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Vector spin glasses are known to show two different kinds of phase transitions in the presence of an external
field: the so-called de Almeida–Thouless and Gabay–Toulouse lines. While the former has been studied to some
extent on several topologies (fully connected, random graphs, finite-dimensional lattices, chains with long-range
interactions), the latter has been studied only in fully connected models, which however are known to show some
unphysical behaviors (e.g., the divergence of these critical lines in the zero-temperature limit). Here we compute
analytically both these critical lines for XY spin glasses on random regular graphs. We discuss the different nature
of these phase transitions and the dependence of the critical behavior on the field distribution. We also study the
crossover between the two different critical behaviors, by suitably tuning the field distribution.
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I. INTRODUCTION

Vector-spin-glass models [1–3] go beyond the much more
studied discrete-spin-glass models (e.g., Ising and Potts mod-
els) by taking into account also small fluctuations in spin
variables. A direct consequence of this is the presence of many
more soft modes even at very low temperatures, which may
change the critical behavior of the model.

Compared to Ising spin glasses, analytic studies on vector
spin glasses are scarce and mostly related to fully connected
models [4–14] (as usual finite-dimensional vector models can
be studied approximately via a perturbative renormalization
group at first order in ε = 6 − d [15–17], but the outcomes
from this approach are still very much debated even for the
simplest Ising models [18]). Unfortunately, fully connected
spin-glass models have some undesirable features; e.g., the
coupling strength must be scaled as 1/

√
N—with N being the

system size—in order to have a good thermodynamic limit, and
the critical line in the temperature versus field plane diverges in
the zero-temperature limit. These unrealistic features strongly
ask for the solution of the diluted mean-field version of vector-
spin-glass models, where coupling strength does not need to
be scaled with the system size. However, previous works on
the diluted version are even scarcer [19–24], and none of these
works discusses the physics of vector-spin-glass models in the
presence of an external field.

It is worth recalling that in m-component vector models
with m � 2 the effect of the external field may be drasti-
cally different from what happens in Ising (m = 1) models.
For example, when the external field has the same direc-
tion on each spin variable, the longitudinal and the trans-
verse responses may be very different (and the divergence
of the latter defines the Gabay–Toulouse critical line), an
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effect impossible to observe in spin-glass models with Ising
variables.

Our main aim is to understand the nature of the phase
transitions taking place in the presence of an external field
in vector-spin-glass models defined on sparse random graphs
(i.e., having a finite coordination number). To this aim, we
focus on the simplest vector-spin model, namely, the XY
model (m = 2), and we study the phase diagrams and the
critical behavior in the presence of a uniform external field and
eventually of a random field extracted according to different
probability distributions.

It is worth recalling that sparse random graphs do not have
short loops (their density scales as 1/N ) and so chiral ordering
does not play any role in these topologies. Nevertheless our
results may help in elucidating the importance of the chiral
ordering in finite-dimensional regular lattices, since we are
going to show which kind of long-range order can actually take
place without the need for a nonzero chiral order parameter.

The structure of the paper is the following. In Sec. II we
summarize the main results about vector spin glasses in a
field on fully connected graphs, showing the existence of two
different kinds of phase transitions: the de Almeida–Thouless
(dAT) one and the Gabay–Toulouse (GT) one. Then, in Sec. III
we define the XY model on sparse random graphs and show
how to solve it via the belief-propagation algorithm. In Sec. IV
we compute the critical lines by studying the stability of the
replica symmetric solution under different types of external
field, eventually recognizing them as GT or dAT critical lines.
The different kinds of symmetry breaking taking place on
GT and dAT critical lines are analyzed in Sec. V. Then, in
Sec. VI we study the crossover between GT and dAT critical
behaviors. Our concluding remarks are reported in Sec. VII.
Finally, in the Appendix we explain with full details how
to recover the replica results cited in Sec. II via an alterna-
tive and simpler derivation, based on the dense limit of the
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belief-propagation equations, also proving the equivalence of
the two approaches.

II. THE FULLY CONNECTED CASE

The most generic Hamiltonian of vector spin glasses in a
field reads

H[{σ i}] = −
∑
(i,j )

Jij σ i · σ j −
∑

i

H i · σ i (1)

with spins {σ i} being m-dimensional vectors of unit norm.
The field H i is represented by an m-dimensional vector as
well, while couplings Jij are as usual drawn from a suitable
probability distribution PJ with support also on negative
values.

Our work focuses on the sparse topology, which turns out
to provide results that are closer to the finite-dimensional
case. However, we first provide a brief summary of the results
already obtained in the fully connected case—referring to the
Appendix for more details—since they justify some choices
we will make in the following.

In the scalar case (m = 1, i.e., Ising spins)—where Jij ’s are
Gaussian distributed with zero mean and variance 1/N , while
field H is homogeneous—the system exhibits a paramagnetic
phase for large enough values of H and T , correctly described
within a replica symmetric (RS) ansatz [25]. However, such
solution turns out to be unstable when crossing a well-defined
line in the H vs T plane, named the de Almeida–Thouless line
[26]. A distinctive feature of the dAT line HdAT(T ) is the 3/2
exponent of its expansion at small fields, HdAT � τ 3/2 with
τ ≡ Tc − T . Moreover, in fully connected models, the dAT
line HdAT(T ) diverges in the T → 0 limit (a rather unphysical
feature). Below this line, the assumption of symmetry between
replicas is wrong and hence a scheme of replica symmetry
breaking (RSB) has to be taken into account, eventually leading
to the Parisi solution [27], that actually represents the correct
solution, at least for models on fully connected graphs. Notice
that the case of a random quenched Gaussian-distributed field
does not qualitatively change the above picture [28], since a
suitable gauge transformation maps the model back to the one
with strictly positive fields [29].

Moving to the vector case (m � 2), again the RS param-
agnetic solution is stable for large enough H or T . However,
the stability of this solution now depends on the distribution
of the external field, and in particular on its direction. Indeed,
Gabay and Toulouse showed in Ref. [6] that the paramagnetic
solution in the presence of a uniform field becomes unstable
towards RSB along a critical line HGT(T ) very different from
the dAT line; e.g., at small fields it behaves as HGT � τ 1/2.
At the Gabay–Toulouse critical line, the degrees of freedom
transverse to the field direction show spontaneous symmetry
breaking, highlighted by a nonzero value of the transverse
overlap q⊥. The freezing of longitudinal degrees of freedom
seems to occur at lower temperatures, along a line with features
reminiscent of the dAT line (however, this computation would
require the use of the full RSB ansatz below the GT line, not
taken into account in Ref. [6]). On the other side, the onset of
different long-range orderings depending on the breaking of
transverse or longitudinal symmetries has been known for a

long time, even before the discovery of the replica symmetry
breaking mechanism [30].

Later works [8,10] then showed that RSB actually involves
both transverse and longitudinal degrees of freedom along the
same line—the GT one—though in a different manner: q⊥
suddenly shows a strong RSB as soon as the GT line is crossed,
with a strong dependence on the Parisi parameter x. Instead q‖,
i.e., the longitudinal overlap with respect to the direction of the
field, weakly depends on x until the dAT line is crossed, when
a strong RSB occurs along the field direction as well. Hence,
the dAT line in vector spin glasses with a uniform field has
been recognized as a crossover between a weak and a strong
RSB along the longitudinal direction, rather than a sharp phase
transition from a RS to a RSB region, which at variance occurs
at the GT line.

The situation changes when considering a random field,
where randomness can affect the field strength, its direction,
or both. It has been pointed out by Sharma and Young [14] that
the key ingredient to avoid the GT line and hence recover the
dAT line as a sharp RS-RSB phase transition also for vector
spin glasses is the randomness in the direction of the external
field, while the randomness in its strength is not essential.
Indeed, the crucial observation is that the GT line is also linked
to a breaking in the spin symmetry (the inversion symmetry
with respect to the direction given by the external field), while
the dAT line is not linked to any change in spin symmetry.
Moreover, the resulting line of RS instability turns out to have
the same 3/2 exponent and the same features of the dAT line
in the Ising case.

III. THE XY MODEL ON SPARSE GRAPHS

Let us now move to the diluted case. Without any loss of
generality, we choose to study the m = 2 case, that is, the
so-called XY model [31]. This is a particularly simple vector
model, since each spin can be described by a single continuous
degree of freedom θi ∈ [0,2π ), which we assume to represent
the direction of the vector spin σ i . Analogously, also the field
on the ith site can be described by its modulus Hi and its
direction φi ∈ [0,2π ). Moreover, keeping in mind the key
observation by Sharma and Young, we fix Hi = H on each
site and let only directions {φi} vary according to a suitable
probability distribution Pφ . The corresponding Hamiltonian
reads

H[{θi}] = −
∑

(ij )∈E
Jij cos (θi − θj ) − H

∑
i

cos (θi − φi),

(2)

where E is the edge set of the interacting graph G. The cou-
plings Jij are random quenched variables distributed according
to the symmetric bimodal distribution

PJ (Jij ) = 1
2δ(Jij − J ) + 1

2δ(Jij + J ). (3)

Our main task is to characterize the instability of the
XY model in an external field when the underlying graph
is no longer a fully connected graph, but a sparse random
graph [32]. Indeed, it is well known that many results of
the mean-field approach provided by fully connected topolo-
gies are not representative of what actually happens in the
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finite-dimensional case: among all, the lack of strong spatial
heterogeneities and the impossibility of defining and studying
correlation functions. Contrarily, on sparse random graphs
one can naturally define distances between spins, long-range
correlations, and local heterogeneities.

In particular, we focus on the ensemble of random regular
graphs (RRGs) of fixed connectivity C = 3; namely, each ver-
tex has exactly C = 3 neighbors. These graphs have the crucial
property of being locally treelike; i.e., each neighborhood of a
given site contains no loops with high probability, eventually
tending to one in the thermodynamic limit. This feature allows
us to invoke the Bethe approximation [33] and hence to exploit
the belief-propagation (BP) algorithm [34–36] to solve the
model.

Notice that this approach is equivalent to the RS cavity
method [37] and it turns out to be always correct for models
defined on trees and on large enough random graphs, given the
correlations between spins decay fast enough [36,38]. When
the RS solution becomes unstable towards RSB, one can then
use the ansatz based on the 1-step replica symmetry breaking
(1RSB) scheme [38,39] (the full-RSB scheme has not been
developed yet within the cavity approach [40]).

Since our interest is in identifying critical lines between RS
and RSB phases, we are going to use a RS formalism, i.e., the
BP algorithm, focusing specifically on the stability of the BP
fixed point.

In the Bethe approximation [33], each physical observable
can be computed starting from just the one-point ηi(θi) and
the two-point ηij (θi,θj ) marginals. In turn, their computation
is based on the knowledge of the cavity marginals {ηi→j (θi)}
through the following relations:

ηi(θi) = 1

Zi

e βH cos (θi−φi )

×
∏
k∈∂i

∫
dθk e βJik cos (θi−θk ) ηk→i(θk), (4a)

ηij (θi,θj ) = 1

Zij

e βJij cos (θi−θj ) ηi→j (θi) ηj→i(θj ), (4b)

where ∂i is the set of neighbors of the ith spin, while Zi and
Zij are normalizing constants.

Cavity marginals satisfy the set of self-consistency equa-
tions going under the name of BP equations [35,36]:

ηi→j (θi) = F[{ηk→i},{Jik},φi]

≡ 1

Zi→j

e βH cos (θi−φi )

×
∏

k∈∂i\j

∫
dθk e βJik cos (θi−θk) ηk→i(θk) (5)

with Zi→j ensuring the correct normalization. The physical
meaning of ηi→j (θi) is that of the probability distribution of
the variable θi in a modified graph where edge (i,j ) has been
removed.

When there is no external field (H = 0), the BP equations
(5) are solved by the simple paramagnetic solution ηi→j (θi) =
1/(2π ) for each directed edge, which turns out to be stable
only above a certain critical temperature Tc. Slightly below

Tc, an approximated solution can still be analytically obtained,
based on a Fourier expansion [24]. Instead, when T 	 Tc or
when a field is present, the BP equations (5) need to be solved
numerically.

Since we are not interested in a given realization of the
quenched disorder, but rather in the average over the disorder
distribution, we solve the BP equations (5) in a distribution
sense. In practice we look for the probability distribution of
cavity marginals P [ηi→j ] solving the equation

P [ηi→j ] = EG,J,φ

∫ C−1∏
k=1

Dηk→i P [ηk→i]

× δ[ηi→j − F[{ηk→i},{Jik},φi]] (6)

with EG,J,φ indicating the average over the ensemble of
RRGs with C = 3 and over the coupling and field probability
distributions. The fixed point {η∗

i→j } of BP self-consistency
equations (5) so becomes a fixed point for their probability
distribution, P ∗[η]. The advantage brought by this approach is
that the set of distributional equations (6) can be efficiently
solved via the population dynamics algorithm (PDA), first
introduced in Ref. [41] and then revisited and refined in
Refs. [38,39].

A crucial issue arising when numerically solving BP
equations—both on a given instance of the quenched disorder
or in the PDA approach—regards the discretization of contin-
uous variables. Indeed the marginals η(θ ) are functions over
the [0,2π ) interval and would in principle require an infinite
number of parameters to be described. The most effective
approach [24] is to discretize such an interval in Q bins of width
2π/Q each. The resulting model is no longer endowed with the
O(2) continuous symmetry, but with the discrete ZQ symmetry,
and it is known as the Q-state clock model [22,24,42–46].

In a previous work [24] we showed that the Q-state clock
model provides an efficient and reliable approximation of
the XY model, in both the weak and the strong disorder
regimes, with deviations in physical observables decreasing
exponentially fast in Q. This result allows us to safely use
Q = 64 in numerical simulations. Notice that BP equations
for the Q-state clock model can be numerically solved with
a computational effort that scales as O(Q2N ), with N being
the size of the graph (or equivalently the population size N
in the PDA approach). Hence the exponential convergence
in Q actually provides a huge enhancement in numerical
simulations.

IV. COMPUTING CRITICAL LINES IN SPARSE MODELS

The linear stability of the fixed point P ∗[η] of (6) provides
the stability of the RS ansatz. We look at the global growth rate
of perturbations {δηi→j (θi)} to fixed-point cavity marginals.
Such perturbations evolve according to the following equations
[24]:

δηi→j =
∑

k∈∂i\j

∣∣∣∣δF[{ηk→i},{Jik},φi]

δηk→i

∣∣∣∣
{η∗

k→i }
δηk→i , (7)

which are nothing but the linearized version of (5). We solve
these equations via PDA, evolving a population of N pairs
(ηi→j ,δηi→j ), actually pairs of vectors of length Q. We
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FIG. 1. Stability parameter λBP for the spin-glass XY model on
a C = 3 RRG at zero field. Data are collected during cooling and
heating numerical experiments with 300 iterations for temperature,
and averaged over the last 150 iterations. The black dot marks the
exact value for the critical temperature.

measure the global growth rate λBP of perturbations as follows:

λBP ≡ lim
t→∞

1

t N
∑

(i→j )

ln
∫

|δηi→j (θ )|dθ, (8)

where the integral of the absolute value of the perturbation is
actually performed summing over the Q discrete values. So
when λBP is positive the RS fixed point is unstable, while it
is stable if λBP < 0. This approach is known as susceptibility
propagation (SuscP). Notice that, as usual in sparse models,
a strong heterogeneity characterizes the population of cav-
ity messages, with the corresponding perturbations spanning
several orders of magnitude. Hence, we chose to average the
logarithm of the norm of the perturbations over the population,
and this in turn makes the estimate of λBP more robust and
reliable.

However, the precise determination of the critical point
requires using some precautions, because the BP equations
have multiple solutions and some of these solutions (e.g.,
the paramagnetic one) change their stability at the critical
point. Thus at the critical point the iterative solution of BP
equations may take a large time to converge to the right
solution. In order to avoid such a critical slowing down, we
solve the BP equations at a given temperature using as initial
condition the fixed point reached at a nearby temperature: we
call “cooling” and “heating” these two protocols to solve the BP
equations, depending on whether the temperature is decreased
or increased in successive rounds. Although the critical slowing
down is much reduced, these two protocols have the problem
that they may get stuck in a solution, even when this solution
becomes unstable. This is well illustrated by the cooling data
at � = 0 in Fig. 1. We try to solve this problem by perturbing a
little bit the initial condition before starting the iterative search
for the solution to the BP equations: we add to each component
of the η marginals independent random numbers �|z| with z

being a Gaussian random variable of zero mean and unitary
variance. The resulting stability parameter λBP averaged over
iterations in the time range t ∈ [151,300] is shown in Fig. 1. We
clearly see that when increasing �, the population dynamics

TABLE I. Critical temperatures Tc for the XY model on random
C-regular graphs with no external field and unbiased random cou-
plings Jij ∈ {+J, − J }. The coupling strength J = 1/

√
C − 1 has

been chosen such that limC→∞ Tc = 1/2.

C Tc/J Tc

3 0.4859 0.3436
4 0.7012 0.4048
6 0.9977 0.4462
8 1.2234 0.4624
12 1.5805 0.4765
16 1.8704 0.4829
20 2.1211 0.4866

algorithm leaves sooner the unstable fixed point (e.g., the
paramagnetic fixed point in the low-temperature region).

For H = 0, a second-order phase transition occurs between
the high-temperature RS-stable phase and the low-temperature
RS-unstable phase, with a critical temperature Tc = 1/βc given
by [19,20,24] [

I1(βcJ )

I0(βcJ )

]2

= 1

C − 1
, (9)

where C is the degree of the ensemble of RRGs considered,
while I0(·) and I1(·) are the modified Bessel functions of the
first kind respectively of order zero and one [47]. Critical
temperatures for some values of C are reported in Table I.
The strength of the coupling constants J = 1/

√
C − 1 has

been chosen in order to approach the critical temperature Tc =
1/2 in the fully connected limit (indeed, when normalizing
m-dimensional spin vectors to unity, Tc is equal to 1/m in the
fully connected limit).

The exact critical temperature at H = 0 is reported in Fig. 1
by a black dot. It is clear that the best way to estimate such a
critical temperature from the stability parameter λBP is to check
when the data gathered during the cooling experiment cross the
axis. Such a crossing point is almost independent of the value
of � and can be very well computed either by interpolating
the data in a temperature range that includes Tc or by linearly
extrapolating the data collected at T > Tc.

On the contrary, we notice that the data in the heating
experiment are of no help in identifying precisely Tc for two
reasons. First, the stability parameter λBP is very close to
zero in a broad temperature range below Tc, thus inducing
a very large statistical error on the estimate of Tc. Second,
there are systematic effects that make λBP slightly negative
close to Tc, thus producing a biased estimate of Tc. A further
data inspection reveals that these systematic effects are due
to a very slow convergence of the population dynamics to
the paramagnetic fixed point, even in presence of the �

perturbation. In summary, a random perturbation is good for
leaving the trivial fixed point, but is not as good to reach it
again from a random configuration.

Having discussed the possible problems arising in the
numerical determination of the critical temperature, we show
in Fig. 2 only the data that have been collected in the stationary
regime at the stable fixed point. Some points are missing
for temperatures slightly below Tc, but they are not really
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FIG. 2. Stability parameter λBP for the spin-glass XY model on a
C = 3 RRG at zero field. All the points reported have been measured
in the stationary regime. The full green line refers to the analytic
evaluation of λBP on the paramagnetic solution. The inset shows
the power-law behavior below the critical point, λBP ∝ τα , with
α = 1.6(1).

necessary in the determination of Tc, which is achieved by
using only data with T � Tc. Being at H = 0, we can also
plot with a full line the analytic expression for λBP that holds
at the trivial paramagnetic fixed point. Instead, the behavior of
the stability parameter below the critical temperature is well
fitted by the power law λBP ∝ τα with α = 1.6(1).

At this point, once understood how to effectively locate
the transition from the RS-stable region to the RS-unstable
one, we can switch on the external field. We will focus on two
diametrically opposite field distributions, trying to recover also
in the sparse case the well-known GT and dAT transition lines
studied on fully connected graphs: first a uniform field and then
a randomly oriented field with a flat distribution of the local
field direction.

A. The uniform field case

In order to check whether the GT line also appears in
the sparse case, we fix the field direction to be the same
on each site, e.g., the x̂ direction with no loss of generality:
Pφ(φi) = δ(φi).

In Fig. 3 we show the stability parameter λBP versus T

with a uniform field of several intensities. We are plotting
all the data collected during a cooling protocol, but from the
discussion above we know that points slightly below the critical
temperature should be discarded. We notice that the main effect
of the field is to shift the data leftward in the plot; that is, the
same instability parameter is achieved at a lower temperature.

From the data in Fig. 3 we estimate the critical temperature
for each value of H from a fit in the T > Tc region. We
repeat the measurements for several connectivities C and we
summarize in Fig. 4 the results. We draw the corresponding
critical lines in the (T ,H ) plane and we observe that they all
seem to have the same behavior at small fields, namely the
scaling Hc(T ) ∝ τ 1/2 that holds for the GT line in the fully
connected model. Evidence of this is shown in the inset of
Fig. 4, where we draw the critical lines in the (T ,H 2) plane:
zooming on the interesting region of small fields, we observe a
clear linear behavior in τ [such a linear behavior is soon lost due
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FIG. 3. Stability parameter λBP for the spin-glass XY model on
a C = 3 RRG with a uniform external field of intensity H . The two
panels show data with different ranges of fields. The lower one makes
evident the leftward shift of the curves when increasing the field
strength H .

to the fact the Hc(T ) curves change concavity at moderately
small field values]. Notice that no error bars have been reported
in the main plot of Fig. 4, because they would have not been
appreciable, since critical points have been estimated with a
statistical error of order O(10−4).
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shows evidence for the Hc(T ) ∝ τ 1/2 behavior, typical of the GT
transition.
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FIG. 5. Stability parameter λBP for the spin-glass XY model on a
C = 3 RRG with a randomly oriented external field of fixed intensity
H . At variance with the uniform-field case, the curve λBP(T ) mainly
moves downward when increasing H , while smoothing away the zero-
field singularity.

Together with the critical curves for the diluted case with
different connectivities, we also report the GT line for the fully
connected graph [i.e., in the Sherrington-Kirkpatrick (SK)
limit], computed as explained in the Appendix. The collapse
of the former ones onto the latter one in the large-C limit is
evident, with the most important dependence in C being in the
location of the zero-field critical point, while the functional
form of the instability line seems to have already converged
to the dense limit. So we can safely identify the critical
lines reported for different C values as the corresponding GT
transition lines.

B. The random field case

In order to study the onset of the dAT instability in
the disordered XY model, and following the suggestion of
Ref. [14], we now consider the model where the external field is
constant in intensity, but has random directions {φi} uniformly
drawn in [0,2π ).

Since the field has a different (random) direction on each
site, it is no longer possible to define global order parameters
respectively parallel and perpendicular to the field direction;
in other words, the overlaps q‖ and q⊥, used in the replica
calculation to define the GT instability (see the Appendix),
are now useless. Eventually it will be possible to define the
instabilities parallel and perpendicular to the field direction
only locally, as it will be discussed in the next section. For the
moment, we study the global growth rate of perturbations to
the BP fixed point, averaged over the population, that is, the
SuscP algorithm.

In Fig. 5 we show the instability parameter λBP versus the
temperature for several values of the field intensity H . At
variance with the uniform-field case, now the curve moves
mostly downward with H in the entire low-temperature region.
The most dramatic effect, with respect to the uniform-field
case, is that the stability parameter λBP changes a lot even for
very small fields, smoothing away the zero-field singularity
(compare Fig. 5 with the lower panel in Fig. 3).

In Fig. 6 we plot the corresponding critical lines in the (T ,H )
plane for different connectivities C. Close to the respective
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FIG. 6. Critical lines in a field of random direction for a spin-glass
XY model on a random C-regular graph. The corresponding line in
the fully connected model (SK limit) is given by the black curve. The
inset shows evidence for the Hc(T ) ∝ τ 3/2 behavior, typical of the
dAT transition.

zero-field critical points, the behavior is clearly Hc(T ) ∝ τ 3/2,
typical of the dAT line. Again, a fast convergence toward the SK
limit (the black line, computed via equations in the Appendix)
can be detected, with the most important dependence inC given
by the location of Tc(H = 0). The evidence for the dAT-like
behavior of these Hc(T ) lines is shown in the inset of Fig. 6,
where critical lines are plotted in the (T ,H 2/3) plane, following
the expected linear trend.

V. GT VS dAT: DIFFERENT WAYS OF BREAKING THE
SPIN SYMMETRIES

In Fig. 7 we show together the GT and the dAT critical
lines for the XY model on a C = 3 RRG. As explained
in the previous section, the GT line has been computed by
applying a uniform field with constant direction, while the
dAT line has been obtained applying a uniform field of random
directions. The overall shape of the two critical lines, including
the exponent relating H to τ in the vicinity of the zero-field
critical point, is very similar to the fully connected case. The
main difference with respect to the fully connected case is the
lack of a divergence of the critical fields in the T → 0 limit, as
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FIG. 7. GT and dAT critical lines computed in the XY model with
Jij = ±J on a C = 3 random regular graph.
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FIG. 8. Probability distribution of cos ϑi over the BP fixed-point population P∗[η] for several points along the dAT line (left panel) and the
GT line (right panel). For the definition of ϑi see Eq. (11) and the main text. Here C = 3 and J = 1.

expected for the diluted case. An estimate of them, say HGT and
HdAT, respectively, can be obtained via an extrapolation from
the finite-temperature data sets, though quite noisy due to the
diverging slope of the two critical curves close to the T = 0
axis. A more precise and reliable location of HGT and HdAT

can be achieved directly in the zero-temperature setting [24];
however, the zero-temperature BP approach requires some
further precautions about the way perturbations are iteratively
computed, both in the PDA [24] as well as on a given instance
of the model [48].

We are now interested in understanding which symmetries
get broken along these two different critical lines. In fully
connected models, the relation between the GT transition line
and the freezing of the transverse degrees of freedom of spins
with respect to the direction of the field has already been known
since the original work of Gabay and Toulouse [6]. Indeed, it is
a transition from the solution q⊥ = 0 to the one q⊥ = 0. At the
same time, the dAT line—later interpreted as a crossover—
has been naturally linked to the freezing of the longitudinal
degrees of freedom. However, the strong connection between
these instabilities and the distribution of the direction of
the field has been pointed out only recently by Sharma and
Young [14].

Here we want to reach a deeper understanding of the kind of
instabilities becoming critical on the GT and dAT lines. To this
aim, we perform a local analysis by computing, for each spin,
the direction along which the most probable fluctuation may
take place. We are interested in understanding whether this
local fluctuation is parallel or perpendicular to the external
field on the same spin (recall that in the random case the
field direction changes from spin to spin and so the projection
according to any global direction would be useless).

In the PDA we store N pairs (ηi→j ,δηi→j ) of cavity
marginals and corresponding (linear) perturbations. Once the
BP fixed pointP∗[η] for the cavity marginals has been reached,
the perturbations provide the direction along which such fixed
point gets most easily destabilized. Then our analysis proceeds
spin by spin. For each spin i, we extract randomly C pairs from
the fixed-point population; we compute the full marginal ηi by
using Eq. (4a) and the corresponding perturbation δηi by using
Eq. (7) with the sum running over the same C randomly chosen

elements. The local vectors

mi ≡
∫

dθi ηi(θi)(cos θi, sin θi), (10a)

δmi ≡
∫

dθi δηi(θi)(cos θi, sin θi) (10b)

provide the required information: mi is the local magnetization,
while δmi points along the direction of the most probable local
fluctuation. The scalar product between δmi and the field H i

on the same spin makes explicit the kind of perturbation to the
BP fixed point: indeed a transverse perturbation would yield a
scalar product close to zero, while a longitudinal perturbation
would correspond to a scalar product close to one (in absolute
value). In order to be more quantitative, let us define the local
parameter

cos ϑi ≡ δmi · H i

‖δmi‖‖H i‖ = δmi · H i

δmi H
, (11)

and let us compute its distribution by using the SuscP algo-
rithm. Its distribution for several points along the dAT and the
GT lines is depicted in Fig. 8 for a C = 3 RRG.

The interpretation of the GT line as an instability in the
transverse direction and that of the dAT line as an instability in
the longitudinal direction—with respect to the direction of the
local field H i—is quite well confirmed by the two histograms
of cos ϑi . Notice that the occurrence of transverse excitations
also on the dAT line—even though with a smaller probability
with respect to longitudinal excitations—is due to the fact that
the field strength H is not so large along such line; hence
the energy cost of a transverse perturbation is surely larger
than the cost of a longitudinal perturbation, but not enough to
suppress them. On the other hand, on the GT line the higher
the field strength H , the stronger the transverse behavior of
perturbations.

The two different behaviors can be better appreciated if
discriminated according to the strength of the local effective
field, given by the sum of the local field H i and of the
messages coming from the nearest-neighbor spins. A simple
estimate of this strength is given by the polarization of the site
marginal, namely by the modulus of the site magnetization
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FIG. 9. Joint probability distribution of mi and cos ϑi for the same points of Fig. 8, better highlighting the different spin symmetries broken
on dAT and GT lines, respectively. Here C = 3 and J = 1.

mi . Indeed, a value of mi close to zero is representative
of a weak local effective field, hence of a spin that can be
easily excited along different directions with almost the same
energetic cost. Instead, a strongly polarized spin is identified
by a local magnetization mi close to 1; hence the most likely
perturbation is of course the most energetically favorable one.

In Fig. 9 we report the joint probability distribution of
(mi, cos ϑi) for the same points of Fig. 8 along both instability
lines. Again the difference between the basic behaviors of GT
and dAT lines is quite clear, with a preference for cos ϑi = 0
in the former case and for cos ϑi = ±1 in the latter case. In
addition to this, also the dependence on the specific point
of the line is evident. Indeed, when temperature is large, the
local effective field is typically weak and hence the energetic
cost of the two kinds of excitations is similar. So on the
GT line we can also observe a non-negligible fraction of
longitudinal perturbations, conversely on the dAT line. Instead,
when lowering the temperature and hence getting closer to
the T = 0 axis, the site marginals strongly polarize (mi →
1) and hence likely perturbations become more and more
energetically favorable with respect to the unlikely ones. This
results in well-defined peaks for both lines, with the probability
of an unlikely perturbation going to zero with T .

So the correspondence between the two transitions in field
and the breaking of spin symmetries is well established, as
well as the simultaneous breaking of replica symmetry in both
cases.

VI. INTERMEDIATE BEHAVIORS

The two cases analyzed so far—a constant field for the GT
line and a random field with a flat distribution of the field local
direction for the dAT line—represent the two extremal cases in
the distribution of the field direction (always keeping in mind
that the field strength can be safely set equal to H for all the

sites without any loss of generality). Now we want to discuss
some intermediate cases, in order to check which instability,
between the GT-like and the dAT-like, is the dominant one in
a more general case.

Since we actually solve the Q-state clock model, we
prefer to work with probability distributions of the field
direction φ taking values in the discrete set of Q elements
S = {0,2π/Q, . . . ,2π (Q − 1)/Q}. There are still infinitely
many distributions that interpolate between a delta function in
φ = 0 and a uniform distribution over S . For convenience, let
us make a change of variables, taking φ = 2πκ/Q with κ being
an integer number in the range 0 � κ < Q. We choose to work
with the following two classes of distributions parametrized by
a single number:

(1) 0 � κ < Q′ uniformly with probability 1/Q′;
(2) κ = 0 with probability 1 − w(Q − 1)/Q and 0 < κ <

Q uniformly with probability w/Q.
The ranges for the two parameters are 1 � Q′ � Q in

the first class, with Q′ integer, and 0 � w � 1 in the second
one, with w real-valued. It is easy to check that the extremal
values for these parameters recover the field distributions used
in the previous sections to study GT and dAT critical lines,
respectively.

In Fig. 10 we plot the critical lines obtained for C = 3
using the first class of field distributions with different values
of the parameter Q′. Recall that Q′ = 1 and Q′ = Q = 64
correspond respectively to GT and dAT lines. In the left panel
we see that even with the smallest nontrivial value Q′ = 2 the
critical line moves sensibly: so the loss of the perfect alignment
among the local directions of the external field seems to have a
visible effect on the critical properties of the model. In the right
panel we study in more detail the behavior of the critical lines
close to the zero-field critical point: while the extremal case
Q′ = 1 follows a power law with the GT-like exponent 1/2,
for Q′ > 1 the data seem to follow the dAT-like exponent 3/2
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FIG. 10. Critical lines in the (T ,H ) plane for the spin-glass XY model on a C = 3 RRG with field directions φ = 2πκ/Q with κ ∈
{0,1, . . . ,Q′ − 1} uniformly. The choice Q′ = 1 corresponds to the GT line, while Q′ = Q = 64 gives back the dAT line. Data in the right
panel seem to suggest a dAT-like critical behavior for any Q′ > 1 (dashed lines have slopes 1/2 and 3/2, respectively).

(dashed lines have slopes 1/2 and 3/2, respectively). So, to the
best of our numerical evidence, the GT-like critical behavior
seems to be relegated to the singular Q′ = 1 case, where all
the external fields are perfectly aligned.

Given that in the first class of distributions there is a minimal
perturbation O(1/Q) to the GT-like distribution, we study
now the second class of field distributions, where the intensity
of the perturbation with respect to the δ(φ) distribution is
given by the continuous parameter w. In Fig. 11 we show
the results obtained with the second class of interpolating
functions. Also in this case we notice that even the smallest
w = 0.01 perturbation produces a sensible effect on the critical
line, that changes from a GT-like shape to a dAT-like shape
(see left panel). Moreover, the analysis in the vicinity of
the zero-field critical point shown in the right panel strongly
suggests that for any w > 0 the critical lines have the exponent
3/2 corresponding to the dAT line. If any GT-like behavior
is eventually present it would show up only in a region
of extremely small values of τ and H which is not easily
accessible numerically.

These observations are coherent with the claim that a GT-
like transition is possible if and only if the model admits the
solution q⊥ = 0, whose loss of stability just defines the GT
line. Since this is possible only in the case of a homogeneous
field over the whole system, our claim is that any infinitesimal
perturbation to the homogeneous distribution of the field would
make the GT transition disappear in favor of the dAT transition,
so greatly enhancing the stability of the paramagnetic solution.
The GT transition is then a singular case, while the most generic
and robust mechanism of RSB for a vector spin glass in a field
is hence represented by the dAT transition.

VII. CONCLUSIONS

We have shown how to compute critical lines in the (T ,H )
plane for an XY spin-glass model on a random regular graph.
We have used different distributions of the field direction in or-
der to probe different critical behaviors. We have identified GT-
like and dAT-like critical behaviors. The corresponding critical
lines in the (T ,H ) plane are similar to the fully connected case
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FIG. 11. Critical lines in the (T ,H ) plane for the spin-glass XY model on a C = 3 RRG with field directions φ = 2πκ/Q with κ randomly
extracted according to P[κ = n] = (1 − w + w/Q)δn,0 + w/Q

∑Q−1
i=1 δn,i . For w = 0 and w = 1 we recover the GT and the dAT lines,

respectively. Data in the right panel seem to suggest a dAT-like critical behavior for any w > 0 (dashed lines have slopes 1/2 and 3/2,
respectively).
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in the vicinity of the zero-field critical point, HGT ∝ τ 1/2 and
HdAT ∝ τ 3/2, but differ sensibly at low temperatures (as in the
Ising case [49]).

We have then shown how different are the local fluctuations
that become critical in the two cases: they are strongly orthog-
onal to the local field in the GT case, while they are mostly
longitudinal in the dAT case.

Finally, we have analyzed intermediate cases, where the
fields are neither fully aligned nor completely random in
direction. The comparison of the results obtained with two
classes of field direction distributions interpolating between
the delta function in φ = 0 and the flat distribution φ ∈ [0,2π )
seems to suggest that the GT-like critical behavior is very
unstable with respect to any small perturbation. In practice
we only observe the dAT-like critical behavior for any field
distribution that deviates (even by a tiny amount of order 10−2)
from the situation with all the external fields perfectly aligned.

The overall picture resulting from our analysis is that the
GT-like critical behavior can take place only if all the fields are
perfectly aligned, while the dAT-like behavior is much more
robust and generic, representing the mechanism through which
replica symmetry typically breaks for vector-spin-glass models
in a field.
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APPENDIX: GT AND dAT LINES IN THE
LARGE-CONNECTIVITY LIMIT

In the main text we refer to the computation of the GT
and dAT lines in an external field (respectively homogeneous
over the whole system or randomly oriented on each site)
on fully connected graphs, i.e., in the SK model, which has
been already accomplished via the standard replica approach
in the literature. In this appendix we want to pursue a twofold
goal: first of all, we recall the replica results, explicitly writing
them for the m = 2 case, i.e., the XY model; then, we obtain
the saddle-point equations for the fully connected XY model
in a more straightforward and simpler way, via the large-
connectivity limit of the belief-propagation equations; finally,
we prove the equivalence of the two approaches, so providing a
more direct physical interpretation of the quantities appearing
in the replica computations.

1. Replica results

a. The uniform-field case

On the fully connected geometry, the replica trick [2] allows
us to successfully solve the vector-spin-glass model in an
external magnetic field, leading to the detection of the GT
line or the dAT line depending on the distribution of local
directions of the field. In particular, in the homogeneous case,
the RS computation has been carried out for generic values of
the number m of spin components by Gabay and Toulouse [6]
and later by Cragg, Sherrington, and Gabay [8]. For the XY

model, the saddle-point equations describing the paramagnetic
solution (q⊥ = 0) read

q‖ =
∫ ∞

−∞

dz√
2π

e−z2/2

(
P01

P00

)2

, (A1a)

x = −1 +
∫ ∞

−∞

dz√
2π

e−z2/2

(
2 − P20

P00

)
(A1b)

with x known as the quadrupolar parameter. Notice that, as
usual in the replica computations, the spins are not taken with
unit norm, rather

∑m
μ=1 σ 2

μ = m (i.e., 2 for the XY model).
Functions Pμν appearing inside the Gaussian averages are then
defined for the m = 2 case as follows:

Pμν =
∫ √

2

−√
2
dS e β(z

√
q‖+H )S+(β2/2)(2x−q‖)S2

× (2 − S2)(μ−1)/2Sν. (A2)

Such solution is stable until the following condition is satisfied:

β2
∫ ∞

−∞

dz√
2π

e−z2/2

(
P20

P00

)2

= 1. (A3)

Then, below the corresponding critical line, the stable solution
is characterized by a nonvanishing transverse overlap q⊥,
together with a breaking of the replica symmetry. However,
here we restrict ourselves to the RS analysis, being enough for
our purposes.

The small-field expansion of the condition in Eq. (A3) yields
the well-known 1/2 exponent of the GT line:

Hc ∝ τ 1/2, (A4)

while in the opposite limit we have an exponential divergence
of the inverse critical temperature:

βc ∝ eH 2/4. (A5)

Since these equations are obtained by using spins with norm
m = 2, it is useful to rewrite them for spins with unit norm,
accordingly to all the computations of the main text:

S → S̃ ≡ S/
√

2. (A6)

Coherently with this choice, a dimensional analysis in the
Hamiltonian leads to the corresponding rescaling of tempera-
ture and field:

β → β̃ ≡ 2β, H → H̃ ≡ H/
√

2. (A7)

Bessel-like functions (A2) then become

Pμν = 2(μ+ν)/2
∫ 1

−1
dS̃ e β̃(z

√
q̃‖+H̃ )S̃+(β̃2/2)(x̃−q̃‖)S̃2

× (1 − S̃2)(μ−1)/2S̃ν

≡ 2(μ+ν)/2P̃μν, (A8)

so that we finally get also the proper rescaling of the longitu-
dinal overlap q‖ and of the quadrupolar parameter x moving
between the two normalizations:

x̃ ≡ x, q̃‖ ≡ q‖/2. (A9)

Looking at the definition of the Bessel-like functions (A2),
it is easy to recognize S̃ as the projection of the unit spin S̃ onto
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the x̂ axis, namely S̃ = cos θ . Moving to the angular variable
θ , then, we get

P̃μν =
∫ 2π

0
dθ e β̃(z

√
q̃‖+H̃ ) cos θ+(β̃2/2)(x̃−q̃‖) cos2 θ

× sinμ θ cosν θ ; (A10)

namely we get a sort of average of the quantity
sinμ θ cosν θ over θ ∈ [0,2π ] via the exponential measure
exp [β̃(z

√
q̃‖ + H̃ ) cos θ + (β̃2/2)(x̃ − q̃‖) cos2 θ ]. More con-

cretely, we can introduce the following short-hand notation for
such (normalized) angular averages:

〈sinμ(θ ) cosμ(θ )〉 ≡ P̃μν

P̃00
. (A11)

In this way, one can easily recognize the physical meaning of
the longitudinal overlap q‖: it represents the Gaussian average
of the square average magnetization along the field direction

q̃‖ =
∫ ∞

−∞

dz√
2π

e−z2/2

(
P̃01

P̃00

)2

≡ Ez[〈cos θ〉2], (A12)

where Ez[·] is indeed the expectation value over the Gaussian
variable z. In the same manner, the quadrupolar parameter x

can be easily expressed in terms of angular averages:

x̃ = 2
∫ ∞

−∞

dz√
2π

e−z2/2

(
1 − P̃20

P̃00

)
− 1

≡ 2Ez[〈cos2 θ〉] − 1 = Ez[〈cos 2θ〉], (A13)

as well as the transverse overlap q̃⊥, representing the quadratic
fluctuations in the direction transverse to the field:

q̃⊥ = Ez[〈sin θ〉2], (A14)

hence vanishing in the paramagnetic phase.
Under this light, the replica saddle-point equations in the RS

ansatz acquire a clear physical meaning: as long as the solution
is paramagnetic, all the marginals are polarized in the direction
of the field, with no freezing in the transverse direction. In the
cold phase, instead, the marginals acquire incoherent trans-
verse components, which result in a q̃⊥ different from zero.
Consequently, in this latter case, a further term proportional
to

√
q̃⊥ sin θ should be added in the exponential measure

appearing in the definition of the P̃μν’s. In addition, notice
that the three parameters q̃‖, q̃⊥, and x̃ are enough to describe
both the phases—still in the RS ansatz—since the candidate for
a fourth parameter, Ez[〈sin 2θ〉], can be expressed in terms of
the other ones due to the constraint on the spin normalization.

Finally, the stability condition (A3) becomes in the unit-
norm frame

β̃2
∫ ∞

−∞

dz√
2π

e−z2/2

(
P̃20

P̃00

)2

= 1; (A15)

namely, in terms of the angular variable θ :

β̃2 Ez[〈sin2 θ〉2
] = 1, (A16)

which is nothing but the marginality condition for the growth
rate of q̃⊥, as can be shown by expanding around the van-
ishing solution q̃⊥ = 0. Such marginality condition will be
even clearer when analyzing the large-C limit of the cavity
equations.
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FIG. 12. The GT line computed via the replica approach in the
unit-norm frame.

The corresponding critical line is reported in Fig. 12, with
the axes rescaled according to the unit-norm choice for the
spins. One could easily recognize the square-root singularity
close to the zero-field axis and the exponential divergence close
to the zero-temperature axis.

b. The Gaussian-field case

At variance, the diametrically opposite case is represented
by a randomly oriented field with a flat distribution over the
local directions of the field. In particular, since in replica
computations one usually deals with Gaussian-distributed
couplings, it is comfortable to introduce a Gaussian-distributed
field as well, so that Gaussian integrals can be straightforwardly
performed. Following Sharma and Young [14], we consider
each component of the field H as independently distributed
according to a Gaussian of zero mean and variance σ 2

H :

Hμ ∼ N
(
0,σ 2

H

)
. (A17)

Hence, the rotational invariance O(m) is restored, corre-
sponding to a unique order parameter q in the RS frame,
self-consistently given—for the XY model—by the following
equation:

q =
∫ ∞

0
dρ ρ e−ρ2/2

[
I1(�G)

I0(�G)

]2

(A18)

with �G containing q itself, β, and the variance of the external
field:

�G ≡
√

2β

√
q + σ 2

H ρ. (A19)

Another consequence of the rotational invariance is the
absence of the quadrupolar parameter x, indeed being related
to the breaking of the O(2) symmetry.

Finally, the stability of the paramagnetic RS solution can
be studied via the usual techniques from the Hessian in
the replica space [2,14], obtaining the following marginality
condition:

β2χ0 = 1 (A20)
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with χ0 given by

χ0 = 2
∫ ∞

0
dρ ρ e−ρ2/2

[
2

I 2
1 (�G)

�2
G I 2

0 (�G)
+ 2

I1(�G) I2(�G)

�G I 2
0 (�G)

+ I 2
2 (�G)

I 2
0 (�G)

− 2
I 3

1 (�G)

�G I 3
0 (�G)

− 2
I 2

1 (�G) I2(�G)

I 3
0 (�G)

+ I 4
1 (�G)

I 4
0 (�G)

]
.

As usual, it is easy to map these equations onto the
corresponding ones for the unit spins. Indeed, we already know
the rescaling of β (β̃ = 2β) and q (q̃ = q/2); then, σH should
rescale exactly as H :

σ̃H = σH/
√

2, (A21)

and finally we get the proper rescaling also for �G :

�̃G ≡ β̃

√
q̃ + σ̃ 2

Hρ, (A22)

i.e., �̃G = �G . The equation for q̃, then, reads

q̃ = 1

2

∫ ∞

0
dρ ρ e−ρ2/2

[
I1(�̃G)

I0(�̃G)

]2

, (A23)

and finally the marginality condition (A20) becomes

β̃2χ̃0 = 1, (A24)

where we have defined χ̃0 ≡ χ0/4.

c. The random-field case with constant intensity H

Since in the main text we have not used a Gaussian-
distributed field, rather a randomly oriented field with a
constant intensity H , we would like here to obtain the cor-
responding dAT line in the fully connected limit, since in
principle it could be different from the one recalled above. To
this aim, it is enough to look at the definition of the quantity �G
in Eq. (A19): q + σ 2

H indeed represents the total variance of the
Gaussian field acting on each site, composed by an “intrinsic”
variance q (due to the contributions from the neighbors) and
an “external” contribution σ 2

H (due to the proper magnetic
field H).

Hence, in the case of a randomly oriented field with constant
intensity, we just get rid of σH . However, a counterpart should
be put into the first moment of the external field: in more detail,
a bias H cos φ should be considered along the x̂ direction and
H sin φ along the ŷ direction, forcing us to move from polar
coordinates (ρ,ϑ) to Cartesian coordinates (zx,zy). Finally,
we must average over φ via the flat distribution 1/2π . The
argument of Bessel functions consequently changes from �G
to �R so defined:

�R ≡
√

2β

√
(H cos φ + zx

√
q)2 + (H sin φ + zy

√
q)2,

(A25)

and finally, via a gauge transformation over the local direction
φ of the external field—since the sum of all the messages
coming from the neighbors is O(2) symmetric as well—we can
get rid of the average over φ, getting the following definition
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FIG. 13. The dAT line computed via the replica approach in
the unit-norm frame, obtained when using respectively a Gaussian
distribution for the field components (purple curve) and a randomly
oriented field with constant intensity (green curve).

for �R:

�R ≡
√

2β

√
(H + zx

√
q)2 + (zy

√
q)2, (A26)

and the following self-consistency equation for q:

q =
∫ ∞

−∞
dzx dzy

e−(z2
x+z2

y )/2

2π

[
I1(�R)

I0(�R)

]2

≡ Ez

[
I 2

1 (�R)

I 2
0 (�R)

]
, (A27)

withEz[·] being a short-hand notation for the Gaussian average
over z = (zx,zy).

Finally, also the marginality condition (A20) reads formally
the same, i.e., β2χ0 = 1, once coherently moved from �G to
�R:

χ0 = 2Ez

[
2

I 2
1 (�R)

�2
R I 2

0 (�R)
+ 2

I1(�R) I2(�R)

�R I 2
0 (�R)

+ I 2
2 (�R)

I 2
0 (�R)

− 2
I 3

1 (�R)

�R I 3
0 (�R)

− 2
I 2

1 (�R) I2(�R)

I 3
0 (�R)

+ I 4
1 (�R)

I 4
0 (�R)

]
.

Also in this case, the mapping to the unit-norm frame is
quite straightforward, being

β̃ = 2β, q̃ = q/2, H̃ = H/
√

2, (A28)

and from them the definition of �̃R:

�̃R ≡ β̃

√
(H̃ + zx

√
q̃)2 + (zy

√
q̃)2, (A29)

so that �̃R = �R. The equation (A27) for q then becomes

q̃ = 1

2
Ez

[
I 2

1 (�̃R)

I 2
0 (�̃R)

]
, (A30)

and finally we get again that the marginality condition reads
β̃2χ̃0 = 1 with χ̃0 ≡ χ0/4.

At this point, we can compare the two choices for the
local distribution of the external field. As anticipated, they
yield different shapes of the dAT line in the T vs H plane,
as can be appreciated in Fig. 13. First of all, they have the
same behavior in the small-field limit, namely H ∝ τ 3/2, but a
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different coefficient in front of such term. This is due to the fact
that in the Gaussian-field case the stability of the paramagnetic
phase is enhanced by the rare presence of some exceptionally
intense field, while this phenomenon is not possible in the case
of the random field with fixed modulus H .

Second, and most importantly, there is a rather different
behavior when approaching the zero-temperature limit. Indeed,
in the β → ∞ limit, both �G and �R diverge linearly with β,
so that χ0 can be expanded in power series of 1/�. The first
nonvanishing contribution of χ0 is given by the term 2/�2 ∝
β−2, as expected. So when substituting into the marginality
condition β2χ0 = 1 we get (in the m = 2-norm setting, so to
match with the literature results)

2β2

�2
G,R

= 1, (A31)

where q within �G,R can be already set equal to 1, so neglecting
higher-order corrections.

In the Gaussian case, such condition explicitly becomes∫ ∞

0
dρ ρ

e−ρ2/2(
1 + σ 2

H

)
ρ2

= 1

⇒ 1

1 + σ 2
H

∫ ∞

0
dρ

e−ρ2/2

ρ
= 1, (A32)

which cannot be satisfied for any finite value of σH , the integral
in ρ being divergent. Hence, according to the prediction
by Sharma and Young [14], the dAT line approaches the
zero-temperature axis only asymptotically when considering
a Gaussian distribution for the field components in the m = 2
case, while it touches the T = 0 axis at a finite value of σH for
m � 3.

Analogously, in the case of a randomly oriented field with
constant intensity H , the marginality condition at T = 0 reads∫ ∞

−∞
dzx dzy

e−(z2
x+z2

y )/2

2π

1

(H + zx)2 + z2
y

= 1, (A33)

from which, via some manipulations, we get again a divergent
integral on the left-hand side of the marginality condition:∫ ∞

1
dρ

e−H 2(ρ−1)/2ρ

2ρ
= ∞ ∀H, (A34)

implying a divergent value of the critical field H in the T → 0
limit.

The divergence of the integrals in the two cases can be then
exploited in order to check the rate at which the critical variance
σH and the critical field H , respectively, diverge in the β → ∞
limit. Indeed, from the inspection of Fig. 13 it is clear that they
approach the T = 0 axis in a rather different manner, with the
curve H (T ) converging faster than the curve σH (T ). To this
aim, let us define the function f (�) such that its Gaussian
average over z gives χ0:

f (�) : χ0 ≡ Ez[f (�)]. (A35)

Moreover, we already know its behavior in the two opposite
regimes of small- and large-argument limits, valid in both cases
of a Gaussian field and a randomly oriented field with constant

intensity:

f (� = 0) = 1, f (� � 1) � 2

�2
. (A36)

So let us now analyze the condition β2χ0 = 1 for large but
finite values of β in the Gaussian case. We have

β2
∫ ∞

0
dρ ρ e−ρ2/2f (�G) = 1. (A37)

The argument �G becomes
√

2βσH ρ, q being negligible with
respect to the critical value of σ 2

H in the low-temperature limit.
Then, the divergence of the integral in the β → ∞ limit can be
controlled by dividing the integration domain into two regions,
respectivelyA ≡ [0,ε] andB ≡ [ε,∞). In the regionA, we get
that the Gaussian weight can be neglected; then, we perform a
change of variables,

√
2βσH ρ ≡ x:

β2
∫
A

dρ ρ e−ρ2/2f (
√

2βσH ρ)

� β2
∫
A

dρ ρ f (
√

2βσH ρ) � 1

2σ 2
H

∫ √
2βσH ε

0
dx x f (x)

� 1

2
β2ε2, (A38)

having exploited the limit limx→0 f (x) = 1. Since the integral
on the region A has to be finite in the β → ∞ limit, then ε

should scale as the inverse power of it:

ε ∼ 1

β
. (A39)

Let us now move to the integration over the B region. In
this region, f can be approximated with the first term of its
expansion for large arguments, giving

β2
∫
B

dρ ρ e−ρ2/2f (
√

2βσH ρ)

� β2
∫
B

dρ ρ e−ρ2/2 2

2β2σ 2
H ρ2

� 1

σ 2
H

∫ ∞

ε

dρ
e−ρ2/2

ρ

� − 1

σ 2
H

ln ε. (A40)

Finally, when taking ε ∼ 1/β for both the contributions, we
get that the marginality condition reads

1

2
+ 1

σ 2
H

ln β = 1, (A41)

from which the scaling of the inverse critical temperature βc

with σH

βc ∝ e σ 2
H /2, (A42)

which can be also appreciated in the upper panel of Fig. 14.
An analogous reasoning leads to the prediction of the growth

of β with H along the dAT line in the random-field case with
fixed H . Indeed, we have that the integral in the marginality
condition

β2
∫ ∞

−∞
dzx dzy

e−(z2
x+z2

y )/2

2π
f (�R) = 1 (A43)
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FIG. 14. Convergence to zero of the critical temperature along
the dAT line when increasing the field variance for the Gaussian case
(upper panel) or the field strength for the randomly oriented case with
fixed H (lower panel). The linear trend for large values of σH and
H confirms the analytic results (A42) and (A47), respectively. Axis
scales refer to the m = 2-norm choice for the spins, while error bars
are due to the numeric precision used in the computation.

can be again divided into two regions, A and B, where A is
the disk of radius ε centered around the point (−H,0) and B
is the remaining portion of the (zx,zy) plane. As before, in
the region A the Gaussian weight can be considered constant;
then, we move to polar coordinates and perform the change of
coordinates x ≡ √

2βρ:

β2
∫
A

dzx dzy

e−(z2
x+z2

y )/2

2π
f (�R)

� β2
∫
A

dzx dzy

e−H 2/2

2π
f (�R)

� β2 e−H 2/2
∫ ε

0
dρ ρ f (

√
2βρ)

� 1

2
e−H 2/2

∫ √
2βε

0
dx x f (x)

� 1

2
β2ε2 e−H 2/2, (A44)

where again the proper rescaling of the radius ε of the region
A should be as 1/β when increasing β. Then, considering
the integral over the region B, we can substitute f by its large-

argument expansion, and then move again to polar coordinates:

β2
∫
B

dzx dzy

e−(z2
x+z2

y )/2

2π
f (�R)

� β2
∫
B

dzx dzy

e−(z2
x+z2

y )/2

2π

2

2β2
[
(H + zx)2 + z2

y

]
� e−H 2/2

∫ ∞

ε

dρ
e−ρ2/2

ρ

∫ 2π

0
dϑ

eHρ cos ϑ

2π

� e−H 2/2
∫ ∞

ε

dρ
e−ρ2/2

ρ
I0(Hρ)

� −e−H 2/2 ln ε. (A45)

So, taking again ε ∼ 1/β, we have

1
2e−H 2/2 + e−H 2/2 ln β = 1, (A46)

from which the scaling of β with H along the dAT line in the
large-field region

βc ∝ exp

{
eH 2/2 − 1

2

}
(A47)

numerically confirmed by the lower panel of Fig. 14.
These computations just confirm the feeling given by Fig. 13

that the dAT line approaches the T = 0 axis much more rapidly
in the random-field case with respect to the Gaussian-field
case, gaining an exponential factor. An analogous “exponential
speedup” can be observed in the Ising model, where the dAT
line in the case of a Gaussian field goes as β ∝ σH [28],
while in the case of a field with constant intensity it goes as
β ∝ exp {H 2/2} [26]. The reason lies in the observation that in
the case of a Gaussian-distributed field, with finite probability
we may observe small enough fields that make the system
more unstable with respect to the case of a field with constant
intensity at the same temperature T .

2. The SK limit from the BP equations

Even though providing a formal tool which solves spin-
glass models on fully connected graphs, the replica method is
often quite involved, so that the physical interpretation of what
is actually happening at the critical point remains hidden. At
variance, the belief-propagation method is based on a very
intuitive idea, symmetries are always exploited in a clear
manner, and the phase transitions can be typically detected
via a standard analysis of the linear stability of fixed points.

In this spirit, we would like to recover the replica results via a
suitable large-C expansion of the BP equations, that at variance
have been numerically solved in the main text in the case C =
O(1). To this aim, it is more convenient to use the factor-graph
notation [36] with both η’s and η̂’s cavity marginals—though
still considering just pairwise interactions—then rewriting
them as large-deviation functions in β, as done in the zero-
temperature limit [24,48]:

η ≡ exp (βh), η̂ ≡ exp (βu). (A48)

Moreover, in order to lighten the notation and also to generalize
the result to the case m > 2, in this section we denote each spin
with the unit vector σ i rather with its angular variables. We will
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go back to the XY case when making explicit the distribution
of the local direction of the external field.

Along a given directed edge k → i, we have
both the variable-to-check cavity message ηk→i(σ k) ≡
exp [βhk→i(σ k)] and the check-to-variable cavity message
η̂k→i(σ i) ≡ exp [βuk→i(σ i)], which transform into each other
when encountering the interaction node:

η̂k→i(σ i) ∼=
∫

dσ k e βJikσ i ·σ k ηk→i(σ k), (A49)

apart from a normalizing multiplicative constant, or exploiting
the large-deviation formalism:

e βuk→i (σ i ) ∼=
∫

dσ k e β[Jikσ i ·σ k+hk→i (σ k)]. (A50)

Eventually, once arriving at the node i, the external field acting
on it (about which we do not make any assumption for the
moment) and the bias given by the other neighbors allow us to
write the expression for the variable-to-check cavity message
ηi→j (σ i) along the directed edge i → j :

ηi→j (σ i) ∼= e β H i ·σ i

∏
k∈∂i\j

η̂k→i(σ i), (A51)

again up to a multiplicative constant, namely:

hi→j (σ i) � H i · σ i +
∑

k∈∂i\j
uk→i(σ i), (A52)

up to an additive constant. If Eqs. (A49) and (A51) are put
together, one gets back the pairwise BP equations seen in the
main text.

In the large-C limit—when C becomes of order N—
exchange couplings Jij have to be taken of order 1/

√
C − 1 ∼

1/
√

N ; then, the compatibility function can be expanded up to
the second order in Jij :

e βJikσ i ·σ k � 1 + βJikσ i · σ k + β2

2
J 2

ik(σ i · σ k)2, (A53)

from which, when integrating over the spin σ k as in (A50),

e βuk→i (σ i ) � 1 + βJik 〈σ i · σ k〉k + β2

2
J 2

ik 〈(σ i · σ k)2〉k

� e
βJik〈σ i ·σ k〉k+(β2/2)J 2

ik

[
〈(σ i ·σ k)2〉k−〈σ i ·σ k〉2

k

]
� e

βJikσ i ·〈σ k〉k+(β2/2)J 2
ikσ i ·

(〈
σ kσ

ᵀ
k

〉
k
−〈σ k〉k

〈
σ
ᵀ
k

〉
k

)
·σ i ,

(A54)

where σᵀ is the transpose vector of σ , and where

〈(·)〉k ≡
∫

dσ k(·) exp [βhk→i(σ k)]∫
dσ k exp [βhk→i(σ k)]

, (A55)

so to take into account also the proper normalization constant.
At this point, we exploit the second BP equation, (A52), to

compute the cavity field hi→j (θi):

βhi→j (σ i) � β H i · σ i + β
∑

k∈∂i\j
Jik σ i · 〈σ k〉k (β2/2)

×
∑

k∈∂i\j
J 2

ik σ i · ( 〈
σ kσ

ᵀ
k

〉
k
− 〈σ k〉k

〈
σ
ᵀ
k

〉
k

) · σ i .

(A56)

Since the right-hand side also contains the h’s cavity fields—
hidden in the expectation values 〈·〉k—such set of equations can
be closed by using the following ansatz, presented in Ref. [50]:

βh(σ ) ≡ βξ · σ + β2

2
σ · C · σ , (A57)

where ξ is an m-component vector and C is an m × m

symmetric matrix. So we get a set of cavity equations for these
ξ ’s and C’s:

ξ i→j = H i +
∑

k∈∂i\j
Jik〈σ k〉k, (A58a)

Ci→j =
∑

k∈∂i\j
J 2

ik

[ 〈
σ kσ

ᵀ
k

〉
k
− 〈σ k〉k

〈
σ
ᵀ
k

〉
k

]
. (A58b)

Finally, since we are summing over C = O(N ) neighbors
with the couplings that are randomly distributed with zero
mean and O(1/N) variance, we get for the central-limit
theorem that all the sites and the directed edges behave the
same. Getting rid of the edge indexes, we get that ξ is a
Gaussian-distributed vector with mean M and covariance
matrix Q:

ξ ∼ N (M,Q), (A59)

while C becomes a deterministic quantity, due to the system-
wide average (J 2 ≈ 1/N ) on the right-hand side of (A58b).

Since the Hamiltonian of vector-spin-glass models is gen-
erally O(m)-invariant in the absence of the external field, we
expect such a symmetry to be eventually broken to O(m − 1),
either spontaneously or due to the presence of the external field.
Hence, there exists a suitable rotation that makes the Q and C
matrices diagonal.

The exponential measure exp [βh(σ )] appearing in the
average 〈·〉 can be then rewritten in terms of a few parameters

βh(σ ) = β

m∑
μ=1

(Mμ + zμ

√
Qμμ)σμ + β2

2

m∑
μ=1

Cμμσ 2
μ

(A60)

with zμ ∼ N (0,1), leading to a set of self-consistency equa-
tions for them:

Mμ ≡ Ez[ξμ] = Hμ, (A61a)

Qμμ ≡ Vz[ξμ] = Ez[〈σμ〉2], (A61b)

Cμμ = Ez[〈σ 2
μ〉 − 〈σμ〉2], (A61c)

where Ez[·] refers to the expectation value with respect to
the Gaussian variables zμ, while Vz[·] is the corresponding
variance. Eventually, Hμ is the expectation value of the field
along the direction μ.

In the end, we further exploit the breaking of the O(m)
rotational symmetry to—at most—O(m − 1) and the normal-
ization constraint for the spins. Consequently, assuming as μ =
1—i.e., the x̂ axis—the direction along which the symmetry
is eventually broken, then generically referring to the m − 1
transverse directions as ŷ, we can redefine the matrix C up to
a diagonal shift, C′ ≡ C − CyyI, getting the following
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saddle-point equations:

Mμ =
{
Hx, for μ = 1,

0, for μ = {2,3, . . . ,m}, (A62a)

Qμμ =
{
Ez[〈σx〉2], for μ = 1,

Ez[〈σy〉2], for μ = {2,3, . . . ,m}, (A62b)

C′
μμ =

{
Ez

[ 〈
σ 2

x

〉 − 〈σx〉2 − ( 〈
σ 2

y

〉 − 〈σy〉2
)]

, for μ = 1,

0, for μ = {2,3, . . . ,m}, (A62c)

where, again, Hx is the expectation value of the external field
along the x̂ axis, while it has zero mean along the other
directions. Finally, these equations can be completely solved
only once the distribution of the local direction of the field has
been made explicit.

a. The uniform-field case

Let us now go back to the XY model. In the uniform-field
case, assuming that the symmetry is broken along the x̂ axis,
the self-consistency equation (A62a) becomes

Mx = H, My = 0, (A63)

and hence we can directly get rid of M, by plugging H into the
other equations. Then, in Eq. (A62b), Qxx is surely larger than
zero at any temperature—due to the presence of the external
field—while Qyy is either positive or zero depending on
whether the transverse symmetry is broken or not, respectively.
Finally, in the quadratic term in the exponential measure
exp [βh(σ )]—over which perform the average 〈·〉—we are left
with the only termC′

xx , as explained before. The large-C ansatz
for h(θ ) hence reads

βh(θ ) = β(H + zx

√
Qxx) cos θ + βzy

√
Qyy sin θ

+ β2

2
C′

xx cos2 θ. (A64)

In terms of the angular variable θ , the self-consistency equa-
tions for Qxx,Qyy , and C′

xx read

Qxx = Ez[〈cos θ〉2], (A65a)

Qyy = Ez[〈sin θ〉2], (A65b)

C′
xx = Ez[〈cos2 θ〉 − 〈cos θ〉2 − (〈sin2 θ〉 − 〈sin θ〉2)]

= Ez[2 〈cos2 θ〉 − 1 − 〈cos θ〉2 + 〈sin θ〉2]. (A65c)

The paramagnetic solution is the one with no breaking of
the transverse symmetry, namely Qyy = 0. The corresponding
values of Qxx and C′

xx have then to be determined according
to Eqs. (A65a) and (A65c), with the Gaussian average meant
to be over the sole zx variable. Eventually, it is straightforward
to obtain the stability condition for such solution, by looking at
Eq. (A65b) and expanding the right-hand side to the first order
in Qyy :

Qyy = Ez[〈sin θ〉2] � Ez[(βzy

√
Qyy 〈sin2 θ〉Qyy=0)2]

= β2 Ezx

[ 〈sin2 θ〉2
Qyy=0

]
Qyy, (A66)

so that the paramagnetic solution is stable as long as
β2 Ezx

[〈sin2 θ〉2
Qyy=0] < 1, while the critical line is identified

by the condition

β2 Ezx

[ 〈sin2 θ〉2
Qyy=0

] = 1. (A67)

At this point, we would like to prove the equivalence
between this approach and the replica one. To this aim, it is
enough to compare the ansatz over the cavity field h(σ ) that
we exploited here, Eq. (A60), with the exponent in the defi-
nition of P̃μν functions in the replica computation, Eq. (A2).
Indeed, when taking also into account the proper sine factor
in the replica computations—absent in the aforementioned
equations, related to the q̃⊥ = 0 solution—it is easy to map
onto each other the various quantities appearing in both the
approaches:

q̃‖ ⇔ Qxx, q̃⊥ ⇔ Qyy, x̃ − q̃‖ + q̃⊥ ⇔ C′
xx. (A68)

Consistently with these identifications, all the saddle-point
equations can be mapped exactly one onto the other, as well as
the marginality condition corresponding to the location of the
GT line.

Notice that the large-C limit of the cavity equations allows
us not only to recover the replica results in a simpler way, but in
addition it provides a clearer physical picture of the symmetry
breaking related to the GT transition. Indeed, the longitudinal
and the transverse overlaps are directly identified with the
quadratic fluctuations of the magnetization components along
the field or perpendicular to it, respectively, with the GT
instability given by the appearance of these latter ones.

b. The random-field case with constant intensity H

In the randomly oriented field case, instead, the O(m)
symmetry is not explicitly broken by the field, since its local
direction is uniformly distributed over the m-dimensional unit
sphere. This has three important consequences: (i) the vector
M identically vanishes; (ii) the matrixQ becomes a multiple of
the identity,Q = qI; (iii) also the matrixC becomes a multiple
of the identity, and by the norm constraint of the spins it can
be finally set equal to zero.

Hence, we have that the generic ansatz (A57) for h(θ )
reduces just to the first term, namely a scalar product, that
for the XY model reads

βh(θ ) = βξ cos (ϑ − θ ) = β(ξx cos θ + ξy sin θ ), (A69)

where ξ is the modulus of ξ and ϑ gives its direction.
Component-wise, in the case of a randomly oriented field with
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constant intensity H, ξ is then given by

ξx = H cos φ + zx

√
q,

(A70)
ξy = H sin φ + zy

√
q,

where φ is the local direction of the external field, over which
we should average.

Since both φ and the local direction of z are uniformly
distributed over the unit circle, by a gauge transformation we
can set the former to zero—as already seen in the replica
computations—so getting rid of the average over it. We are
then left with the only Gaussian average over z. Consequently,
Eq. (A69) becomes

βh(θ ) = β(H + zx

√
q) cos θ + βzy

√
q sin θ. (A71)

A direct consequence of the vectorial shape of h is that the
angular average 〈·〉 can now be analytically computed in terms
of Bessel functions:

〈cos θ〉 = I1(βξ )

I0(βξ )
cos ϑ, 〈sin θ〉 = I1(βξ )

I0(βξ )
sin ϑ. (A72)

Equations (A62b) reduce to a unique one for q, which is in-
deed the unique parameter to be self-consistently determined:

q = 1

2
Ez[〈cos θ〉2 + 〈sin θ〉2] = 1

2
Ez

[
I 2

1 (βξ )

I 2
0 (βξ )

]
(A73)

with ξ given by

ξ =
√

(H + zx

√
q)2 + (zy

√
q)2. (A74)

Despite the resulting saddle-point equation being by far
simpler than the one obtained in the uniform-field case, the
stability of the paramagnetic phase cannot be analyzed as
simply. Indeed, q is larger than zero both in the paramagnetic
and in the ordered phase, so that it is not possible to expand
around a vanishing solution. However, we can still rely on the
linear-stability analysis, but now looking at the growth rate of
a perturbation δh(θ )—i.e., δξ—under BP iterations.

In more detail, let us come back to the edge-dependent
notation, namely before exploiting the central-limit theorem.
We have that, h(θ ) = ξ · σ being a scalar product, the same
happens to u(θ ′) = u · σ ′. So we get that each interaction node
acts as

uk→i = Jik 〈σ k〉k = Jik

I1(βξk→i)

I0(βξk→i)

ξ k→i

ξk→i

. (A75)

Hence, a small perturbation δξ propagates as

δuk→i = Ak→i δξ k→i (A76)

with Ak→i being the symmetric 2 × 2 matrix that comes from
the linearization of Eq. (A75), i.e. (getting rid of the edge
indexes),

A ≡
(

∂ux

∂ξx

∂ux

∂ξy

∂uy

∂ξx

∂uy

∂ξy

)
. (A77)

The matrixAk→i affects the “incoming” perturbation δξ k→i

in two different ways: a rescaling of its norm and a change
in its direction. Then, once the node i is reached, in order
to get the outgoing δξ i→j , we have to sum all the incoming

perturbations δuk→i , whose directions are incoherent, being
the O(2) symmetry preserved. Hence, what we should look at
is the growth rate of the norm of these perturbations:

‖δξ i→j‖2 =
∑

k∈∂i\j
‖δuk→i‖2 =

∑
k∈∂i\j

‖Ak→iδξ k→i‖2.

(A78)

Finally, in the large-C limit, we can as usual exploit the central-
limit theorem, getting

‖δξ‖2 = Ez

[
λ2

1 + λ2
2

2

]
‖δξ‖2, (A79)

where λ1,2 are the eigenvalues of a generic A matrix and the
factor 1/2 comes from the mean value of the projection of ξ

over the eigenvectors of A.
The marginality condition is then obtained by considering

a unitary growth rate for the norm of the perturbations:

Ez

[
λ2

1 + λ2
2

2

]
= 1. (A80)

Explicitly computing λ1 and λ2, finally, we get the marginality
condition which refers to the dAT line for the randomly
oriented field with constant intensity H :

β2

2
Ez

[
I 2

1 (βξ )

(βξ )2 I 2
0 (βξ )

+ 1

4
+ I 4

1 (βξ )

I 4
0 (βξ )

+ I 2
2 (βξ )

4I 2
0 (βξ )

− I 2
1 (βξ )

I 2
0 (βξ )

+ I2(βξ )

2I0(βξ )
− I 2

1 (βξ ) I2(βξ )

I 3
0 (βξ )

]
= 1. (A81)

Also in this case, the cavity approach is completely equiv-
alent to the replica computations. Indeed, noticing that the
rescaled argument �̃R of Bessel functions in the replica
approach is exactly equal to βξ in the present computation,
we suddenly recognize that the saddle-point equation for q is
the same. Moreover, also the marginality condition β̃2χ̃0 = 1
of the replica computation is perfectly equivalent with the
Eq. (A81) derived via the cavity computation. Although it
is not easy to match analytically the expressions entering the
Gaussian integrations in the two methods, we have numerically
checked their identity.

c. The Gaussian-field case

The self-consistency equations for a Gaussian-distributed
field can be easily derived from the ones obtained for the
randomly oriented field with constant intensity. The ansatz for
the components of the vector ξ has to be properly modified as

ξx = zx

√
q + σ 2

H ,
(A82)

ξy = zy

√
q + σ 2

H ;

then we have that the saddle-point equation for q reads

q = 1

2
Ez

[
I 2

1 (βξ )

I 2
0 (βξ )

]
= 1

2

∫ ∞

0
dρ ρ e−ρ2/2

[
I1(βξ )

I0(βξ )

]2

,

(A83)

with ξ = (q + σ 2
H )

√
z2
x + z2

y = (q + σ 2
H )ρ, in polar coordi-

nates. The argument to get the marginality condition for the
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paramagnetic solution follows exactly the same steps as in the
previous case, leading to an expression analogous to Eq. (A81):

β2

2

∫ ∞

0
dρ ρ e−ρ2/2

[
I 2

1 (βξ )

(βξ )2 I 2
0 (βξ )

+ 1

4
+ I 4

1 (βξ )

I 4
0 (βξ )

+ I 2
2 (βξ )

4I 2
0 (βξ )

− I 2
1 (βξ )

I 2
0 (βξ )

+ I2(βξ )

2I0(βξ )
− I 2

1 (βξ ) I2(βξ )

I 3
0 (βξ )

]
= 1,

(A84)

again written in polar coordinates.
Finally, βξ has exactly the same expression of �̃G in the

replica computations; once this is recognized, the saddle-point
equation for q and the marginality condition can be recognized
as equivalent between the two approaches.

d. The generic case

By exploiting the cavity formalism for large connectivities
developed in this appendix, we can also solve the model in

the case of a generic distribution of the external field, namely
neither uniform nor perfectly O(2)-symmetric.

The general reasoning for obtaining the saddle-point equa-
tions should follow the same steps of the uniform case, since
for the most generic distribution of the external field we
have that the matrix C does not vanish. The saddle-point
equations for the parameters Qxx,Qyy , and C′

xx can be then
straightforwardly obtained starting from the generic expression
(A62).

More caution has then to be paid to the computation of
the stability condition of the paramagnetic solution. Indeed,
it is a generalization of the reasoning followed for the O(2)-
symmetric field, though taking also into account that incoming
fields ξ k→i may have a directional bias given by the external
field. So when exploiting the central-limit theorem, we get both
a condition for the growth of the first moment of ξ and one for
the growth of its fluctuations, each one giving a well-defined
critical line in the (T ,H ) plane; the paramagnetic solution
actually becomes marginally stable in correspondence of the
highest among these two critical lines.
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