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Abstract. The typical complexity of constraint satisfaction problems (CSPs) 
can be investigated by means of random ensembles of instances. The latter 
exhibit many threshold phenomena besides their satisfiability phase transition, 
in particular a clustering or dynamic phase transition (related to the tree 
reconstruction problem) at which their typical solutions shatter into disconnected 
components. In this paper we study the evolution of this phenomenon under 
a bias that breaks the uniformity among solutions of one CSP instance, 
concentrating on the bicoloring of k-uniform random hypergraphs. We show 
that for small k the clustering transition can be delayed in this way to higher 
density of constraints, and that this strategy has a positive impact on the 
performances of simulated annealing algorithms. We characterize the modest 
gain that can be expected in the large k limit from the simple implementation 
of the biasing idea studied here. This paper contains also a contribution of a 
more methodological nature, made of a review and extension of the methods to 
determine numerically the discontinuous dynamic transition threshold.
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1. Introduction

In constraint satisfaction problems (CSPs) a set of N discrete-valued variables are 
subjected to M constraints; the decision version of the problem consists in answer-
ing yes or no to the question ‘is there an assignment of the variables that satisfies all 
the constraints simultaneously?’ Computational complexity theory [1, 2] classifies the 
difficulty of these problems according to the existence of efficient (polynomial time) 
algorithms able to solve all their possible instances.
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Besides this worst-case point of view an important effort has been devoted to the 
characterization of the ‘typical’ difficulty of CSPs, where typical is defined with respect 
to a random ensemble of instances, a property being considered typical if it occurs with 
a probability going to one in the thermodynamic (large size) limit. Many random CSPs 
have been studied, notably k-SAT and q-COL; in this paper we will focus on the bicol-
oring of random hypergraphs (related to k-NAESAT), in which the N variables can each 
take two values (colors), each of the M constraints is generated by choosing uniformly 
at random a k-uplet of distinct variables, and impose that both colors appear in the 
configuration of these k variables (i.e. they forbid monochromatic neighborhoods). The 
interactions induced by these constraints have thus the structure of an Erdős–Rényi 
random hypergraph, and the thermodynamic limit corresponds to N ,M → ∞ with 
fixed ratio α = M/N and arity parameter k. The random bicoloring problem exhibits 
the same rich phenomenology as k-SAT and q-COL, while being slightly simpler from 
a technical point of view.

Random CSPs exhibit threshold phenomena in the large size limit, the probability 
of some properties jumping abruptly from 1 to 0 as a function of the control parameter 
α. The most prominent of these phase transitions occur at the satisfiability threshold 
αsat(k): for α < αsat(k) typical instances are satisfiable, i.e. admit configurations of 
variables that satisfy all constraints simultaneously, while for α > αsat(k) a random 
instance is typically unsatisfiable.

Random CSPs bear a formal similarity with mean-field spin-glasses, the interac-
tions induced by the constraints being of a frustrating nature while lacking a finite-
dimensional structure thanks to the randomness in their construction. This analogy 
has been exploited in depth through the application of methods first developed in the 
context of statistical mechanics of disordered sytems, namely the replica and cavity 
method, to random CSPs [3–7]. This line of study has provided predictions of αsat(k) 
for many models, but also unveiled many other phase transitions for the structure of 
the set of solutions in the satisfiable phase, and led to the proposal of new algorithms 
that exploit this detailed picture of the solution space. Many of these (heuristic) predic-
tions have been confirmed rigorously later on [8–11].

In this paper we will pay a particular attention to the dynamic phase transition 
that occurs at some threshold αd(k) < αsat(k), which is also known as the clustering 
and reconstruction transition. This transition can indeed be described from various per-
spectives; looking at the set of solutions of typical instances, αd(k) separates a regime 
where this set is rather well-connected, any solution can be reached from any other one 
via nearby intermediate solutions, while for α > αd(k) the solutions break apart into 
distinct clusters (or pure states) which are internally well-connected, but separated one 
from the other by regions of the configuration space void from solutions. This trans ition 
marks also the birth of a specific type of long-range correlations between variables, 
known as point-to-set correlations, which implies the solvability of an information-
theoretic problem called tree reconstruction [12]. These correlations forbid in turn the 
rapid equilibration of the stochastic processes that respect the detailed balance condi-
tion [13], hence the name dynamic given to αd(k). As a matter of fact the static proper-
ties of the model are smooth at αd(k) and are only sensitive to a further condensation 
transition αc(k) that affects the number of dominant clusters [7].

https://doi.org/10.1088/1742-5468/ab02de
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Despite the rather detailed picture of the set of solutions of random CSPs sketched 
above, many questions remain open, in particular concerning the behavior of algorithms 
that attempts at finding such solutions. These algorithms can be of very different types, 
proceeding through a local search in the space of configurations [14–17], or assigning 
variables one by one, according to either simple heuristics [18–21] or detailed informa-
tion provided by message passing algorithms (belief or survey propagation) inspired 
by statistical mechanics considerations [5, 22–25]. These dynamics are most of the 
time ‘out-of-equilibrium’ processes, either because their definition breaks explicitly the 
detailed balance (reversibility) conditions, or because they will not be able to remain 
equilibrated during their evolution on reasonably accessible time scales. The great 
diversity of these algorithms and their out-of-equilibrium character makes very chal-
lenging the attempts to characterize the putative algorithmic barrier αalg(k) above 
which no algorithm is able to find a solution in polynomial time for a typical random 
instance (assuming of course P ̸=NP), and to relate it to the structural phase trans-
itions undergone by the set of solutions. For small values of k numerical experiments 
suggest that carefully designed local search algorithms [14, 16, 17] or survey propaga-
tion implementations [23] work (i.e. find solutions in polynomial time) up to densities 
very close to the satisfiability threshold, thus setting lowerbounds on αalg(k) almost 
coinciding with the upperbound αsat(k). The situation is quite different in the large k 
limit, that allows for some analytical simplifications. Let us recall that in this limit the 
satisfiability threshold occurs at αsat(k) ∼ 2k−1 ln 2, while the asymptotic expansion of 
the clustering threshold is αd(k) ∼ 2k−1(ln k)/k (the quantitative statements are made 
here for the hypergraph bicoloring problem, but the qualitative picture is the same for 
many random CSPs). Numerical experiments cannot access directly the large k limit, 
but simple enough algorithms can be studied analytically for all k; sequential assign-
ment algorithms that use simple heuristics to guide their choices can be described in 
terms of differential equations [18–21] and shown to work in polynomial time up to 
densities of the order αsat(k)/k, with a constant prefactor depending on the heuristic 
chosen. This scaling was improved in [26], where an algorithm was shown to work up 
to densities of constraints coinciding at leading order with αd(k). This leaves a multi-
plicative gap of order k (neglecting the sub-dominant logarithmic correction) from the 
satisfiability transition, hence a wide range of parameters α for which typical instances 
are known to have solutions, yet no provably efficient algorithm is known at pres-
ent to find them. Some negative results have also been obtained, [27] proved that no 
‘local’ algorithm (in a precise sense) can find solutions in polynomial time for densities 
α larger than αd(k) ln k (asymptotically at large k), see also [24, 25, 28–31] for other 
analysis of some specific algorithms.

A further structural property of the set of solutions of a CSP has been studied under 
the name of ‘frozen variables’. Roughly speaking, a frozen variable is a variable that 
takes the same value in all the solutions of a cluster [32, 33], or equivalently a variable 
whose flip from a solution to another one requires rearranging an extensive number of 
other variables [34, 35]. Two distinct phase transitions can then be defined: the so-called 
rigidity transition αr marks the appearance of a positive fraction of frozen variables in 
typical solutions of a random CSP, while above the freezing transition αf all solutions 
have this property. In the intermediate regime [αr,αf ] unfrozen solutions still exist but 
are exponentially less numerous than the typical, frozen ones. The determination of 
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αr is relatively easy, as it concerns a property of the typical solutions, and in the large 
k limit the rigidity threshold αr is very close to the dynamic one αd [10, 36–39]. On 
the contrary the freezing transition at αf is intrisically a large deviation result, and its 
determination is quite challenging even for heuristic statistical mechanics methods. It 
has been predicted in [40] to occur close to the satisfiability threshold for large k (more 
precisely at αf ∼ αsat/2), in line with the rigorous result αf ! (4/5)αsat from [8, 41].

Frozen variables induce a very strong form of correlations, and it seems impossible 
to construct in polynomial time a solution containing an extensive number of frozen 
variables, that must all be set in a consistent way (except in the very special case of 
XORSAT due to the linear structure of its constraints) [32, 42]. As a matter of fact the 
best performing solving algorithms in the range α ∈ [αr,αf ] do not find typical solutions 
with frozen variables, but atypical solution without frozen variables [23, 43–45]. It is 
thus natural to conjecture that αf is an upperbound on αalg, but this still leaves a very 
wide gap between the threshold of the best known algorithms and αf.

In this paper we study probability measures over the set of solutions of random 
CSPs, for which not all solutions are equally probable but have a weight depending on 
their tendency to form frozen variables. The same perspective has been used in a few 
recent works [40, 46–48], namely to consider a biased probability measure over the set 
of solutions of a random CSP (in [46, 47] the local entropy, or density of solutions in 
configuration space, is used to weight differently the solutions, in [40] this role is played 
by the number of frozen variables, while in [48] hard sphere particles are considered 
as a CSP, with a bias due to an additional pairwise interaction between particles). 
Indeed the structural phase transitions mentioned above concern the uniform measure 
over solutions, and it has been demonstrated that the threshold for properties that are 
typical in the uniform ensemble (in particular the existence of frozen variables) can be 
significantly moved by an appropriate bias [40] (biased measures with weights depend-
ing on the number of satisfying literals in a clause were also studied in [49] but with 
the different goal of allowing for a quiet planting of solutions in k-SAT instances). This 
opens some hope to diminish the algorithmic gap, by giving more weight to solutions 
that are ‘easier’ to find, for instance because they contain less frozen variables, and to 
turn atypical properties of the uniform measure into typical ones of the biased measure.

We will concentrate in particular on the increase of the dynamic threshold αd that 
results from a well-chosen bias between solutions. The algorithmic motivation for the 
study of this threshold comes from the simulated annealing (SA) [50] procedure: below 
αd a Markov chain reversible with respect to a finite-temperature probability distri-
bution should be able to equilibrate in polynomial time, hence to find solutions (non-
uniformly) once the temperature is lowered slowly enough (if there is no reentrance 
in temper ature). We shall implement here a relatively simple version of this idea, 
introducing soft interactions between the variables inside a constraint of the original 
CSP. We will demonstrate that for small values of k this allows indeed to increase the 
dynamic threshold αd, and check that this effect improves the performance of simu-
lated annealing. On a more negative side we shall see that this simple implementation 
of the idea is not powerful enough to modify the leading order of the large k algorithmic 
gap, but motivates the study of more elaborate biasing strategies.

The rest of the paper is organized as follows. In section 2 we define more precisely 
the model under study and present the equations that describe its behavior in the 

https://doi.org/10.1088/1742-5468/ab02de
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framework of the cavity method from statistical mechanics. Section 3 is of a more 
methodological nature, and contains a review and extension of the numerical proce-
dures to determine accurately the dynamic threshold in models exhibiting a discon-
tinuous 1RSB transition. This section can be skipped by a reader mostly interested in 
the results we obtained, which are presented in section 4 for what concerns the phase 
diagrams predicted by the cavity method, in particular the increase of the dynamic 
threshold of the biased measure with respect to the uniform one, and in section 5 for 
numerical simulations on finite size samples via simulated annealing. We study in 
section 6 the limit of large k and derive an asymptotic upperbound on the possible 
increase of the dynamic threshold, before presenting our conclusions and perspectives 
in section 7.

2. Definition of the model and statistical mechanics formalism

2.1. Definition of the model

We will consider in this paper the k-uniform hypergraph bicoloring problem (related to 
the k-NAESAT problem) [9, 40, 45, 51–56]. An instance of this CSP is defined by an 
hypergraph G = (V ,E) where V  is a set of N vertices, and E a set of M hyperedges, 
each of them containing k vertices (see figure 1 for a representation of G as a factor 
graph). We shall denote ∂a the set of vertices contained in the ath hyperedge, and 
similarly ∂i the set of hyperedges adjacent to the ith vertex. The variables of this CSP 
are N Boolean variables, represented as Ising spins σi ∈ {−1, 1}, living on the vertices 
of G. We will denote σ = (σ1,. . . ,σN) the global configuration of the variables, and 
σS = {σi}i∈S the configuration of the variables in a subset S of the vertices. A con-
straint (or clause) is associated to each hyperedge a ∈ E ; the ath constraint is satisfied 
by the configuration σ if and only if there is at least one  + 1 and one  −1 among the k 
variables of σ∂a, in such a way that the edge is not monochromatic (i.e. that not all 
variables adjacent to it are equal). A configuration σ is called a solution of the CSP if 
it satisfies the M constraints simultaneously.

A convenient way to study the set of solutions S(G) of a given instance (assuming 
it is non-empty) is to consider the uniform probability measure over the solutions,

µ(σ) =
1

Z(G)

M∏

a=1

ω(σ∂a), (1)

where the normalization factor Z(G) (also called partition function) counts the number 
of solutions, and ω(σ1,. . . ,σk) is the indicator function of the event ‘the k variables 
σ1, . . . , σk are not all equal’; the ath term in this product is thus equal to 1 if the ath 
constraint is satisfied, and to 0 otherwise.

We shall actually study in this paper a measure of the form (1), but with a more 
generic form for the function ω(σ1,. . . ,σk). We will assume that ω is invariant under all 
permutation of its k arguments; as the latter are binary variables ω can only depend on 
the number p  of  −1 among its arguments, and we will denote ωp ! 0 the value it then 
assumes. This translates into the formula

https://doi.org/10.1088/1742-5468/ab02de
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ω(σ1,. . . ,σk) = ωp if
k∑

i=1

σi = k − 2p . (2)

The uniform measure over the solutions of the bicoloring problem is recovered for the 
choice ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1. If one chooses instead ωp to depend on p  for 
p ∈ {1, . . . , k − 1}, while keeping ω0 = ωk = 0, one obtains a probability measure µ that 
is still supported solely on the proper bicolorings of G, but is not uniform anymore. As 
explained in the introduction our goal in this paper is to explore the properties of µ 
that arises from this bias between solutions of the CSP. We will sometimes relax the 
constraint ω0 = ωk = 0, to model the effect of a positive temperature that allows some 
constraints to be violated. We will in any case always assume that ωp = ωk−p: this 
ensures that the global spin-flip symmetry µ(−σ) = µ(σ) (which is indeed a property of 
the set of proper bicolorings) is preserved.

We shall characterize the properties of µ(σ) for ‘typical’ hypergraphs, by study-
ing random instances; even if most of the approach can be generalized to more generic 
random ensembles, for concreteness we will concentrate on Erdős–Rényi random hyper-
graphs. An instance of this ensemble is generated by drawing, independently for each of 
its hyperedges a = 1, . . . ,M , the adjacent vertices ∂a as an uniformly random k-uplet 
among the 

(
N
k

)
 possible ones. We will be interested in the large size (thermodynamic) 

limit, in which both N and M go to infinity at a fixed ratio α = M/N. We recall that 
in this limit such random hypergraphs converge locally to hypertrees: the neighborhood 
within a fixed distance around an uniformly chosen vertex is, with a probability going to 
1 in the large size limit, acyclic. More precisely, the local limit tree is a Galton–Watson 
branching process, in which the law p d for the degree |∂i| of an uniformly chosen vertex 
i is the Poisson distribution of average αk. Thanks to the properties of the Poisson law 
this is also the probability that an uniformly chosen vertex among an uniformly chosen 
hyperedge has degree d  +   1 (i.e. the offspring probability in the Galton–Watson tree is 
also given by p d).

Figure 1. Example of a factor graph with k  =   3, N  =   8, M  =   4: vertices are 
represented by circles, and hyperedges by squares. An edge is drawn between the 
ath hyperedge and the ith vertex if and only if i ∈ ∂a.

https://doi.org/10.1088/1742-5468/ab02de
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2.2. BP equations and Bethe free-energy

In order to determine the typical properties of the measure µ(σ), and of the free-entropy 
density (lnZ)/N , we shall exploit the cavity method [57–59], a formalism particularly 
efficient for interacting particle models on sparse random structures. As recalled above 
these structures are locally tree-like; the first step of the cavity method amounts in con-
sequence to study such models on finite trees. In that case one can exploit the recursive 
nature of trees to derive an exact description of µ(σ) in terms of its marginals, from 
which also lnZ can be expressed.

More precisely, let us introduce the messages ηi→a and η̂a→i on each edge (i,a) of the 
factor graph, that are the marginal probability laws of σi in amputated graphs where 
some interactions are discarded; ηi→a is the marginal of σi in the factor graph where one 
removes the hyperedge a, and η̂a→i is the marginal of σi in the factor graph where one 
removes all the hyperedges in ∂i \ a. Removing an interaction in a tree breaks it into 
independent subtrees, which allows to write recursive equations between these messages:

ηi→a(σi) =
1

zia0

∏

b∈∂i\a

η̂b→i(σi), (3)

η̂a→i(σi) =
1

ẑai0

∑

σ∂a\i

ω(σ∂a)
∏

j∈∂a\i

ηj→a(σj ), (4)

where the constants zia0  and ẑai0  are normalizing factors. These equations are valid for 
any (discrete) domain of the spins σi; as we are studying the case where σi = ±1, we 
can parametrize the probability laws ηi→a and η̂a→i by their mean values, defining 
ηi→a(σi) = (1 + hi→aσi)/2 and η̂a→i(σi) = (1 + ua→iσi)/2, with hi→a, ua→i ∈ [−1, 1]. The 
recursive equations can be rewritten with this parametrization as

hi→a = f({ub→i}b∈∂i\a), ua→i = g({hj→a}j∈∂a\i), (5)
where the functions f  and g read explicitly

f(u1,. . .,ud) =

d∏
i=1

(1 + ui)−
d∏

i=1
(1− ui)

z0(u1,. . .,ud)
, z0(u1,. . .,ud) =

d∏

i=1

(1 + ui) +
d∏

i=1

(1− ui), (6)

g(h1,. . .,hk−1) =

∑
σ1,...,σk

ω(σ1,. . .,σk)σk

k−1∏
i=1

(1 + hiσi)

ẑ0(h1,. . .,hk−1)
, ẑ0(h1,. . .,hk−1) =

∑

σ1,...,σk

ω(σ1,. . .,σk)
k−1∏

i=1

(1 + hiσi).

 (7)
The function f  has been written here for a vertex of degree d  +   1.

On a tree the equation (5) admit a single solution, that can be found by iterating 
(5) from the leaves towards the interior of the graph. Once this solution is determined 
one can easily compute the marginal probability of σi under µ (using the formula in (3) 
with all messages incoming onto i), as well as the partition function Z(G):

1

N
lnZ(G) =

1

N

N∑

i=1

lnZv
0 ({ua→i}a∈∂i) +

1

N

M∑

a=1

lnZc
0({hi→a}i∈∂a)−

1

N

∑

(i,a)

lnZe
0(hi→a,ua→i),

 (8)

https://doi.org/10.1088/1742-5468/ab02de
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where the last sum runs over the edges of the factor graph, and the local partition func-
tions are defined as:

Zv
0 (u1,. . .,ud) =

∑

σ

d∏

i=1

(
1 + σui

2

)
, (9)

Zc
0(h1,. . .,hk) =

∑

σ1,...,σk

ω(σ1,. . .,σk)
k∏

i=1

(
1 + σihi

2

)
, (10)

Ze
0(h,u) =

∑

σ

(
1 + σh

2

)(
1 + σu

2

)
. (11)

The recursive equations (5) and the associated expression (8) of the log partition 
function (a.k.a. free-entropy density) are exact if the factor graph is a finite tree; they 
can however be used heuristically on any factor graph, even in the presence of cycles. 
The resulting message passing iterative algorithm that searches for fixed points of 
(5) is then known as belief propagation (BP) [60–62], and the expression (8) is called 
the Bethe–Peierls approximation for the free-entropy. As typical random graphs are 
locally tree-like one can reasonably hope that this approach is asymptotically exact in 
the thermodynamic limit for typical instances. This is indeed the basis of the cavity 
method, with nevertheless some subtleties in the treatment of the long loops that are 
present in random graphs.

2.3. Replica symmetric cavity method

The aim of the cavity method is to characterize the properties of the measure µ defined 
in (1), for typical random graphs in the thermodynamic limit, in particular the value of 
the quenched free-entropy density

Φ(α,{ωp}) = lim
N→∞

1

N
E[lnZ(G)], (12)

around which (lnZ(G))/N concentrates thanks to the self-averaging phenomenon.
There are different versions of the cavity method, that rely on self-consistent 

hypotheses of various complexity on the effect of the long loops. In the simplest 
version, called replica symmetric (RS), one assumes a fast decay of the correlations 
between distant variables in the measure µ(σ), in such a way that the BP equa-
tions converge to a unique fixed point on a typical large instance, and that the 
measure is well described by the locally tree-like approximation. Consider then an 
uniformly chosen directed edge i → a in a random hypergraph, and call PRS the 
probability law of the fixed-point message hi→a thus obtained. We shall denote simi-
larly P̂RS the probability of the messages ua→i; within the decorrelation hypothesis 
of the RS cavity method the incoming messages on a given vertex (resp. hyperedge) 
are i.i.d. with the law P̂RS (resp. PRS). For this to be self-consistent the recursion 
equation (5) must become equalities in distribution, or in other words the laws PRS 
and P̂RS must obey the following equations:

https://doi.org/10.1088/1742-5468/ab02de
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PRS(h) =
∞∑

d=0

pd

∫ ( d∏

i=1

duiP̂RS(ui)

)
δ(h− f(u1,. . . ,ud)), (13)

P̂RS(u) =

∫ (k−1∏

i=1

dhiPRS(hi)

)
δ(u− g(h1,. . . ,hk−1)) . (14)

The RS cavity prediction for the free-entropy (12) is then obtained by averaging the 
Bethe expression (8) with respect to the message distributions PRS and P̂RS, which 
yields:

ΦRS =
∞∑

d=0

pd

∫ ( d∏

i=1

duiP̂RS(ui)

)
lnZv

0 (u1,. . .,ud) + α

∫ ( k∏

i=1

dhiPRS(hi)

)
lnZc

0(h1,. . .,hk)

− αk

∫
dhduPRS(h)P̂RS(u) lnZe

0(h,u) .

 (15)
As we assume that ωp = ωk−p, i.e. that the model is invariant under the global 

spin-flip symmetry, the RS equations admit as a solution the uniform distributions 

PRS(h) = δ(h), P̂RS(u) = δ(u). For frustrated models with an antiferromagnetic char-
acter this is the relevant solution (a spontaneous breaking of the symmetry between 
positive and negative spins would induce an alternating order of the Néel type, that 
is admissible on a tree but incompatible with random graphs that contain cycles of 
odd lengths), hence one obtains explicity the value of the free-entropy by inserting the 
trivial solution of the RS equations into (15):

ΦRS(α,{ωp}) = ln 2 + α ln

(
1

2k

∑

σ1,...,σk

ω(σ1,. . .,σk)

)
= ln 2 + α ln

(
1

2k

k∑

p=0

(
k
p

)
ωp

)
. (16)

Note that this expression actually coincides with the annealed (first moment) computa-
tion limN→∞(lnE[Z(G)])/N .

In the special case ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1, for which µ(σ) corresponds to 
the uniform measure over proper bicolorings, the partition function Z(G) counts the 
number of solutions, hence the free-entropy lnZ is equal to the entropy of the uni-
form measure. The prediction of the RS cavity method is thus (using a subscript u for 
uniform):

sRS
u (α) = ΦRS

u (α) = ln 2 + α ln

(
1− 1

2k−1

)
. (17)

For a generic choice of parameters {ωp} the free-entropy lnZ differs from the 
(Shannon) entropy of the measure µ(σ). The latter can be obtained by a Legendre 
transform with respect to the parameters {ωp}; one way to justify this statement is to 
remember that for a probability measure of the form (1) one has

S(µ) = −
∑

σ

µ(σ) lnµ(σ) = lnZ −
M∑

a=1

∑

σ

µ(σ) lnω(σ∂a) . (18)
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From the joint marginal of the variables around a constraint in the trivial RS solution, 
and from the RS free-entropy (16) one thus obtains the RS prediction for the entropy 
density

sRS(α,{ωp}) = ln 2 + α ln

(
1

2k

k∑

p=0

(
k
p

)
ωp

)
− α

k∑
p=0

(
k
p

)
ωp lnωp

k∑
p=0

(
k
p

)
ωp

. (19)

This quantity is a decreasing function of α and becomes negative for α > αs=0, with

αs=0({ωp}) =
ln 2

k∑
p=0

( k
p)ωp lnωp

k∑
p=0

( k
p)ωp

− ln

(
1
2k

k∑
p=0

(
k
p

)
ωp

) .

 (20)

The negativity of the entropy for α > αs=0 is a clear sign of the failure of the RS assump-
tions, the Shannon entropy of a discrete probability measure being non-negative.

2.4. 1RSB formalism

2.4.1. 1RSB cavity equations. The hypothesis underlying the RS cavity method must 
break down when the density of interactions per variable α becomes too large; a first 
hint of this phenomenon, called replica symmetry breaking (RSB), is the negativity of 
the RS entropy at large enough α, which is impossible for a system with discrete degrees 
of freedom. As a matter of fact RSB can occur before αs=0; increasing α above a certain 
threshold causes the appearance of long-range correlations between distant variables 
under the measure µ, which contradicts the RS hypothesis. In such a case it becomes 
necessary to use more refined versions of the cavity method, that are able to deal with 
this RSB phenomenon [57]. At its first non-trivial level, called 1RSB for one step of 
RSB, the cavity method postulates the existence of a partition of the configuration 
space {−1, 1}N into ‘pure states’, or clusters, such that the restriction of the measure µ 
to a pure state has good decorrelation properties. This restricted measure can then be 
treated as the full measure in the RS cavity method, i.e. with BP equations to describe 
its marginal probabilities, and the Bethe free-entropy to compute its partition function.

To be more quantitative let us index with γ the partition of the configuration space 
into clusters, and denote Zγ the contribution to the partition function of the γth clus-
ter, as well as {uγ

a→i,h
γ
i→a} the solution of the BP equations that describe it. The 1RSB 

cavity method aims at computing the potential

Φ1(m) = lim
N→∞

1

N
ln

(
∑

γ

(Zγ)
m

)
, (21)

where the so-called Parisi parameter m allows to weight differently the various pure 
states, according to their relative weights. This quantity contains precious informations 
about the pure-state decomposition; suppose indeed that, at the leading exponential 
order, there are eNΣ(φ) pure states γ with Zγ = eNφ (again neglecting sub-exponential 
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corrections). The so-called complexity Σ(φ) plays thus the role of an entropy density, 
with pure states replacing usual configurations, and captures the RSB phenomenon 
quantitatively. The potential Φ1(m) and the complexity Σ(φ) are Legendre transforms 
of each other [63]; evaluating (21) via the Laplace method yields indeed

Φ1(m) = sup
φ

[Σ(φ) +mφ],
 (22)

which can be inverted in terms of the conjugated parameter as

Σ(m) = Φ1(m)−m
d

dm
Φ1(m) . (23)

In order to compute Φ1 one introduces, for a given sample and a given edge (i,a) 
of the factor graph, two distributions Pi→a and P̂a→i, that encode the laws of hγ

i→a and 
uγ
a→i when the pure state γ is chosen randomly with a probability proportional to Zm

γ . 
These distributions are found to obey self-consistent equations of the form

Pi→a = F ({P̂b→i}b∈∂i\a), P̂a→i = G({Pj→a}j∈∂a\i), (24)
where P = F (P̂1,. . . ,P̂d) is a shorthand for

P (h) =
1

z1(P̂1,. . . ,P̂d)

∫ ( d∏

i=1

duiP̂i(ui)

)
δ(h− f(u1,. . . ,ud)) z0(u1,. . . ,ud)

m,

 (25)
and P̂ = G(P1,. . . ,Pk−1) means

P̂ (u) =
1

ẑ1(P1,. . . ,Pk−1)

∫ (k−1∏

i=1

dhiPi(hi)

)
δ(u− g(h1,. . . ,hk−1)) ẑ0(h1,. . . ,hk−1)

m; (26)

the functions f , z0, and g, ẑ0 were defined in equations (6) and (7), respectively, and the 

factors z1 and ẑ1 ensure the normalization of the distributions P (h) and P̂ (u).
In order to deal with random hypergraphs one introduces the probability distribu-

tions over the 1RSB messages P1RSB(P ) and P̂1RSB(P̂ ) that obeys the consistency rela-
tions similar to (13),

P1RSB(P ) =
∞∑

d=0

pd

∫ ( d∏

i=1

dP̂i P̂1RSB(P̂i)

)
δ[P − F (P̂1,. . . ,P̂d)], (27)

P̂1RSB(P̂ ) =

∫ (k−1∏

i=1

dPi P1RSB(Pi)

)
δ[̂P −G(P1,. . . ,Pk−1)] .

The 1RSB potential for typical random hypergraphs can then be computed from the 
solution of these equations as

Φ1(m) =
∞∑

d=0

pd

∫ ( d∏

i=1

dP̂iP̂1RSB(P̂i)

)
lnZv

1 (P̂1,. . . ,̂Pd) + α

∫ ( k∏

i=1

dPiP1RSB(Pi)

)
lnZc

1(P1,. . .,Pk)

− αk

∫
dPdP̂P1RSB(P )P̂1RSB(P̂ ) lnZe

1(P ,̂P ),

 (28)
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with:

Zv
1 (P̂1,. . . ,P̂d) =

∫ ( d∏

i=1

duiP̂i(ui)

)
(Zv

0 (u1,. . . ,ud))
m, (29)

Zc
1(P1,. . . ,Pk) =

∫ ( k∏

i=1

dhiPi(hi)

)
(Zc

0(h1,. . . ,hk))
m, (30)

Ze
1(P ,P̂ ) =

∫
dhduP (h)P̂ (u)(Ze

0(h,u))
m . (31)

Finally the 1RSB prediction for the free-entropy is

Φ1RSB = inf
m∈[0,1]

Φ1(m)

m
. (32)

Note that the 1RSB equations always admit the RS solution as a special case, 
when the distributions P in the support of P1RSB are Dirac measures. In most models 
this trivial solution of the 1RSB equations is the only one at small values of α; then 
Φ1(m) = mΦRS, and the thermodynamic prediction of the RS and 1RSB versions of the 
cavity method coincides. Increasing the number of constraints of the system non-trivial 
solutions of the 1RSB equations can appear; the dynamic threshold αd is defined as the 
smallest value of α for which the 1RSB equations with m  =   1 admit a solution distinct 
from the RS one. A further distinction has then to be made: if the associated complex-
ity Σ(m = 1) is positive the extremum in (32) is reached for m  =   1 and Φ1RSB = ΦRS. In 
such a ‘dynamic 1RSB’ situation the typical configurations of the Gibbs measure are 
supported on an exponentially large number of pure states, in such a way that the total 
free-entropy (or any correlation functions between a finite number of variables) is unable 
to detect the difference with a RS situation. On the contrary when Σ(m = 1) < 0 the 
extremum in (32) selects a non-trivial value ms < 1 of the Parisi parameter, the Gibbs 
measure condenses on a sub-exponential number of clusters, and correlations between 
finite sets of variables unveil the RSB phenomenon. One calls condensation threhold αc 
the smallest value of α for which a solution of the 1RSB equations with Σ(m = 1) < 0 
exists, which corresponds to a point of non-analyticity of the free-entropy density.

2.4.2. Simplifi cations for m  =  1. The complete 1RSB equations have a rather intri-
cate structure, as they are self-consistent equations for probability distributions over 
probability distributions, which make in particular their numerical resolution rather 
cumbersome. Fortunately for special values of the parameter m (i.e. m  =   0 and m  =   1) 
they can be largely simplified. We shall sketch here this simplification procedure for 
m  =   1, which as explained above is the important one for the determination of the 
dynamic and condensation phase transitions; for further details the reader is referred 
to [33] where the simplifications are explained in more details and in a general setting, 
and to [64] where their connections with the tree reconstruction problem are discussed.

The crucial technical property of the equations that opens the door to simplifications 
at m  =   1 is the fact that, for this value, the normalization constant z1 in (25) does 
not depend on the whole distributions P̂1, . . . , P̂d, but only on their average values 
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∫
duiP̂i(ui)ui (a similar statement holds for ẑ1 in (26)). Conditional on this average 

values F is thus a multilinear function of its arguments, the equation (27) can then be 

averaged and closed on the mean distributions Q and Q̂ defined as:

Q =

∫
dP P1RSB(P )P , Q̂ =

∫
dP̂ P̂1RSB(P̂ ) P̂ , (33)

which must be symmetric probability laws (i.e. Q(h) = Q(−h) and Q̂(u) = Q̂(−u)) for 
the global spin-flip symmetry to be preserved. These two quantities are solutions of

Q(h) =
∞∑

d=0

pd

∫ ( d∏

i=1

duiQ̂(ui)

)
δ(h− f(u1, . . . , ud))

z0(u1, . . . , ud)

z0(0, . . . , 0)
, (34)

Q̂(u) =

∫ (k−1∏

i=1

dhiQ(hi)

)
δ(u− g(h1, . . . ,hk−1))

ẑ0(h1, . . . ,hk−1)

ẑ0(0, . . . , 0)
. (35)

These equations are definitely simpler than the full 1RSB equations, as they bear 
on probability distributions instead of distributions of distributions; they have how-
ever one inconvenient feature, in particular for their numerical resolution, namely the 
reweighting terms z0 and ẑ0 which prevents their direct interpretation as recursive dis-
tributional equations. To get around this difficulty we shall define, for σ = ±1, the dis-

tributions Qσ(h) = (1 + hσ)Q(h) and Q̂σ(u) = (1 + uσ)Q̂(u). Thanks to the symmetry 
of Q and Q̂ these are well-normalized, and are related to the original distributions by 
Q(h) = (Q+(h) +Q−(h))/2. One can then show that they obey the following equations,

Qσ(h) =
∞∑

d=0

pd

∫ ( d∏

i=1

duiQ̂σ(ui)

)
δ(h− f(u1,. . . ,ud)), (36)

Q̂σ(u) =
∑

σ1,...,σk−1

p̃(σ1, ..., σk−1|σ)
∫ (k−1∏

i=1

dhiQσi(hi)

)
δ(u− g(h1, . . . ,hk−1)),

with the conditional probability distribution:

p̃(σ1,. . . ,σk−1|σ) =
ω(σ1,. . . ,σk−1,σ)∑

σ′
1,...,σ

′
k−1

ω(σ′
1,. . . ,σ

′
k−1,σ)

.
 (37)

Noting finally that the global flip-spin symmetry implies Q−(h) = Q+(−h) and 

Q̂−(u) = Q̂+(−u), one can write closed equations, without reweighting terms, on Q+  
and Q̂+ solely:

Q(t+1)
+ (h) =

∞∑

d=0

pd

∫ ( d∏

i=1

duiQ̂
(t)
+ (ui)

)
δ(h− f(u1,. . . ,ud)), (38)

Q̂(t)
+ (u) =

∑

σ1,...,σk−1

p̃(σ1, ..., σk−1|+)

∫ (k−1∏

i=1

dhiQ
(t)
+ (hi)

)
δ(u− g(σ1h1, . . . , σk−1hk−1)),
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where for future use we introduced discrete time indices t on these distributions, and 
where

p̃(σ1, . . . , σk−1|+) =
ω(σ1, . . . , σk−1, +)∑

σ′
1,...,σ

′
k−1

ω(σ′
1, . . . , σ

′
k−1, +)

=

k−1∑
p=0

ωp I
[
k−1∑
i=1

σi = k − 1− 2p

]

k−1∑
p=0

(
k − 1
p

)
ωp

.

 

(39)

Let us now turn to the thermodynamic computations; at m  =   1 one can check that 
Φ1(m = 1) = ΦRS as given in (16). To compute the complexity at m  =   1 from (23) we 
need to take the derivative with respect to m of Φ1 from (28). Because of its variational 
character ((28) is stationary with respect to variations of P1RSB and P̂1RSB as long as 
the 1RSB cavity equations (27) are fulfilled) only the explicit dependency on m has to 
be differentiated. Doing the simplification at m  =   1 yields then an expression in terms 

of Q+  and Q̂+:

d

dm
Φ1(m)

∣∣∣∣
m=1

=
∞∑

d=0

pd

∫ ( d∏

i=1

duiQ̂+(ui)

)
lnZv

0 (u1,. . . ,ud) (40)

+α
∑

σ1,...,σk

p(σ1,. . .,σk)

∫ ( k∏

i=1

dhiQ+(hi)

)
lnZc

0(σ1h1,. . .,σkhk) (41)

−αk

∫
dhduQ+(h)Q̂+(u) lnZe

0(h,u),

with

p(σ1,. . . ,σk) =
ω(σ1,. . . ,σk)∑

σ′
1,...,σ

′
k

ω(σ′
1,. . . ,σ

′
k)

.
 (42)

The form (38) of the 1RSB equations at m  =   1 is particularly convenient for an 
approximate numerical resolution with a procedure known as population dynamics 

[57]. Suppose indeed that Q̂(t)
+ (u) can be approximated by the empirical distribution 

over a large sample of representative elements:

Q̂(t)
+ (u) ≈ 1

N

N∑

i=1

δ(u− u(t)
i ) . (43)

Inserting this form in the rhs of the first line of (38) yields an approximation for Q(t)
+ (h) 

as

Q(t+1)
+ (h) ≈ 1

N

N∑

i=1

δ(h− h(t+1)
i ), (44)

where each of the representants h(t+1)
i  is constructed independently by drawing an inte-

ger d from the law p d, then d indices i1, . . . , id uniformly at random in {1, . . . ,N} and 
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setting h(t+1)
i = g(u(t)

i1 ,. . . ,u
(t)
id
). The second line of (38) can similarly be translated into 

a rule for generating a population of fields u(t) from the population of fields h(t). The size 
N  of the population used controls the computational cost of the procedure, and the 
numerical accuracy (in the limit N → ∞ empirical distributions converge to the exact 
ones). Iterating these two steps many times one converges to a fixed point solution of 

(38), which can either be the trivial one Q+(h) = δ(h), Q̂+(u) = δ(u), or a non-trivial 
solution. The dynamic transition αd is precisely the threshold that separates these two 
behaviors. It has been shown in [64] that the equations (38) can also be interpreted in 
terms of an information-theoretic problem called tree reconstruction [12, 65, 66]. In the 
latter one considers a rooted Galton–Watson random tree and use it as an information 
channel, with spin variables located on the vertices. The value σ of the spin at the root 
is broadcasted along the hyperedges, according to the free-boundary Gibbs measure 
with local interaction ω. The question in this context is whether the observation of the 
variables at distance t from the root contains a non-vanishing information on σ, in the 

limit t → ∞; in which case one says that the problem is reconstructible. As Q(t)
+ (h), 

after t iterations of (38), is the distribution of the posterior magnetization of the root 
conditional on the observation of the variables at distance t, in the broadcast process 
with σ = +1, the reconstructibility of the tree problem is equivalent to the existence of 
a non-trivial solution of the 1RSB equations with m  =   1, and the dynamic threshold αd 
coincides with the reconstruction transition of the associated tree problem. Moreover 
this connection unveils a natural initial condition for the iterative numerical resolution 
of (38),

Q(t=0)
+ (h) = δ(h− 1), (45)

corresponding to the perfect observation of the variables at distance t from the root.

2.4.3. The local instability of the RS solution (Kesten– Stigum bound). The properties 
of the measure µ(σ) change drastically when, upon increasing α, one moves from the 
RS phase to the 1RSB phase. The transition between the two situations, at the critical 
(dynamic) density αd, shows up as the appearance of a non-trivial solution of the 1RSB 
equations at m  =   1. Depending on the models this bifurcation, on which we shall come 
back in more details in section 3, can occur in a continuous or a discontinuous way. 
We shall discuss here a bound on αd, known as the Kesten–Stigum (KS) [12, 67] trans-
ition in the context of the tree reconstruction problem, or as the de Almeida–Thouless 
[68] trans ition for mean-field spin-glasses, that is tight for continuous bifurcations and 
that in any case provide an easy to compute analytical upper bound on αd (besides the 
bound αd < αs=0 we already discussed).

Let us recall that the 1RSB equations (27) always admit as a solution the RS distri-

bution, with P1RSB(P ) = δ[P − Ptriv], Ptriv(h) = δ(h) (and similarly for P̂1RSB(P̂ )). One 
way to test the existence of a non-trivial solution of the 1RSB equations is to investi-
gate the local stability of the RS solution. Suppose indeed that the distributions in the 
support of P1RSB are close to Ptriv, i.e. that they are supported on small values of h. One 
can then expand (25) and (26) and study the evolution of their average moments under 
the iterations of (27); the global spin-flip symmetry imposes that the average mean 
remains zero. The first non-trivial moment is thus the variance, which is found after a 
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short computation (see for instance [69] or appendix B in [70] for more details) to grow 
if and only if αk(k − 1)θ2 > 1, where θ is the derivative of g(u1,. . . ,uk−1) with respect 
to one of its arguments, evaluated on the trivial fixed-point. From the expression (7) 
we thus obtain the Kesten–Stigum threshold αKS above which the trival solution of the 
1RSB equations is unstable (and there must then exist a non-trivial solution) as

αKS =
1

k(k − 1)θ2
, θ =

∑
σ1,...,σk

ω(σ1,. . .,σk)σ1σ2

∑
σ1,...,σk

ω(σ1,. . .,σk)
=

k−2∑
p=0

(
k − 2
p

)
(ωp − 2ωp+1 + ωp+2)

k∑
p=0

(
k
p

)
ωp

.

 (46)
2.4.4. The presence of hard-fi elds in the 1RSB solution with m  =  1 (rigidity thresh-
old). For the special value m  =   1 of the Parisi parameter we have obtained in (38) a 
simplified form of the 1RSB equations; even if much simpler than the general formal-

ism, these equations bear on probability distributions (Q+  (h) and Q̂+(u)) and cannot 
be solved analytically in general. One can however make some more explicit statements 
when ω0 = ωk = 0 and ωp > 0 for p ∈ [1, k − 1], i.e. when the constraints forbid mono-
chromatic hyperedges, but allow all bichromatic configurations (even if they can give 
different weights to these configurations). In this case the distribution Q+  (h) can con-
tain a Dirac peak in h  =   1, corresponding to ‘hard fields’ that impose strictly the value 
of some variables (that are called frozen, or rigid) inside one pure state. Let us denote 

q (resp. q̂ ) the weight of h  =   1 (resp. u  =   1) under Q+  (resp. Q̂+). One can then obtain 
from (38) closed equations on q and q̂ :

q = 1−
∞∑

d=0

pd(1− q̂)d = 1− e−αkq̂, (47)

q̂ = p̃(−,. . . ,−|+) qk−1; (48)
indeed the expression of f  in (6) reveals that h  =   1 as soon as one of the neighboring 
constraint sends the hard field ui  =   1, while (7) shows that a variable is forced to a 
certain value σ by a constraint only when the k  −  1 other variables are simultaneously 
forced to −σ. Eliminating q̂  one sees that q is solution of

q = 1− exp(−Γqk−1), with Γ = αkp̃(−, . . . ,−|+) . (49)
For k ! 3 a non-trivial solution to this equation appears discontinuously, when Γ 
exceeds a critical value Γr. The value of Γr, and the associated solution qr, are the solu-
tions of

{
qr = 1− exp(−Γrqk−1

r )
1 = (k − 1)Γrqk−2

r exp(−Γrqk−1
r )

; (50)

see section 3 for more explanations on the origin of these equations. One can close the 
equation on qr, that obeys 1 = (k − 1) ln(1− qr)(1− 1/qr), from which Γr is obtained as 

Γr = − ln(1−qr)

qk−1
r

. Note that qr and Γr depend solely on k.
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Translating back to the parameters α, {ωp}, one sees that for any choice of {ωp} 
such that ω0 = ωk = 0 and ωp > 0 for p ∈ [1, k − 1] there exists a ‘rigidity threshold’ 
αr(k,{ωp}) above which the equation on the probability of hard-fields admits a non-
trivial solution, with (recalling the expression of p̃  from (39))

αr(k,{ωp}) =
1

k
Γr(k)

k−1∑
p=1

(
k − 1
p

)
ωp

ω1
=

1

k
Γr(k)

k−1∑
p=1

(
k
p

)
ωp

2ω1
,

 (51)

where in the last step we exploited the symmetry ωp = ωk−p. We shall denote αr,u the 
value of this threshold for the uniform case ω1 = · · · = ωk−1 = 1, i.e. when all proper 
bicolorings are weighted equally, in such a way that

αr,u(k) =
1

k
Γr(k)(2

k−1 − 1) . (52)

This rigidity threshold is an upperbound on the dynamic transition: if there exists a 
solution to the 1RSB equations at m  =   1 containing hard-fields, this is certainly a non-
trivial solution of the 1RSB equations. The inequality αd ! αr is in general strict, i.e. 
there can be non-trivial solution of the 1RSB equations at m  =   1 that do not contain 
any hard-field; this has been seen numerically in many problems, and proven rigorously 
for the graph q-coloring problem in the large q limit in [37, 39]. This rigidity threshold 
corresponds actually to a transition for a strong form of reconstructibility in the tree 
reconstruction interpretation: when α > αr, with positive probability the observation of 
far away variables allows to infer the value of the root without possibility of error. Let 
us also underline that among all the parameters {ωp} that define the bias among proper 
bicolorings ω1 = ωk−1 plays a special role in the expression (51) of the rigidity thresh-
old. Indeed hard fields are propagated along constraints that are ‘almost violated’, in 
the sense that they contain a single variable of a given color. Penalizing such ‘almost 
monochromatic’ hyperedges tends thus to avoid the percolation of frozen variables.

3. On the numerical determination of the dynamic transition

The dynamic threshold αd is the smallest value of α such that the 1RSB equations at 
m  =   1 admit a non-trivial solution (besides the RS trivial one in which all fields are 
equal to zero). Depending on the models the appearance of a non-trivial solution 
can occur either in a continuous or a discontinuous way. In the former case one has 
αd = αKS, the bifurcation occurs via the local instability of the trivial fixed point stud-
ied in section 2.4.3, and αd is thus known analytically. In the latter case αd < αKS, the 
birth of the non-trivial solution occurs non-perturbatively and cannot be detected from 
the properties of the trivial fixed point. The accurate numerical determination of αd 
when the transition is discontinuous is a rather difficult task. It corresponds to study a 
bifurcation for a fixed-point equation of the form Q = F (Q,α), where Q is a probability 
distribution and F a functional on this space, depending on the parameter α. We shall 
discuss later on the different numerical strategies that can be followed to determine αd, 
in particular one that, to the best of our knowledge, is new in this context. To explain 

https://doi.org/10.1088/1742-5468/ab02de


Biased landscapes for random constraint satisfaction problems

19https://doi.org/10.1088/1742-5468/ab02de

J. S
tat. M

ech. (2019) 023302

these different methods it is instructive to study first a much simpler case, in which 
the unknown Q is replaced by a real number, that we shall instead denote x for clarity.

3.1. Scalar bifurcations

Let us consider a function f(x,α), smooth in its two real arguments, and the associated 
discrete dynamical system x(t+1) = f(x(t),α), parametrized by α. We recall some basic 
facts in this setting: the stationary configurations of the dynamical system are the solu-
tions x∗(α) of the fixed point equation x = f(x,α). Their (linear) stability is determined 
by the coefficient λ(α) = (∂xf)(x∗(α),α) (here and below we denote (∂xf), (∂αf) and so 
on the partial derivatives of the function f ); a fixed point x∗(α) is indeed stable under 
iterations if |λ(α)| < 1, and unstable if |λ(α)| > 1. We also recall the implicit function 
theorem: if (x0,α0) is a solution of f(x0,α0) = x0, and if (∂xf)(x0,α0) ̸= 1, then there is 
a unique smooth function x∗(α) with f(x∗(α),α) = x∗(α) in a neighborhood of α0, with 
x∗(α0) = x0. Hence the bifurcations of the fixed point equation, i.e. the modifications in 
the number of solutions, or the singularities of these solutions, are associated to points 
where (∂xf)(x(α0),α0) = 1, in order for the implicit function theorem to be unappli-
cable. At these points the stability parameter λ(α) reaches its critical value 1.

To be more concrete we shall make the additional hypotheses that the order param-
eter x is restricted to non-negative values (x ! 0), and that f(0,α) = 0 for all α. Let us 
assume that this trivial fixed point, that exists for all α, is the unique solution for small 
enough values of α, and becomes non-unique when α exceeds a threshold αd. The two 
simplest ways to implement these hypotheses are sketched in figure 2, corresponding to 
a continuous bifurcation on the left panel, a discontinuous one on the right. Let us state 
a series of simple facts on these two types of phase transitions, that will be enlightening 
when we turn to the functional case.

Consider first the continuous case illustrated on the left panel of figure 2. The bifur-
cation occurs at the critical parameter value αd defined by (∂xf)(0,αd) = 1, the trivial 
fixed point being stable (resp. unstable) for α < αd (resp. α > αd). For α > αd there 
exists a non-trivial branch of stable fixed points x∗(α) > 0; in the neighborhood of the 
bifurcation the latter behaves as

x∗(α) = K(α− αd) + o((α− αd)) when α → α+
d , (53)

with K = −2(∂xαf)/(∂xxf), the derivatives being computed in (0,αd) (here and in the 
following the expressions of the various constants K can be obtained by a Taylor 
expansion of the equation x = f(x,α) around the bifurcation point, at the lowest non- 
trivial order). The stability parameter of the non-trivial solution, λ(α) = (∂xf)(x∗(α),α), 
reaches its marginal value 1 at the bifurcation as

λ(α) = 1−K ′(α− αd) + o(α− αd) when α → α+
d , (54)

with K ′ = (∂xαf).
Let us now turn to the discontinuous case (see the right panel of figure 2), and 

emphasize the main properties of the critical behavior of the bifurcation. The trivial 
fixed point is stable for all values of the parameter α; the bifurcation occurs at αd with 
the abrupt appearance of a solution xd > 0. These two quantities can be determined by 
solving the system of equations
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{
xd = f(xd,αd),
1 = (∂xf)(xd,αd) .

 (55)

For α > αd there are two branches of non-trivial solutions x−(α) < xd < x+(α) that 
emerge from xd (see the right panel of figure 3); in the neighborhood of αd they behave 
as

x±(α) = xd ±K
√
α− αd + o(

√
α− αd) when α → α+

d, (56)
where the coefficient K can be computed from the expansion of f  around the bifurcation 
point (explicitly, K =

√
−2(∂αf)/(∂xxf), the derivatives being computed in (xd,αd)). 

For α > αd x+(α) (resp. x−(α)) is linearly stable (resp. unstable); the stability param-
eter λ(α) = (∂xf)(x+(α),α) of the stable non-trivial branch reaches its critical value 1 
at the bifurcation, with a critical exponent 1/2:

λ(α) = 1−K ′√α− αd + o(
√
α− αd) when α → α+

d, (57)
with K ′ =

√
−2(∂αf)(∂xxf). We present in the left panel of figure 3 the iterates 

x(t+1) = f(x(t),α), for a few values of α < αd, starting from an initial condition x(0) > xd. 
Their long time limit is of course 0, the only fixed point in this phase, but when α → α−

d  
the decay is slower and slower, with a large number of iterations spent around a pla-
teau value at xd. More quantitatively one can define t∗(α) as the minimal t such that 
x(t) ! xd − ϵ, and obtain that

t∗(α) ∼ K ′′(αd − α)− 1/2 when α → α−
d , (58)

with K ′′ = 2π/K ′, independently of x(0) and ϵ (as long as 0 < ϵ < xd). Actually a whole 
scaling function describing the evolution of x(t) around the plateau can be derived, see 
[34] for more details.

3.2. Discontinuous functional bifurcations

Let us now come back to our original goal, namely the determination of the dynamic 
threshold αd above which appears a non-trivial solution of the 1RSB equations at 

Figure 2. Left panel: example of a continuous bifurcation with f(x,α) = 1− e−αx,  
for which αd = 1. Right panel: example of a discontinuous bifurcation with 
f(x,α) = 1− e−αx2

, for which αd = 2.455 41.
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m  =   1. As in the scalar case this transition can occur either in a continuous or in a dis-
continuous way; the former case was analytically dealt with in section 2.4.3, we shall 
hence concentrate now on the discontinuous transitions.

The 1RSB equation (38) can be written abstractly as a functional fixed point equa-
tion Q = F (Q,α); at variance with the scalar toy model discussed above they can only 
be solved approximately, for instance by the population dynamics numerical algorithm 
explained in section 2.4.2. Some examples of typical numerical results that can be 
obtained in this way are presented in figure 4; we use as an observable to condense the 
distribution Q+  into a single scalar the overlap q1 =

∫
Q+(h)hdh, which is equal to 0 for 

the trivial solution. On the left panel we plot the value of q1 as a function of the number 
of iterations, for a few values of α. One sees on this plot, reminiscent of the left panel 
of figure 3, the discontinuous birth of a non-trivial fixed point at αd, with a longer and 
longer plateau in the low α phase as a precursor of the transition. On the right panel 
of figure 4 we present the asymptotic value of q1 reached for large t, for different values 
of α around the dynamic transition (corresponding to the right panel of figure 3), that 
jumps discontinuously from 0 when α crosses αd.

It is not completely obvious how to extract a precise estimate of αd from this 

kind of data. The simplest approach amounts to determine the curves q(t)1  for several 
closely spaced values of α, and assess that αd ∈ [α<,α>], where α< is the largest value 

for which q(t)1  drops to 0 at large t, α> the smallest value for which a stable plateau is 
encountered. This determination suffers however from inaccuracies due to the finite 
number of α values one can investigate, the finite number of iterations one can per-
form (leading to an underestimation of α>) and to the finite size of the population that 
approximate the distribution Q+  (α< can thus be overestimated, finite size fluctuations 
having a destabilizing effect).

One can try to circumvent these difficulties by getting some inspiration from the 
much simpler scalar bifurcation studied above. We recall that the criticality at αd 
showed up in three different ways: (i) x+(α) exhibits a square root singularity when 
α → α+

d , see equation (56); (ii) the length of the plateau diverges when α → α−
d  with a 

Figure 3. Properties of the iterates and fixed points for the discontinuous 
bifurcation undergone by the function f(x,α) = 1− e−αx2

. Left panel: x(t) as a 
function of t for a few values of α close but strictly less than αd. Right panel: the 
non-trivial solutions x±(α) for α ! αd.

https://doi.org/10.1088/1742-5468/ab02de


Biased landscapes for random constraint satisfaction problems

22https://doi.org/10.1088/1742-5468/ab02de

J. S
tat. M

ech. (2019) 023302

critical exponent  −1/2, see equation (58); (iii) the stability parameter λ(α) reaches 1 
with a square root singularity when α → α+

d , as written in equation (57).
Assuming the same critical behavior to occur in the discontinuous functional bifur-

cation case (more complicated behaviors could occur in infinite dimensional spaces, 
but in absence of accidental degeneracies there should be a single critical direction at 
a bifurcation driven by a single parameter) one can try to exploit these scaling laws 
in order to obtain more precise estimates of αd. Point (i) translates into a square root 
singularity of the large t limit of q1 in the limit α → α+

d ; this does not seem very use-
ful to us, as it would involve a fit of q1(α) in which both αd and q1(αd) are unknowns. 
On the contrary points (ii) and (iii) yield simpler fits for the determination of αd. The 
aspect (ii) is very easy to exploit: from the curves of the left panel of figure 4 one can 
deduce immediately a value t∗(α) for the number of iterations necessary to fall below 
the plateau (as in the scalar case one can define t∗(α) with any threshold strictly 
between 0 and the plateau value). According to (58) t∗(α)− 2 should vanish linearly at 
αd; this is indeed what we obtain with a rather good accuracy, see the left panel of 
figure 5. However one cannot reach in this way a very large number of iterations, the 
numerical rounding errors and finite population size fluctuations having the tendency 
to accumulate over time; this cutoff on t thus limits the accuracy of this determination 
of αd. We have thus turned to the functional generalization of point (iii) above, namely 
the computation of a stability parameter λ(α) for the stable non-trivial branch α > αd, 
and the determination of αd as the parameter for which λ reaches 1. This extrapolation 
is done using the scaling anticipated in the scalar case in (57), and is illustrated in the 
right panel of figure 5. The functional nature of the unknown in the fixed point equa-
tion makes the definition of λ more complicated than in the scalar case, where it was 
simply ∂xf ; we give detailed explainations on the numerical computation of λ(α) in the 
functional case in the next section. Before that let us emphasize that the square root 
behavior of λ around αd, guessed from the scalar bifurcation, is in very good agreement 
with the numerical results obtained in the functional case when the dynamic trans-
ition is discontinuous (see the right panel of figure 5). We believe the determination 
of αd reached by the extrapolation of λ(α) is more reliable and accurate than the one 

Figure 4. Exemple of a discontinuous dynamic transition for k  =   6, ω0 = ωk = 0.005, 
ω1 = ωk−1 = 0.92, and ω2 = · · · = ωk−2 = 1. Left: q1(α,t) versus iteration time t for 
different values of α. Right: q1(α) averaged over t after equilibration. The size of 
the population used is 106.
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based on t∗(α). Indeed the former quantity is defined from a stable fixed-point of the 
equations, averages can be performed in a steady-state (plateau) regime to reduce the 
statistical error on its computation, while t∗(α) is a measure of a transient regime more 
sensitive to numerical inaccuracies.

As a consistency check we also present in figure 6 a similar study in the case of a 
continuous transition. We see that the stability parameter λ computed on the non-
trivial solution, i.e. for α > αd, reaches 1 with a linear behavior (as in the scalar case, 
see equation (54)), and that its extrapolation is in good agreement with the analytically 
computed value of αKS from equation (46). Moreover the numerical computation of the 
stability parameter of the trivial fixed-point coincides for α < αd with the analytical 
one, λKS = αk(k − 1)θ2.

3.3. The stability parameter λ in the functional case

As an intermediate step in the generalization from the scalar to the functional case let 
us consider a fixed point equation of the form x⃗ = f(x⃗,α), where the unknown x⃗ is a 
finite-dimensional real vector. The stability of a branch of solutions x⃗(α) can be deter-
mined by considering the Jacobian matrix J of the first derivatives of f  computed at 
the fixed point, that can be defined through the linearization

f(x⃗(α) + ε⃗,α) = x⃗(α) + J ε⃗+ o(∥ε⃗∥), (59)
where ε⃗  is a small perturbation around the fixed point. The stability parameter λ(α) 
can then be defined as the spectral radius of J, i.e. the largest absolute value of the 

Figure 5. Study of the discontinuous dynamic transition encountered 
as a function of α for the choice of parameters k  =   6, ω0 = ωk = 0.005, 
ω1 = ωk−1 = 0.92, ω2 = · · · = ωk−2 = 1. Left panel: determination of αd from the 
study of the decorrelation time t∗(α) for α < αd. The plot displays t∗(α)− 2 versus 
α, where one has defined t∗(α) as the first time for which the overlap drops below 
the value q1  =   0.4. The line is a fit of the data of the form t∗(α)− 2 = A (αd − α), 
with fitting parameters A and αd. The linear behavior confirms the divergence of t∗ 
with a scaling exponent  −1/2, as in the scalar case (58), the fit gives the estimation 
αd = 19.47. Right panel: determination of αd from the study of the stability 
parameter λ(α) for α > αd. The plot displays (1− λ(α))2 versus α, the linear fit 
reproduces the scaling behavior (57) of the scalar case, and yields αd = 19.467. Only 
the first points are used for the fit, in order to avoid the higher order contributions 
in powers of α− αd that are clearly visible at the largest values of α.
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elements of its spectrum. This spectral radius can be expressed in terms of successive 
applications of J on a perturbation ε⃗  as

λ(α) = lim
n→∞

(
∥Jnε⃗∥
∥ε⃗∥

) 1
n

, (60)

where we assume that ε⃗  has a non-vanishing projection on the eigenspace associated to 
the relevant eigenvalue, and where ∥ • ∥ can be any norm. For future use let us define 
ε⃗n = Jnε⃗  and rewrite this expression as

λ(α) = lim
n→∞

(
∥ε⃗n∥
∥ε⃗n−1∥

∥ε⃗n−1∥
∥ε⃗n−2∥

. . .
∥ε⃗1∥
∥ε⃗∥

) 1
n

. (61)

We would like now to extend the computation of a stability parameter to the 
1RSB equation (38) that can be rewritten as Q+ = F (Q+,α) by grouping the two lines 
together. Q+  being a probability distribution the Jacobian of F is now an infinite-
dimensional operator, which makes the study of its spectrum rather difficult. Even 
worse, we do not have at our disposal an exact description of the fixed point Q+  around 

which we would like to expand F: we only have a sequence of approximations of Q(t)
+  

by the population representation written in equation (44). The individual elements 
of these representations still evolve at each iteration step, even when the observables 

computed as averages of Q(t)
+  have reached convergence (within the numerical accuracy 

fixed by the population size N ). To circumvent these difficulties we have followed a 

strategy inspired by the expression (61): we consider Q(t)
+  and a slight perturbation of 

it, Q(t)
+ + δQ(t)

+ , and assess the rate of growth of the perturbation along the iterations 
by the functional F. In order to implement this idea in practice one needs to choose 

a specific form for the perturbation; given that Q(t)
+  is represented as a sum of Dirac 

Figure 6. The stability parameter λ(α) in the case of a continuous transition (here 
for k  =   4, ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1). From the fit one obtains the result 
α = 4.088, wich is in good agreement with the analytical one αKS = 4.083.
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deltas we perturb it by giving an infinitesimal width to each of the peaks, that we 
replace by Gaussian distributions with a small variance. We thus define

Q(t)
+ (h) ≈ 1

N

N∑

i=1

δ(h− h(t)
i ), (Q(t)

+ + δQ(t)
+ )(h) ≈ 1

N

N∑

i=1

G(h;h(t)
i , ε(t)i ),

 

(62)

Q̂(t)
+ (u) ≈ 1

N

N∑

i=1

δ(u− u(t)
i ), (Q̂(t)

+ + δQ̂(t)
+ )(u) ≈ 1

N

N∑

i=1

G(u;u(t)
i , ε̂(t)i ),

 

(63)

where G(·;a,b) denotes the density of a Gaussian random variable of average a and 
variance b. Consider now the insertion of the form (63) in the right hand side of (38); 
the choice of the d peaks indexed by i1, . . . , id produces a random variable h equal in 
distribution to f(ui1 +

√
ε̂i1z1,. . .,uid +

√
ε̂idzd), where z1, . . . , zd are independent stan-

dard Gaussians (of zero mean and unit variance). As the ε̂  are infinitesimally small one 
can linearize f  to compute the mean and variance of this random variable.

In summary, the determination of λ(α) is done by tracking the evolution of Q+  , 
Q̂+ and their perturbed versions with populations of couples of real numbers, (hi,εi) 
and (ui,ε̂i), that evolve in time according to the following generalization of the update 

rules given in section 2.4.2. To obtain (h(t+1)
i ,ε(t+1)

i ) one repeats, independently for 
i = 1, . . . ,N , these steps:

 •  draw an integer d from the law p d

 •  draw d indices i1, . . . , id uniformly at random in {1, . . . ,N}

 •  set h(t+1)
i = f(u(t)

i1 ,. . . ,u
(t)
id
) and ε(t+1)

i =
∑d

j=1(∂jf)
2ε̂(t)ij

, where ∂jf  denotes the 

derivative of f  with respect to its j th argument, computed in (u(t)
i1 ,. . . ,u

(t)
id
)

Similarly the population (u(t)
i ,ε̂(t)i ) is generated according to, again independently for 

i = 1, . . . ,N :

 •  draw σ1, . . . , σk−1 from the probability law p̃(σ1,. . . ,σk−1|+)

 •  draw k  −  1 indices i1, . . . , ik−1 uniformly at random in {1, . . . ,N}

 •  set u(t)
i = g(σ1h

(t)
i1 ,. . . ,σk−1h

(t)
ik−1

) and ε̂(t)i =
∑k−1

j=1(∂jg)
2ε(t)ij

The rate of growth of the perturbation during the iteration t → t+ 1 is estimated as 
the ratio of the L1 norms of the perturbation parameters,

λt =

∑N
i=1 ε

(t+1)
i∑N

i=1 ε
(t)
i

, (64)

and the stability parameter is finally computed as

λ(α) = (λt0λt0+1 . . .λt0+n−1)
1
n . (65)

Indeed the first t0 iterations are done with the usual population dynamics algorithm, 
evolving only the hi’s and ui’s, in order to reach an approximate convergence in 
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distribution of the populations to their fixed points, and the perturbation is then 

initialized with ε(t0)i = 1. A large number n of additional iterations during which the 

growth rates are recorded are then performed, and averaged geometrically as in (61); 
in the large n limit the value of λ(α) should be independent of the norm used to define 

λt. In practice we divide the ε(t+1)
i  by λt after each iteration in order to keep the norm 

constant and avoid numerical underflows.
This method is similar to the one presented in [71, 72] to determine the location of 

a continuous RSB transition from a non-trivial RS solution.

4. Results of the cavity method

4.1. The existence of a RS phase for α > αd,u

We shall address now the main question raised in the introduction, namely the evo lution 
of the dynamic phase transition when the measure µ(σ) over the proper bicolorings of 
a typical Erdős–Rényi random hypergraph is not uniform anymore. In the setting con-
sidered in this paper this corresponds to take the parameters {ωp} of the interaction 
function (2) different from the uniform choice ω0 = ωk = 0, ω1 = · · · = ωk−1 = 1.

We will concentrate first on the ‘zero-temperature’ case, i.e. on the measures that 
give a non-zero weight to proper bicolorings only, which implies ω0 = ωk = 0. The 
choice of the other parameters is constrained by the global spin-flip symmetry that we 
want to preserve, hence ωp = ωk−p; as it is obvious from (1), multiplying all the ωp by 
a common constant does not change the properties of the model. One realizes that for 
k  =   3 there is no free parameter left, we will thus concentrate on the cases k ! 4 from 
now on. For arbitrary large values of k there will be of the order of k/2 free parameters 
in the ωp; we will however make the following choice for the zero-temperature measure:

ω0 = ωk = 0, ω1 = ωk−1 = 1− ϵ, ω2 = · · · = ωk−2 = 1, (66)
where ϵ is the sole parameter that quantifies the deviation from the uniform measure 
(that is recovered for ϵ = 0). This slight loss in generality is made for the sake of sim-
plicity, and motivated by considerations on the large k limit presented in section 6. 
The parameter ϵ controls the relative weight given to the ‘almost monochromatic’ 
constraints that contain a single vertex of one of the possible colors (positive values of 
ϵ disfavoring them); as discussed in section 2.4.4 these are precisely those responsible 
for the existence of frozen variables, one of the mechanism of RSB.

We present in figure 7 phase diagrams in the (α,ϵ) plane for k  =   4, k  =   5 and k  =   6. 
The three lines in these plots correspond to the thresholds defined in (20) from the van-
ishing of the RS entropy, in (46) from the instability of the RS solution (Kesten–Stigum 
threshold), and in (51) from the appearance of hard fields in the solution of the 1RSB 
equations at m  =   1 (rigidity threshold); specializing these three expression with the 
choice of parameters (66) yields

αs=0(k,ϵ) =
ln 2

k(1−ϵ) ln(1−ϵ)
2k−1−1−kϵ − ln

(
1− 1+kϵ

2k−1

), (67)
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αKS(k,ϵ) =
1

k(k − 1)

(
2k−1 − 1− kϵ

1 + (k − 4)ϵ

)2

, (68)

αr(k,ϵ) =
1

k
Γr(k)

2k−1 − 1− kϵ

1− ϵ
. (69)

In addition the black squares in figure 7 signal a discontinuous appearance of a non-
trivial solution of the 1RSB equations at m  =   1 upon increasing α, that we located by 
a numerical resolution of these equations following the methods explained in section 3. 
One can see on these plots that for all values of ϵ there is a critical density of con-
straints, αd(ϵ), such that a non-trivial solution of the 1RSB equations at m  =   1 exist 
if and only if α > αd(ϵ). To make this separation more visible the area on the left of 
αd(ϵ), i.e. the RS phase of the model, has been painted in gray in figure 7. Let us call 
(αopt,ϵopt) the coordinates of the point on the line αd(ϵ) which maximizes the density 
α of constraints, αopt = maxϵ αd(ϵ), that corresponds to an optimal choice of the bias 
parameter. The numerical values of these optimal parameters can be found in table 1 
for k  =   4, 5 and 6. By definition αopt ! αd,u = αd(ϵ = 0), the dynamic transition of the 
usual model, with the uniform measure over the proper bicolorings; the non-trivial 
result here is that the inequality is strict, i.e. that a well chosen value of the biasing 
parameter ϵ is able to turn the clustered uniform measure into an unclustered biased 
one (for α ∈ [αd,u,αopt]).

A further scrutiny of the phase diagrams reveals different scenarios depending on 
the value of k. For k  =   4 the nature of the bifurcation on the line αd(ϵ) changes pre-
cisely at ϵopt: for ϵ > ϵopt the transition is continuous and thus αd coincides with the 
Kesten–Stigum line αKS, while it is discontinuous for ϵ < ϵopt and there is a cusp at the 
optimal point (we shall come back on this point later on). It turns out that for k  =   4, 
ϵopt < 0: this is rather counterintuitive at first sight, as it means that favoring the almost 
violated configurations of variables actually makes the measure less frustrated. This 
peculiarity can be explained by noticing that for k  =   4 the dynamic transition of the 
uniform measure (ϵ = 0) is continuous and that αKS decreases with ϵ. As the dynamic 

Figure 7. Phase diagram for k  =   4, k  =   5 and k  =   6 (from left to right), in the plane 
(ϵ,α), at zero temperature ω0 = 0. The RS phase, painted in gray, is on the left of 
αd(ϵ), the latter corresponds either to a continuous transition with αd(ϵ) = αKS(ϵ) 
(solid line, see (68)) or to a discontinous transition (black squares). The dashed 
horizontal line corresponds to ϵ = 0, the uniform measure, which intersects αd at 
αd,u. The arrow points to the optimal point that maximizes αd. The dotted line is 
the rigidity threshold αr from (69), the dot-dashed line marks the vanishing of the 
RS entropy (see equation (67)).
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transition of the uniform measure is discontinuous for k ! 5 [70] this peculiarity is 
restricted to k  =   4, and one has ϵopt(k ! 5) > 0. Turning now to the phase diagram for 
k  =   5 in figure 7 one observes similarly a cusp in αd(ϵ) at ϵopt, that separates a continu-
ous and discontinuous branch of the dynamic transition line, but with now ϵopt > 0. 
Finally for k  =   6 the optimal point is on the discontinuous branch of αd(ϵ); increasing 
further ϵ one encounters a cusp at some value of ϵ > ϵopt and then a continuous branch 
αd(ϵ) = αKS(ϵ). The large k behavior of the model will be further discussed in section 6; 
we can nevertheless anticipate that for large enough k the Kesten–Stigum threshold 
becomes irrelevant, as it happens in the negative RS entropy region (compare the lead-
ing orders of equations (67) and (68)). In this case the whole line αd(ϵ) corresponds 
to a discontinuous bifurcation. As a last remark on the phase diagrams of figure 7 
let us emphasize that for all ϵ one has necessarily αd(ϵ) ! min(αKS(ϵ),αr(ϵ),αs=0(ϵ)), 
these three thresholds implying a mechanism of failure for the hypotheses underlying a 
purely RS phase. This should easily convince the reader of the necessity of discontinu-
ous branch of αd(ϵ) in some parts of the phase diagrams. For instance when k  =   4 and 
ϵ ! −0.3 the rigidity and negative entropy bounds imply αd(ϵ) < αKS(ϵ), in other words 
the dynamic transition must be discontinuous.

We have motivated earlier our study of the boundaries of the RS phase by algorith-
mic considerations, Monte Carlo Markov Chains being expected to equilibrate rapidly 
inside such a phase. However in a practical simulation one cannot assume that the 
initial configuration belongs to the support of a zero-temperature measure (otherwise 
the problem of finding a solution of the CSP would be already solved), it is thus neces-
sary to make an annealing in temperature for a random initial condition to be allowed. 
For this reason we have also studied the evolution of the phase diagrams at posi-
tive temper ature, modifying the parameters (66) with ω0 = ωk > 0, see the results in 
figure 8. These plots show the absence of ‘reentrance’ in temperature, in the sense that 
the lines αd(ϵ) move towards higher density of constraints when ω0 is increased. Hence 
in principle a simulated annealing procedure with parameters (α,ϵ) in the zero temper-
ature RS domain, progressively decreasing ω0, should be able to remain equilibrated on 
polynomial time scales, hence finding solutions for α < αopt if the appropriate bias is 
used. A numerical test of this conjecture is presented in section 5.

4.2. More detailed zero temperature phase diagrams

The extent of the RS domain in the (α,ϵ) phase diagram presented in figure 7 was the 
most interesting information to extract from the cavity formalism in the perspective 
of this paper. For the sake of completeness we shall nevertheless discuss with slightly 
more details some properties of the RSB phase, and present another version of the 
phase diagrams for k  =   4 and k  =   5 in figure 9.

Table 1. Dynamic threshold for the uniform measure (αd,u = αd(ϵ = 0)), and largest 
α reachable in the RS phase, this optimal point having coordinates (αopt,ϵopt).

k αd,u αopt ϵopt

4 4.083 4.578 −0.10
5 9.465 9.636 0.06
6 18.088 18.879 0.12
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The most important additional feature unveiled by these phase diagrams is that 
for some values of the parameters k, α, ϵ, there exits (at least) two different non-trivial 
solutions of the 1RSB equations at m  =   1 (38). This type of behavior was described 
in [70] for a family of random CSPs generalizing the hypergraph bicoloring, and its 
consequences for inference problems (or planted CSPs) have been discussed in [69]. In 
order to reach numerically these different solutions we used the population dynamics 
algorithm explained in section 2.4.2 with an initial condition generalizing (45) into

Q(t=0)
+ (h) = (1− ε) δ(h) + ε δ(h− 1) . (70)

For each choice of the parameters we ran twice the population dynamics algorithm, 
once with ε = 1 and once with a small value of ε > 0 (in practice we used ε = 0.01); 
in the tree reconstruction interpretation the latter correspond to a variant known as 
robust tree reconstruction [66], in which only a fraction ε of the variables at large 
distance from the root are revealed to the observer. We will call HO, for high overlap, 
the initialization with ε = 1, and LO (low overlap) the small ε one. Depending on the 
parameters these two procedures can produce different solutions of the 1RSB equations, 
or not. More precisely, the different phases located in figure 9 are defined as follows:

 •  RS: both HO and LO initial conditions lead to the trivial solution.

 •  RS  +   HO: LO initial condition leads to the trivial solution, whereas HO initial 
condition leads to a non trivial solution.

 •  LO  +   HO: LO initial condition leads to a non trivial solution, HO initial condi-
tion leads to a non trivial solution with a higher overlap.

 •  HO/LO: both HO and LO initial conditions lead to the same non-trivial solution.

The frontiers between these different phases are:

 •  αKS, the limit of stability of the trivial fixed point, that undergoes a bifurcation 
at the Kesten–Stigum transition.

Figure 8. Phase diagrams for k  =   4, k  =   5 and k  =   6 (from left to right) in the 
plane (α,ϵ), giving the RS phase delimitated by the KS bound and a dynamic line 
where the transition toward a non-trivial solution is discontinuous, for different 
temperatures. Left (k = 4): the dynamic line is given from left to right for ω = 0 
(filled square and solid line), ω = 0.1 (empty triangle and dashed line), ω = 0.2 
(filled triangle and dotted line). Middle (k = 5): from left to right ω = 0, ω = 0.002, 
ω = 0.005, ω = 0.01. Right (k = 6): from left to right ω = 0, ω = 0.005, ω = 0.01.

https://doi.org/10.1088/1742-5468/ab02de


Biased landscapes for random constraint satisfaction problems

30https://doi.org/10.1088/1742-5468/ab02de

J. S
tat. M

ech. (2019) 023302

 •  two spinodal lines (denoted sp HO and sp LO) that correspond to the limit of 
existence of the two non-trivial branches of solution of the 1RSB equations.

We invite the reader to consult also the top panels of figure 10 where the evolution of 
the overlap is plotted as a function of ϵ for different fixed α at k  =   5, which should help 
to grasp the meaning and succession of the different phases. The frontiers between the 
various phases are indicated with the same names in figures 9 and 10.

This more complete study of the number and domain of existence of solutions of the 
1RSB equations should clarify the cusp at ϵopt of the line αd(ϵ) found for k  =   4 and k  =   5 
in figure 7: a first look at these figures could suggest that the two parts of the αd(ϵ) line 
join at a tri-critical point, in the sense that the discontinous transition becomes less 
and less discontinuous before crossing over to a continuous transition. However from 
figure 9 one sees that this is not the case, the discontinuous branch of αd(ϵ) extends 
to the RSB phase as a spinodal unrelated to the continuous transition, which can only 
make sense in the context of coexistence of two non-trivial solutions. A tri-critical point 
does exist in these phase diagrams, but it is located strictly inside the RSB phase, not 
at the cusp, and corresponds to the merging of the two spinodals.

Finally we have also indicated on figure 9 the threshold for the cancellation of the 
complexity of the HO solution (see in addition the bottom panels in figure 10); this cor-
responds to the condensation transition of the model in the α < αKS part of the phase 
diagram (for α > αKS the LO solution has a negative complexity hence the problem is 
condensed, see [70] for a discussion of this point).

5. Results of simulated annealing

In this section we present the results of extensive simulations, where we have used the 
SA algorithm [50] to find solutions of the hypergraph bicoloring problem. Our main aim 
is to show that SA finds solutions more easily if the biased measure is used: although 

Figure 9. Phase diagram for k  =   4 (left), and k  =   5 (right), in the plane (α,ϵ), at 
zero temperature (ω0 = 0): the solid line is the Kesten–Stigum transition where a 
non-trivial solution of the 1RSB equations emerge continuously from the trivial 
one upon increasing α, the filled (resp. empty) squares corresponds to the spinodal 
(sp) of the HO (resp. LO) branch that appears discontinuously when α is increased 
(resp. decreased). The filled circles are defined by the vanishing of the complexity 
of the HO branch.
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the uniform measure (ϵ = 0) has a larger entropy, the biased one is more concentrated 
on solutions that can be reached in an easier way by SA and thus the SA algorithmic 
threshold improves if ϵ ̸= 0 is used.

As in the rest of paper, we consider Erdős–Rényi random hypergraphs with k = 4, 5, 6 
and sizes ranging from N  =   104 to N  =   106. The parameters α and ϵ are taken in the 
relevant region where we expect an algorithmic phase transition to take place, that is 
around αd. Let us rewrite the biased measure that we are willing to sample via the SA 
at a generic finite temperature T = 1/β as

µ(σ) =
1

Z(G)
e−βU(σ)(1− ϵ)F (σ)

 (71)

where U(σ) is the number of unsatisfied constraints (i.e. monochromatic hyperedges) 
and F (σ) is the number of freezing clauses (i.e. hyperedges with exactly k  −  1 variables 
of the same color). This corresponds to the measure (1) with parameters

ω0 = ωk = e−β, ω1 = ωk−1 = 1− ϵ, ω2 = · · · = ωk−2 = 1 . (72)
The solutions of the CSP have U  =   0, and non-uniform weights if ϵ ̸= 0. Our SA 
implementation uses the Metropolis algorithm with single-spin flip dynamics: at each 
time step one considers a configuration σ′ that differs from the current configuration 
σ by the reversal of an uniformly chosen spin. The move σ → σ′ is accepted with the 
probability

min

(
µ(σ′)

µ(σ)
, 1

)
= min

(
e− β∆U(1− ϵ)∆F , 1

)
, (73)

where ∆U = U(σ′)− U(σ) and ∆F = F (σ′)− F (σ), in such a way that the detailed 
balance (reversibility) condition with respect to the measure (71) is ensured. We store 

the quantity 
∑k

i=1 σi for each clause, which allows a fast computation of the changes 
∆U and ∆F  when a spin is flipped.

Figure 10. Overlaps (top) and complexities (bottom) versus ϵ at k  =   5, for α = 9.5 
(left), α = 9.6 (center), and α = 9.7 (right).

https://doi.org/10.1088/1742-5468/ab02de


Biased landscapes for random constraint satisfaction problems

32https://doi.org/10.1088/1742-5468/ab02de

J. S
tat. M

ech. (2019) 023302

We run SA with a very simple piecewise constant, uniformly spaced, temperature 
scheduling: the first Monte Carlo sweep (MCS, i.e. N elementary steps described above) 
is performed with T fixed to Tmax (we used Tmax = 0.5 in all our simulations), then T 
is reduced by ∆T = Tmax/τ  and a new MCS is performed, T is again reduced by ∆T , 
and so on and so forth. We perform in this way τ + 1 MCS, the last one being at zero 
temperature, the running time of the algorithm thus scales as Nτ elementary steps.

The lowest value of U(σ) is always reached at the end of each run, when the 
annealing has reached zero temperature. So we present results only for the quantity 
U0  =   U(T  =   0), that is the smallest number of violated clauses that the SA is able to 
reach in a running time of τ  MCS. SA is successful as a solver if and only if U0  =   0, 
but we will be interested in estimating the lowest energy reachable by SA even in the 
regime where it is not successful. In particular we are going to study the lowest inten-
sive energy reached by SA, u0 = U0/N , in the large size limit where it becomes inde-
pendent on the problem size N.

5.1. Estimating the algorithmic threshold for simulated annealing

We shall first discuss the problem of the estimation of the algorithmic threshold for a 
stochastic algorithm like SA, concentrating for simplicity on the unbiased (ϵ = 0) case, 
the extension to ϵ ̸= 0 will be considered later on.

The behavior of the algorithm depends on the density of constraints α, the anneal-
ing time τ , and the size of the problem N; it can be described in terms of the average 
energy density u0(α,τ,N) reached at the end of the run, or in terms of the probability 
(with respect to the random instance generation and the stochasticity of the algorithm) 
psucc(α,τ,N) that the algorithm discovers a solution of the instance. It is clear that 
the energy (resp. success probability) reached by SA is a decreasing (resp. increasing) 
function of the running time τ . We are interested in the limit of large times but sub-
exponential with respect to the problem size N (on exponentially large timescales any 
Monte Carlo simulation of a finite size system is ergodic and u0  =   0 as long as α < αsat, 
but this is not the regime we are interested in). An idealized definition of the algorith-
mic threshold αalgo would be the smallest density of constraints such that

lim
N→∞

u0(α,τ = N c,N) > 0 or lim
N→∞

psucc(α,τ = N c,N) = 0, (74)
for any fixed exponent c, corresponding to polynomial time algorithms. Of course time 
and space requirements impose strong constraints on the values of τ  and N that can 
be used in practice. The limit above must thus be performed by an extrapolation from 
finite N results, and if c is free any running time could be considered as ‘polynomial’ 
as long as N is finite. To resolve this ambiguity we shall restrict our study to linear 
times (this time scale is the only one practically accessible on very large problems), i.e. 
consider τ  fixed (but arbitrary large) in the thermodynamic limit N → ∞.

Even with this restriction the numerical extrapolation necessary to estimate αalgo 
is far from being an easy task. The definition given above relies on the behavior of the 
asymptotic intensive energy u0 as a function of α. We plot the corresponding data in 
figure 11 for k = 4, 5: these data have been obtained for the unbiased measure (ϵ = 0) 
and different problem sizes (104 ! N ! 106); note that data points with different N 
values are very close, i.e. the size dependence is very weak, and the values for N  =   105 
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and N  =   106 always coincide within errorebars. Unfortunately the asymptotic energy 
u0 is strongly dependent on the running time τ  and it is thus very difficult to extract 
from this figure the algorithmic threshold, i.e. the value of α where u0 becomes positive 
in the large τ  limit.

A much more convenient way of analyzing the same data is presented in figure 12, 
where for each value of α we study the dependence of u0 on τ . The α values shown are 
such that the relative difference between the smallest and the largest α values is around 
5%. Again the size dependence is weak and we can mostly ignore it. Error bars have 
been computed only from sample to sample fluctuations. The main observation now—
note the log-log scale in the plots—is that for the smallest α values shown in the plots 
the asymptotic energy is decreasing very fast with τ , faster than a power law (data not 
shown have u0 ≃ 0); on the contrary, for the largest α values, u0 decreases slower than 
a power law. In the latter case we even observe an upwards curvature, suggesting a 
non-zero value for u0 in the τ → ∞ limit.

In practice, our best estimate for the SA algorithmic threshold is given by the α 
value such that u0 decays as an inverse power law of τ , thus separating the regimes 
where u0 decays faster and slower than a power law in τ . For ϵ = 0, we find the follow-
ing approximate values αalg(k = 4) ≈ 4.7, αalg(k = 5) ≈ 9.6 and αalg(k = 6) ≈ 18.5. We 
notice that all these algorithmic thresholds are larger than the threshold αd,u listed in 
table 1, where the ‘dynamic’ phase transition, defined as the appearance of a solution 
of the 1RSB equations, takes place. This observation is consistent with the idea that 
sampling solutions uniformly is more difficult than just finding one or few solutions. 
Indeed, while a MCMC is expected to sample uniformly the solutions efficiently only for 
α < αd,u, SA can find a solution in linear time until αalg, which is greater than αd,u. In 
other words, in the range [αd,u,αalg] the SA algorithm does not thermalize at the low-
est temperatures explored during the annealing, but it can be seen as an efficient out 
of equilibrium process converging in linear time to a solution, as discussed for instance 
in [73].

In particular for k  =   4 the model has a continuous phase transition and the SA algo-
rithm seems to be very efficient in this case: the algorithmic threshold αalg(k = 4) ≈ 4.7 

Figure 11. Lowest intensive energy reached by SA for k  =   4 (left) and k  =   5 (right) 
as a function of α for different cooling times τ . For each cooling time τ  we show 
results for 3 problem sizes: N  =   104 with filled circles, N  =   105 with empty circles and 
N  =   106 with triangles. The latter two values do always coincide (except for k  =   5 
and α = 9.8, where the N  =   106 datapoint is missing). Estimating the algorithmic 
threshold from these plots is very difficult due to the strong τ  dependency.
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is well beyond the dynamic threshold αd,u = 4.083 and not far from the 1RSB estimate 
of the satisfiability threshold αsat(k = 4) ≈ 4.9 [70] (this is only expected to be an 
upperbound on the true satisfiability threshold due to an instability towards higher 
levels of RSB). On the contrary for k ! 5 the phase transition taking place at αd,u is of 
the random first order type (discontinuous) and this seems to have a dramatic effect on 
the performance of SA, which is able to find solutions only slightly beyond αd,u, stop-
ping far from the αsat threshold. For example, for k  =   5 we have αd,u = 9.465, αalg ≈ 9.6 
and αsat = 10.46 [70].

5.2. Performances of simulated annealing with optimal RS parameters

As shown in section 4.1 we can extend the RS phase in the region α > αd,u by tuning 
appropriately the bias ϵ. In figure 13 we show the asymptotic energy as a function of 
the running time τ  for the parameters α = αopt and ϵ = ϵopt given in table 1, that are 
optimal from the point of view of extending the RS phase to the largest α possible. For 
each value of τ  we report the results obtained with 3 sizes N = 104, 105, 106 although 
the different data points are hardly visible due to their strong overlap (for τ = 106 fewer 
sizes are shown). Errors are computed from sample to sample fluctuations.

For all the values of k = 4, 5, 6 the behavior of the asymptotic energy is compatible 
with a power law decay or even faster than that (the straight line is just a guide to the 
eye with a slope  −0.61). So, as expected, SA seems to be an efficient algorithm to find 
solutions in the RS phase, even when this phase extends beyond αd,u via the optim-
ization of the bias ϵ.

Figure 12. Plotting the lowest intensive energy reached by SA with no bias (ϵ = 0) 
as a function of τ  provides a better way to estimate the algorithmic threshold αalg: 
the decay is faster (resp. slower) than a power law if α < αalg (resp. α > αalg).
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5.3. Performances of simulated annealing with the biased measure

In section 4 we have shown how the phase diagram and the corresponding thresholds 
change in presence of a non-zero bias (ϵ ̸= 0). The suggestion we get from this analyti-
cal study is that a non-zero bias should make easier for the SA algorithm to find solu-
tions at large α values. However the connection between the phase diagram and the 
behavior of the SA is not obvious, as already shown in section 5.1 for the ϵ = 0 case.

The aim of the present section is to show the results of extensive numerical simula-
tions running SA with the biased measure in order to gather evidence that a non-zero 
bias is in general beneficial for the performances of SA in finding a solution to the ran-
dom hypergraph bicoloring problem.

We have already shown that finite size effects are very small and slightly visible 
only for N  =   104. So in the following we present uniquely data obtained with size 
N  =   105. We have checked that these are practically indistinguishable from the results 
with N  =   106 on the time scales reachable in the latter case.

In figure 14 we show the data collected at the three largest α values for k  =   4 (upper 
row), k  =   5 (middle row) and k  =   6 (lower row). In each panel we plot u0 as a func-
tion of ϵ for three different cooling rates τ = 104, 105, 106 (from top to bottom in each 
panel). The plots provides a clear evidence that reweighting solutions with a bias ϵ > 0 
enhances the probability that SA reaches lower energies.

Already a simple qualitative analysis reveals the advantage of using ϵ > 0. In every 
panel we see that u0 reaches a minimum for a strictly positive value of ϵ. The value ϵSA 
that minimizes u0 is only weakly dependent on the SA cooling time τ , so it is likely to 
assume that limτ→∞ ϵSA > 0 and the bias is effective even in the limit of large times.

The data in figure 14 suggest that the SA algorithmic threshold may grow for mod-
erately small values of ϵ with respect to its ϵ = 0 value. For example for k  =   6 the SA 
algorithmic threshold for ϵ = 0 was estimated around αalg ≈ 18.5, but looking at the 
plots in the lower row it is evident that at least for α = 19 and ϵ ≃ 0.15 SA reaches 
the ground state u0  =   0 and for α = 19.5 and ϵ ≃ 0.15 the convergence to u0  =   0 is very 
fast in τ .

Figure 13. The fast decays of u0 as a function of τ  for α = αopt and ϵ = ϵopt 
confirms that for these ‘optimal’ parameters SA is effective in finding the ground 
state in linear time.
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three panels on the right. We have interpolated the data of u0 with a quadratic func-
tion of ϵ, the interpolating parabolas are shown in the right panels in figure 14. Fitting 
the minimum of the parabola u0(ϵSA) as a power law in τ  we find the results shown 
in figure 15. For (k = 5,α = 9.9) the behavior is faster than a power law and thus we 
expect the SA algorithmic threshold with the biased measure to be slightly greater than 
α = 9.9. On the contrary for both (k = 4,α = 4.8) and (k = 6,α = 20) the behavior looks 
slightly slower than a power law and thus we are tempted to believe limτ→∞ u0(ϵSA) > 0 
in these cases and the SA algorithmic threshold is slightly below.

Unfortunately the quantitative analysis cannot be made more robust, due to the 
strong τ  dependence observed. Nevertheless we believe that the evidence that ϵ > 0 
makes ground states more accessible to simulated annealing is strong enough, both for 
finite τ  values and in the large τ  limit.

Figure 14. The lowest intensive energy reached by SA reaches its minimum for a 
positive bias parameter ϵ.
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Let us finally compare the optimal value ϵSA of the bias that improves most the 
performances of SA with the optimal value ϵopt found in section 4.1 that increases most 
the extent of the RS phase. We notice that ϵSA is always larger than ϵopt. Considering 
that, for the small values of k studied in the simulations, it is approximately true that 
for ϵ > ϵopt the phase transition increasing α is continuous, while for ϵ < ϵopt the model 
undergoes a random first order transition, we believe the most natural explanation for 
the observation ϵSA > ϵopt is the following. The ergodicity breaking taking place at a 
discontinuous (i.e. random first order) transition is much more severe than the one tak-
ing place at a continuous phase transition. In the case of a discontinuous phase trans-
ition, the SA algorithm can find solutions only slightly above the dynamic threshold 
αd, while in the continuous case SA remain efficient in finding solutions even well above 
αKS. The analysis supporting this scenario has been presented in section 5.1. Thus it is 
natural to expect that SA presents its best performances for ϵ > ϵopt where the phase 
transition is continuous and the ergodicity breaking not too severe. The finding that 
ϵSA(k = 4) > 0 also resolves the rather counterintuitive result ϵopt(k = 4) < 0. So even 
for k  =   4 the SA algorithm finds the ground state more easily if frozen variables are 
avoided.

6. Large k asymptotics

The numerical resolution of the cavity equations presented in section 4 shows that 
for small values of k one has αopt(k) > αd,u(k), in other words that distorting the 
measure over solutions can make it RS for larger densities of constraints than the 
uniform one. We want now to investigate the large k limit, for which the gap between 
the satisfiability threshold and the algorithmic ones is most clearly demonstrated. As 
αopt(k) is defined from a discontinuous bifurcation of a functional equation (in other 
words a reconstruction problem for which the Kesten–Stigum bound is not tight) we do 
not have an analytical expression for it, we will in consequence aim at a more modest 
objective, namely deriving asymptotic bounds on its large k behavior.

Figure 15. The lowest energy reached with the optimal bias ϵSA for the largest α 
value simulated as a function of τ .
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As explained before for any ϵ one has αd(ϵ) ! min(αKS(ϵ),αr(ϵ),αs=0(ϵ)), these three 
upperbounds having simple expressions given in equations (67)–(69). At large enough 
k it is easy to convince oneself that the Kesten–Stigum transition occurs after αs=0, 
hence is completely irrelevant (the dominant term in the asymptotic expansion of αKS 
is of the order 22(k−1) instead of 2k−1 for αs=0 and αr). We show in figure 16 the lines 
αr(ϵ),αs=0(ϵ) for a large value of k, as well as a guess on the qualitative behavior of 
αd(ϵ). We define (α∗(k),ϵ∗(k)) as the coordinates of the intersection of the rigidity and 
the zero-entropy line, in such a way that αopt(k) ! α∗(k): for larger densities either the 
RS entropy is negative, or there exists a 1RSB solution with hard-fields (or both), in 
any case no RS phase can exist for α ! α∗. We will now derive an asymptotic expansion 
at large k of this upperbound α∗(k).

In the expression (69) of αr the coefficient Γr(k) is a series depending solely on k, 
that was defined in equation (50); in order to obtain more easily its asymptotic equa-
tion we define a series wk by qr(k) = 1− e−wk, in such a way that wk is solution of the 
implicit equation ew = 1 + (k − 1)w. Taking the logarithm of this equation and iterat-
ing once yields

wk = ln k + ln ln k +O

(
ln ln k

ln k

)
. (75)

One can then compute

Γr(k) = wk

(
1 +

1

(k − 1)wk

)k−1

= ln k + ln ln k +O(1) . (76)

This gives immediately the expansion of the rigidity threshold for the uniform measure 
(ϵ = 0),

αr,u(k) = 2k−1 1

k
(ln k + ln ln k +O(1)) . (77)

We come back to the determination of (α∗(k),ϵ∗(k)); this intersection of the rigidity 
and zero-entropy line is solution of the two following equations, immediately obtained 
from (67) and (69):

α =
ln 2

k(1−ϵ) ln(1−ϵ)
2k−1−1−kϵ − ln

(
1− 1+kϵ

2k−1

) =
1

k
Γr(k)

2k−1 − 1− kϵ

1− ϵ
. (78)

At large k, as can be seen for instance on (77), the asymptotic expansions of constraint 
densities are organized in different scaling behaviors, namely exponential, polynomial 
and logarithmic in k. Neglecting only exponentially small corrections we can simplify 
(78) into

α

2k−1
=

ln 2

k(1− ϵ) ln(1− ϵ) + 1 + kϵ
=

1

k
Γr(k)

1

1− ϵ
. (79)

Without making additional approximations we see that ϵ∗(k) is the solution of

ϵ+ (1− ϵ) ln(1− ϵ) =
ln 2

Γr(k)
− 1

k
− ϵ

ln 2

Γr(k)
. (80)
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Given the asymptotic behavior of Γr(k) stated in (76) it is easy to see that ϵ∗(k) must 
vanish in the limit; one can thus expand the lhs of (80) and obtain

ϵ∗(k) =

√
2 ln 2

Γr(k)
+O

(
1

ln k

)
. (81)

Reinserting in (79) we obtain

α∗(k) = 2k− 1 1

k
Γr(k)

(
1 +

√
2 ln 2

Γr(k)
+O

(
1

ln k

))
. (82)

Using the expansion (76) of Γr(k) we have finally

α∗(k) = 2k− 1 1

k

(
ln k +

√
2 ln 2

√
ln k +O(ln ln k)

)
. (83)

The comparison with the expansion of αr,u(k) given in (77) shows that the leading order 
is not modified, the term ln ln k in the correction being replaced by a (larger) term of 
order 

√
ln k.

The leading order expansion of αd,u(k) has been rigorously derived in [38] for a 
family of model encompassing the hypergraph bicoloring one, yielding in this case 
2k−1 ln k/k. By analogy with other rigorous results [37, 39] (obtained for the q-coloring 
problem) we shall assume that αd,u(k) has the same asymptotic expansion (77) as αr,u 
(with a strictly smaller constant hidden in the O(1) term). We thus conclude that

αd,u(k) = 2k−1 1

k
[ln k + ln ln k +O(1)] ! αopt(k) ! α∗(k) = 2k−1 1

k

(
ln k +

√
2 ln 2

√
ln k +O(ln ln k)

)
,

 (84)

Figure 16. For k  =   20, plot in the plane (α,ϵ) of the rigidity line and zero RS entropy 
line, that intersect at the point (α∗(20), ϵ∗(20)). The gray zone is a qualitative guess 
of the RS zone delimitated by αd(k,ϵ).
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hence that the best improvement of αopt(k) with respect to αd,u(k) that can be hoped 
for with the bias considered in this paper is a replacement of ln ln k by 

√
ln k in the 

second order term of their asymptotic expansions.
We shall finally come back briefly on the choice of parameters we made in (66), 

where we used a single parameter ϵ for the bias instead of trying to exploit all the k/2 
free values of ωp. Let us define α′

opt(k) = supαd(k,{ωp}), where the maximization is now 
over all possible values of the ωp, under the conditions ω0 = ωk = 0 and ωp = ωk−p. We 
have certainly α′

opt(k) ! αopt(k), and the inequality is probably strict at least for small 
enough values of k; however we shall now show that α′

opt(k) ! α∗(k), hence that the 
larger freedom of choice of generic parameters does not allow to beat the upperbound 
derived and discussed in the special case (66). To see this more easily let us exploit the 
invariance of the measure (1) under a multiplication of all ωp by a common constant, 
and fix their normalizations in such a way that

k−1∑

p=1

(
k
p

)
ωp = 1 . (85)

With this choice the expressions of the RS entropy (19) and rigidity threshold (51) 
become

sRS(α,{ωp}) = ln 2 + α

(
k−1∑

p=1

(
k
p

)
ωp lnωp − k ln 2

)
, αr(k,{ωp}) =

1

k
Γr(k)

1

2ω1
. (86)

Consider now a given choice of the parameter ω1, and a value of α ! αr; for these 
to allow a RS phase the corresponding entropy should be positive. Maximizing the 
entropy in (86) with respect to {ω2, . . . ,ωk−2}, under the normalization condition (85) 
and for a fixed value of ω1 is easily seen to yield ω2 = · · · = ωk−2, i.e. precisely the choice 
of parameters (66). In other words this bias is the one that allows to tune the fraction of 
frozen variables while keeping the measure as uniform as possible, in order to minimize 
the entropy cost it induces.

7. Discussion

We have studied the problem of bicoloring random k-regular hypergraphs, where  
every hyper-edge joins exactly k variables, also known as NAE-k-SAT. Having in mind 
the observation that algorithms usually reach solutions with no frozen variables and the  
conjecture that the computational complexity of the problem is directly related to 
the presence of frozen variables, we have modified the uniform measure over solutions 
to a biased measure where solutions with frozen variables are disfavoured (the works  
[46, 47] are based on a similar idea, with a bias favouring the regions of configuration 
space with a high local entropy of solutions). We have studied this biased measure 
both analytically via the cavity method, and numerically, running extensive simulated 
annealing processes in the search for solutions.

As a byproduct of our study we have presented two technical tools of interest 
by themselves: (i) how to properly determine the dynamic transition threshold, that 
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corresponds to a first order transition in a functional space, by studying the stability 
parameter close to a random first order transition; (ii) how to estimate the algorithmic 
threshold for simulated annealing in random CSP by studying the dependence of the 
asymptotic energy on the cooling rate.

The results we got are somehow different depending on whether k is small or very 
large. In the range of small values of k we have found that the use of the biased measure 
is rather effective in helping SA to find solutions, thus moving its algorithmic threshold 
to larger values of α. This numerical finding is supported by the analytical computation 
that predicts a shift of the dynamic threshold in presence of a bias. This is a clear result 
showing that, both in the thermodynamic limit and on problems of finite size, the use 
of the bias favouring unfrozen configurations is effective. As the non-uniformity of the 
measure necessarily implies a reduction of its entropy, the present result supports the 
idea that many solutions are not necessarily useful from the point of view of searching 
algorithms and actually removing these solutions (or reducing their weight) helps in the 
search for the remaining ones. The analytic result on the shift of the dynamic threshold 
implies that for α ∈ [αd,u,αopt] there are long range correlations for ϵ = 0 that actually 
disappear for a range of non-zero biases. This result suggests that long range correla-
tions are due to a subset of solutions where variables are very strongly correlated, while 
in the remaining subset of solutions variables are much more weakly correlated. The 
lack of reentrance of critical lines in temperature is a good news for thermal algorithms, 
that is algorithms satisfying detailed balance with respect to a Gibbs–Boltzmann prob-
ability distribution, because it implies that this class of algorithms should not suffer a 
slowing down due to critical points at finite temperature below the threshold given by 
the zero-temperature critical point, and the latter should be the one eventually deter-
mining the asymptotic behavior of these algorithms.

In the large k limit the bounds of (84) show that in the most optimistic scenario the 
gain obtained by the present version of the biasing strategy is rather modest, corre-
sponding to an increase from ln ln k to 

√
ln k in the second order of the expansion of 

the threshold density of constraints. We believe that a very interesting open problem 
would be to determine which of the two bounds on the expansion of αopt in (84) is tight 
(or whether the scaling is actually intermediate between the two). If the lowerbound is 
not tight even this tiny increase would be an improvement of the algorithmic gap, and 
would beat the rigidity threshold of the uniform measure (that was sometimes thought 
to be the algorithmic barrier). Adapting the techniques of [37–39] to prove a lower-
bound on the reconstruction threshold of the biased measure should clarify this issue.

Another possible direction we are currently investigating is the study of more 
generic bias on the set of solutions, induced by interactions between variables at larger 
distances; this was shown in [40] to have an even more dramatic effect on the location 
of the rigidity transition. It remains to see whether the dynamic transition can also be 
efficiently manipulated in this way.

An interesting question to investigate in the future is the effect of the decimation on 
the biased measure, which can be analyzed along the lines of [25]. This would probably 
prove analytically that the algorithmic threshold for the process that searches a solu-
tion fixing variables according to marginals provided by belief propagation is improved 
by a non zero bias.
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In the present work we have focused our study of biased measures on the hyper-
graph bicoloring problem because it is technically simpler than k-SAT or q-COL, its 
degrees of freedom being binary and its replica symmetric solution being trivial, while 
its unbiased measure is known to exhibit all the transitions undergone by the more 
complicated random CSPs. We are convinced that the biasing idea can also be applied 
to the latter and we expect a similar increase of the clustering transition threshold; we 
leave an explicit verification of this expectation as an open problem for future work.
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