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Improved belief propagation algorithm finds many Bethe states in the random-field
Ising model on random graphs
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We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field
Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal
solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the
phase transition point the fraction of unconstrained spins percolates and their number diverges with the system
size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the
bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP
scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to
provide the minimum energy configuration with high probability in a competitive time. On the other hand we
found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This
unexpected feature poses new relevant questions about the physics of this class of models.
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I. INTRODUCTION

One of the main features of disordered systems is the exis-
tence of many thermodynamic states, eventually metastable
states [1]. This assumption is at the basis of the replica
symmetry-breaking (RSB) theory, which is indeed proven to
be correct for disordered models defined on fully connected
topology, as the Sherrington-Kirkpatrick model. The same
assumption has made it possible to achieve a very rich and
accurate description of the space of solutions in constraint
satisfaction problems [2].

However, to the best of our knowledge, no algorithm exists
which is able in general to find these many different states
that we usually count via the replica or the cavity method.
Obviously there are some easy cases where some of these states
can be identified straightforwardly (e.g., ferromagnetic models
or planted models [3]), but for a general disordered model we
are not aware of any algorithm that would output at least some
of the states that characterize the Gibbs probability distribution
in a given sample.

The same definition of a pure state in a disordered model is
a delicate issue: indeed, the standard trick of imposing the right
boundary conditions is not easy to implement, not only because
the number of different states may be very large, but also
because for a generic graph the boundary is not well defined
(think, e.g., of random graphs or fully connected graphs).

Given a model of N interacting variables σ = {σi}i=1,...,N ,
one would like to find the minimal decomposition of the Gibbs
measure

μ(σ ) =
∑

α

wα μα(σ ), (1)

such that the measure μα(σ ) within state α has the clustering
property, i.e., connected correlations decay fast enough at large
distance, and thus distant variables are mostly independent
(and the corresponding measure approximately factorizes).

In this work we consider models defined on sparse random
graphs. These models can be solved exactly under the Bethe-
Peierls approximation as long as correlations decay fast enough
along the edges of the graph. Moreover they show more
realistic physical properties, with respect to models defined
on a fully connected network: e.g., the latter have interaction
couplings scaling with an inverse power of the the system size
and critical lines in the field versus temperature plane diverging
in the T → 0 limit.

For models defined on sparse random graphs, it is natural to
identify the measure within a state μα(σ ) with a Bethe measure
[2], i.e., a measure that can be, at least locally, factorized as

μα(σ ) �
∏

(ij )∈E

μα
ij (σi,σj )

μα
i (σi)μα

j (σj )

∏
i∈V

μα
i (σi),

where the first product runs over all edges of the graph (we
assume for simplicity that variables interact only pairwise, the
generalization to higher order interactions being straightfor-
ward) and the second is over all vertices, while μα

i and μα
ij

are marginal probabilities over single variables and pairs of
neighboring variables, respectively.

In principle each Bethe measure μα(σ ) can be put in
correspondence with a fixed point of the Belief Propagation
(BP) algorithm [2]; however, in practice we are not aware of
any numerical protocol that outputs such BP fixed points in a
generic disordered model. The importance of these BP fixed
points is also highlighted by recent results [4] proving that
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any Gibbs measure on a random graph can be expressed as
the superposition of a relatively small number of Bethe states,
which can be put in correspondence to BP fixed points.

The aim of the present work is to introduce an algorithm
which is able to identify many different Bethe states μα in
the random field Ising model (RFIM) defined on a random
graph at T = 0. Our new algorithm is based on the usual BP
algorithm [2], which in the T = 0 limit is also known as max-
sum algorithm. BP is an iterative algorithm whose fixed points
correspond to minima of the Bethe free energy [5] and thus
provides the local marginal probabilities μα

ij and μα
i within a

Bethe state. In the case of the RFIM it has been recently shown
that the global minimum of the Bethe free energy at T = 0 does
actually correspond to the model ground state, irrespective of
the graph which is defined in Ref. [6].

While running the standard BP algorithm on a given sample
of the RFIM one usually reaches one or at most two fixed
points, without any guarantee of having found the one of lowest
free energy; our new algorithm achieves many different fixed
points, and the probability that the ground state is among these
many fixed points turns out to be practically one. Moreover,
finding also the lowest excited states, our algorithm provides
more physical information about the model than what can be
extracted solely from the knowledge of the ground state [7].

II. THE MODEL

The random filed Ising model is well known to the statistical
physics community as one of the simplest disordered systems
[8]. It is defined by the following Hamiltonian

H (s) = −J
∑

(i,j )∈E

sisj −
∑
i∈V

hisi, (2)

whereE andV are respectively the edge set and the vertex set of
the interaction graph (e.g., a complete graph, a random graph,
or a finite dimensional regular lattice). Variables si = ±1 are
N = |V | Ising spins, and we choose to work with random
fields {hi} extracted from a Gaussian distribution of zero mean
and unitary variance, which ensures having a second order
phase transition in the whole field versus temperature plane,
including on the T = 0 axis.

Varying J the model undergoes a second order phase
transition at Jc between a paramagnetic phase for J < Jc and
a ferromagnetic phase for J > Jc. Other kinds of long-range
order, e.g., a spin glass phase, dominating the thermodynamics
have been excluded [9,10] for the model in Eq. (2), which is the
one with pairwise interactions between Ising spins (although
replica symmetry-breaking effects have been numerically de-
tected in the p-spin version [11] and in the pairwise model
with continuous spins [12]). The absence of RSB for the states
dominating the thermodynamics does not imply the absence
of many metastable states [9], which may affect dramatically
the dynamical behavior in the out-of-equilibrium regime [13].
Moreover RSB effects may be present exactly at the critical
point where the ferromagnetic susceptibility diverges in the
thermodynamical limit.

Renormalization group studies indicate that thermal fluctu-
ations are subdominant and the model can be studied directly
at zero temperature [14]. This has a great numerical advantage
since a min-cut algorithm exists, which provides the ground

state (GS) configuration in polynomial time [15]. It is worth
noticing that this min-cut algorithm provides a single GS, even
in case of strong GS degeneracy: in other words it is not a good
sampler of the Gibbs measure, nor it can give any information
about the gap between the GS and the first excited state.

In this work we study the RFIM on random 4-regular
graphs (RRGs). This ensemble consists of graphs where each
vertex has exactly four neighbors randomly chosen (we avoid
self-connections and double edges between a pair of nodes).
These graphs are locally treelike, in the sense that the local
neighborhood of a randomly chosen vertex converges with high
probability to a tree in the N → ∞ limit [2] and the typical
size of loops is log(N ).

In the last two decades much attention has been devoted
to the RFIM defined on random regular graphs. Mainly the
interest was focused on the nonequilibrium physics of the
RFIM, as it emerged as a very effective model for Barkhausen
noise and hysteresis in magnets (see Ref. [16] and references
therein). Many efforts over the years have been made to
characterize analytically the out-of-equilibrium magnetization
[16], correlation functions [17], hysteresis loops [18], and ex-
pansions toward fully connected models [19], just to mention a
few. The out-of-equilibrium Glauber dynamics too was solved
in Ref. [20]. The vast number of metastable nonequilibrium
states was numerically analyzed in Ref. [21], where different
techniques were used to provide a clear description of the
model complexity.

For what concerns the equilibrium physics of the model,
beside the classic paper [22] where the bimodal random fields
version was studied, the only modern analytic study of the
RFIM on a random regular graph is the one presented in
Ref. [23], where the model is studied at zero and finite temper-
ature using the cavity method approach [24,25]. Moreover on
such graphs the loops corrections can be handled analytically
[7,26,27].

III. BELIEF PROPAGATION EQUATIONS
AND EXTREMAL SOLUTIONS

Belief Propagation (BP) is an iterative message-passing
algorithm for solving the self-consistency equations that deter-
mines the minima of the Bethe free energy [28]: these minima
do actually correspond to the physical states of the system,
and the one with lowest free energy is the one dominating the
thermodynamics. It is known that the Bethe approximation is
exact on trees [29,30] as it relies on the independence of the
neighborhood of a given spin when this spin is removed from
the graph (hence the name “cavity method” in physics). When
the graph has loops the width of the approximation made is
generally unclear, though applying BP to graphs with loops is
a consolidated practice, especially in computer science studies:
in this case it is called loopy belief propagation. On random
graphs, which are locally treelike, the failure of BP is directly
related to the birth of long-range correlations and thus phase
transitions.

In this context the RFIM presents many features that makes
it a very interesting model to approach with the BP algorithm.
According to results in Ref. [31], since the model is replica
symmetric, BP should provide the exact thermodynamics in
this case, a conjecture that was recently proven in Ref. [32].
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However, one must be aware of the fact that these conclusions
apply only to the case where only one BP fixed point exists, a
condition that is far from being satisfied by most of the models
that have been studied with the BP algorithm. And, indeed,
we shall see that for the RFIM has more than one fixed point.
Nevertheless in Ref. [6] it was shown that the zero temperature
global minimum of the Bethe free energy coincides with the
ground state of the problem, for every graph topology. Strictly
speaking, this means that among the (possibly many) fixed
points of the BP algorithm there must be the GS solution.
This peculiar feature of the RFIM stimulated a lot of research
tending to systematize BP as a provably exact ground state
solver for the problems with an energy function as the one
in Eq. (2); see, for example, Ref. [33]. A nice example is
the tree-reweighted message passing scheme [34,35]. A very
interesting recent result is present in Ref. [36], where it is
demonstrated that with a proper calibration BP can be made
equivalent to the min-cut and max-flow algorithm, which is an
exact solver.

All these results point out that indeed BP can be good even
if loops are present. However, to our knowledge an empirical
study of the real performance of BP on single instances is
lacking. The main advantage of a direct approach, as we will
see, is to face the presence of many fixed points. On one side
this obviates most of our analytic understanding of BP. On
the other side we shall see that the organization of these BP
solutions seems to be relevant for the physics of the RFIM.

Given an energy function of the type (2) with pairwise
interactions and binary variables, the BP update rules read (see
Ref. [2])

h
(t+1)
i→j = Hi +

∑
k∈∂i/j

u
(t)
k→i

u
(t)
i→j = T atanh

[
tanh(J/T ) tanh(h(t)

i→j /T )
]

(3)

for every edge (i,j ) ∈ E. By taking the limit T → 0 we obtain

h
(t+1)
i→j = Hi +

∑
k∈∂i/j

u
(t)
k→i , u

(t)
i→j = ûJ

(
h

(t)
i→j

)
, (4)

where

ûJ (x) =
⎧⎨
⎩

−J, x � J

x, −J < x < J

J, x � J

. (5)

These equations are also known as min-sum equations. Once
an initial value is assigned to the set of messages {u(0)

i→j }, we let
them evolve with the update rule (4) until a stopping criterion
is met. In this work we use the following prescription: if at a
time t∗, max(i,j )∈E |h(t∗)

i→j − h
(t∗−1)
i→j | < ε for some accuracy ε,

then the messages have converged to a fixed point. We found
that such a procedure is highly stable, and we used ε = 10−10.
Once the equations have converged, one can easily compute
the spins value with the fixed point messages via

σi = sign

{
Hi +

∑
k∈∂i

u
(t∗)
k→i

}
, (6)

from which a physical observable can be computed.
Given that the RFIM at zero temperature displays a second

order phase transition at a critical value of the coupling strength

Jc = 0.54404(5), one expects to find one stable fixed point in
the paramagnetic region J < Jc, and two stable fixed points
in the ferromagnetic regime J > Jc, where the one with the
magnetization of the same sign of the sum of the random fields
will be the dominating one, i.e., the one with lower energy [7].
As we will see, this picture is oversimplified and turns out that
in a broad region near the critical point there is a large number
of stable fixed points, depending on the disorder realization.

From physical considerations, a natural choice for the initial
condition (IC) of the BP messages is to bias them towards the
sign of the sum of local random fields. Specifically we start
with the two ICs:

u
(t=0),(±)
i→j = ±J sign

(
N∑

k=1

Hk

)
, ∀(i,j ) ∈ E. (7)

In this way the (+) IC is equivalent to set all the messages
equal to their maximum value with the same sign of the sum
of the random fields of the specific instance, and analogously
for the (−) IC. This choice is motivated from the following
observation: when J is small we expect that all spins will prefer
to align to their local random field, so that only one fixed point
exists with zero average magnetization. In this situation the
particular choice of the IC should play no role. On the other
hand, when the coupling constant is large enough the spins will
tend to align all together in the same direction, irrespective of
the random fields, so we expect the (+) IC to converge on
the ferromagnetic minimum with lower energy and the (−)
IC to converge on the subdominating one. As we will see this
intuition turns out to be true only away from the critical region.

As the model is replica symmetric, for all J we expect the
BP algorithm to converge for every IC. In Fig. 1 we report
the number of BP steps (where a single step corresponds to
the update of all the 2|E| messages) to reach the convergence
criterion, tconv, as a function of the interaction strength for
the (+) IC, and we tested that the conclusion is the same for
other choices for the IC. As expected, the BP dynamics gets
slower in the critical region, and the convergence time seems
to diverge at the critical point as tconv ∼ N1/3. In this respect
the BP algorithm is competitive with the latest versions of the
min-cut algorithm [37], at least on locally treelike graphs.

However, the BP algorithm is not guaranteed to converge on
the minimum energy configuration (the GS) of a given graph.
Although we know that the GS of the model should be a fixed
point of the BP algorithm [6], it is not obvious at all how
to initialize the messages in such a way to converge on the
GS. Moreover we have no way of asserting that a fixed point
configuration is the one with the minimum possible energy,
although in the next section we shall give a criterion valid at
least in the paramagnetic phase.

In order to understand the behavior of BP under the (±)
IC we measured the probability that it converges on the
GS configuration of the problem, obtained with the min-cut
algorithm. The results are reported in Fig. 2 for graphs of
sizes ranging from 211 to 216. The results are averaged over
a number of realization for the disorder (graphs and random
fields) that goes from 5 × 104 for the smallest size to 5 × 103

for the biggest one. As expected, the probability that the (+)
IC converges to the GS tends to one in the paramagnetic phase
(J < Jc). In the ferromagnetic phase we found that there is
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FIG. 1. (a) Average of the natural logarithm of the number of BP steps to converge to a fixed point (with a convergence criterion ε = 10−10)
as a function of the coupling strength J . In these plots we report the results for the (+) IC only, since other ICs provide similar results. The
maximum of tconv is found in the critical region, as expected. We used a sequential update with no damping. However, we verified that the shape
of the function tconv(J ) is not qualitatively affected by the particular choice of the update rule. (Inset) The scaling with the system size N of the
convergence time in the critical region. (b) The entire probability distribution of rescaled convergence time at the critical point log[tconv(Jc)/N 1/3]
is almost size independent (and the same holds for other values of J ).

a small but finite probability that the dominating minimum
is not reached with the (+) IC. This happens when the two
ICs converge on two configurations with the magnetization of
the same sign, where the one with the smallest modulus is
reached with the (−) IC and has the lower energy. Beside this
phenomenon we can conclude that as far as we are away from
the critical region the two ICs (±) guarantee the convergence
on the lowest energy configuration.

The situation drastically changes in the neighborhood of Jc.
As the reader can see in the right panel of Fig. 2 the probability
that none of the (±) ICs converge on the GS is nonzero and
grows with N at Jc. As we will see in more detail in Sec. V, in

the critical region many solutions of the BP equations appear
and a level crossing phenomenon is at work, such that the GS
cannot be obtained by starting from an IC that corresponds to
the GS at a nearby value of J . Besides posing some question
marks on the real nature of the phase transition, this picture
makes the optimization problem very hard to solve with the
standard BP algorithm. Although we know that the iterative
BP equations must converge for every initial condition, we do
not have any suggestion on how to initialize the BP messages
in order to converge to the GS with high probability very close
to Jc. We tested that the remaining trivial initial condition, i.e.,
the one with all the messages equal to zero, does not increase
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FIG. 2. (a) Probability that BP initialized with the (±) IC [see Eq. (7)] converges to the GS, obtained with the min-cut algorithm. In the
paramagnetic phase (J < Jc) there is just one fixed point with high probability, and thus both ICs converge on it with a probability tending to
1 in the large size limit. In the ferromagnetic phase (J > Jc) the two different ICs converge to different free-energy minima, with the (+) IC
converging to the GS with a large probability, but still strictly smaller than 1. (b) Probability than none of the (±) ICs converge to the GS is
nonzero in the critical region, and increasing with size right at J = Jc.
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significantly the probability of success as it almost always
converges on one of the two (±) fixed points. The same holds
for random initializations that achieve the GS with a smaller
probability that starting from (±) ICs.

IV. PERCOLATION OF FROZEN VARIABLES

In this section we prove some properties of the extremal
solutions, i.e., the fixed point solutions obtained with the (±)
ICs defined in Eq. (7). These results are preliminary to the
definition of the algorithm that finds many different BP fixed
points and rely on the following no-passing rule (NPR), first
introduced by Middleton [38] in the context of charge density
waves and later extended to the Glauber dynamics [16] and to
the GS evolution [39] in the zero temperature RFIM.

Let us adopt the convention that two vectors v and v′ are
partially ordered (to be indicated by v � v′) if all their compo-
nents satisfy vi � v′

i . Then, given two partially ordered initial
configurations, s(A)(t = 0) � s(B)(t = 0), the NPR states that
if they are evolved under ordered uniform fields satisfying
H (A)(t) � H (B)(t) for all times t � 0, then the partial order
among configurations is preserved for all times t � 0. The
validity of the NPR for the min-sum equations in the RFIM
strictly follows from the definition of the update rules [see
Eqs. (4) and (5)]: because of the ferromagnetic couplings, each
new message is a nondecreasing function of the old messages.
Thus, if the initial messages satisfy

u
(t=0),(A)
i→j � u

(t=0),(B)
i→j , ∀(i,j ) ∈ E, (8)

then the same order must hold between messages at any time
t > 0. Moreover when the fixed point of BP is reached, every
spin will be computed as a nondecreasing function of the fixed
points’ messages, such that the spin configurations will satisfy
s(A) � s(B).

From Eq. (4) it is immediate to derive the following bound
on the BP messages:

−J � u
(t)
i→j � J. (9)

The (±) initial conditions [see Eq. (7)] do correspond to set
the BP messages all equal and taking the largest (positive
or negative) value allowed by the above bound. This in turn
implies that at any time on every edge of the graph a BP
message cannot assume a value greater or lower than the value
of the corresponding (+) or (−) message,

u
(t),(−)
i→j � u

(t),(∗)
i→j � u

(t),(+)
i→j , ∀t ,∀(i,j ) ∈ E, (10)

for every initial condition (∗). Moreover the two initial condi-
tions (±) will converge on the fixed points whose configura-
tions are the one with the lowest and highest magnetization, as
this is due to the NPR. For this reason we shall call them the
extremal solutions.

Because of the inequality in Eq. (10), if the fixed point
messages u

(t∗),(−)
i→j and u

(t∗),(+)
i→j do coincide, then such a BP

message is conserved in any other BP fixed point. The same
is true for the spin configurations obtained from the BP fixed
point: if

s
(+)
i = s

(−)
i , where s

(±)
i = sgn

{
Hi +

∑
k∈∂i

u
(t∗),(±)
k→i

}
, (11)
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FIG. 3. Fraction of free spin variables, defined in Eq. (12), for
various system sizes as a function of the interaction strength J .
The data strongly suggest a percolation transition for free variables
at Jc. For J > Jc the data approach closely the infinite volume
thermodynamic magnetization drawn with a red full line. At Jc the
fraction of free spins decays as nfree ∼ N−α with α = 0.245 ± 0.002
(see the inset).

then spin si must take the same value in all BP fixed points
(i.e., in all the free-energy minima, including the GS), and we
call it a frozen spin.

Because of this simple property we can claim to have found
the GS in case the two extremal solutions coincide (and this
happens often in the paramagnetic phase). Otherwise if only
a finite fraction of the spins is frozen, we can still reduce
the complexity of the problem by removing these variables
from the set of variables to be optimized over (the frozen
spins actually change the field on the remaining variables, thus
producing an effective RFIM of smaller size). In general we
expect the mean fraction of frozen spins to decrease with the
coupling J : indeed, for J 
 Jc a unique fixed point exists
and the extremal solutions do coincide, while for J � Jc the
extremal solutions do have very different magnetizations and
practically no spin in common.

Let us define the average fraction of free spins (i.e.,
nonfrozen spins) as

n
(N)
free(J ) ≡ E

[
N∑

i=1

1 − s
(+)
i s

(−)
i

2N

]
. (12)

The mean fraction of free spins is shown in Fig. 3 for a random
4-regular graph.

The data in Fig. 3 strongly suggest the presence of a phase
transition in nfree exactly at the critical point Jc. Moreover for
J > Jc the data seem to approach in the large size limit the
curve for the absolute value of the thermodynamic magneti-
zation |m| computed via the population dynamics algorithm
[2] (reported with a full red curve). This can be explained
by assuming that the extremal solutions are made as follows:
a fraction 1 − |m| of spins are shared by the two extremal
solutions (this is the fraction of frozen spins) and give almost
no contribution to the global magnetization (these spins are
mostly aligned along the random field), while a fraction |m|
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of spins are fully aligned, thus giving magnetizations |m| and
−|m| to the two extremal solutions.

So the ferromagnetic phase transition at Jc seems to be
related the the percolation of free variables. At Jc a single
connected cluster of free spins starts spanning the entire graph,
and this makes the optimization problem of finding the GS
much harder. Indeed, at the critical point the fraction of free
spins goes to zero asn

(N)
free(Jc) ∼ N−α withα � 1/4 (see inset in

Fig. 3). This means that the mean number of free spins diverges
at the phase transition as N1−α , giving us some insight on the
nature of the difficulties that BP faces in finding the minimum
energy fixed point among the many fixed points that appear in
the critical region.

V. EXPLORATION OF THE BETHE FREE
ENERGY LANDSCAPE

We present here a heuristic modification of the BP algorithm
that is able to find several new BP fixed points (i.e., Bethe
free energy minima) by relying on BP fixed points already
found. We always start with the two extremal ICs (±) defined
in Eq. (7), that converge to extremal solutions. If the extremal
solutions do coincide, then they provide the GS, and BP has no
other fixed points: thus the algorithm stops. On the contrary,
if extremal solutions are different, the frozen spins and the
corresponding messages are fixed for the rest of the run, and the
algorithm proceeds looking for more BP fixed points. We saw
in Sec. III (see right panel in Fig. 2) that in the critical region
the GS does not always correspond to a extremal solution, so
it worth continuing the search for the possible GS.

The key question is how to initialize the nonfrozen BP
messages in order to find new BP fixed points (and hopefully
the GS) without wasting time in random initializations. Since
the fixed point already found may have a rather large basin
of attraction under the BP iteration, a reasonable initialization
that is more likely to flow to a different fixed point (if any) is

u
(t=0)
i→j = 1

2u
(t∗),(+)
i→j + 1

2u
(t∗),(−)
i→j . (13)

In this way if u
(+),(t∗)
i→j = u

(−),(t∗)
i→j we just initialize the BP

message with the fixed point value. On the contrary, the
message is initialized as far as possible from the extremal
messages, but also biased in their direction in the case where the
extremal messages are correlated. The idea is that if a new fixed
point, say, the (0) fixed point, is found, then we can repeat the
procedure by searching between (+,0) and (−,0) as before. In
this way we explore the space of BP messages, in the search for
BP fixed points, by starting from a not too large and meaningful
subset of IC.

In a nutshell our algorithm works as follows. It keeps a list
of BP fixed points (FPs) that initially contains only the two
extremal FPs, (+) and (−). For each pair of FPs in this list,
called them (l) and (r), the algorithm searches for new FPs by
starting from several ICs belonging to the line (l,r) joining the
two FPs. The first search is performed from the IC (c) being at
the middle of segment (l,r). If BP initialized in (c) converges
to one of the two parent FPs, say the (r) FP, then the bounds
in Eq. (10) allow us to exclude the segment (c,r) in the search
for new and different FPs; in this case the search continues
with ICs in the middle of segment (l,c). On the contrary, if BP
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FIG. 4. Mean number of BP solutions (i.e., free-energy minima)
found by our improved BP algorithm as a function of J for various
system sizes. As expected the number of solutions tends to 1 in the low
coupling regime and to 2 in the ferromagnetic phase. In the critical
region, however, the mean number of solutions increases with the
system size. (Inset) Scaling of the mean number of solutions in the
critical region.

initialized in (c) converges to a new FP, this new FP is added
to the list of FPs, and the search continues with ICs both in
the middle of (l,c) and in the middle of (c,r). Each segment is
analyzed (i.e., used to produce new ICs) as long as it is larger
than a given minimal length � (we have used � = 2−32, but
we have checked our results being largely independent from
this minimal length).

The running time of the algorithm depends on several
factors: the time required by BP to converge, which grows
at most as N4/3 in the critical region (being linear in N far
from the critical point); the number of pairs of FPs used to
generate the ICs, N2

sol, being Nsol the number of FPs found; a
factor log(1/�) proportional to the typical number of calls
to the BP algorithm per segment analyzed. The total time
complexity of the our algorithm scales with the system size at
most as O(N4/3), being the factor log(1/�) size-independent
and the mean number of solutions to BP equations 〈Nsol〉 a
very slowly increasing function of N (see discussion below).
Computationally this is slightly more expensive than running
an exact solver such as min-cut, but it outputs a large number
of solutions that can provide much more information on the
physics of the RFIM.

The mean number of BP fixed points (i.e., solutions to
BP equations) 〈Nsol〉 that our algorithm outputs is reported in
Fig. 4. Far from the critical point, for |J − Jc| � 1, typically
the algorithm does not provide additional information than
running BP with the extremal initial conditions (see Fig. 2).
In the paramagnetic phase the extremal solutions coincide and
the bisection function does not need to be called at all, since no
other fixed point is admitted. In the ferromagnetic phase with
high probability only the segment joining the (±) fixed points
needs to be explored and no other solution is usually found.

In the critical region the number of BP FPs (i.e., free-energy
minima or Bethe states) found by our improved BP algorithm
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TABLE I. Probability that our modified BP algorithm does not
find the GS configuration at the critical point Jc for various system
sizes. These data are well fitted by an N -independent probability of
failure 1 − Psuccess � 3 × 10−5.

N No. samples 1 − Psuccess(Jc)

217 5 × 103 (2 ± 2) × 10−4

216 1 × 104 (1 ± 1) × 10−4

215 2 × 104 (0 ± 3) × 10−5

214 4 × 104 (5 ± 4) × 10−5

213 8 × 104 (5 ± 3) × 10−5

212 16 × 104 (3 ± 1) × 10−5

grows slowly with N . Such data can be well collapsed (see
inset in Fig. 4) by scaling it vertically according to the mean
number of BP states at criticality, 〈Nsol(Jc)〉, and horizontally
using the standard scaling variable N1/3(J − Jc).

The presence of an increasing number of free-energy
minima in the critical region makes the search for the ground
state a nontrivial problem here and explains why the extremal
solutions often differ from the GS in this region (see right
panel in Fig. 2). Nevertheless, even at Jc, where the problem
of finding the GS is most difficult, our improved BP algorithm
misses the true GS only in a really tiny fraction of samples:
in Table I we report such a number of samples, which are
statistically compatible with a probability of missing the true
GS independent of N and close to 3 × 10−5. In the very rare
samples where our algorithm does not find the true GS, the
lowest free-energy minimum found lies above the true GS by
O(10−4). Moreover we believe that with a proper calibration
of the algorithm (e.g., by using some appropriate damping) the
probability of finding the GS can be made even higher. Here,
however, our primary interest is on exploring efficiently the
Bethe free-energy minima, and so we are not going deeper with
the possible use of our improved BP algorithm for solving the
associated optimization problem, though we believe that this
could be a promising direction to follow.

At this point a comment is mandatory. It is worth stressing
that we have no guarantee that our improved BP algorithm
finds all the BP fixed points. Moreover, it was demonstrated
that while the BP fixed points are Bethe free energy minima, the
converse needs not be true [40]. That said, the high probability
with which we find the GS for each sample makes us confident
that with this algorithm we are finding most of the low free-
energy BP fixed points.

Let us discuss now how the number of Bethe states grows
with N in the critical region. Because of the good scaling in
the critical region (see inset of Fig. 4), we can concentrate on
studying such a growth exactly at the critical value Jc. The
inset of the left panel in Fig. 5 shows the mean number of BP
solutions found at Jc as a function of the system size. A linear
fit in log(N ) interpolates the data perfectly (fitting with a power
law, one gets a very small exponent, usually not larger than 0.1,
concluding that the power law fit is not very reliable). The main
panels in Fig. 5 show the entire probability distributions of Nsol

for several values of the system size N . The data can be very
well interpolated via the function f (x) ∝ x−γ exp(−(x/ξ )δ)
(the red full line in the left panel is the best fit to the N = 217

data). We have fixed δ = 5/2 as its best fitting value is always
very close to 2.5 for all N values. The values of the cutoff ξN

are shown in the inset of the right panel and can be well fitted by
the linear function ξ (N ) = c + d log(N ) with c = −0.4 ± 0.2
and d = 0.43 ± 0.02. The best fit exponent γ increases with N

and goes above 1 for the largest N values; however, a precise
extrapolation to the N → ∞ is difficult. We have estimated
the value γ ∼ 3/2 (used to rescale data in the right panel of
Fig. 5 by studying 〈Nsol〉 ∝ ξ

2−γ

N versus 〈N2
sol〉/〈Nsol〉 ∝ ξN ).

VI. CONCLUSIONS

We have presented an improved BP algorithm that is able
to find many stable solutions to BP equations (i.e., free-
energy minima or Bethe states) in the RFIM defined on a
random graph. While the standard implementation of BP is
effective only far from the critical region, close to the critical
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FIG. 5. (a) Probability distribution of Nsol at the critical point Jc for several system sizes. The red full curve is the fit N
−γ
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where ξ (N ) = c + d log(N ) with c = −0.4 ± 0.2 and d = 0.43 ± 0.02 is the best linear fit to the ξN data shown in the inset.
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point the choice of the initial condition plays a crucial role:
indeed, the number of free-energy minima grows and their
basins of attraction shrink, such that a randomly chosen initial
condition is unlikely to find the lowest free-energy minima.
To partially overcome this problem, we have proposed a way
to recursively initialize BP with a proper interpolation of
BP fixed points already found. This algorithm returns the
ground state with high probability, together with many other
BP fixed points, corresponding to metastable states of low
free energy.

A careful analysis of the number of BP fixed points in the
critical region reveals a slow divergence of its mean value
〈Nsol〉 ∼ log(N ) and a probability distribution decaying, in the
large N limit, roughly as N

−3/2
sol . The existence of a diverging

number of states is a key feature of disordered systems (e.g.,
is at the heart of the replica symmetry-breaking theory [1]).
However, to the best of our knowledge, this is the first case
where many different Bethe states are explicitly found in a
model. It is still unclear what are the physical consequences
of the existence of a diverging number of Bethe states in the
critical region of the RFIM; although the thermodynamics of
the model can be solved within a replica symmetric ansatz [9],
one is tempting to interpret the occurrence a diverging number
of Bethe states as a reminiscence of a replica symmetry-
breaking phase.

It is important to remark that the Bethe states found by our
improved BP algorithm are much more stable than typical
minima of the energy potential function; the latter are called
one-spin-flip stable configurations and are found in a much
broader range [41,42]; however, their relevance for the out-of-
equilibrium dynamics and in general for the determination of
physical properties of the the model is unclear. On the contrary,
it has been shown [43] that BP fixed points at zero temperature
correspond to configurations that are stable under the flip of
spins in any subset of vertices forming a subgraph with at most
one loop. This property of BP fixed points is known as maximal
neighborhood stability property and makes them much better
candidates to describe also the physics at finite temperature and
the behavior of a thermal algorithm, which may get trapped
in these Bethe states even if their evolution is stochastic.

It has been recently shown rigorously [4] that the Gibbs
measure of any random graphical models can be decompose
into a moderate number, e.g., O[log(N )], of Bethe states, and
that the probability marginals in these Bethe states can be
obtained from the corresponding BP fixed point. This result
implies that, being able to find the relevant BP fixed points, one
could in principle compute exactly any marginal in a random
graphical model. Our improved BP algorithm allows one to per-
form this program for the case of the RFIM on a random graph.

In the light of the present results, supporting the existence
of a large number of BP fixed points in the RFIM on a random
graph, we believe it would be useful to reconsider the proofs
that were derived assuming the existence of a unique BP fixed
point [32].

Let us conclude with a remark on the optimization problem
of finding the lowest energy configuration. For the case of
the RFIM on a random graph, our improved BP algorithm
finds almost certainly the ground state in a time which is
competitive with algorithms, like min-cut, that provably return
the exact ground state. However, there are applications where
having at hand many low-energy configurations, as those
returned by our improved BP algorithm, allows for a much
better final choice [44]. Moreover this improved algorithm,
finding several different low-energy configurations, allows one
to study the fundamental excitations of the system, without
the use of methods, such as the ε-coupling algorithm [45],
which require one to modify the Hamiltonian with somehow ad
hoc and not fully justified perturbations. Finally the algorithm
presented here is quite robust with respect to small changes
in the Hamiltonian (e.g., the introduction of a small fraction
of negative coupling), while the min-cut algorithm cannot be
used as soon as any small amount of frustration is introduced
in the interaction couplings.

ACKNOWLEDGMENTS

We thank Giorgio Parisi for useful discussions. This re-
search has been supported by the European Research Council
(ERC) under the European Unions Horizon 2020 research and
innovation programme (Grant Agreement No. [694925]).

[1] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass The-
ory and Beyond: An Introduction to the Replica Method
and Its Applications (World Scientific, Singapore, 1987),
Vol. 9.

[2] M. Mezard and A. Montanari, Information, Physics, and Com-
putation (Oxford University Press, Oxford, 2009).

[3] L. Zdeborová and F. Krzakala, Statistical physics of inference:
Thresholds and algorithms, Adv. Phys. 65, 453 (2016).

[4] A. Coja-Oghlan and W. Perkins, Bethe states of random factor
graphs, arXiv:1709.03827 (2017).

[5] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing
free-energy approximations and generalized belief propagation
algorithms, IEEE Trans. Inf. Theory 51, 2282 (2005).

[6] M. Chertkov, Exactness of belief propagation for some graph-
ical models with loops, J. Stat. Mech.: Theory Exp. (2008)
P10016.

[7] C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi, and T.
Rizzo, Anomalous finite size corrections in random field models,
J. Stat. Mech.: Theory Exp. (2014) P10025.

[8] T. Nattermann, Theory of the random field Ising model, in
Spin Glasses Random Fields, Series on Directions in Condensed
Matter Physics Vol. 12, edited by A. P. Young (World Scientific,
Singapore, 1998), pp. 277–298.

[9] F. Krzakala, F. Ricci-Tersenghi, and L. Zdeborová, Elusive Spin-
Glass Phase in the Random Field Ising Model, Phys. Rev. Lett.
104, 207208 (2010).

[10] S. Chatterjee, Absence of replica symmetry breaking in the
random field Ising model, Commun. Math. Phys. 337, 93
(2015).

[11] Y. Matsuda, H. Nishimori, L. Zdeborová, and F. Krzakala,
Random-field p-spin-glass model on regular random graphs, J.
Phys. A 44, 185002 (2011).

012152-8

https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1080/00018732.2016.1211393
http://arxiv.org/abs/arXiv:1709.03827
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1109/TIT.2005.850085
https://doi.org/10.1088/1742-5468/2008/10/P10016
https://doi.org/10.1088/1742-5468/2008/10/P10016
https://doi.org/10.1088/1742-5468/2008/10/P10016
https://doi.org/10.1088/1742-5468/2014/10/P10025
https://doi.org/10.1088/1742-5468/2014/10/P10025
https://doi.org/10.1088/1742-5468/2014/10/P10025
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1103/PhysRevLett.104.207208
https://doi.org/10.1007/s00220-014-2269-5
https://doi.org/10.1007/s00220-014-2269-5
https://doi.org/10.1007/s00220-014-2269-5
https://doi.org/10.1007/s00220-014-2269-5
https://doi.org/10.1088/1751-8113/44/18/185002
https://doi.org/10.1088/1751-8113/44/18/185002
https://doi.org/10.1088/1751-8113/44/18/185002
https://doi.org/10.1088/1751-8113/44/18/185002


IMPROVED BELIEF PROPAGATION ALGORITHM FINDS … PHYSICAL REVIEW E 97, 012152 (2018)

[12] C. Lupo and F. Ricci-Tersenghi, Approximating the XY model
on a random graph with a q-state clock model, Phys. Rev. B 95,
054433 (2017).

[13] S. Von Ohr, M. Manssen, and A. K. Hartmann, Aging in the
three-dimensional random-field Ising model, Phys. Rev. E 96,
013315 (2017).

[14] A. T. Ogielski, Integer Optimization and Zero-Temperature
Fixed Point in Ising Random-Field Systems, Phys. Rev. Lett.
57, 1251 (1986).

[15] A. K. Hartmann and H. Rieger, Optimization Algorithms in
Physics(Wiley Online Library, New York, 2002), Vol. 2.

[16] D. Dhar, P. Shukla, and J. P. Sethna, Zero-temperature hysteresis
in the random-field Ising model on a Bethe lattice, J. Phys. A
30, 5259 (1997).

[17] T. P. Handford, F. J. Perez-Reche, and S. N. Taraskin, Exact spin–
spin correlation function for the zero-temperature random-field
Ising model, J. Stat. Mech.: Theory Exp. (2012) P01001.

[18] P. Shukla, Exact expressions for minor hysteresis loops in the
random field Ising model on a Bethe lattice at zero temperature,
Phys. Rev. E 63, 027102 (2001).

[19] X. Illa, P. Shukla, and E. Vives, Zero-temperature hysteresis in a
random-field Ising model on a Bethe lattice: Approach to mean-
field behavior with increasing coordination number z, Phys. Rev.
B 73, 092414 (2006).

[20] H. Ohta and S.-I. Sasa, A universal form of slow dynamics in
zero-temperature random-field Ising model, Europhys. Lett. 90,
27008 (2010).

[21] M. L. Rosinberg, G. Tarjus, and F. J. Perez-Reche, Stable,
metastable and unstable states in the mean-field random-field
Ising model at t = 0, J. Stat. Mech.: Theory Exp. (2008)
P10004.

[22] P. M. Bleher, J. Ruiz, and V. A. Zagrebnov, On the phase diagram
of the random field Ising model on the Bethe lattice, J. Stat. Phys.
93, 33 (1998).

[23] F. Morone, G. Parisi, and F. Ricci-Tersenghi, Large deviations
of correlation functions in random magnets, Phys. Rev. B 89,
214202 (2014).

[24] M. Mézard and G. Parisi, The Bethe lattice spin glass revisited,
Eur. Phys. J. B 20, 217 (2001).

[25] M. Mézard and G. Parisi, The cavity method at zero temperature,
J. Stat. Phys. 111, 1 (2003).

[26] U. Ferrari, C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi,
and T. Rizzo, Finite-size corrections to disordered systems
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