples in terms of the 
integrated time (figure 8, bottom), have a much smoother fall.

In figure 9, we confront the most representative estimator for the dynamical chaos, 
namely the largest integrated autocorrelation time τint found in our variational study, 
with the static chaotic integrals I, I2 and IX. We can observe how spurious values of the 

Table 3. Value of the coefficients a, b and c in equation (27), that maximize the 
correlation between IX and log(τint).

L a b c

16 0.6143 0.2865 0.1373
24 0.2963 0.3217 0.0120
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Figure 9. Scatter plot of log(τint,var) versus the integrated chaotic parameter I. We 
present data for two lattice sizes and for the three definitions of the integrated 
chaotic parameter defined in the text (I, I2 and IX). The pattern of depleted 
horizontal bands is due to our choice of a few lblo.

Table 4. Correlation coefficients for the scatter plot of log(τint) versus the 
integrated chaotic parameter, for two lattice sizes and for the three definitions of 
the parameter (I, I2 and IX).
L Integral r

16 I −0.714± 0.005
16 I2 −0.751± 0.005
16 IX −0.795± 0.004

24 I −0.725± 0.005
24 I2 −0.746± 0.005
24 IX −0.786± 0.004
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original parameter I (i.e. large values of I associated to large τint) are displaced towards 
lower values when we use the improved parameters I2 and IX.

The value of the correlation coefficients are reported in table 414. We observe a 
strong anti-correlation in IX, that improves over the previous indicator of correlation I. 
[39] The improvement is less clear for I2.

We can try to define other magnitudes (whether static or dynamic) that capture 

the chaos phenomenon. One possible choice is the temperature, Ts, for which XJ
Tmin,T

 

presents the maximum (negative) slope. Unfortunately, we observe a weaker correlation 
between both estimators, τ and Ts, (see figure 10) and we can check it quantitatively 
through table 5. Some further attempts along these lines are explored in appendix D.

14 Statistical-error estimates were computed using the bootstrap method.

Figure 10. Scatter plot of log(τint) against Ts. We show L  =  16 (top) and L  =  24 

(bottom). Ts is the temperature where XJ
Tmin,T

 presents the maximum (negative) 
slope.

Table 5. Correlation coefficients for the scatter plot of log(τint) versus Ts for the 
two simulated lattice sizes.

L r

16 −0.621± 0.006
24 −0.621± 0.006
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5. Discussion and conclusions

We have proposed an efficient variational method to estimate the elusive exponential 
autocorrelation time of a Monte Carlo Markov chain, specific to the (arguably impor-
tant) case of a parallel tempering simulation. In this variational method, we have 
introduced three parameters (a temperature T∗, a function f and a block length). We 
have checked that this procedure is very robust, and can easily be implemented in an 
automatic way.

In addition, we have studied the scaling properties of the probability distribution 
of the autocorrelation time, obtained using the proposed variational approach. In par-
ticular, we have shown that scaling holds for lattices of sizes L ! 24, consistently with 
previous studies using effective potentials.

Moreover, we have introduced additional static chaotic indicators, and finally we 
have checked the statistical correlations between these static chaotic indicators and the 
dynamical correlation times.
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Appendix A. Parameters of the simulation

Whereas in numerical simulations of spin glasses the disorder samples are usually 
independent, the samples we use here are not fully independent. The motivations of 
our choice are explained in [54]. We consider cubes with L3 spins and 3L3 couplings, 
divided into an inner part of (L/2)3 spins and an outer part surrounding it. We simu-
late 10 independent inner samples, and, for each inner sample, 1280 independent outer 
samples. We simulate four replicas (independent spin systems) for every inner and 
outer sample. Hence, we have simulated 12 800 disorder realizations (samples) with a 
total of 12 800× 4 real spin systems. The parameters of the simulation can be found in 
table A1.
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these criteria applied to every sample, individually). First of all, the number of itera-
tions in τexp units (lblo = 1) must be greater than 20; as a double-check to avoid failures 
in the automated fitting procedure, we recomputed τexp with lblo = 10 (the total simula-

tion length is also required to be longer than 20τ lblo=10
exp ).

However, we had some additional safety checks to ensure that the computation of 
τexp could be trusted. For those samples where either of the following two requirements 
was not met, we doubled the total simulation length, and only then recomputed τexp. 
First, in order to make sure that every sample spends enough time at high temper atures, 
we require that each copy of the system in the parallel tempering method spends at 
least 35% of the time in the upper half temperature region. Second, the ratio between 
the larger and the smaller values of τint, as computed for each of the four independent 
replicas, must be less than two (for either lblo = 1, 10, 100). This last requirement can 

Table A1. Parameters of the simulations. L is the lattice size; Lint the size of the 
inner part of the lattice; NT, Tmin and Tmax are the number of temperatures, the 
minimum and the maximum temperatures used in the parallel tempering method; 
NMet is the number of Metropolis sweeps (at each temperature); ps/spin is the 
average CPU time per spin-flip in MUSI-MSC, using an Intel Xeon CPU E5-2680 
processor; Nsamp denotes the number of bad samples whose simulations had to be 
extended in order to thermalize and finally NMet,min, NMet,mean and NMet,max are 
the minimum, mean and maximum number of Metropolis sweeps per temperature 
needed to reach thermalization (bad samples). The set of temperatures used is 
clearly the same in the MUSI-MSC and MUSA-MSC parts of this table. The 
number of Metropolis sweeps between two consecutive parallel tempering sweeps 
is always NMpPT = 10. For the MUSI-MSC simulation of L  =  24 we parallelized, 
using Pthreads, by distributing the NT  =  24 system copies among 12 CPU cores in 
the Intel Xeon CPU E5-2680.

MUSA-MSC

L Lint NT Tmin Tmax NMet (×106) ps/spin

24 12 24 0.698 1.538 500 104

16 8 16 0.479 1.575 250 107
16 8 13 0.698 1.575 250 119
16 12 13 0.698 1.575 250 119
14 12 13 0.698 1.575 500 120
12 6 13 0.698 1.575 250 119
8 4 13 0.698 1.575 250 126

MUSI-MSC

L Lint NT Nsamp

NMet,min  
×106

NMet,mean  
×106

NMet,max  
×106 ps/spin

24 12 24 2441 1000 4262 326 000 57
16 8 16 2898 500 5096 355 500 304
16 8 13 338 500 543 4000 306
16 12 13 314 500 578 8000 306
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help us to identify a lack of thermalization for those samples whose leading term in the 
autocorrelation function has a very small amplitude.

Appendix B. On the selection of relevant parameters of the simulation

The natural question is whether our particular choice of samples (see appendix A) 
affects our results. One could imagine that the results obtained from configurations 
sharing the same inner part could be strongly correlated, and that with only 10 inner 
parts, our statistics would be insufficient. We show in figure B1 that this is not the case 
for the probability distribution of τ: the probability distributions of τ for the samples 
sharing the same 10 inner parts are plotted separately. They are nearly indistinguish-
able. The average over the outer disorder (which we can call the metastate average, in 
analogy with [54]) dramatically reduces the fluctuations due to the inner disorder. The 
same conclusion holds for the chaos integral (see figure B2)

On the other hand, the selection of the minimal temperature in the parallel tem-
pering could seem arbitrary; however, the selection of TL=16

min  and TL=24
min  has been made 

carefully, to ensure that the most difficult samples had similar τ. This is shown in the 
figure B3.
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Figure B1. Empirical probability distribution function of τ represented for the 10 
inner samples separately. L  =  16 case (top) and L  =  24 case (bottom). Averaging 
over the metastate (i.e. the outer samples) with fixed inner couplings strongly 
reduces the fluctuations between the inner samples.
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Appendix C. The geometry of MUSI-MSC

The geometric construction explained in [55] for L  =  256 turns out to be satisfactory 
for L  =  16 as well, but not for L  =  24. Hence, we shall first recall the geometry that we 
employ for L  =  16. After this, we shall explain the modifications that we introduced 
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Figure B2. Empirical probability distribution function of the integrated chaotic 
parameter. Top we compare the distribution (labeled as ‘Metastate’) obtained 
with our particular choice of samples with the distribution obtained from 4000 
fully independent samples (data from Janus). Bottom: distributions obtained for 
the 10 inner samples plotted separately. Averaging over the metastate (over the 
outer couplings) strongly reduces the fluctuations between the inner samples.
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Figure B3. Empirical probability distribution function of τ. Comparison of results 
for the simulations (L  =  24,Tmin = 0.698) and (L  =  16,Tmin = 0.479). Note that at the 
high end of very difficult samples, these two simulations are similarly challenging.
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for L  =  24. Note that multispin coding is not usually employed in single-sample simu-
lations—because, in common schemes, one needs an independent random number per 
bit. Fortunately, this problem can be circumvented, as explained in [55].

For L  =  16, the physical lattice of Cartesian coordinates 0 ! x, y, z < L is mapped to 
a super-spin lattice. Each super-spin is coded in a 256-bit computer word (of course, the 
256 bits correspond to 256 physical spins, which are updated in parallel). The crucial 
requirement is that spins which are nearest neighbors in the physical lattice are coded 
into nearest-neighbor super-spins. In particular, our super-spins are placed at the nodes 
of a cubic lattice with the geometry of a parallelepiped of dimensions Lx = Ly = L/8, 
and Lz  =  L/4. The relation between physical coordinates (x, y, z) and the coordinates in 
the super-spin lattice (ix, iy, iz) is

x = bxLx + ix, 0 ! ix < Lx, 0 ! bx < 8,

y = byLy + iy, 0 ! iy < Ly, 0 ! by < 8,

z = bzLz + iz, 0 ! iz < Lz, 0 ! bz < 4.
 (C.1)

In this way, exactly 256 sites in the physical lattice are given the same super-spin coor-
dinates (ix, iy, iz). We differentiate between them by means of the bit index:

ib = 64bz + 8by + bx, 0 ! ib ! 255. (C.2)
Since we have to simulate NT independent system copies in our parallel tempering 
simulation, we simply carry out successively the simulation of the NT systems.

The alert reader will note that the above geometric construction is very anisotropic (we 
start with a cube, but end-up with a parallelepiped). Fortunately, this unsightly feature 
can be easily fixed by noticing that the single-cubic lattice is bipartite. Indeed, the lattice 
splits into the even and odd sub-lattices according to the parity of x  +  y  +  z. The two sub-
lattices contain L3/2 sites. Furthermore, odd spins interact only with even spins, and vice 
versa. It follows that the update ordering is irrelevant, provided that our full-lattice sweep 
updates (say) all the odd sites first, and then all the even sites. Now, provided that Lx, Ly 
and Lz are all even, the parities of x  +  y  +  z and ix + iy + iz coincide. This implies that all 
the spins coded in a single super-spin share the same parity, making the super-spin lattice 
asymmetry irrelevant. For L  =  16, one finds that Lx = Ly = 2 and Lz  =  4, all three being 
even numbers, and hence the above geometric construction works smoothly.

Unfortunately, for L  =  24 one has Lx = Ly = 3 and Lz  =  6, which implies that the 
super-spin lattice cannot be split into even and odd sub-lattices. Our solution con-
sisted of introducing logical super-spins of 512 physical spins, that were later coded 
into two computer words of 256 bits each. The geometrical correspondence was 
(Lx = Ly = Lz = L/8)

x = b̃xLx + jx, 0 ! jx < Lx, 0 ! b̃x < 8,

y = b̃yLy + jy, 0 ! jy < Ly, 0 ! b̃y < 8,

z = b̃zLz + jz, 0 ! jz < Lz, 0 ! b̃z < 8.

 

(C.3)
In this way, exactly 512 sites in the physical lattice are given the same super-spin coor-
dinates ( jx, jy, jz). We differentiate between them by means of the bit index:

jb = 64b̃z + 8b̃y + b̃x, 0 ! ib ! 511. (C.4)
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Now, the crucial observation is that (because Lx = Ly = Lz = 3 for L  =  24), the parity 

of x  +  y  +  z coincides with that of jx + jy + jz if (and only if) the parity of b̃x + b̃y + b̃z 
is even. In other words, given super-spin coordinates ( jx, jy, jz) the 512 spins coded in 
the super-spin split into 256 even spins and 256 odd spins. Because same-parity spins 
are guaranteed to be mutually non-interacting, we decided to code the 256 bits with 
the same parity in the same computer word, with the corresponding bit index being 
the integer part of jb/2.

However, the acceleration obtained with the MUSI-MSC was not enough for some 
of the worst L  =  24 samples. Hence, we decided to add an extra layer of parallelism by 
using Pthreads to simulate a single sample in multicore processors. Given the small-
ness of the super-spin lattice, we found it preferable not to use concurrent threads in 
the simulation of copies of a single system (recall that we have NT  =  24 system copies 
in the parallel tempering simulation of L  =  24). Rather, we distributed the NT system 
copies among 12 CPU cores, achieving an average speed of 57 picoseconds per spin-flip.

Appendix D. Quantities not related to chaos

Some perfectly reasonable quantities turn out to have surprisingly little relation to 
temperature chaos. To illustrate this effect, we test whether or not the temperature 
obtained through the variational method Td = {T ∗ : τint = τint,var} is correlated with the 
static temperature of chaos Ts (see figure D1).

In this case, figure D1 shows an over-density; however, the points outside of the prin-
cipal density are too dispersed. For L  =  16 (top) the number of points within the lines 
are 8017 (62.63% of the total) while for L  =  24 (bottom) the number of points within 
the lines are 7539 (58.90% of the total). If we calculate the correlation coefficients, we 
obtain the table D1.

Appendix E. Analyzing parallel tempering simulations

In the main text we have used theoretical tools to analyze the time series produced by 
a Markov chain [2] in a setting that might be unfamiliar in the context of Statistical 
Mechanics. In particular, in our parallel tempering simulations we have a number NT 
of independent copies (or clones) of the spin system that we want to simulate. Each 
clone wanders along the temperature axis, and our analysis is focused solely on these 
temperature excursions. At first sight, the reader might be surprised by the fact that 
this temperature wandering may teach us something about how far the spins are from 
thermal equilibrium at each temperature. The purpose of this appendix is to briefly 
clarify the relationship between the two types of degree of freedom, namely the clone 
temperatures and the spins (see also [11, 19–21, 68]).

For the sake of clarity, this appendix is organized in three paragraphs. A Markov 
Chain Monte Carlo describes a random-walk process: in appendix E.1, we describe 
the phase space where our random-walk takes place. We also discuss in appendix E.1, 
the stationary probability distribution (i.e. the equilibrium distribution) that our ran-
dom walk is targeted to reach. In appendix E.2, we analyze some basic facts about 
the dynamics of a Markov process (see for example [2] for a more detailed discussion). 
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Finally, in appendix E.3, we consider an example that will hopefully clarify the matter 
further.

E.1. The phase space and the equilibrium distribution

We consider a cubic lattice of linear size L with periodic boundary conditions. We 
define a set of NT temperatures, with T1 < T2 < · · · < TNT . Our random walk moves 
in a discrete, very large phase space. Each state point, denoted X, Y, Z... hereafter, is 
composed of two elements.

Table D1. Correlation coefficients of the scatter plot of Td against Ts for the 
simulated two lattice sizes.

L r

16 0.348± 0.008
24 0.342± 0.007

Figure D1. Scatter plot of Td versus Ts. We present the L  =  16-data (top) and 
the L  =  24-ones (bottom). Points are calculated with a special procedure. First, 
samples are classified in deciles according to log(τint). The points coordinates 
were obtained by computing the median Td and the median Ts within each decile 
(errors from bootstrap). The parallel red lines enclose the area of over-density that 
presents a higher correlation for later recount.
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 • The spins: for each lattice site x we have NT binary variables s(α)x = ±1. Here, α 
is the clone index, which takes values α = 1, . . . ,NT .

 • The clone permutation π: π is a permutation of NT symbols (there are NT! such 
permutations). The action of the permutation over the clone index α, π(α), has a 
simple interpretation: it means that clone α is currently at temperature Tπ(α).

In order to emphasize the composite nature of our state-point, we use the notation 

X =
{
π, {s(α)x }NT

α=1

}
. The state point can take NT ! 2NTL3

 values. The position of the ran-

dom walk in phase space depends on time: Xt =
{
πt, {s(α)x }NT

t,α=1

}
. The random walk has, 

by construction, the stationary distribution

Peq(X) =
1

NT !

NT∏

α=1

exp[−H({s(α)x })/Tπ(α)]

ZTπ(α)
, (E.1)

where H is the Edwards–Anderson Hamiltonian defined in equation (1) and ZTα is the 
partition function at temperature Tα. One can also write it as

Peq(X) =
1

NT !

NT∏

α=1

exp[−H({sπ
−1(α)

x })/Tα]

ZTα

, (E.2)

where π−1 is the inverse permutation of π (π(π−1(α)) = α for any α). Let us now con-
sider the conditional probability conditioned to a given value of π. Without loss of 
generality, we select π = , the identity permutation, such that (α) = α for all α:

Peq(X|π = ) =
e−H({s(1)x })/T1

ZT1

e−H({s(2)x })/T2

ZT2

. . .
e−H({s(NT )

x })/TNT

ZTNT

. (E.3)

This conditional probability is a product of distributions (i.e. the spins for clones α ̸= β 
are statistically independent, provided that π is kept fixed), and the equilibrium proba-

bility distribution for the spins {s(α)x } is the Boltzmann distribution for temperature Tα.
Two marginal probabilities extracted from Peq(X) are of interest:

 • Tracing out the spin degrees of freedom in equation (E.1), one sees that the 
equilibrium probability for the clones permutation is uniform:

Peq,marginal(π) =
1

NT !
. (E.4)

 Specializing to clone α, we find Peq(π(α) = β) = 1/NT  for any β. Checking that 
this has been achieved with good accuracy for all clones is one of the important 
tests of thermalization.

 • The equilibrium probability for the spins of the clone currently at temperature 
Tβ, namely α = π−1(β), is

Peq,marginal({s(α)x }|π(α) = β) =
exp[−H({s(α)x })/Tβ]

ZTβ

. (E.5)
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 In other words, when the random-walk equilibrates, Boltzmann equilibrium is 
reached at all NT temperatures: the spin configuration of the clone currently at 
temperature Tβ is a typical configuration of the Boltzmann distribution at such 
temperature.

E.2. The random walk and its correlation functions

We consider a stationary Markov process [2]. When going from time t to time t  +  1 the 
system is updated Xt → Xt+1 with a time-independent rule, that only uses as input the 
current state Xt. Previous states (Xt−1, Xt−2, ...) have no influence on the decision of 
where to move at time t  +  1.

In our case, the Markov dynamics is generated by a square matrix GX,Y of dimen-
sion NT ! 2NTL3

 that meets two basic conditions, viz. GX,Y ! 0 and 
∑

X GX,Y = 1. In 
fact, GX,Y is a conditional probability: it is the probability for having Xt+1  =  X when 
one knows that Xt  =  Y15. It follows that the probability for having Xt=k  =  X, namely 
Pt=k(X), obeys the master equation

Pt=k(X) =
∑

Y

[Gk]X,Y Pt=0(Y ),
 (E.6)

where Gk is the kth power of the generating matrix G. Matrix G is carefully crafted to 
fulfill the balance condition16

∑

Y

GX,Y Peq(Y ) = Peq(X).
 (E.7)

The balance condition states that the equilibrium distribution (E.1) is a right-eigen-
vector of matrix G, with eigenvalue 1. When combined with the master equation, the 
balance condition tells us that the equilibrium distribution is a stationary distribution 
for our random walk.

Let us consider the spectral decomposition of the initial distribution on the 
NT !2NTL3

 right-eigenvectors of matrix G, Gun = λnun (ordered in such a way that 
1 > |λ1| > |λ2| > . . .):

Pt=0 = Peq +
∑

n

cnun. (E.8)

The master equation implies that

Pt=k = Peq +
∑

n

cnλ
k
nun. (E.9)

15 [2] employs a reversed convention, where our GX,Y is named TY,X. As a consequence, [2] reverses the ordering of 
vector and matrices in matrix products—see e.g. equation (E.6).
16 Specifically, our G is factorized as G = GTemperature Swap[GMetropolis]10. During the Metropolis part of the dynam-
ics the spins of clone α evolve with a standard Metropolis dynamics at temperature Tπ(α) (each factor GMetropolis 
corresponds to a full-lattice sweep). The permutation π is changed by matrix GTemperature Swap. We try to exchange 
sequentially π−1(α) with π−1(α + 1), for α = 1, 2, . . . NT − 1 (in this way, the clone at the lowest temperature has a 
theoretical chance to reach the highest temperature in a single parallel tempering iteration). Each temperature 
swap attempt is accepted or rejected according to a Metropolis test—see e.g. [68].
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Hence, Pt=k converges exponentially to Peq and the corresponding exponential auto-
correlation time is τexp = −1/log|λ1|.

However, the spectral analysis of the equilibrium correlation functions (see sec-
tion 2) is carried in terms of the left eigenvectors of matrix G, ũnG = λkũk. Fortunately, 
for any matrix, left-eigenvalues coincide with right-eigenvalues (instead, left and right 
eigenvectors typically differ). In fact, these are the eigenvalues appearing in equa-
tion (5), which we repeat here for the reader’s convenience:

Ĉf (t) =
∑

n

An,fλ
|t|
n ,

∑

n

An,f = 1.
 (E.10)

In particular, the constant vector ũ0 (ũ0(X) = 1 for all states X) is a left eigenvector 
with eigenvalue 1. The generic observable f considered in equation (E.10) can be decom-
posed as

f(X) = E( f)ũ0(X) +
∑

n

Bn,f ũn(X),
 (E.11)

where E( f) is the equilibrium expectation value. The coefficients An,f in equation (E.10) 
are An,f = B̃n,f/(

∑
n′ B̃n′,f ), where B̃n,f = Bn,fE

(
ũn(X)[ f(X)− E( f)]

)
.
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Figure E1. Top: Monte Carlo history for the overlap q4(t)—see equation (E.12), as 
computed for each of the four clones in the truncated simulation (see text). Note 
that our simulation time is much too short to expose the symmetry q4 ↔ −q4. As a 
consequence, we know for sure that thermal equilibrium has not been reached for 
the truncated simulation. Bottom: as in top panel, for the first four clones in one 
of our standard simulations with NT  =  24 temperatures (there were 10, completely 
independent, standard simulations). For each clone, the overlap q4(t) changes sign 
many times along the simulation (as it is to be expected for a well equilibrated 
simulation). Note that, with small probability, each clone reaches a state where 
|q4| ∼ 0.8. These events, which are not observed for the other three overlaps qa 
a  =  1,2,3, make it particularly interesting to study the dynamics of q4.
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The crucial message from this analysis is that the characteristic time scales τn17   
that one identifies by studying the correlation functions, as we did in the main text, 
are exactly the timescales that govern the approach to equilibrium—see equation (E.9). 
These characteristic times τn can be obtained from any convenient observable f. Whether 
f is a spin observable or something related to the clone permutation is immaterial. The 
only thing that really matters is that An=1,f should be as large as possible.

E.3. An example

Just to show how deeply the spin and the temperature dynamics are intertwined, we 
consider an example, here, in detail. We shall consider a typical L  =  24 sample instance 
(neither extremely easy, nor extremely hard: it roughly corresponds to percentile 90 of 
difficulty—see figure 3).

We consider the standard parallel tempering simulation protocol from the main 
text: NT  =  24, Tmin = 0.698. For this particular sample one needs to run the simula-
tion for 2× 109 Metropolis sweeps (for each clone) in order to meet our thermalization 
criteria. We also consider a truncated simulation where we only keep the lowest four 
temperatures: NT  =  4, Tmin = 0.698, T2  =  0.735, T3  =  0.771 and T4  =  0.808 (all four 

17 Remember that λn = e−1/τn.
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Figure E2. Equilibrium time dependent correlation functions, as computed from 
the standard simulation with NT  =  24. We consider five observables, one related 
to temperature (computed from the piece-wise linear function with T ∗ = T3—
see table 1 and section 4.1), and the overlaps qa with a  =  1, 2, 3, 4 defined in 
equation (E.12). The fact that the T and q4 correlations become parallel in this 
semi-logarithmic scale indicates that we are safely computing the exponential 
auto-correlation time (which is independent of the observable). Instead, the qa=1,2,3 
correlations do not become parallel to the other curves, at least not within the 
range we can measure, which probably indicates that the amplitudes An=1,qa=1,2,3

—see equation (E.10), are much smaller for these observables.
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deep in the spin glass phase, since Tc = 1.102(3) [57]). The truncated simulation is also 
run for 2× 109 Metropolis sweeps per clone.

Our expectation is that the standard simulation will equilibrate, while the truncated 
simulation will not. The rationale for this expectation is simple: in the standard simu-
lation, each clone spends some 2× 109/24 ≈ 8× 107 Monte Carlo steps at the highest 
temperature. Yet, the exponential auto-correlation time for the Metropolis dynamics 
at T  =  1.6 is about 104 lattice sweeps [69]. Hence, the time spent by each clone at the 
highest temperature is long enough to effectively de-correlate the system. Instead, the 
highest temperature in the truncated simulation Tmax,truncated = 0.808 lies well below Tc. 
At such a low temperature, the Metropolis dynamics is too inefficient to decorrelate the 
system in only 2× 109/4 = 5× 108 Metropolis sweeps.

Besides the temperature dynamics already considered in the main text, we shall also 
study here the dynamics of spin observables. Using the fact that we have already equili-
brated this sample, we have selected randomly four equilibrium spin configurations 
at our lowest temperature Tmin = 0.698, {τx,a} a  =  1, 2, 3, 4. Then, for each clone, we 
compute the time-dependent overlap

qa,α(t) =
1

L3

∑

x

τx,as
(α)
x (t). (E.12)

We always compute the overlap with a given clone α, irrespective of its time-dependent 
temperature Tπt(α).

We compute the overlaps qa,α(t) from a set of ten new standard simulations 
(NT  =  24), with a random start, where we measure the overlaps very often (every 
5× 104 Metropolis sweeps). We also compute the overlaps qa,α(t) from our new trun-
cated simulation with NT  =  4 (the truncated simulation had a random start, as well). 
Recall that, as we said above, the spin masks {τx,a} are taken from the previous sets of 
simulations that were discussed in the main text.

The global spin flip symmetry of the Edwards–Anderson Hamiltonian implies that 
the equilibrium distribution for qa,α is symmetric under qa,α ↔ −qa,α. It is important to 
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Figure E3. For each of the four clones in the truncated simulation, we indicate the 
histogram of temperature (i.e. the number of times that πt(α) = 1, or πt(α) = 2, 
etc). The temperature state was sampled every 5× 104 Metropolis sweeps (per 
clone). Had the simulation equilibrated, we would have expected the occupation 
histograms to be uniform.
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check this symmetry, since it is believed that the largest dynamical barriers are related 
to global spin-flips [70]18.

The Monte Carlo history of the time-dependent overlap with τ4, that we call q4 in 
figure E1, shows very clearly that the truncated simulation is not able to reach thermal 
equilibrium within the time span of our simulations. The Monte Carlo histories for the 
other overlaps (not shown), qa=1,2,3 are qualitatively similar. Instead, the standard sim-
ulation displays the expected symmetry under q4,α ↔ −q4,α. The Monte Carlo histories 
(in the standard simulation) for qa,α with a  =  1,2,3 (not shown) are symmetric as well. 
Only q4 uncovers a state that arises with small probability, characterized by |q4| ∼ 0.8. 
This feature suggests that q4 is the most interesting overlap to look at.

In order to make the above impressions quantitative, we show in figure E2 some equi-
librium correlation functions, which can be computed, of course, only for the standard 
simulation. As could be expected from appendix E.2, the very same exponential auto-
correlation time is computed from the temperature random walk, or from the q4 corre-
lation (specifically, and measuring time in Metropolis sweeps, we find 10−7τexp = 3.0(4) 
from q4, while we find the fully compatible value 10−7τexp = 3.1(6) from the T random-
walk). One could conclude from figure E2 that the computation of τexp is simpler by 
considering q4 than by studying the temperature random walk. This is a misleading 
conclusion, though: we had to equilibrate the system, in the first place, in order to 
find the spin mask {τx,a=4} that defines the overlap q4. Furthermore, the other spin 
masks, {τx,a=1,2,3}, turned out not to be particularly useful in the computation of the 
exponential auto-correlation time. It is in no way guaranteed that one can identify an 
interesting overlap by randomly picking a small number of equilibrated configurations.

Finally, one could consider a different question. Figure E1 shows beyond any ques-
tion that the truncated simulation does not reach equilibrium. However, there are only 
four clones in that run, and one could believe that it should not be that difficult to 
equilibrate the clone permutation. The question is investigated in figure E3 by means of 
an occupation histogram (it is not possible to compute equilibrium correlation functions 
for a simulation that does equilibrate). The answer to our query is an unqualified no: 
the fact that the spins are out from equilibrium also makes it impossible to equilibrate 
the clone permutations.
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