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Many inference problems undergo phase transitions as a function of the signal-to-noise ratio, a prominent
example of this phenomenon being found in the stochastic block model (SBM) that generates a random graph
with a hidden community structure. Some of these phase transitions affect the information-theoretic optimal
(but possibly computationally expensive) estimation procedure, others concern the behavior of efficient iterative
algorithms. A computational gap opens when the phase transitions for these two aspects do not coincide, leading
to a hard phase in which optimal inference is computationally challenging. In this paper we refine this description
in two ways. From a qualitative perspective, we emphasize the existence of more generic phase diagrams
with a hybrid-hard phase, in which it is computationally easy to reach a nontrivial inference accuracy but
computationally hard to match the information-theoretic optimal one. We support this discussion by quantitative
expansions of the functional cavity equations that describe inference problems on sparse graphs, around their
trivial solution. These expansions shed light on the existence of hybrid-hard phases, for a large class of planted
constraint satisfaction problems, and on the question of the tightness of the Kesten-Stigum (KS) bound for the
associated tree reconstruction problem. Our results show that the instability of the trivial fixed point is not generic
evidence for the Bayes optimality of the message-passing algorithms. We clarify in particular the status of the
symmetric SBM with four communities and of the tree reconstruction of the associated Potts model: In the
assortative (ferromagnetic) case the KS bound is always tight, whereas in the disassortative (antiferromagnetic)
case we exhibit an explicit criterion involving the degree distribution that separates a large-degree regime where
the KS bound is tight and a low-degree regime where it is not. We also investigate the SBM with two communities
of different sizes, also known as the asymmetric Ising model, and describe quantitatively its computational gap
as a function of its asymmetry, as well as a version of the SBM with two groups of q1 and q2 communities. We
complement this study with numerical simulations of the belief propagation iterative algorithm, confirming that
its behavior on large samples is well described by the cavity method.

DOI: 10.1103/PhysRevE.99.042109

I. INTRODUCTION

Problems of statistical inference where a signal is observed
via noisy measurements appear ubiquitously in situations
involving data analysis. It is intuitive that as the signal-to-
noise ratio decreases, the recovery of the signal becomes
harder. Quantifying the optimal performance is one of the
main theoretical tools to provide performance guarantees in
practical situations. Numerous models of statistical inference
bear formal analogies to models of disordered systems and
due to this connection methods from statistical physics were
applied to inference problems (for reviews see, e.g., [1–4]).
Sharp changes in behavior, known as phase transitions, appear
in many situations in physical systems. Due to the above
connection, it does not come as a surprise that various types
of phase transitions were also identified in inference problems.
The statistical and computational implications of the presence
of phase transitions have recently attracted attention in several
fields.

A number of works, including the present one, focus on
inference models defined on sparse graphs or hypergraphs
where the signal is related to a (hidden) labeling of the
nodes and the graph is generated via a rule that depends
on these labels. A paradigmatic example of this class is
the stochastic block model (SBM), where nodes belong to
communities and the probability of observing an edge be-
tween a pair of nodes depends on the communities of the
two nodes. There is a long history of studies of this model
(see, e.g., [3,5,6] and references therein), particularly because
of its relevance in the context of complex networks [7]. In
terms of phase transitions in the SBM, the work of [8,9]
was particularly influential as it identified three phases, unde-
tectable, hard, and easy, and located quantitatively transitions
between them. In the undetectable phase, inference better
than random guessing is not possible; in the hard phase it is
information-theoretically possible, but known algorithms are
not able to perform better than random guesses (depending on
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parameters of the model, this phase is sometimes missing);
in the easy phase known algorithms match the information-
theoretic optimal performance that is in this case strictly better
than random guesses. Another example of inference problems
on sparse hypergraphs is the planted constraint satisfaction
problems with various types of constraints [10–13]. Planted
constraint satisfaction problems are instrumental in studies
of average algorithmic complexity [14], hardness of finding
a solution [15], and refutation of satisfiability formulas. The
same three phases explained above in the SBM example
have also been found in planted constraint satisfaction prob-
lems, as well as in many other “dense” inference problems
in which the signal is observed through all pairs of vari-
ables, not only the edges of a sparse graph (see [3] for a
review).

This paper provides a more detailed picture of these phase
transitions. We emphasize indeed the existence of hybrid-
hard phases, in which efficient inference better than random
guessing is possible, however, matching the information-
theoretic optimal performance is computationally hard. This
type of phase was identified in dense inference problems
(see, e.g., [16]), but was missed in some previous studies
of sparse problems [11]. We revisit the latter by means of
the cavity method, which relates the analytic description (in
particular the optimal errors, as defined below) of inference
problems on sparse graphs and hypergraphs to reconstruction
problems on trees [17–22] (the local limit of the graphs
in the large-size limit). These tree problems are solved by
fixed-point equations whose unknowns (called order param-
eters) are functions (more precisely probability distributions)
at variance with their dense counterparts where the order
parameters are finite dimensional. We will focus on problems
where the undetectable phase exists at a small signal-to-
noise ratio, which translates into the existence of a so-called
uninformative (or trivial) fixed point of the corresponding
cavity equations (in such cases there exists a close connection
between the inference problems and the associated uniformly
random models [23–25] through the notion of quiet planting).
There are several reasons that motivate this restriction of the
family of inference problems we consider here: In a certain
sense, these are the hardest ones, as no local information
can be exploited for the inference of the hidden signal they
contain. Moreover, they exhibit a richer phenomenology in
terms of phase transitions than the problems where a local
property (the degree of a vertex in the SBM, for instance)
is correlated to the signal. Finally, from a technical point of
view, the existence of a trivial fixed point allows one to set
up a systematic perturbative expansion of the cavity equa-
tions, in the neighborhood of the so-called Kesten-Stigum
transition where the trivial fixed point loses its stability; this
perturbative computation will be our main technical contri-
bution in this paper. Similar expansions can be found in
Refs. [20,22,25], but our results are either valid for more
general models or pushed to a higher order in the perturbation
series. This technical tool allows us to clarify several features
of the phase diagrams of inference and tree reconstruction
problems.

For the symmetric stochastic block model with q groups
(or the tree reconstruction of the q-state Potts model), it
was known that the hard phase does not exist for two and

three groups (in other words, the Kesten-Stigum bound on
reconstruction is tight), whereas it always exists for five and
more groups [22]. In the intermediate case of q = 4, whose
status has remained unclear up to now, we provide an explicit
condition on the degree distribution and the ferromagnetic (or
assortative) character of the model to distinguish these two
qualitatively different behaviors.

We also study the asymmetric SBM with two groups of
different sizes (but equal average degree) and derive condi-
tions on the asymmetry that induces the appearance of the
hard phase. We recover the critical fraction 1/2 − 1/

√
12 for

the size of the smaller group below which the hard phase
exists, which appeared in related studies in the dense regime
[16,26] or in the limit of large degrees [27,28]; quite strik-
ingly, this critical asymmetry does not depend on the degree
distribution. This phenomenon was also studied from the tree
reconstruction perspective under the name of the asymmetric
Ising model [17,20].

Based on this expansion, we also conclude that the hybrid-
hard phase always exists in a very generic class of sparse in-
ference models where Boolean variables are observed through
k-uplets, for any k, as long as they preserve a global symmetry
between the two possible values of the variables. This class
encompasses a large part of the Boolean occupation problems
of [11]. More precisely, in that class of models we rule out the
existence of a hard phase that would not be accompanied by
the hybrid-hard phase.

Our analytical findings are confirmed by running the belief
propagation (BP) iterative algorithm on large instances of the
corresponding problems, thus providing strong evidence that
the analytical solution obtained in the thermodynamical limit
is also of practical relevance for problems of large but finite
size.

Two recent papers [29,30] have some overlap with ours.
Liu et al. study indeed the reconstruction problem on regular
d-ary trees and provide expansions around the Kesten-Stigum
transition for the asymmetric Ising model and a q-state Potts
model whose symmetry is partially broken. While the results
of [29,30] are rigorous, our expansions are more generic,
pushed to a higher order, and put to use in connection with
the inference problems on graphs.

The rest of the paper is organized as follows. In Sec. II we
present in generic terms the structure describing the perfor-
mance of optimal and efficient estimators in inference prob-
lems, review the well-known phase diagrams that have been
deduced from it, and explain the more complicated possible
scenarios that can be observed. In Sec. III we define a family
of inference problems on sparse (hyper)graphs, introduce the
cavity equations that describe them, and explain their link to
the tree reconstruction problem; for the convenience of the
reader, we then summarize our main results in Sec. III D.
The results are obtained by systematic moment expansions of
the functional cavity equations, which are presented in Sec. IV
for arbitrary discrete variables with pairwise interactions and
in Sec. V for Boolean variables with (k � 2)-wise interac-
tions; the more technical parts of these computations are de-
ferred to the Appendixes. Section VI is devoted to numerical
experiments with belief propagation on finite-size samples.
In Sec. VII we summarize and offer perspectives for future
work.
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II. TYPOLOGY OF PHASE TRANSITIONS

This section is dedicated to the presentation of our qual-
itative results on the variety of possible phase diagrams in
inference problems. We will first briefly review the Bayesian
perspective on inference and the way statistical mechanics
handles it, staying at an abstract level of description (concrete
examples will be introduced in Sec. III). The typology of
phase transitions will then naturally follow from this discus-
sion, as well as the quantitative computations that can be
performed on concrete examples as first steps towards this
classification (which will form the core of the rest of the
paper).

A. Bayesian inference problems

In a statistical inference problem a ground-truth vector s∗ ∈
RN is to be inferred from some observations (or data) denoted
by G that correlate with s∗. In the Bayesian setting s∗ is a
random variable whose distribution is called prior and G is a
random variable with a conditional law P(G|s∗) that correlates
it with the ground truth. An observer provided with a sample
of G and with the knowledge of the model that generated it,
i.e., of the prior distribution and of P(G|s∗), must base one’s
inference of s∗ on the posterior distribution that follows from
Bayes’ theorem

P(s|G) = 1

Z (G)
P(G|s)

N∏
i=1

P0(si), (1)

where we assume for simplicity a prior distribution P0 factor-
ized on the components of the vector and Z (G) is a normaliz-
ing constant. The observer uses an estimator ŝ(G) that should
ideally be close to s∗. Which estimator is optimal depends on
the definition of closeness between ŝ(G) and the true value
s∗. To clarify this point, let us define the marginal probability
distributions of the posterior as

μi(si ) =
∑

{s j} j �=i

P(s|G). (2)

If the distance between ŝ(G) and s∗ is measured in terms of the
mean-square error (MSE)

∑
i(ŝi − s∗

i )2/N , then the optimal
estimator (that minimizes the MSE) is simply given by the
means of the marginals

ŝi =
∑

si

siμi(si ), (3)

and the error achieved by this estimator is called the minimum
mean-square error (MMSE). When the variables si belong to
a discrete set χ (as will be the case in this paper) another
meaningful definition of similarity between ŝ(G) and s∗ is the
mean overlap

∑
i δŝi,s∗

i
/N . The estimator that maximizes the

mean overlap is given by the value of si for which the marginal
is the largest, namely,

ŝi = argmaxμi(si ). (4)

We are interested in this paper in phase transitions, i.e.,
qualitative changes of the behavior of such inference prob-
lems and nonanalyticities in their optimal error. These can
only occur in the so-called thermodynamic limit N → ∞;
the dimensionality of G must be scaled appropriately for

this limit to be nontrivial, in such a way that the signal-to-
noise ratio (SNR) (whose precise definition depends on the
specific problem considered) that measures the quantity of
information on s∗ conveyed by G remains finite in the limit.
We will focus on a particularly interesting and challenging
class of problems for which there exists a nontrivial low-SNR
phase in which the inference problem cannot be solved more
precisely than by using only the prior information; we will call
this phase undetectable, as the ground truth s∗ has asymptot-
ically no effect on the posterior distribution. We will call the
accuracy a � 0 of an estimation procedure a measure of the
additional information it exploits in the posterior distribution
with respect to the prior in such a way that a = 0 in the
undetectable phase. The precise definition of the accuracy
is a model-dependent problem, to which we will return in
Sec. IV K, with rather subtle pitfalls (see, for example, [6]
for a discussion of this point); for instance, when the problem
admits an exact symmetry, the marginals of the posterior can
be strictly equal to the prior distribution for an arbitrary large
SNR. This is, for instance, the case of the symmetric SBM,
which is invariant under the permutation of the labels; in
such a case the definition of the distance between s∗ and
ŝ(G) must be adapted to break explicitly the symmetry by
considering, for instance, the overlap modulo of an arbitrary
global permutation of the labels of the vertices.

B. Statistical mechanics description

Several Bayesian inference problems have recently been
studied via statistical mechanics methods, and many of the
predictions thus obtained have been confirmed rigorously; our
goal here is not to review these results (see, for instance,
[3–6]) but to emphasize their common formal structure that
is at the origin of the few possible universality classes of
phase diagrams. Consider, from this abstract perspective, an
inference problem parametrized by a signal-to-noise ratio c. In
the statistical mechanics approach the accuracy of the Bayes-
optimal estimator is expressed as a variational problem: One
derives (with the cavity or replica method) a so-called free
energy f , which is a function of c and of an order parameter
a (an object whose nature depends on the problem under
study). This free energy has to be minimized with respect
to the order parameter, and the optimal accuracy is then a
function of the location of this global minimum (the minimal
free energy yields instead the mutual information between
the signal and the observations). In dense models, i.e., those
in which there are much more than N measurements, each
giving weak information on the signal (see, e.g., [16]), the
order parameter is a scalar (or a finite-dimensional vector);
in the sparse models studied later in this paper the order
parameter is functional, yet the qualitative behavior is the
same. To simplify this formal discussion let us stick to a scalar
order parameter and furthermore use the accuracy a � 0 as
the order parameter itself, with the minimal value a = 0 cor-
responding to the trivial uninformative estimator (exploiting
only the prior and not the observations). We write the free
energy as

f (a, c) = �(a, c) − a2

2
; (5)
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the motivation for the subtraction of the second term will
be clarified below. The location of the global minimum of
f with respect to a, denoted by a∗(c), is thus a prediction
for the accuracy of the optimal estimator, irrespective of its
computational complexity.

The cavity method also enlightens the computational com-
plexity of the inference problems. As a matter of fact, the
derivation of the free energy is tightly linked to the analysis of
an efficient iterative algorithm (called approximate message
passing [31,32] in the dense case or belief propagation in
the sparse regime [33]) and provides a dynamical map that
describes the discrete time evolution of the order parameter
during the execution of the algorithm. In our abstract setting
this yields an accuracy a(n) after n steps of the algorithm,
which evolves according to

a(n) = ϕ(a(n−1), c), (6)

with the initial condition a(0) = ε, where ε > 0 is an infinites-
imal positive constant. Initially, the algorithm only knows the
prior on the signal and at each time step uses the observation
to iteratively update and improve the accuracy of its belief on
the true value of the signal. We define aalg(c) = limn→∞ a(n)

as the accuracy ultimately reached by this algorithm.
The fundamental connection between the information-

theoretic optimal accuracy and the description of the iterative
algorithm is expressed mathematically in our setting by the
relation

ϕ(a, c) = �′(a, c). (7)

Here and in the following the prime denotes a derivative
with respect to the variable a. This equation implies indeed
a tight connection between the static description in terms of
the free energy f (a, c) and the dynamical one in terms of the
iteration function ϕ(a, c): The stationary points of the former
correspond to the fixed points of the latter. As mentioned
previously, we focus in this paper on problems which admit
an undetectable phase; this translates in the abstract formalism
employed here into the assumption that a = 0 is, for all values
of the SNR c, a fixed point of the iteration (6), which we call
the trivial or uninformative fixed point. Equivalently, a = 0 is
a stationary point of the free energy f (a, c).

C. Possible phase diagrams

It should be clear at this point that the description of the
phase transitions and the classification of the possible phase
diagrams is nothing but a bifurcation analysis. As the SNR c is
varied, the functions f (a, c) [ϕ(a, c)] evolve in a smooth way;
their stationary (fixed) points also do so, except at bifurcations
where their number and nature can change in a singular way.
The qualitative aspects of such a bifurcation diagram do not
depend on the details of the function f (a, c), but only on its
behavior close to the bifurcations (essentially the order and
sign of the first nonvanishing derivatives), which explains the
high level of universality among inference problems which
can have very different origins.

Let us now describe from this perspective the phase
transitions in inference problems, interpreted as bifurcations
for the stationary points of f (a, c). Among the possibly
many stationary points, two (which can coincide) will play a

particular role: a∗(c), the global minimum of f , which gives
the information-theoretic best possible accuracy, and aalg(c),
the fixed point reached by iterations starting infinitesimally
close to the trivial one, as it corresponds to the accuracy
reachable by an efficient algorithm.

As a = 0 is assumed here to be a fixed point for all values
of c and as the algorithm starts infinitesimally close to it, the
local stability of a = 0 under the iterations (6) yields crucial
information on the accuracy aalg(c) reached by the algorithm:
If a = 0 is stable the iterations will drive the algorithm to the
trivial accuracy and then aalg(c) = 0; if not, the dynamical
system flows away from this fixed point and one reaches
aalg(c) > 0. This stability can be determined very easily by
expanding (6) at first order in a,

a(n) ≈ ϕ′(0, c)a(n−1), (8)

which shows that a = 0 is stable if and only if ϕ′(0, c) < 1
[as a(n) � 0 we can assume ϕ′(0, c) � 0]. As c represents
here a signal-to-noise ratio, increasing values of c tend to
destabilize the trivial fixed point. We thus define the so-
called Kesten-Stigum (KS) threshold (from [34] and eluci-
dated below) cKS as the largest signal-to-noise ratio c for
which a = 0 is a stable fixed point. As mentioned above,
for c < cKS one has aalg(c) = 0 and the algorithm will not
be able to infer the underlying signal better than a random
guess from the prior. On the other hand, for c > cKS the
iterative algorithm reaches a nontrivial accuracy aalg(c) > 0
and provides a strictly positive correlation between the ground
truth signal and its estimator [but not necessarily as good as
the optimal estimator (discussed below)].

A moment of thought reveals that this change of stability
of the trivial fixed point at cKS must be accompanied by a
modification in the total number of fixed points, as the free
energy f (a, c) is smooth. Keeping in mind the restriction
a � 0, the two simplest global bifurcation diagrams that can
arise are depicted in Figs. 1(c) and 1(d), where all the fixed
points are represented as a function of the SNR c, with solid
(dashed) lines when they are stable (unstable).

The bifurcation diagrams presented in Figs. 1(a) and 1(c)
correspond to a so-called continuous (second-order) phase
transition. For all values of c there is a single stable fixed
point, with a trivial accuracy when c < cKS and a nontrivial
one for c > cKS. The optimal accuracy a∗(c) and the algorith-
mic one aalg(c), depicted, respectively, by red and blue lines
in Figs. 1(a) and 1(b), coincide for all values of the SNR c.
The transition at cKS thus separates an undetectable phase [for
c < cKS no estimator can detect the signal as a∗(c) = 0] from
an easy phase [for c > cKS the iterative efficient algorithm
matches the optimal performance as aalg(c) = a∗(c) > 0].

The next possible bifurcation diagrams, in order of in-
creasing complexity, are presented in Figs. 1(b) and 1(d) and
present a discontinuous (first-order) phase transition. What
happens by increasing c around the KS transition is now the
disappearance of an unstable nontrivial fixed point (instead
of the appearance of a stable nontrivial fixed point for a
continuous phase transition). There thus exists an interval of
the SNR c ∈ [csp, cKS] where two stable fixed points coexist
(the trivial one a = 0 and a nontrivial one). A bifurcation
occurs at the spinodal transition csp, where the high-accuracy
branch appears discontinuously. The consequences of this
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FIG. 1. Two “standard” scenarios with either (a) and (c) a second-order (continuous) transition or (b) and (d) a first-order (discontinuous)
transition for (a) and (b) the Bayes-optimal (a∗, in blue) and algorithmic (aalg, in red) performance and (c) and (d) the fixed points of Eq. (6),
with solid (dashed) lines for stable (unstable) fixed points. In all panels the vertical axis is the accuracy a and the horizontal axis is the
signal-to-noise ratio c. The thresholds csp, cIT, cKS, and calg, as defined in the text, are marked on the horizontal axes.

bifurcation diagram on the optimal and algorithmic accuracies
a∗(c) and aalg(c) are presented in Fig. 1(b); the latter is only
affected by the change of stability of the trivial fixed point at
cKS, above which it jumps to the only stable fixed point which
must thus coincide with the optimal accuracy a∗(c). In the
interval c ∈ [csp, cKS] the two stable fixed points correspond to
two local minima of the free energy f (a, c); their values cross
each other at the information-theoretic phase transition cIT ∈
[csp, cKS], the trivial (nontrivial) fixed point being the global
minimum for c ∈ [csp, cIT] (c ∈ [cIT, cKS]). One concludes in
this case that the undetectable phase (for c < cIT) and the
easy phase (for c > cKS) are separated by a hard phase (for
c ∈ [cIT, cKS]) in which a nontrivial accuracy is information-
theoretically possible [a∗(c) > 0] yet the iterative algorithm
does not provide any correlation with the signal [aalg(c) = 0].

One can easily imagine more and more complicated bi-
furcation diagrams that will be exhibited by free energies
with more and more stationary points; we will content our-
selves with the next possibility, depicted in Fig. 2. As shown
in Figs. 2(c) and 2(d), the branch of the nontrivial stable
fixed point that appears continuously for c > cKS undergoes
a bifurcation at an algorithmic spinodal calg > cKS, while
the high-accuracy branch disappears discontinuously at the
spinodal csp < calg [the spinodal csp can occur after or before
cKS, as shown in Figs. 2(a) and 2(c) and Figs. 2(b) and
2(d), respectively]. The algorithmic accuracy aalg(c) is in
this case vanishing for c < cKS, growing continuously on
the interval [cKS, calg], and jumping discontinuously at calg.
As we assumed here the existence of a single stable fixed

point for c > calg, the algorithmic accuracy coincides then
with a∗(c) (i.e., the jump reaches the optimal value). To
determine the information-theoretic optimal accuracy in the
presence of two stable fixed points of the recursion, one has
to compare the values of the corresponding local minima
of the free energy f (a, c). Let us call cIT the information-
theoretic transition at which these two free energies cross each
other, inducing a discontinuity in the accuracy a∗(c) of the
global minimum of the free energy. Figures 2(a) and 2(c) and
Figs. 2(b) and 2(d) distinguish further two different scenarios.
In Figs. 2(a) and 2(c) one has cIT > cKS and the four regimes
separated by the transitions cKS < cIT < calg will be called,
for increasing values of c, undetectable, easy, hybrid-hard,
and easy; in Figs. 2(b) and 2(d) cIT < cKS and the four phases
separated by cIT < cKS < calg are undetectable, hard, hybrid-
hard, and easy. In this terminology we define an undetectable
phase by the condition a∗(c) = aalg(c) = 0, an easy phase
by a∗(c) = aalg(c) > 0, a hard phase by a∗(c) > aalg(c) = 0,
and an hybrid-hard phase by a∗(c) > aalg(c) > 0. The hybrid
character of this phase arises from the simultaneous easiness
to beat the trivial accuracy of the uninformative estimator
[aalg(c) > 0] and hardness of achieving the optimal accuracy
[a∗(c) > aalg(c)].

Let us make a few remarks on the classification of possible
phase diagrams for inference problems we just presented.

(i) The scenarios described in this section and more gen-
erally in this paper are the simplest ones and they do not by
far cover all possibilities. One can always devise more compli-
cated free energies f (a, c) with more distinct stationary points
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cKS csp cIT calg(a)

a

c

a*
aalg

0

csp cIT cKS calg(b)

a

c

a*
aalg

0

cKS csp cIT calg(c)

a

c

0

csp cIT cKS calg(d)

a

c

FIG. 2. Two “new” scenarios of phase transitions for inference problems, one in (a) and (c) and one in (b) and (d) for (as in Fig. 1) (a) and
(b) the Bayes-optimal (a∗, in blue) and algorithmic (aalg, in red) performance and (c) and (d) the fixed points of Eq. (6), with solid (dashed)
lines for stable (unstable) fixed points. In all panels the accuracy a is plotted as a function of the signal-to-noise ratio c. The thresholds csp, cIT,
cKS, and calg, as defined in the text, are marked on the x axes. The KS threshold cKS here is strictly smaller than the algorithmic one calg. We
note that the thresholds can also be ordered as csp < cKS < cIT < calg; in terms of a∗ and aalg this still corresponds to the behavior shown in (a).

and/or more bifurcations, yielding, for instance, several hard
phases separated by easy regimes; we will not discuss these
more complicated situations as they did not arise in any of the
cases we analyzed (see [35] for such examples in the related
context of error-correcting codes).

(ii) We defined the computational easiness or hardness
of inference with respect to one specific efficient algorithm
(approximate message passing or belief propagation), as to
this day there are no algorithms more efficient (i.e., running
in polynomial time) known for the problems that are NP-hard
from the worst-case computational complexity point of view.
It remains of course a very challenging open question to prove
or disprove (under some computational complexity hypothe-
sis) the existence of more accurate, efficient algorithms than
these message-passing ones.

(iii) The two simplest scenarios presented in Fig. 1 are
well known in the context of inference on sparse random
graphs; for instance, the study of the symmetric stochastic
block model in Ref. [9] demonstrated a continuous [Figs. 1(a)
and 1(c)] phase transition for q � 3 communities and a dis-
continuous one [Figs. 1(b) and 1(d)] for q � 5. The more com-
plicated phase diagrams of Fig. 2 have only been discussed
in the context of dense inference problems (in particular for
constrained low-rank matrix estimation; see Figs. 3 and 6 in
Ref. [16]). However, we will see in the rest of the paper that
they also occur naturally in sparse problems.

(iv) It is known that for inference problems for which
a = 0 is a fixed point of (6) there is a close relation between

the inference (planted) model and the model with random
uncorrelated disorder (see, for instance, [24]). In random
optimization and constraint satisfaction problems some of
the equilibrium phase transitions described in the literature
correspond to phase transitions defined above. Notably,
the dynamical phase transition [23], sometimes referred to
as the mode-coupling theory transition [36] in the literature
on the mean-field theory of structural glasses and referred to
as the reconstruction threshold [19] in the theory of recons-
truction on tree, corresponds to cd = min(cKS, csp). This is in-
deed the smallest SNR for which a nontrivial fixed point does
exist. The condensation phase transition from random con-
straint satisfaction problems [23], sometimes referred to as the
Kauzmann ideal glass transition in the mean-field theory of
structural glasses [36], corresponds to ccond = min(cKS, cIT).
The KS phase transition is referred to as the de Almeida–
Thouless instability in the theory of spin glasses [37] and cor-
responds to the point starting from which iterative message-
passing algorithms such as belief propagation cease to
converge on random instances of the corresponding problems.
This correspondence between planted and random instances
does not hold for all phase transitions. For instance, the
satisfiability [38] of random constraint satisfaction problems
has no counterpart in the planted or inference setting, nor does
the algorithmic spinodal calg > cKS of inference problems
in the random ensembles. This correspondence also breaks
down for models where a = 0 is not a fixed point of (6), most
notably the satisfiability of random Boolean formulas.

042109-6



TYPOLOGY OF PHASE TRANSITIONS IN BAYESIAN … PHYSICAL REVIEW E 99, 042109 (2019)

D. Expansions around the trivial fixed point

The classification of the phase diagrams presented above
relies on a global bifurcation analysis, which requires the
identification of all fixed points of Eq. (6) and the study of
their domain of existence as a function of the SNR parameter
c. This is relatively easy to do when the order parameter is a
scalar or a finite-dimensional object and when the recursion
function ϕ can be studied explicitly. This global analysis
becomes much more difficult for sparse inference models, be-
cause the order parameter is infinite dimensional in this case.
The main methodological contribution of the present paper
is a generalization to the sparse case of a local bifurcation
analysis of the trivial fixed point in the neighborhood of the
Kesten-Stigum transition. For pedagogical reasons, let us first
explain here how this analysis is performed in the case of a
scalar order parameter (as done, for instance, in Sec. IV C 3 of
[16]), which will help one understand the strategy followed in
the functional case.

The location of the Kesten-Stigum transition cKS, defined
by the condition ϕ′(0, cKS) = 1, was obtained through the
linearization of (6). In order to study the nontrivial fixed
point in the neighborhood of this transition we will expand
the fixed-point equation a = ϕ(a, c) at the next order in a, to
obtain

a = ϕ′(0, c)a + 1
2ϕ′′(0, c)a2 + O(a3). (9)

In the neighborhood of cKS, the derivative ϕ′(0, c) is close to
1; we will hence trade the SNR c for a parameter ε defined
by ϕ′(0, c) = 1 + ε such that ε = 0 corresponds to the KS
transition and ε > 0 (ε < 0) to the high-SNR (low-SNR)
regime. If the second-order derivative of ϕ does not vanish
exactly at cKS we can rewrite this equation at lowest order as

a = a + εa + va2 + O(a3), (10)

where we have defined v = ϕ′′(0, cKS)/2 �= 0. The nontriv-
ial solution of this equation is obviously a = −ε/v; at this
point it is crucial to remember the positivity condition a � 0
(without it the bifurcation diagrams would be qualitatively
different). Indeed, this requirement implies that if v < 0 the
nontrivial perturbative fixed point exists for ε > 0, in the high-
SNR regime; this case corresponds both to the continuous
transition [Figs. 1(a) and 1(c)] and to the more complicated
phase diagrams of Fig. 2. In contrast, if v > 0 it is in the
low-SNR regime (ε < 0), as in the first-order transition case
depicted in Figs. 1(b) and 1(d).

Let us emphasize the limitations of such a local study. By
definition, it can only provide perturbative information on the
phase diagram, in the neighborhood of the KS transition and
for the branch of fixed point that coalesces with the trivial
one. If this is enough to distinguish the first-order transition
scenario [Figs. 1(b) and 1(d)] and exclude the three other
ones when v > 0, in the opposite case one cannot decide
between the second-order transition [Figs. 1(a) and 1(c)] and
the scenarios of Fig. 2 solely from the condition v < 0, as
nonperturbative (finite a) features further differentiate these
cases.

We will develop in the sparse case an expansion that goes
one order further, corresponding to an equation of the form

a = a + εa + va2 + wa3 + O(a4). (11)

The motivation for continuing the expansion to this order
is twofold. On the one hand, there are important inference
problems for which v = 0 exactly (most notably the sym-
metric stochastic block model for q = 4 groups, both in the
sparse [22] and in the dense regimes [16]; we will return
to the details of this point in Sec. IV H). In that case the
nontrivial solution is a = √−ε/w and it is the sign of w (if
w �= 0) that allows us to determine whether the perturbative
nontrivial fixed point exists in the low- or high-SNR phase
(the argument of the square root must be positive). On the
other hand, some problems have, in addition to the SNR, an-
other continuously varying parameter; this is in particular the
case of the asymmetric two-group stochastic block model (or
asymmetric Ising model in the tree reconstruction language),
where the asymmetry between the sizes of the two groups
can be tuned independently of the SNR. Depending on this
asymmetry parameter, which we denote by m in the following,
the type of transition changes from second to first order, which
comes from a change of sign of v when m crosses a critical
value mc. Having pushed the expansion to the third order will
thus allow us to study the neighborhood of the tricritical point
(ε, m) = (0, mc) in parameter space, where the nature of the
Kesten-Stigum transition changes. Taking simultaneously the
limits ε → 0 and m → mc with well-chosen scalings, the last
three terms of (11) will indeed be of the same order (this will
be discussed further in Sec. IV I).

III. CAVITY EQUATIONS AND MAIN RESULTS

In the preceding section we discussed the classification of
phase transitions and phase diagrams of Bayesian inference
problems, relying on the bifurcation analysis for a scalar order
parameter; dense inference problems can indeed be reduced
to such a scalar (or more generically finite-dimensional)
representation in the large-size limit. In the rest of the pa-
per we will turn instead to inference problems defined on
sparse graphs, for which the corresponding order parame-
ter becomes functional. In this section we will introduce
two exemplary cases of these sparse inference problems,
which cover the main applications of this paper, state in a
rather generic way the cavity formalism that can be used
to handle them, briefly explain its interpretation, and finally
present our main results, as obtained in the later sections
via an expansion of the cavity equations around their trivial
solution.

A. Definitions of two exemplary inference
problems on sparse (hyper)graphs

1. Stochastic block model

The stochastic block model is a random graph ensem-
ble which generates networks with a community structure
[39–41]. It is specified by the following parameters: N , the
number of vertices (or nodes) of the graph G = (V, E ); q, the
number of communities; η = (η1, . . . , ηq), a prior probabil-
ity distribution on the communities; and c = {cστ }, a q × q
symmetric matrix (not to be confused with the SNR which
was also denoted by c in Sec. II). A graph of this ensemble
is generated by drawing for each vertex i ∈ V a label σi ∈
{1, . . . , q}, independently at random with probability ησi

; this
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label represents the community of the vertex. Once the labels
σ = (σ1, . . . , σN ) are chosen, each of the N (N − 1)/2 possi-
ble edges 〈i, j〉 between pairs of distinct vertices is included in
the set of edges E of the graph with probability cσi,σ j /N . The
inference problem we will consider is the determination of the
labels σ (up to a potential symmetry between communities)
from the mere observation of the graph G and from the
knowledge of the parameters η and c.

We are in particular interested in the large-size limit N →
∞, taken for a fixed value of the affinity matrix c. In this
limit the degree of a vertex labeled σ becomes a Poisson ran-
dom variable with average dσ = ∑

σ ′ cσσ ′ησ ′ ; the finiteness of
these degrees justifies the name “sparse” given to this type of
inference problem. The phase transitions in the Bayes-optimal
inference in the sparse stochastic block model were studied in
detail in Refs. [8,9]. Many of these results were confirmed
rigorously in subsequent works (see, e.g., [6,42–45]).

We will assume in the following that dσ = d independently
of σ in such a way that the degree of a vertex is uninformative
of its label. This is the condition for the existence of an
undetectable phase at small d , in which case the SBM is
asymptotically contiguous to a purely random Erdős-Rényi
graph of the same average degree and the optimal estimation
of the labels can rely only on the prior distribution η.

2. Planted occupation models

We consider now the family of constraint satisfaction prob-
lems (CSPs) in which N Boolean variables, defined by σ =
(σ1, . . . , σN ) ∈ {0, 1}N , are required to satisfy simultaneously
M constraints of the following form: The ath constraint bears
on a subset of k variables, defined by ∂a ⊂ {1, . . . , N}, and
is satisfied by σ if and only if

∑
i∈∂a σi ∈ S, where S ⊂

{0, 1, 2, . . . , k} defines the type of problem. The interpretation
of σi = 1 (σi = 0) as a site occupied by a particle (that
is empty) justifies the name of “occupation” model, each
constraint restricting the number of particles adjacent to it
(in the bipartite graph on N + M vertices with an edge put
between i and a if and only if i ∈ ∂a) to belong to S. This
family of CSPs contains as special cases the bicoloring of hy-
pergraphs (when S = {1, . . . , k − 1}) and XORSAT problems
(also known as parity checks, when S = {0, 2, 4, . . . , } or
S = {1, 3, 5, . . . , }). Random ensembles of occupation prob-
lems, in which the neighborhoods ∂a are drawn uniformly at
random among the ( N

k ) possible ones, have been studied, e.g.,
in Ref. [46].

An inference problem can be associated with these occu-
pation models if instead of this random ensemble of CSPs
one considers its planted version, in which one first chooses
a configuration σ , drawing independently each σi with a
prior probability distribution ησi

(with η0 + η1 = 1), and then
draws the M neighborhoods ∂a uniformly among those that
are satisfied by σ (i.e., such that

∑
i∈∂a σi ∈ S). The inference

problem is then to reconstruct the planted configuration σ

solely from the observation of the bipartite graph linking vari-
ables to constraints and the knowledge of the subset S. Special
cases of planted occupation problems and their corresponding
phase transition have been studied previously in Refs. [11,47].
In this paper we will focus on symmetric planted occupation
models, in the sense that η0 = η1 = 1/2 and the set S of the
number of allowed particles is invariant under the exchange
of occupied and empty sites (i.e., we assume that n ∈ S if and
only if k − n ∈ S); this condition ensures the existence of an
undetectable phase if the density of constraints α = M/N is
small enough.

B. Cavity equations and free-entropy functional

We will now present a formalism, known as the cavity
method [2,48], that allows us to deal with inference prob-
lems on sparse random (hyper)graphs. We will first state the
approach in a formal way, with a level of generality that
encompasses the two examples above, before discussing its
interpretation and justification in the next section.

The cavity equations depend on the following parameters:
χ , a discrete alphabet of spins of cardinality q, taken for
concreteness to be χ = {1, . . . , q}; a probability distribution
η on χ , i.e., (η1, . . . , ηq), with ησ � 0 and

∑
σ ησ = 1; a

probability law p on non-negative integers representing the
degree distribution of variables and its size-biased version

p̃ = ( + 1)p+1

E[]
, (12)

where E[] = ∑
 p is the average degree; an integer k � 2;

and a joint probability law pj(σ1, . . . , σk ) on χ k (the subscript
j standing for joint) that we assume to be invariant under all
the permutations of its arguments and to have η as marginal
laws for a single argument

pj(σ1, . . . , σk ) = pj(σπ (1), . . . , σπ (k) ) ∀π ∈ Sk,∑
σ2,...,σk

pj(σ1, . . . , σk ) = ησ1
. (13)

We will also need the conditional version of this
probability law, to be defined by pc(σ1, . . . , σk−1|σ ) =
pj(σ1, . . . , σk−1, σ ) 1

ησ
, where the subscript c stands for

conditional. As a consequence of the hypothesis made on pj,
this conditional law is invariant under the permutations of its
k − 1 first arguments and fulfills the reversibility property:

pc(σ1, . . . , σk−1|σ )ησ = pc(σ, σ2, . . . , σk−1|σ1)ησ1
. (14)

We denote by η and ν probability distributions on χ (i.e.,
q-dimensional vectors of positive reals that sum to one). We
call the following recursive relations on the 2q distributions
{P(n)

τ (η), P̂(n)
τ (ν)}τ∈χ the conditional versions of the cavity

equations associated with the parameters (q, η, p, k, pj ):

P(n+1)
τ (η) =

∞∑
=0

p̃

∫
dP̂(n)

τ (ν1) · · · dP̂(n)
τ (ν)δ(η − f (ν1, . . . , ν)), (15)

P̂(n)
τ (ν) =

∑
τ1,...,τk−1

pc(τ1, . . . , τk−1|τ )
∫

dP(n)
τ1

(η1) · · · dP(n)
τk−1

(ηk−1)δ(ν − f̂ (η1, . . . , ηk−1)). (16)
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Here and in the following, unspecified summation over spin indices σ or τ are understood to run over χ , and n should be thought
of as a time index along the recursion (the initial condition for n = 0 will be discussed below). The functions f and f̂ appearing
above are called belief propagation recursions and are defined as follows: η = f (ν1, . . . , ν) means

ησ = 1

z(ν1, . . . , ν)
ησ

∏
i=1

ν i
σ

νσ

, (17)

where z enforces the normalization of η and we have denoted by ν the uniform distribution on χ (i.e., νσ = 1
q ), and the other

recursion function ν = f̂ (η1, . . . , ηk−1) is spelled out as

νσ = 1

ẑ(η1, . . . , ηk−1)

νσ

ησ

∑
σ1,...,σk−1

pj(σ, σ1, . . . , σk−1)
k−1∏
i=1

ηi
σi

ησi

, (18)

with again ẑ a normalizing factor. One can check easily that the hypothesis (13) made on the joint probability law pj implies
that f (ν, . . . , ν ) = η and f̂ (η, . . . , η) = ν, hence that P(n)

τ (η) = δ(η − η) and P̂(n)
τ (ν) = δ(ν − ν) are a stationary solution of

the cavity equations (15) and (16), which will be called a trivial fixed point in the following.
Let us also define what we call the unconditional version of the cavity equations associated with the parameters (q, η, p, k, pj )

that bear on the two sequences of distributions P(n)(η) and P̂(n)(ν),

P(n+1)(η) =
∞∑

=0

p̃

∫
dP̂(n)(ν1) · · · dP̂(n)(ν)δ(η − f (ν1, . . . , ν))z(ν1, . . . , ν), (19)

P̂(n)(ν) =
∫

dP(n)(η1) · · · dP(n)(ηk−1)δ(ν − f̂ (η1, . . . , ηk−1))ẑ(η1, . . . , ηk−1). (20)

The functions f , z, f̂ , and ẑ have been defined in Eqs. (17) and (18) and the distributions P(n)(η) and P̂(n)(ν) are required to have
means η and ν, respectively: ∫

dP(n)(η)η = η,

∫
dP̂(n)(ν)ν = ν. (21)

With the choice of normalization made in Eqs. (17) and (18) one has z(ν, . . . , ν ) = ẑ(η, . . . , η) = 1, hence the normalization of
the distributions P(n) and P̂(n), as well as the conditions (21) on their averages, are preserved by the recursions of Eqs. (19) and
(20). Note that the conditional and unconditional versions of the cavity equations are actually equivalent: One can go from one
form to the other according to the relations

P(n)(η) =
∑

τ

ητ P(n)
τ (η), P(n)

τ (η) = ητ

ητ

P(n)(η) (22)

for all n and similarly for P̂(n),

P̂(n)(ν) =
∑

τ

ντ P̂(n)
τ (ν), P̂(n)

τ (ν) = ντ

ντ

P̂(n)(ν). (23)

In particular, the trivial fixed point, in the unconditional version of the cavity equations, corresponds to P(n)(η) = δ(η − η) and
P̂(n)(ν) = δ(ν − ν).

Let us conclude this formal statement of the cavity formalism by the introduction of a functional, called free entropy, that
associates, in its unconditional form, a real value with a pair (P, P̂) of distributions that satisfy (21) according to

φ(P, P̂) = −E[]
∫

dP(η)dP̂(ν)ze(η, ν) ln ze(η, ν) + E[]

k

∫
dP(η1) · · · dP(ηk )zc(η1, . . . , ηk ) ln zc(η1, . . . , ηk )

+
∞∑

=1

p

∫
dP̂(ν1) · · · dP̂(ν)zv(ν1, . . . , ν) ln zv(ν1, . . . , ν), (24)

where

ze(η, ν) =
∑

σ

ησ

νσ

νσ

, (25)

zc(η1, . . . , ηk ) =
∑

σ1,...,σk

pj(σ1, . . . , σk )
k∏

i=1

ηi
σi

ησi

, (26)

zv(ν1, . . . , ν) =
∑

σ

ησ

∏
i=1

ν i
σ

νσ

. (27)
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An equivalent form in the conditional formalism reads

φ({Pσ , P̂σ }σ∈χ )=−E[]
∑

σ

ησ

∫
dPσ (η)dP̂σ (ν) ln ze(η, ν)

+ E[]

k

∑
σ1,...,σk

pj(σ1, . . . , σk )
∫

dPσ1 (η1) · · · dPσk (ηk ) ln zc(η1, . . . , ηk )

+
∞∑

=1

p

∑
σ

ησ

∫
dP̂σ (ν1) · · · dP̂σ (ν) ln zv(ν1, . . . , ν). (28)

Note that these expressions of φ are variational in the
sense that their derivatives with respect to their arguments
vanish when the latter are fixed-point solutions of the cavity
recursions [i.e., (15) and (16) in the conditional version and
(19) and (20) in the unconditional one]. They are however
well defined even if their arguments are not solutions of the
cavity equations [as long as the condition (21) is satisfied].
This property was recently exploited in Refs. [24,25]; we will
return to this point in Sec. IV E. Let us also mention that our
choice of normalization leads to φ = 0 on the trivial fixed
point of the cavity equations.

C. Interpretation of the cavity equations

The cavity equations written above arise in the context of
several slightly different and delicately intertwined problems,
in particular in the study of graphical models on random struc-
tures, tree reconstruction problems, and inference on sparse
graphs. We will not attempt here an exhaustive discussion
of these various interpretations and refer the reader to the
literature [3,12,19,23,24] for more details on these various
perspectives and the connections between them, and instead
give a brief description of two interpretations in order to
clarify the meaning of our main results to be discussed below.

1. Reconstruction on trees

The first interpretation of the cavity equations we will
discuss concerns the tree reconstruction problem [17–22].
Consider a rooted bipartite tree, with two types of vertices,
called variable nodes and interaction nodes, the latter all of
degree k and the root and the leaves being variable nodes.
This tree is used as an information channel in the following
way: Each variable node i bears a spin σi ∈ χ and information
is sent from the root to the leaves by first drawing the spin
of the root vertex with a prior probability η on χ and then
recursively assigning the values of the spins at distance n =
1, 2, . . . from the root. This last step is done independently for
each interaction node a: Denoting by σ1, . . . , σk−1 the k − 1
variables adjacent to a that are at a distance n + 1 from the
root and by σ the variable at a distance n (which has been
assigned in the previous step of the induction), one draws
the former conditional on the latter, with a law denoted by
pc(σ1, . . . , σk−1|σ ). The tree reconstruction question is now
the following: Given the observation of the spins at distance
n, is it possible to infer the value of the spin at the root
that started this broadcast process? Due to the tree structure
of the channel, it is possible to compute easily the posterior
probability η of the root given this observation. When the

distance n becomes very large two possibilities can arise,
depending on the level of noise in the channel: Either η

becomes very close to η and then all information on the root
value is lost or η keeps a trace of the correlation with the root
and an inference of its value with a better chance of success
than the one allowed by the prior probability η is possible.

It is not too difficult to convince oneself that the distribu-
tion P(n)

τ (η) that solves the cavity equations (15) and (16) is
precisely the one described above in this tree reconstruction
problem (see, e.g., [19] for a detailed derivation with similar
notation), conditional on the root variable being τ in the
broadcast process and when the tree used as a channel is a
random Galton-Watson tree with offspring degree probabil-
ity p̃. In this light the unconditional version of the cavity
equations (19) and (20) is seen to describe the distribution of
the marginal probability law of the root η, conditional on the
observation of the leaves, when the law of the latter is not
conditioned on the value of the root in the broadcast, and the
relations (22) are mere traductions of the Bayes theorem.

Following this interpretation, the initial condition of the
induction on n should be

P(n=0)
τ (η) = δ(η − δτ,·), (29)

with δτ,· the probability law on χ supported solely on τ , which
expresses the perfect knowledge of the variables observed at
the leaves of the tree. As mentioned above, the distribution
δ(η − η) is a fixed point of the cavity recursions (15) and
(16). The tree reconstruction problem can thus be rephrased,
in this setting, as determining whether the recursion leads, for
n → ∞, the distributions P(n)

τ towards this trivial fixed point,
in which case all information on the root is lost, or towards
a nontrivial fixed point that contains more information on the
root than the prior probability η.

It is actually useful to consider a more generic initial
condition, namely,

P(n=0)
τ (η) = εδ(η − δτ,·) + (1 − ε)δ(η − η), (30)

with ε ∈ [0, 1]. The iterations of (15) nd (16), starting from
this initial condition, describe now the inference problem
of the tree where the spin value of each leaf is observed
with probability ε and kept hidden otherwise. The usual tree
reconstruction problem is recovered for ε = 1; the variant
known as the robust reconstruction problem [18] corresponds
to the limit ε → 0, taken after the n → ∞ limit, and again
asks whether the iterations of the cavity equation return the
distributions P(n)

τ to the trivial fixed point (corresponding to
ε = 0) or lead it to a nontrivial one. Robust reconstruction is
thus possible if an infinitesimal amount of information on a
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far away boundary is amplified in the reconstruction process
and yields nonvanishing information on the root. It was shown
in Ref. [18] that the threshold for robust reconstruction corre-
sponds to the Kesten-Stigum condition [34]; in other words,
the robust reconstruction problem is solvable if and only if the
trivial fixed point is locally unstable. This provides a bound
on the original reconstruction problem, which is certainly
solvable whenever the robust variant is. The converse is not
true in general; the tightness of the Kesten-Stigum bound
depending on the channel will be a point that our main results
will explain.

2. Link with inference problems on graphs

Let us now turn to the second interpretation of the cav-
ity formalism, which corresponds to the inference problems
on random graphs described in Sec. III A. For concrete-
ness we concentrate on the stochastic block model example,
parametrized by the probability law η and the affinity matrix
c, which verify the condition dσ = ∑

σ ′ cσσ ′ησ ′ = d indepen-
dently of the label σ . Consider a graph G drawn from the
SBM ensemble, along with its labels σ , and choose uniformly
at random one of its vertices. One can then show (see, for
instance, Proposition 2 in Ref. [49] for a formal statement)
that its local neighborhood of fixed radius n converges in
the distribution, in the large-size limit, to a Galton-Watson
tree with an offspring distribution p̃ that is a Poisson law of
average d , decorated by labels σi that have the law described
above from the tree reconstruction perspective: The label of
the root is drawn with probability η and broadcasted along the
edges of the tree with the conditional law

pc(σ ′|σ ) = 1

d
cσσ ′ησ ′ , (31)

which verifies the reversibility property (14). This simple
observation unveils a link between the inference problem on
a graph and its tree counterpart; of course from a rigorous
point of view, the interplay between these two problems is
subtler, in particular because there is no explicit observation
of any label in the graph problem, contrary to the tree case.
Another difference is the (weak) interaction between vertices
that are not linked by an edge in the posterior probability law
of the graph SBM problem, which is not explicitly present in
the cavity formalism but can be traced to the condition (21).
The cavity method approach leads to the following
conjectures.

(i) When the robust reconstruction tree problem is solvable,
the labels of the graph inference problem can be inferred with
better accuracy than using only the prior information η, via a
polynomial time message-passing algorithm known as belief
propagation, whose accuracy is described in the large-size
limit by the fixed point of the cavity equations reached through
the robust reconstruction initial condition, i.e., with ε → 0
after n → ∞ in Eq. (30).

(ii) The accuracy of the optimal estimator of the labels
(which may require an exponential time to be computed)
is described by the fixed point of the cavity equations (15)
and (16) that yields the largest possible value of the free
entropy (28), the latter being related to the mutual information
between σ and G. In particular, if (15) and (16) only admit the

trivial fixed point, then the hidden labels cannot be inferred
better than with their prior distributions.

(iii) No polynomial time algorithm is able to beat the esti-
mation accuracy of the belief propagation algorithm, hence
the existence of the hard phase, where according to (ii) it
is information-theoretically possible to infer the labels with
a nontrivial accuracy, but this is not possible with belief
propagation. We stress here that in problems where the hybrid-
hard phase (with BP giving a better estimate than random, but
still being largely suboptimal) exists, the nonoptimality of BP
occurs for a SNR above the Kesten-Stigum threshold.

Parts of points (i) and (ii) have been established rigorously,
in particular for the stochastic block model as reviewed in
Ref. [6]. The most detailed results have been obtained for the
symmetric two-group SBM [42,43]. Point (ii) was established
in Refs. [24,25,50] for a large set of models; roughly speaking,
these works show that the existence of probability distribu-
tions (P, P̂) with φ(P, P̂) > 0 implies the possibility of non-
trivial inference of the labels in the graph problem (a similar
variational principle for the tree reconstruction problem can
be found in Ref. [19]). The optimality of belief propagation
for a large signal-to-noise ratio (above an unspecified constant
multiplying the KS threshold) was established in Ref. [44],
but remains an open problem in the low signal-to-noise ratio
regime. Point (i) is very much related to Theorem 2.12 in
Ref. [44], where an auxiliary algorithm provides the initial
condition of BP on a finite graph that emulates the observation
of a few labels in the tree robust reconstruction problem.

D. Main results

The main technical results of this paper, to be presented
in the subsequent sections, are expansions of the functional
cavity equations (15) and (16) and free entropy (28) around
their trivial fixed point (that exists because we consider
models having an undetectable phase). These computations
allow us to generalize the local bifurcation analysis sketched
in Sec. II D for a finite-dimensional order parameter, to the
functional infinite-dimensional case. When the parameters
(η, pj, p̃) of the models are varied in the neighborhood of
the Kesten-Stigum transition, at which the trivial fixed point
changes stability, a nontrivial fixed point bifurcates from
it continuously. The local bifurcation analysis allows us to
determine whether it bifurcates as an unstable fixed point in
the direction of lower SNR, in which case the Kesten-Stigum
threshold and the algorithmic threshold coincide [Fig. 1(b)]
and the hard phase must exist, or the solution bifurcates as a
stable fixed point in the direction of higher SNR [Figs. 1(a)
or 2]. To be able to further distinguish between the three
scenarios in the latter case, we have also solved the fixed-
point cavity equations numerically using the population dy-
namics technique (a presentation of this numerical algorithm
and of the subtleties in its implementation can be found in
Appendix A). For the convenience of the reader we summa-
rize here our main findings for the stochastic block model and
the planted occupation models and defer the detailed technical
explanations to Sec. IV and V, respectively. We also show the
numerical confirmation that BP run on large single instances
of the inference problem indeed follows the behavior derived
from the distributional cavity equations.
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1. Symmetric SBM: Marginal case of four groups

The symmetric SBM is a special case of the model intro-
duced in Sec. III A 1, where every community has the same
size, i.e., ησ = 1/q, and the probability of an edge between
two vertices of labels σ and σ ′ only depends on whether
σ = σ ′ or not: cσσ = a and cσσ ′ = b for σ �= σ ′. The average
degree is then d = [a + (q − 1)b]/q and it is convenient to
parametrize the difference between the intracommunity and
intercommunity connectivity by defining θ = (a − b)/[a +
(q − 1)b]. This parameter is positive in the assortative case
(a > b) and negative in the disassortative case (a < b). As
explained in Sec. III C, the study of this problem by the
cavity method [8,9] is tightly linked to the tree reconstruction
problem for the symmetric Potts model [19,22,51,52], with an
offspring distribution of the Galton-Watson tree p̃ Poissonian
of average d; in this context θ > 0 (θ < 0) is called the
ferromagnetic (antiferromagnetic) case. The Kesten-Stigum
transition is easily seen from the tree reconstruction perspec-
tive to occur when dθ2 = 1, where d is the average of p̃.
This combination of parameters can thus be regarded as a
relevant signal-to-noise ratio (keeping in mind the sign of θ

that disappears from this definition).
The results of our local bifurcation analysis, performed

for an arbitrary distribution p̃, can be summarized as fol-
lows (the details can be found in Sec. IV H): for q � 3, for
both ferromagnetic and antiferromagnetic models, and for
any p̃, the Kesten-Stigum transition is continuous [second
order, as in Fig. 1(a)]; for q � 5, for both ferromagnetic and
antiferromagnetic models, and for any p̃, the transition is
discontinuous [first order; cf. Fig. 1(b)]; and for q = 4, the
order of the phase transition depends explicitly on the degree
distribution and on the ferromagnetic or antiferromagnetic
character of the model, through the sign of the quantity

w = −7

3

Ẽ[( − 1)( − 2)]

Ẽ[]3
+
(
Ẽ[( − 1)]

Ẽ[]2

)2

×
(

5

Ẽ[] − 1
− 12

sgn(θ )
√
Ẽ[] − 1

)
, (32)

where Ẽ denotes the average with respect to the offspring
degree distribution p̃. A first-order phase transition is pre-
dicted to arise if w > 0, while the transition is continuous
(second order) for w < 0. In the ferromagnetic or assortative
case [sgn(θ ) = 1], one can check easily that w < 0 for all
degree distributions, which yields a continuous transition (one
has necessarily d = Ẽ[] > 1 for the problem to make sense).
In contrast, in the antiferromagnetic or disassortative case,
the sign of w changes according to the degree distribution.
For instance, when p̃ is a Poisson law with average d , as in
the application to the graph SBM problem, there is a critical
degree dc ≈ 22.2694 such that w > 0 for small degrees d <

dc, leading to a first-order phase transition, while for large
degrees d > dc the coefficient w becomes negative and hence
the transition is of second-order type.

This problem was extensively studied in the litera-
ture from various perspectives, notably tree reconstruction
[19,22,51,52], the stochastic block model [8,9], and the Potts
model on random graphs [53], and part of this characterization
was already known (in particular, the tightness of the KS

transition for q = 2 was established in Refs. [51,52], and
[22] proved the nontightness of the KS transition for q � 5
for all degrees and its tightness for q = 3 and large enough
degrees). However, the situation of the q = 4 case has re-
mained rather obscure (for instance, Fig. 2 of [53] missed the
crossover towards a continuous transition at large degrees),
even if it could have been anticipated that the ferromagnetic
and antiferromagnetic models must behave in the same way
in the large-degree limit (see, for instance, [22,54] and the
discussion in Sec. IV F). The explicit condition (32) that
characterizes sharply the degree distributions for which the
antiferromagnetic four-group Potts model (or disassortative
symmetric SBM) has a gap between the information-theoretic
performance and the best known algorithmic one is thus one
of our main results.

In order to test this prediction we performed a numerical
resolution of the cavity equations (see Appendix A for more
details) for the q = 4 antiferromagnet on Poissonian Galton-
Watson trees. In Fig. 3(a) one can see clearly that for low aver-
age degrees the spinodal and information-theoretic transitions
are below the Kesten-Stigum bound and that they get closer
to it as d grows. A simple scaling argument, to be explained
in Sec. IV H, predicts that the signal-to-noise ratio dθ2 of
the spinodal and IT transitions reaches the Kesten-Stigum
value 1 with a correction scaling as (dc − d )3 as d → d−

c . In
Fig. 3(b) we thus plotted the same phase diagram with the
change of variable dθ2 → (1 − dθ2)1/3 in such a way that
the deviation from the KS bound should vanish linearly when
d → d−

c in these units. It is fair to say that our numerical data
are compatible with our analytical prediction of dc, without
providing an independent confirmation of it. As a matter of
fact, the largest degrees for which we could estimate reliably
the location of the spinodal and IT transitions are still rather
far from our prediction of dc; it is indeed very difficult to
distinguish numerically a continuous transition from a very
weakly discontinuous one, and the relatively large exponent 3
in the behavior of the signal-to-noise ratio is unfavorable for
this numerical study. As a consequence, we cannot perform
a linear fit from the plot of Fig. 3(b); however, the line we
drew as a guide to the eye looks like a possible interpolation
towards our analytically computed value for dc.

2. Asymmetric balanced two-group SBM

We have also dedicated specific attention, detailed in
Sec. IV I, to the case of the (q = 2)-community SBM with
different communities sizes (η1 �= η2) yet with an affinity
matrix such that the average degree of the vertices in the
two communities is the same (hence the degree of a vertex
is uninformative of its label and the model exhibits an un-
detectable phase at low degrees). We will parametrize this
model by a magnetization parameter m ∈ [0, 1] such that the
size of the smaller group is η1 = 1−m

2 , the symmetric case
being recovered for m = 0. With the condition of both groups
having average degree d , we are left with one more free
parameter, which we label θ and define as θ = 1 − c12

d , where
c12 = c21 is N times the probability that two nodes in different
groups are connected by an edge.

The cavity method relates this model to a tree recon-
struction problem known as the asymmetric Ising model

042109-12



TYPOLOGY OF PHASE TRANSITIONS IN BAYESIAN … PHYSICAL REVIEW E 99, 042109 (2019)

sp
IT

d

dθ2

1615141312111098

1.01

1

0.99

0.98

0.97

0.96

0.95

0.94

(a)

IT
sp

d

(1 − dθ2)1/3

24222018161412108

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

(b)

FIG. 3. Phase diagram of the four-group disassortative symmetric SBM (equivalently the reconstruction of the antiferromagnetic q = 4
Potts model on Poissonian Galton-Watson trees), as a function of the average degree d . (a) The spinodal and IT transitions (see the text and
Fig. 1 for their definitions) are plotted in terms of the signal-to-noise parameter dθ2, which equals 1 at the Kesten-Stigum transition (horizontal
dashed line). (b) Same data as in (a) drawn with a change of variable on the vertical axis to better appreciate the crossover from the first- to
the second-order transition as d reaches dc; as explained in the text and with more details in Sec. IV H, we expect the curves in (b) to vanish
linearly when d → d−

c . The vertical line marks our analytical prediction for dc ≈ 22.2694; the other line is only a guide to the eye.

[17,20,29], for which the KS transition occurs at dθ2 = 1,
with d = Ẽ[] the average offspring degree. Our expansions
of the cavity equations around this point reveals a striking
universality phenomenon: For all degree distributions and for
both ferromagnetic and antiferromagnetic models, the qual-
itative nature of the transition changes when the parameter
m that quantifies the asymmetry of the model crosses the
same value mc = 1/

√
3. The transition is indeed second order

[Fig. 1(a)] for m < mc and first order [Fig. 1(b)] for m > mc.
Until very recently it was only known from [20] that the
Kesten-Stigum bound was tight (i.e., the transition second
order) for small enough asymmetries and that it was not
tight for large enough asymmetries [17], but these papers
did not estimate the critical asymmetry separating these two

regimes. The value mc = 1/
√

3 was deduced independently in
Ref. [29], which provides a rigorous proof of the nontightness
of the Kesten-Stigum bound for m > mc on regular trees,
via moment expansions similar to ours. Our (nonrigorous)
computations presented in Sec. IV I are more generic, as they
encompass arbitrary offspring distributions p̃, but more im-
portantly have been pushed to a higher order in the expansion.
This allows us to predict not only the critical asymmetry mc

above which the Kesten-Stigum bound is not tight, but also
the leading-order behavior of the spinodal (reconstruction)
and IT transition lines in the regime m → m+

c (which is not
universal and depends on the degree distribution and on the
ferromagnetic or antiferromagnetic character of the model).
As an illustration we present in Fig. 4 the phase diagram for
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FIG. 4. Phase diagram of the ferromagnetic (θ > 0) asymmetric Ising model on a regular tree with offspring degree distribution p̃ = δ,d ,
d = 3. The magnetization parameter m encodes the size of the smaller community, in the SBM interpretation, as (1 − m)/2. (a) The spinodal
and IT transitions are plotted in terms of the signal-to-noise parameter dθ2, which equals 1 at the Kesten-Stigum transition (horizontal dashed
line). Within our numerical accuracy we cannot distinguish the spinodal and IT points for m smaller than 0.8; we use a single symbol in this
case. The two lines correspond to the large-degree limit, as computed for the dense models in Refs. [16,26,27]. (b) Same data as in (a) drawn in
rescaled units to better appreciate the crossover from the first- to the second-order transition as m reaches its critical value mc = 1/

√
3 ≈ 0.577,

marked as a vertical line. The two straight lines are the analytical predictions of Eqs. (130) and (133) for the leading-order behavior of the
spinodal and IT transitions as m → m+

c , for the sparse case p̃ = δ,3.
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c =

q1 q〈 〉2

FIG. 5. Shape of the connectivity matrix in the q1 + q2 Potts
model. Matrix elements filled with the same pattern are equal.

the ferromagnetic Ising model on a regular tree, obtained by a
numerical resolution of the cavity equations. One can indeed
see in Fig. 4(a) that the spinodal and information-theoretic
transitions occur before the KS threshold for asymmetries
larger than mc and that this discontinuity of the transition
vanishes when m → m+

c . In Fig. 4(b) we present the same
data in rescaled units, chosen such that the approach to mc

is linear; the two straight lines of the plot are the results of our
analytical predictions to be explained in Sec. IV I and are in
agreement with the numerical results within the accuracy we
could reach.

Note that the independence of mc on the degree distribution
explains why the same phenomenology, as well as the same
critical asymmetry, was already obtained in the corresponding
dense inference problems [16,26] or in the large-degree limit
[27,28]. The community detection problem in networks with
unequal groups was also recently investigated in Refs. [55,56],
but these works treat the case where the degree of a vertex is
correlated to its label; in contrast, in all the problems we treat
in this paper the degree of a vertex is not informative of its
label.

3. The q1 + q2 SBM

As we have seen in the two cases above, the qualitative
properties of the phase diagram of the SBM strongly depend
on the structure of the prior distribution η and of the affinity
matrix c, in particular on their symmetry properties. It is of
course impossible to investigate explicitly all the possible
ways to break the full permutation symmetry between the q
labels, for arbitrary q, and to determine the typology of the
phase transitions of the associated models. We have studied
a class of SBMs that generalizes and encompasses both the
symmetric SBM model for q arbitrary and the asymmetric q =
2 case, by dividing the q possible labels in two supergroups
G1 and G2 of cardinality q1 and q2 (with q = q1 + q2) and
keeping the permutation symmetry inside each of these two
sets. This leads to a prior ησ that is constant inside G1 and G2,
and an affinity matrix cστ which depends only on the super-
groups σ and τ belong to and on whether or not σ = τ (see
Fig. 5 for an illustration). One can view the graph generated
in this way as a superposition of two symmetric SBMs on
the vertices in the groups G1 and G2 and an asymmetric Ising
model that coarse grains all the labels in a group Gi as a single
symbol. Once q1 and q2 are chosen the model is defined by
five parameters: the average degree of a vertex (assumed to
be independent of its label), the fraction of vertices in the two
supergroups, and the three SNRs quantifying the information
provided by the edges of each SBM in the decomposition

TABLE I. Thresholds for the bicoloring on Poissonian random
hypergraphs; see the text and Fig. 2 for their definitions.

k αKS αsp αIT αalg

3 1.5
4 4.083 4.64 4.673 4.71
5 11.25 9.46 10.296 12.44
6 32.03 18.08 21.425 34.5

explained above. Depending on the choice of parameters,
the Kesten-Stigum transition can arise from any of these
three subgraphs; in Sec. IV J we present a classification of
the typology of the corresponding bifurcation. Moreover, we
will argue there that for well-chosen parameters the more
complicated bifurcation depicted in Fig. 2 must occur in this
model. Note that a special case of this problem (with an
additional symmetry between the two subgroups) was recently
studied in Rfes. [30,57].

4. Hybrid-hard phase in planted occupation models

In Sec. V we will study in detail the cavity equations
for Ising spin (q = 2) variables, defining the spin alphabet
χ = {−1,+1}, with k-wise interactions, for k � 2 arbitrary.
We concentrate on models that have a global spin-flip sym-
metry, i.e., such that η+ = η− = 1/2 and pj(σ1, . . . , σk ) =
pj(−σ1, . . . ,−σk ) in the notation of Sec. III B. Quite strik-
ingly, we will prove that all the problems fulfilling this sym-
metry property have, around their Kesten-Stigum threshold,
a bifurcating nontrivial solution on the large signal-to-noise
ratio side of the KS transition. In other words, none of these
models can exhibit a first-order transition as in Figs. 1(b) and
1(d); depending on the model, the phase diagram either is of
the second-order type [cf. Figs. 1(a) and 1(c)] or exhibits an
hybrid-hard phase as in Fig. 2.

As an illustrative example we present in Fig. 6 the bifurca-
tion diagrams for the planted k-uniform hypergraph bicolor-
ing, as defined in Sec. III A 2, in which each hyperedge forbids
the k variables around it from being all in the same state.
The random version of this constraint satisfaction problem
has been studied in some details (see, for instance, [58] and
references therein), but we are not aware of previous studies
of its planted version for small values of k. The plots of Fig. 6
show that for k = 3 the transition is second order, while k = 4
and k = 5 realize the two scenarios sketched in Figs. 2(a) and
2(c) and Figs. 2(b) and 2(d), respectively, whose interpretation
was discussed in general terms in Sec. II C. In these latter
two cases the hybrid-hard phase occupies a sizable part of the
phase diagram and can be easily identified numerically; we
expect all k � 5 to behave qualitatively in the same way and
checked this for k = 6. We report in Table I the corresponding
values of the thresholds αKS for the Kesten-Stigum transition,
αsp and αalg for the spinodals of the high- and low-accuracy
branches, respectively, and αIT, corresponding to the crossings
of the free entropies of these two fixed points (the correspond-
ing numerical data will be shown in Sec. V).

The hybrid-hard phase in which belief propagation is able
to reach a nontrivial accuracy, yet cannot reach the optimal
one, has not been identified in sparse inference problems that
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FIG. 6. Stable fixed points of the cavity equations in terms of their accuracies for the planted bicoloring of k-uniform hypergraphs for
(a) k = 3, (b) k = 4, and (c) k = 5. The accuracy is defined here as the difference between the probability that a sample from the posterior
marginal outputs the correct label and the same probability when only the prior is used (see Sec. IV K for more details). The vertical line marks
the KS threshold. These curves have been obtained by a numerical resolution of the cavity equations (15) and (16), ainf corresponds to the
fixed point reached from an informative initialization [corresponding to the reconstruction problem, ε = 1 in Eq. (30)], and aalg was obtained
from an uninformative initialization [corresponding to the robust reconstruction problem, ε → 0 in Eq. (30)]. The parameter α controls the
offspring degree distribution p̃, which is a Poisson law of average αk. The optimal accuracy a∗ coincides with ainf above the IT transition,
whose location can be found in Table I.

have an undetectable phase. This can sound surprising in view
of our statement above: Hybrid-hard phases appear as soon
as the phase diagram is not a purely second-order transition.
The resolution of this apparent paradox is that the hybrid-hard
phase is often very narrow: For instance, the so-called 2-in-4
planted SAT problem was reported, wrongly, to have a first-
order transition in Refs. [11,47]. As we show in Sec. V, the
hybrid-hard phase does exist in this model, but its width is so
tiny that it was easily missed in previous numerical studies.

5. Numerical experiments with belief propagation

Our main technical results are based on numerical res-
olutions and analytic expansion of the distributional cavity
equations (19) and (20). These equations describe directly the
tree reconstruction problem, but their interpretations in terms
of the inference problems on graphs and hypergraphs relies
on conjectured connections summarized in Sec. III C 2. We
therefore devote Sec. VI to a numerical test of this connection
and show that the behavior of the BP algorithm on large
but finite-size samples is well described by the (infinite-size)
tree reconstruction problems. As a striking example let us
anticipate that the curves of Fig. 6 will be reproduced in
Fig. 10 from the output of single-sample experiments, includ-
ing the coexistence of nontrivial branches in the hybrid-hard
phases.

IV. MOMENT EXPANSIONS FOR PAIRWISE
INTERACTING POTTS VARIABLES

This section is devoted to the first of the two specializations
of the formalism introduced in Sec. III: We will only study
here pairwise interacting models (i.e., k = 2). In other words,
we consider graphs instead of hypergraphs, but keep an arbi-
trary q-state variable alphabet (in Sec. V we will instead turn
to k-wise interactions with arbitrary k but restrict ourselves to
Ising spin variables).

A. Cavity equations and free-entropy functional

Let us start by rewriting the cavity equations and free-
entropy functional introduced in Sec. III in a simplified form,
exploiting the pairwise character of the interactions consid-
ered here. Our problem is now defined in terms of a prob-
ability distribution η on χ = {1, . . . , q}, a q × q transition
matrix Mσσ ′ = pc(σ ′|σ ), and the degree distributions p and
p̃ related by the size bias (12). The two equations (15) and
(16) can be joined into a single recursion on the conditional
distribution

P(n+1)
τ (η) =

∞∑
=0

p̃

∑
τ1,...,τ

Mττ1 · · · Mττ

∫
dP(n)

τ1
(η1) · · ·

dP(n)
τ

(η)δ(η − f (η1, . . . , η)), (33)

where the belief propagation recursion function f is obtained
by concatenating (17) and (18). In an explicit form, η =
f (η1, . . . , η) means that for all labels σ ∈ {1, . . . , q},

ησ = zσ (η1, . . . , η)

z(η1, . . . , η)
,

z(η1, . . . , η) =
∑

γ

zγ (η1, . . . , η), (34)

zσ (η1, . . . , η) = ησ

∏
i=1

∑
σ ′

M̂σσ ′ηi
σ ′,

where we have introduced the notation

M̂σσ ′ = Mσσ ′
1

ησ ′
. (35)

An equivalent and more compact form of (33) can be written
as an equality in the distribution of random variables

η(n+1,τ ) d= f (η(n,τ1 ), . . . , η(n,τ ) ), (36)

where all random variables are independent,  has the dis-
tribution p̃, η(n,τ ) stands for a random draw from P(n)

τ , and
the τi on the right-hand side are generated with probability
Mττi . From Eqs. (19) and (20) one obtains the recursion for
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the unconditional distribution

P(n+1)(η) =
∞∑

=0

p̃

∫
dP(n)(η1) · · ·

dP(n)(η)δ(η − f (η1, . . . , η))z(η1, . . . , η),

(37)

where z is the quantity defined in Eq. (34).
We gave in Sec. III an expression of the free entropy for

generic random factor graph models. Specializing it to the
case of pairwise interactions, one obtains

φ({Pτ }) =
∞∑

=1

p

∑
τ

ητ

∑
τ1,...,τ

Mττ1 · · ·

Mττ

∫
dPτ1 (η1) · · · dPτ

(η) ln zv(η1, . . . , η)

− 1

2
E[]

∑
τ1,τ2

ητ1
Mτ1τ2

∫
dPτ1 (η1)dPτ2 (η2)

× ln ze(η1, η2), (38)

where E[] = ∑
 p is the average degree. The variable

contribution zv reads exactly as z in Eq. (34), while the edge
contribution is

ze(η1, η2) =
∑
σ1,σ2

η1
σ1

M̂σ1σ2η
2
σ2

. (39)

An equivalent form in terms of the unconditional distribution
is

φ(P) =
∞∑

=1

p

∫
dP(η1) · · · dP(η)zv(η1, . . . , η)

× ln zv(η1, . . . , η) − 1

2
E[]

∫
dP(η1)dP(η2)

× ze(η1, η2) ln ze(η1, η2). (40)

B. Properties of the Markov matrix M

Let us review the properties of the transition matrix Mσσ ′ =
pc(σ ′|σ ) that follows from the hypothesis on pc made in
Sec. III.

(i) The normalization of pc, which ensures the conservation
of probabilities in the broadcast process, implies that M is a
stochastic matrix

∑
σ ′ Mσσ ′ = 1 for all σ .

(ii) The assumption (14) yields the reversibility of M with
respect to η (the detailed balance condition in physics jargon),
ησ Mσσ ′ = ησ ′Mσ ′σ .

(iii) This reversibility is a sufficient condition for η to be
stationary for the Markov chain with transition probability
matrix M, i.e.,

∑
σ ησ Mσσ ′ = ησ ′ for all σ ′. Hence M has an

eigenvalue θ1 = 1, with right eigenvector (1, . . . , 1) and left
eigenvector η.

Assuming that M is irreducible and aperiodic, the Perron-
Frobenius theorem ensures that all its other eigenvalues are
strictly smaller in absolute value; we will order them as 1 >

|θ2| � · · · � |θq|. The reversibility assumption simplifies the
study of the eigendecomposition of M: Consider indeed the
matrix Wσσ ′ = η1/2

σ Mσσ ′η
−1/2
σ ′ . It can be easily seen that W is

real and symmetric, hence diagonalizable in an orthonormal

basis, and that M has the same eigenvalues as W . Let us write
the eigendecomposition of W as

Wσσ ′ =
q∑

j=1

θ jv
( j)
σ v

( j)
σ ′ , (41)

where the vectors v of the orthonormal basis verify∑
σ

v( j)
σ v(k)

σ = δ j,k,
∑

j

v( j)
σ v

( j)
σ ′ = δσ,σ ′ . (42)

Here and in the following δ j,k , the Kronecker symbol, is equal
to 1 if the two arguments are equal and 0 otherwise. The
Perron eigenvector of W reads in this basis

θ1 = 1, v(1)
σ = η1/2

σ . (43)

Transforming back from W to M, we introduce the basis of
the left and right eigenvectors of M,

r ( j)
σ = η−1/2

σ v( j)
σ , l ( j)

σ = η1/2
σ v( j)

σ , (44)

which obey the following relations:∑
σ

l ( j)
σ r (k)

σ = δ j,k,
∑

j

l ( j)
σ r ( j)

σ ′ = δσ,σ ′ ,

r ( j)
σ = 1

ησ

l ( j)
σ , l (1)

σ = ησ , r (1)
σ = 1. (45)

The matrix M can thus be expressed as

Mσσ ′ =
q∑

j=1

θ j r
( j)
σ l ( j)

σ ′ = ησ ′ +
q∑

j=2

θ j r
( j)
σ l ( j)

σ ′ . (46)

The matrix M̂ introduced in Eq. (35) is symmetric due to the
reversibility condition and it can be expressed in terms of the
eigenvector decomposition as

M̂σσ ′ =
q∑

j=1

θ j r
( j)
σ r ( j)

σ ′ = 1 +
q∑

j=2

θ j r
( j)
σ r ( j)

σ ′ . (47)

C. Symmetry properties

Let us recall that we stated in Eq. (22) some consequences
of the Bayes theorem that bridge the conditional and uncon-
ditional distributions. These will play an important role in
the following, hence we first spell out some consequences of
these symmetry relations. We will denote by E(n)

τ and E(n)

the averages with respect to P(n)
τ and P(n), respectively. One

has E(n)[η] = η for all n. For any function g, the relationship
between the densities of P(n)

τ and P(n) given in Eq. (22) yields

ητE
(n)
τ [g(η)] = E(n)[ητ g(η)]. (48)

Applying this identity with g(η) = 1 gives the already men-
tioned property E(n)[η] = η. If one uses instead g(η) = ησ ,
this yields

ητE
(n)
τ [ησ ] = E(n)[ητησ ]. (49)

Let us define a q-dimensional vector δ as the difference δ =
η − η between a message and the stationary value. One has in
this way E(n)[δ] = 0, and from (49) one obtains

ητE
(n)
τ [δσ ] = E(n)[ητησ ] − ητησ = E(n)[δτ δσ ]. (50)
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D. Stability analysis of the trivial fixed point
via moment expansions

By construction, the probability distribution η is a fixed
point of the BP equation (34), i.e., f (η, . . . , η) = η, reflecting
the stationarity of η under the Markov chain generated by
M. This implies that Pτ (η) = δ(η − η) is a fixed point of
the cavity recursion (33) [and similarly P(η) = δ(η − η) is
invariant under the recursion (37) for the unconditional distri-
butions]. We will now study the stability of this trivial fixed
point and determine perturbatively the nontrivial fixed points
that arise in the neighborhood of the limit of stability. This
bifurcation analysis will follow the steps explained in Sec. II D
for scalar recursions. The additional complication due to the
functional character of the recursions (33) and (37) will be
dealt with by concentrating on the low-order moments of
the distributions Pτ , thereby reducing the infinite-dimensional
bifurcation analysis to a finite-dimensional one.

1. Linear analysis

We define by δ = η − η the (q-dimensional vector) dif-
ference between the BP message and the trivial fixed point.
As both η and η are normalized one has

∑
σ δσ = 0. The BP

equation (34) can be expressed as

δσ = ησ

∏
i=1

(
1 + δ̂i

σ

)
∑

γ ηγ

∏
i=1

(
1 + δ̂i

γ

) − ησ , (51)

where we defined

δ̂σ ≡
∑
σ ′

M̂σσ ′δσ ′ (52)

as a linearly transformed version of δ. The normalization
condition becomes, under this transformation,

∑
σ ησ δ̂σ = 0.

For this reason, the denominator of (51) is equal to 1 up to
quadratic corrections in δ and hence the linearization of the
BP equation gives

δσ ≈ ησ

∑
i=1

δ̂i
σ . (53)

Taking averages according to Eq. (33), we thus obtain the
evolution of the first moments of the distributions P(n)

τ , within
this linearized approximation, as

E(n+1)
τ [δσ ] = Ẽ[]ησ

∑
τ ′

Mττ ′E(n)
τ ′ [δ̂σ ], (54)

where Ẽ[] = ∑
 p̃ is the average offspring degree; note

that in Eq. (54), and in many equations that will follow, we
keep implicit higher-order correction terms on the right-hand
side for the sake of readability. To put this evolution equation
in a more convenient form let us first exploit the moment
identities to write∑

τ ′
Mττ ′E(n)

τ ′ [δ̂σ ] =
∑
τ ′

M̂ττ ′ητ ′E(n)
τ ′ [δ̂σ ]

=
∑
τ ′

M̂ττ ′E(n)[δ̂σ ητ ′], (55)

where in the first step we used the definition (47) of M̂ and in
the second one we exploited the relation (48) between condi-

tional and unconditional averages. Noting that
∑

τ ′ M̂ττ ′ητ ′ =
1 and that E(n)[δ̂σ ] = 0, we obtain the identity∑

τ ′
Mττ ′E(n)

τ ′ [δ̂σ ] = E(n)[δ̂σ δ̂τ ]. (56)

Multiplying the linearized evolution equation (54) by ητ and
using (50) to transform the left-hand side and (56) to treat the
right-hand side, we obtain, without making further approxi-
mations,

E(n+1)[δσ δτ ] = Ẽ[]ησητE
(n)[δ̂σ δ̂τ ]. (57)

We define A(n)
στ = E(n)[δσ δτ ]; it can be viewed as a matrix A(n)

of size q × q, which is symmetric positive semidefinite with
vanishing row sums. We also define

Â(n)
στ = E(n)[δ̂σ δ̂τ ] =

∑
σ ′,τ ′

M̂σσ ′M̂ττ ′A(n)
σ ′τ ′ , (58)

which defines a matrix Â, symmetric positive semidefinite
with

∑
σ ησ Â(n)

στ = 0. With this notation, the linearized recur-
sion (57) becomes

A(n+1)
στ = Ẽ[]ησητ Â(n)

στ , (59)

which, considering now A as a q2-dimensional vector, can be
viewed as a matrix multiplication

A(n+1) = NA(n),

Nστ,σ ′τ ′ = Ẽ[]ησητ M̂σσ ′M̂ττ ′

= Ẽ[]ησ Mσσ ′
1

ησ ′
ητ Mττ ′

1

ητ ′
. (60)

In this equation N is a q2 × q2 symmetric matrix; its eigen-
values are easily computed, exploiting its tensor product
form, and seen to be {Ẽ[]θiθ j}i, j=1,...,q, where the θ are the
eigenvalues of M (see Sec. IV B). As A(n) must obey the
normalization condition

∑
σ A(n)

στ = 0, the relevant eigenval-
ues of N are only those with i, j � 2. The stability of A =
0 under its multiplication by N is equivalent to the largest
absolute value among the (relevant) eigenvalues of N being
smaller than 1: We have thus recovered, as expected, the
well-known Kesten-Stigum [34] condition Ẽ[]θ2

2 < 1 for the
trivial fixed point P(η) = δ(η − η) to be stable under small
perturbations.

2. Second-order expansion

Our goal now is to characterize the nontrivial fixed points
of the functional recursions (33) and (37) that bifurcate con-
tinuously from the trivial one at the Kesten-Stigum transition;
we will hence drop the iteration index n in the following and
denote by Eτ [•] and E[•] the averages with respect to the Pτ

and P fixed-point solutions of (33) and (37), respectively. It
is rather intuitive, and can be easily seen in the scalar case
treated in Sec. II D, that this task will rely on an expansion
of (51) beyond the linear order. However, the functional
character of the fixed-point equation complicates the deter-
mination of the relevant nonlinear terms in this expansion. In
other words, one has to specify in which precise sense the
sought fixed point is close to the trivial one. Let us consider
the unconditional distribution P(η) and discuss the relative
scaling of its centered moments. By definition, the first one
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E[δσ ] must vanish; the second one Aστ = E[δσ δτ ] must be
nonzero for the distribution to be nontrivial, and we assume

that it is small, of the order of some parameter κ � 1. We
will make the following ansatz for the higher-order moments:

Bστγ = E[δσ δτ δγ ] = O(κ2),

Cστγ β = E[δσ δτ δγ δβ] = O(κ2),

...

E[δσ1 , . . . , δσp] = O(κ�p/2�).

(61)

This ansatz was inspired by the numerical resolution of the functional equations and we refer the reader to the
Appendix B for a proof of its self-consistency.

We will now proceed with these assumptions and compute the leading behavior of Aστ by considering the following truncated
expansion of (51):

δσ = ησ

∑
i=1

δ̂i
σ + ησ

∑
1�i< j�

⎡
⎣δ̂i

σ δ̂ j
σ −

∑
γ

ηγ δ̂i
γ δ̂ j

γ −
∑

γ

ηγ

(
δ̂i
σ + δ̂ j

σ

)
δ̂i
γ δ̂ j

γ −
∑

γ

ηγ δ̂i
σ δ̂i

γ δ̂ j
σ δ̂ j

γ +
∑
γ ,β

ηγ ηβ δ̂i
γ δ̂i

β δ̂ j
γ δ̂

j
β

⎤
⎦. (62)

We have included nonlinear terms that are of order 2, 3, and 4 in terms of δ, but that will all be of order κ2 once averaged,
according to the ansatz (61). Taking averages with respect to the fixed-point conditional distributions yields, without further
approximations,

Eτ [δσ ] = Ẽ[]ησ

∑
τ ′

Mττ ′Eτ ′[δ̂σ ] + 1

2
Ẽ[( − 1)]ησ

∑
τ ′,τ ′′

Mττ ′Mττ ′′

[
Eτ ′[δ̂σ ]Eτ ′′[δ̂σ ] −

∑
γ

ηγEτ ′[δ̂γ ]Eτ ′′[δ̂γ ]

− 2
∑

γ

ηγEτ ′[δ̂σ δ̂γ ]Eτ ′′[δ̂γ ] −
∑

γ

ηγEτ ′[δ̂σ δ̂γ ]Eτ ′′[δ̂σ δ̂γ ] +
∑
γ ,β

ηγ ηβEτ ′[δ̂γ δ̂β]Eτ ′′[δ̂γ δ̂β]

⎤
⎦. (63)

In order to simplify this equation, we first state an identity similar to (56),∑
τ ′

Mττ ′Eτ ′[δ̂σ δ̂γ ] =
∑
τ ′

M̂ττ ′E[δ̂σ δ̂γ ητ ′] = E[δ̂σ δ̂γ ] + E[δ̂σ δ̂γ δ̂τ ]. (64)

Note that, according to our ansatz, the second term is negligible with respect to the first one (it is of order κ2 � κ).
We will now multiply (63) by ητ in such a way that its left-hand side becomes Aστ ; the right-hand side can be simplified by

using the identities (56) and (64). Keeping only the terms of order κ and κ2 yields

Aστ = Ẽ[]ησητ Âστ + 1

2
Ẽ[( − 1)]ησητ

⎡
⎣(Âστ )2 −

∑
γ

ηγ (Âσγ + Âγ τ )2 +
∑
γ β

ηγ ηβ (Âγ β )2

⎤
⎦, (65)

Âστ =
∑
σ ′,τ ′

M̂σσ ′M̂ττ ′Aσ ′τ ′ , (66)

where we recalled the equation linking A and Â in Eq. (66).
An equivalent form of these equations, which will turn out to be more convenient in some cases, can be given in the basis

that diagonalizes the matrix M defined in Sec. IV B. Using the eigenvectors defined in Eq. (44), we can trade the matrix A for a
matrix A′, now indexed by these basis vectors, in an invertible way:

Aστ =
∑

jk

l ( j)
σ l (k)

τ A′
jk ↔ A′

jk =
∑
στ

r ( j)
σ r (k)

τ Aστ . (67)

The normalization condition that implied the vanishing of the row and column sums of A shows up now as A′
jk = 0 whenever

j = 1 or k = 1. The transformation from A to Â, i.e., the matrix multiplication by M̂ for each of the two indices, becomes for A′
a simple multiplication by the eigenvalues θ j of the matrix M. Equation (65) thus becomes, in this basis,

A′
jk = Ẽ[]θ jθkA′

jk + 1

2
Ẽ[( − 1)]

⎡
⎣ ∑

j1 j2k1k2

f j j1 j2 fkk1k2θ j1θ j2θk1θk2 A′
j1k1

A′
j2k2

− 2θ jθk

∑
l

A′
jl A

′
lkθ

2
l

⎤
⎦, (68)
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where we have defined

f j1 j2 j3 =
∑

σ

ησ r ( j1 )
σ r ( j2 )

σ r ( j3 )
σ . (69)

We have achieved here our first technical goal: This quadratic equation (65) on the matrix A [or equivalently (68) on the matrix
A′] constitutes the equivalent of (10) for the scalar bifurcation analysis, but now for a generic model with pairwise interaction
between Potts variables in the sparse regime. In particular, imposing the positive definiteness of A will allow us to discriminate
between different bifurcation scenarios, as explained in Sec. II D in the simpler scalar case. We will see in the following various
applications of this formula for different choices of the matrix M and stationary distribution η.

3. Third-order expansion

Before turning to these applications let us first state the results of this moment expansion at the next order (which in some
cases will be crucial to discriminate between different bifurcation scenarios). According to our ansatz (61), we now have to
determine the centered moments of P(η) up to the fourth moment. We thus define

Aστ = E[δσ δτ ], Bστγ = E[δσ δτ δγ ], Cστγ β = E[δσ δτ δγ δβ]. (70)

Generalizing the derivation of (65) above by including higher-order terms, we have obtained the following set of equations for
A, B, and C (see Appendix B for a justification through a formal expansion at all orders):

Aστ = Ẽ[]ησητ Âστ + 1

2
Ẽ[( − 1)]ησητ

⎡
⎣(Âστ )2 −

∑
γ

ηγ (Âσγ + Âγ τ )2 +
∑
γ β

ηγ ηβ (Âγ β )2

⎤
⎦

+ Ẽ[( − 1)]ησητ

⎡
⎣−

∑
γ

ηγ B̂στγ (Âσγ + Âτγ ) +
∑
γ β

ηγ ηβ (B̂σγβ + B̂τγ β )Âγ β +
∑
γ β

ηγ ηβĈστγ β Âγ β

⎤
⎦

+ Ẽ[( − 1)( − 2)]ησητ

[
1

6
(Âστ )3 − 1

6

∑
γ

ηγ (Âσγ + Âτγ )3 − 1

2
Âστ

∑
γ

ηγ (Âσγ + Âτγ )2

+ 1

6

∑
γ β

ηγ ηβ (Âγ β )3 + 1

2

∑
γ β

ηγ ηβ (Âγ β )2(Âστ + Âσγ + Âτγ + Âσβ + Âτβ )

+
∑
γ β

ηγ ηβ Âγ β (Âσγ + Âτγ )(Âσβ + Âτβ ) −
∑
γ βα

ηγ ηβηαÂγ β ÂβαÂαγ

⎤
⎦, (71)

Bστγ = Ẽ[]ησητηγ B̂στγ + Ẽ[( − 1)]ησητηγ

⎡
⎣Âστ Âτγ + Âσγ Âγ τ + Âτσ Âσγ −

∑
β

ηβ (Âσβ Âβγ + Âσβ Âβτ + Âτβ Âβγ )

⎤
⎦,

(72)

Cστγ β = Ẽ[]ησητηγ ηβĈστγ β + Ẽ[( − 1)]ησητηγ ηβ (Âστ Âγ β + Âσγ Âτβ + Âσβ Âτγ ), (73)

Âστ =
∑
σ ′τ ′

M̂σσ ′M̂ττ ′Aσ ′τ ′ , (74)

B̂στγ =
∑
σ ′τ ′γ ′

M̂σσ ′M̂ττ ′M̂γ γ ′Bσ ′τ ′γ ′ , (75)

Ĉστγ β =
∑

σ ′τ ′γ ′β ′
M̂σσ ′M̂ττ ′M̂γ γ ′M̂ββ ′Cσ ′τ ′γ ′β ′ . (76)

E. Expansion of the free entropy

Let us now focus on the second fundamental object introduced besides the cavity equation recursions, namely, the free-entropy
functional, in particular, the expressions (38) and (40) for the case of pairwise interacting Potts variables. With the conventions
we used, the value of φ for the trivial fixed point Ptriv(η) = δ(η − η) is φ(Ptriv ) = 0. We have computed an expansion of φ(P)
when P is close to Ptriv, i.e., when the centered moments of P are small [imposing the condition

∫
dP(η)η = η]. Again, denoting

by A, B, and C the tensors encoding these centered moments of P of orders 2, 3, and 4 [as defined in Eq. (70)] and by Â, B̂, and
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Ĉ their transformed versions according to (74)–(76), we have found (see Appendix C for the details of the derivation)

1

E[]
φ(P)=−1

4

∑
στ

Aστ Âστ + 1

12

∑
στγ

Bστγ B̂στγ − 1

24

∑
στγ β

Cστγ βĈστγ β + 1

4
Ẽ[]

∑
στ

ησ ητ (Âστ )2 − 1

12
Ẽ[]

∑
στγ

ησ ητηγ (B̂στγ )2

+ 1

24
Ẽ[]

∑
στγ β

ησ ητηγ ηβ (Ĉστγ β )2 + 1

12
Ẽ[( − 1)]

[∑
στ

ησ ητ (Âστ )3 − 2
∑
στγ

ησ ητηγ Âστ Âτγ Âγ σ

]

− 1

2
Ẽ[( − 1)]

∑
στγ

ησ ητηγ B̂στγ Âστ Âσγ + 1

4
Ẽ[( − 1)]

∑
στγ β

ησ ητηγ ηβĈστγ β Âστ Âγ β

+ 1

48
Ẽ[( − 1)( − 2)]

[∑
στ

ησ ητ (Âστ )4 − 6
∑
στγ

ησ ητηγ (Âστ )2(Âσγ )2 − 12
∑
στγ

ησ ητηγ (Âστ )2Âσγ Âτγ

+ 3

(∑
στ

ησ ητ (Âστ )2

)2

+ 12
∑
στγ β

ησ ητηγ ηβ Âστ Âτγ Âγ β Âβσ

⎤
⎦. (77)

Of course this expression is a truncation of an infinite series
involving moments of all orders. Let us make a few comments
about this result.

(i) One can rewrite this expansion in the eigenbasis of
M, i.e., in terms of the quantities A′

jk instead of Aστ , as
defined in Eq. (67). The corresponding expression is given in
Appendix C.

(ii) The expression (40) of the free entropy φ(P) is varia-
tional, in the sense that its variation with respect to P vanishes
when P is a fixed-point solution of the recursion equation (37).
Accordingly, the derivatives of the truncated expansion (77)
with respect to A, B, and C vanish when the latter are solutions
of the moment equations (71)–(76).

(iii) If the centered moments of P verify the scaling ansatz
(61) that we argued was the correct one for fixed points of
the cavity recursion, then the expansion (77) contains all the
terms of order κ2, κ3, and κ4.

(iv) However, the free-entropy functional φ(P) of Eq. (40)
is well defined even if P is not a fixed point of the recur-
sion equation (37) [as long as it satisfies

∫
dP(η)η = η] and

accordingly the expansion (77) can be used even if A, B,
and C do not satisfy (71)–(76). As a matter of fact, such
an expansion was performed in Ref. [25], and we briefly
mention the similarities and differences with respect to ours.
In the context of the models studied in this section, one of the
results of [25] (i.e., Theorem 2.3 therein) can be rephrased as
follows: Above the Kesten-Stigum transition, i.e., whenever
Ẽ[]θ2

2 > 1 in such a way that the trivial fixed point is
unstable under the cavity recursions, there exists a distribution
P with φ(P) > 0 and hence the Kesten-Stigum transition is
an upper bound for the information-theoretic transition (or
condensation transition in the associated nonplanted random
ensemble). We recover this statement from our computations,
defining the probability distributions Pλ by

Pλ(η) = 1
2δ(η − (η + λl (2) )) + 1

2δ(η − (η − λl (2))), (78)

where l (2) is the left eigenvector of M associated with the
eigenvalue θ2 and λ > 0 should be sufficiently small for η ±
λl (2) to remain inside the polytope of probability distributions.
The average of Pλ is η for all λ, and the first centered moments

of Pλ are easily seen to be

Aστ = λ2l (2)
σ l (2)

τ , Bστγ = 0, Cστγ β = λ4l (2)
σ l (2)

τ l (2)
γ l (2)

β .

(79)

More generically, the odd centered moments vanish and the
2pth one is λ2p times the 2pth tensor power of l (2). Computing
the corresponding value of Âστ and inserting in Eq. (77), one
obtains

1

E[]
φ(Pλ) = 1

4
θ2

2

(
Ẽ[]θ2

2 − 1
)
λ4 + O(λ6), (80)

which can indeed be made strictly positive as soon as
Ẽ[]θ2

2 > 1 by taking a sufficiently small λ. Note that the cen-
tered moments of Pλ do not satisfy our ansatz (61), which is
not contradictory as Pλ has no reason to be a fixed point of the
cavity recursion [incidentally, there might be no perturbative
nontrivial fixed point in such a situation; see Fig. 1(b)]. Only
two terms of (77) contribute to φ(Pλ) at order λ4 (the first ones
in the first and second lines), hence our expansion is more
detailed than the one in Ref. [25], which in contrast deals
with a much more general and complicated setting (k-wise
interaction of Potts variables with quenched disorder) and is
performed in a mathematically rigorous way.

F. Large-degree limit

We have underlined in the Introduction the existence of
two families of inference problems, the dense ones which
can be described by a finite-dimensional order parameter
and the sparse ones that require the use of a distributional
infinite-dimensional description. The focus of this paper is on
the latter family, but it is important to realize that the two
types of problems are not completely disjoint. As a matter
of fact, the sparse models reduce effectively to the simpler
dense ones if one takes the limit of large degrees, after the
thermodynamic limit. This is a well-known fact that has
been derived rigorously in several papers (see, for instance,
[22,27,28]). For the sake of self-containedness and to be able
to contrast the behavior of the sparse and dense models, we
reproduce here this derivation.
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We will consider the recursion for the unconditional
distribution (37) and simplify it in the large-degree limit
Ẽ[] → ∞. We will show that in this limit the evolution
of the distribution P(n) can be tracked exactly by following
a finite-dimensional object, namely, the covariance matrix
A(n)

στ = E(n)[δσ δτ ], that obeys a recursion equation of the form
A(n+1) = F (A(n) ).

The main idea of the derivation is to exploit a central-limit
theorem. We will thus rewrite (37) in a way that makes appar-
ent a sum of a large number of random variables. To reach this
goal we will define two functions ψ (L) and z̃(L) whose ar-
guments are q-dimensional real vectors L = (L1, . . . , Lq ) that
are mapped by ψ and z̃ to normalized probability distributions
and positive reals, respectively, according to

ψ (L)σ = eLσ

z̃(L)
, z̃(L) =

q∑
γ=1

eLγ . (81)

One can translate the unconditional recursion relation (37) as

E(n+1)[g(η)] = E(n)[g(ψ (L))z̃(L)] (82)

for an arbitrary function g, where on the right-hand side the
vector L has the distribution

(L)σ=1,...,q
d= [ln zσ (η1, . . . , η)]σ=1,...,q, (83)

with  drawn from p̃ and the ηi drawn from P(n). From the
expression of zσ given in Eq. (34) one realizes that

Lσ = ln ησ +
∑

i=1

ln

(∑
σ ′

M̂σσ ′ηi
σ ′

)
. (84)

We now recall that if Y
d= ∑n

i=1 X i is a sum of independent
and identically distributed random vectors, the number of
summands n being also random, the two first moments of the
sum are given by

(E[Y ])σ = E[n]E[Xσ ], (85)

(Cov[Y ])στ = E[n]E[Xσ Xτ ]

+ (Var[n] − E[n])E[Xσ ]E[Xτ ]. (86)

Moreover, the large-degree limit Ẽ[] → ∞ yields a nontriv-
ial result only if the nontrivial eigenvalues of M, θ2, . . . , θq,
vanish in the limit. More precisely, they have to be of the form
θi = θ̃i/

√
Ẽ[], with θ̃i finite. We thus have

Xσ = ln

(∑
σ ′

M̂σσ ′ησ ′

)
= ln

⎛
⎝1 + 1√

Ẽ[]

q∑
j=2

θ̃ j r
( j)
σ

∑
σ ′

r ( j)
σ ′ δσ ′

⎞
⎠ (87)

= 1√
Ẽ[]

q∑
j=2

θ̃ j r
( j)
σ

∑
σ ′

r ( j)
σ ′ δσ ′ − 1

2

1

Ẽ[]

⎛
⎝ q∑

j=2

θ̃ j r
( j)
σ

∑
σ ′

r ( j)
σ ′ δσ ′

⎞
⎠

2

+ o

(
1

Ẽ[]

)
. (88)

Combining these various observations and assuming that the offspring degree distribution is sufficiently well behaved for the
second term in Eq. (86) to be negligible (it vanishes exactly for a Poisson distribution), we find that in the large-degree limit the
promised recursion A(n+1) = F (A(n) ) can be decomposed in two steps: (i) From A(n) compute Ã(n) with

Ã(n)
στ = lim

(
Ẽ[]

∑
σ ′τ ′

M̂σσ ′M̂ττ ′A(n)
σ ′τ ′

)
=

q∑
j,k=2

θ̃ j θ̃kr ( j)
σ r (k)

τ

∑
σ ′τ ′

r ( j)
σ ′ r (k)

τ ′ A(n)
σ ′τ ′ (89)

and then (ii) compute the new covariance matrix A(n+1) from

A(n+1)
στ = E[(ψ (L)σ − ησ )(ψ (L)τ − ητ )z̃(L)] = E

[
[eLσ − ησ z̃(L)][eLτ − ητ z̃(L)]

z̃(L)

]
, (90)

with L a Gaussian vector characterized by its first two moments

(E[L])σ = ln ησ − 1
2 Ã(n)

σσ , (Cov[L])στ = Ã(n)
στ . (91)

As emphasized before, this finite-dimensional recursion A(n+1) = F (A(n) ) is an exact description of the functional recursion
on P(n) in the large-degree limit. The trivial covariance A = 0 is a fixed point of F that reproduces the stationarity of P(η) =
δ(η − η) under the functional recursion. It is instructive to expand the equation A = F (A) around A = 0 in order to compare this
expansion with the one we performed previously on the full functional equation. Exploiting the properties of Gaussian random
variables, it is relatively easy to obtain, from (90),

Aστ = ησητ Ãστ + 1

2
ησητ

⎡
⎣(Ãστ )2 −

∑
γ

ηγ (Ãσγ + Ãγ τ )2 +
∑
γ β

ηγ ηβ (Ãγ β )2

⎤
⎦+ ησητ

[
1

6
(Ãστ )3 − 1

6

∑
γ

ηγ (Ãσγ + Ãτγ )3

− 1

2
Ãστ

∑
γ

ηγ (Ãσγ + Ãτγ )2 + 1

6

∑
γ β

ηγ ηβ (Ãγ β )3 + 1

2

∑
γ β

ηγ ηβ (Ãγ β )2(Ãστ + Ãσγ + Ãτγ + Ãσβ + Ãτβ )

+
∑
γ β

ηγ ηβ Ãγ β (Ãσγ + Ãτγ )(Ãσβ + Ãτβ ) −
∑
γ βα

ηγ ηβηαÃγ β ÃβαÃαγ

⎤
⎦+ O(A4). (92)
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This is, as expected, consistent with the expansion performed
in the sparse case and presented in Eq. (71). Of course the
equations in the sparse regime are richer, with the effects of
the third- and fourth-order moments B and C being washed
out in the large-degree limit by the Gaussian character of the
distribution.

For completeness, let us also give the large-degree limit for
the free entropy, which becomes a function of a covariance
matrix A,

φ(A) = E[z̃(L) ln z̃(L)] − 1

4

∑
στ

Aστ Ãστ , (93)

where Ã is obtained from A according to (89) and in the
first term L is a Gaussian vector with the two first moments
indicated in Eq. (91).

In the remainder of this section we will investigate the
consequences of our expansions, which were performed for
an arbitrary choice of q, η, and M, in several specific cases. In
particular, we have to analyze the bifurcation of the quadratic
equation (65) on the covariance matrix A in the neighborhood
of the Kesten-Stigum transition and use it to discriminate
between the possible scenarios depicted in Figs. 1 and 2 by
imposing the positive definiteness of A.

G. Application 1: The nondegenerate case

Let us first consider the case of a simple second eigenvalue
of M at the Kesten-Stigum transition. More explicitly, we
consider that the various parameters of the model (degree dis-
tribution, η, and M) are functions of a single control parameter
ε defined in such a way that Ẽ[]θ2

2 = 1 + ε, with ε = 0 at
the Kesten-Stigum transition, and we assume that Ẽ[]θ2

j are
bounded away from 1 for j = 3, . . . , q in the neighborhood of
ε = 0.

Consider now the set of quadratic equations (68) on A′, the
covariance matrix expressed in the basis of eigenvectors of M.
With the assumption of simplicity of θ2, the only coefficient
of the linear terms on the right-hand side that crosses 1 at
the Kesten-Stigum transition corresponds to j = k = 2; the
bifurcating solution will thus have |A′

22| � |A′
jk| for ( j, k) �=

(2, 2) in the neighborhood of ε = 0. We can thus give the
equation for this leading term as

A′
22 = Ẽ[]θ2

2 A′
22 + 1

2 Ẽ[( − 1)]θ4
2 (A′

22)2[( f222)2 − 2],

(94)

where the expression of f222 is given in Eq. (69). At the
leading order in ε we have

0 = ε + 1
2 Ẽ[( − 1)]θ4

2 [( f222)2 − 2]A′
22, (95)

hence A′
22 varies linearly with ε around ε = 0, the other matrix

elements of A′ being at least of order ε2. The crucial point
is now to remember that A′, as a covariance matrix, must be
positive definite and as a consequence A′

22 must be a positive
real. Depending on the sign of ( f222)2 − 2, this happens for
ε > 0 (ε < 0), corresponding, for instance, to the scenario
sketched in Fig. 1(a) [Fig. 1(b)]. Spelling out the definition

of f222 in terms of the eigenvectors of M, we have obtained
that the first case occurs when(∑

σ

ησ

(
r (2)
σ

)3

)2

< 2. (96)

Let us underline the striking similarity between this cri-
terion and the one obtained in Ref. [16] in the context of
matrix factorization. This is a dense inference problem with
continuous variables, for which the condition of existence
of a bifurcating solution above the Kesten-Stigum transi-
tion was found to be 〈x3

0〉2 < 2〈x2
0〉3, the average being here

on the prior distribution of a real-valued variable x0 [see
Eq. (205) in Ref. [16]]. Using the properties of the eigenvalue
decomposition of M explained in Sec. IV B, one can rewrite
(96) as (∑

σ

ησ

(
r (2)
σ

)3

)2

< 2

(∑
σ

ησ

(
r (2)
σ

)2

)3

, (97)

a formally equivalent expression with ησ replacing the
prior distribution and the eigenvector r (2)

σ the continuous
variable x0.

H. Application 2: The symmetric q-state case

We turn now to a case which can be viewed as the opposite
of the previous one, with a maximal degeneracy of the second
eigenvalue of M. Consider indeed the symmetric q-state Potts
model, with a stationary distribution ησ = 1

q for all σ and a
matrix M which is invariant under all permutations of its rows
and columns. As M is stochastic it must be of the form

Mστ = 1

q
+ θKστ with Kστ = δσ,τ − 1

q
; (98)

θ is the nontrivial eigenvalue of M, with a degeneracy q −
1. The matrix elements of M must be non-negative and the
authorized range of θ is thus ] − 1

q−1 , 1[. The model is said
to be assortative (ferromagnetic) if θ > 0 and disassortative
(antiferromagnetic) if θ < 0. The matrix elements of M̂ are
M̂στ = 1 + qθKστ .

The recursion equation (37), for this choice of η and M,
will respect the permutation symmetry between the q values
of σ . If the initial condition is symmetric this will also be
the case for P(n) for all n. In particular, the covariance matrix
A(n) will be invariant under all row and column permutations;
as its row sums must also vanish, it is necessarily of the
form A(n) = a(n)K , with a(n) a real number and K the matrix
defined in Eq. (98). The eigenvalues of K being 0 and 1, the
positivity constraint on A(n) thus translates into a(n) � 0. One
finds easily with this form of A and M that Â(n) = (qθ )2a(n)K .
Plugging these forms of A and Â in the linearized evolution
equation (59) yields a(n+1) = Ẽ[]θ2a(n), hence the Kesten-
Stigum condition Ẽ[]θ2 = 1 for the limit of stability of the
trivial solution a = 0, as expected.

Looking for a fixed-point solution of the form Aστ = aKστ

in the neighborhood of the Kesten-Stigum transition, we
obtain from (65), after a brief computation,

a = Ẽ[]θ2a + Ẽ[( − 1)]θ4 1
2 q(q − 4)a2. (99)
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Defining Ẽ[]θ2 = 1 + ε and keeping in mind the crucial
positivity condition a � 0, one realizes that for q < 4 the
nontrivial perturbative fixed point exists for ε > 0, whereas
if q > 4 it exists for ε < 0, which implies that the Kesten-
Stigum bound is not tight for the tree reconstruction problem
in the latter case. This fact was proven rigorously in Ref. [22],
with Eq. (99) corresponding to (1.1) in Ref. [22] (with a linear
change of variable between our a(n) and xn of [22]). Let us
emphasize the necessity of imposing the permutation sym-
metry of A in order to reach this conclusion; the bifurcation
equations (65) admit indeed, besides the symmetric solution
studied above, nonsymmetric spurious solutions A even when
η and M are invariant under permutations.

We have thus justified the statements made in Sec. III D 1
in the cases q � 3 and q � 5. When q = 4 the coefficient of
a2 in the bifurcation equation vanishes exactly and one cannot
conclude from this lowest-order expansion about the type of
transition encountered at the Kesten-Stigum threshold. Due
to the next-order expansion presented in Sec. IV D 3, we will
now be able to elucidate this case and justify the effort put
into this generalization of the expansion. In order to solve
Eqs. (71)–(76) on A, B, and C, we first note that B and C vanish
when summed over any of their indices; from the expression
of M̂ in the case under study, we can thus conclude that
B̂στγ = (qθ )3Bστγ and Ĉστγ β = (qθ )4Cστγ β . Inserting these
expressions in Eq. (72) and (73) yields an explicit solution for
B and C in terms of Â,

Bστγ = Ẽ[( − 1)]

1 − Ẽ[]θ3

1

q3

⎡
⎣Âστ Âτγ + Âσγ Âγ τ + Âτσ Âσγ − 1

q

∑
β

(Âσβ Âβγ + Âσβ Âβτ + Âτβ Âβγ )

⎤
⎦, (100)

Cστγ β = Ẽ[( − 1)]

1 − Ẽ[]θ4

1

q4
(Âστ Âγ β + Âσγ Âτβ + Âσβ Âτγ ). (101)

Furthermore, we argued above by symmetry arguments that A = aK and Â = a(qθ )2K ; we can thus determine completely B
and C modulo the still unknown real a. Plugging these expressions in Eq. (71) gives, after some combinatorial evaluations, the
equation for a that generalizes (99),

a = Ẽ[]θ2a + Ẽ[( − 1)]θ4 1
2 q(q − 4)a2 + wa3, (102)

where the coefficient w reads

w = 1

6
q2(q2 − 18q + 42)Ẽ[( − 1)( − 2)]θ6 − 6q2(q − 2)Ẽ[( − 1)]2θ9

1 − Ẽ[]θ3
+ q2(q + 1)Ẽ[( − 1)]2θ10

1 − Ẽ[]θ4
. (103)

In the most interesting case q = 4 where the coefficient of a2 vanishes, one finds, for w [substituting θ = sgn(θ )/
√
Ẽ[] at

lowest order around the Kesten-Stigum transition],

w = 16

[
−7

3

Ẽ[( − 1)( − 2)]

Ẽ[]3
+
(
Ẽ[( − 1)]

Ẽ[]2

)2( 5

Ẽ[] − 1
− 12

sgn(θ )
√
Ẽ[] − 1

)]
, (104)

which justifies the expression (32) given in Sec. III D 1 [the
factor 16 between (32) and (104) is irrelevant for the study of
the sign of w]. Depending on the degree distribution p̃ and
on the sign of θ , this coefficient can be positive or negative;
as the equation for a reduces here to 0 = ε + wa2, with ε =
Ẽ[]θ2 − 1, the sign of w controls the sign of ε for which a
nontrivial solution of the cavity equations exists in a neighbor-
hood of the trivial one, hence the type of bifurcation scenario
as sketched in Fig. 1. As mentioned in Sec. III D 1, one has
w < 0 in the ferromagnetic case for all degree distributions,
which yields a second-order transition; it is indeed easy to
check numerically that

5

d − 1
− 12√

d − 1
< 0 (105)

for all average offspring degrees d = Ẽ[] > 1.
In the antiferromagnetic case the sign of w depends on the

degree distribution. For instance, when p̃ is a Poisson law of
parameter d , the expression of w above [Eq. (104)] can be

simplified to

w = 16

(
−7

3
+ 5

d − 1
+ 12√

d + 1

)
. (106)

A numerical study of this function reveals the existence of a
critical degree dc ≈ 22.2694 such that w > 0 for d ∈ (1, dc),
hence a discontinuous bifurcation scenario similar to the case
q > 4, while for d > dc one has w < 0, yielding the scenario
of q < 4. We have also evaluated the sign of w in the regular
case, i.e., for an offspring degree distribution p̃ = δ,d . Simi-
larly to the Poisson case, one finds (for the antiferromagnetic
model) that w < 0 for d � 24 and w > 0 for d � 25.

Note that for large enough degrees ferromagnetic and
antiferromagnetic models behave in the same way; this could
be anticipated from the study of the large-degree limit recalled
in Sec. IV F, as in this limit the degree distribution and
θ only appear in the combination Ẽ[]θ2, which is clearly
independent of the sign of θ . Actually an expansion to the
same order as in Eq. (102) can be found in Eq. (4.9) of [22],
but in the large-degree limit and not in the sparse regime,
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which did not allow one to deduce the modification of the type
of phase transition according to the degree distribution.

Let us finally justify the scaling exponent we used in the
plot presented in Fig. 3(b). If we had included in the expansion
of the cavity equations around the trivial fixed point one more
term, one would have found, for q = 4, an equation for a of
the form

0 = ε + w( p̃)a2 + xa3, (107)

where a priori x �= 0 and we emphasized the dependence of
w on the degree distribution. Let us consider for concreteness
p̃ to be Poissonian with average d in such a way that w(d ) is
given explicitly by (106). In the neighborhood of the critical
degree dc where w changes sign we have w(d ) ≈ w′(d − dc),
with w′ some constant. Inserting this form in Eq. (106) gives

0 = ε + w′(d − dc)a2 + xa3; (108)

the scaling of θsp, which corresponds to the limit of existence
of a solution of this equation, must be such that the three
terms in Eq. (108) are of the same order. This is easily seen to
imply that ε is of the order of (d − dc)3, which is the reason
for our choice of exponent in Fig. 3(b): The spinodal and IT
curves should, in this rescaled units, behave linearly in the
neighborhood of dc.

I. Application 3: The asymmetric Ising (q = 2) case

We consider now the case of binary variables (q = 2),
which for convenience we define as Ising spins or sign vari-
ables σ ∈ {−1, 1} = {−,+}. We parametrize the stationary
probability distribution η as ησ = 1+σm

2 , with m ∈ [−1, 1].
This bias parameter can be interpreted as a magnetization
in the perspective of a physical Ising model [20] or in the
context of the SBM as controlling the relative size of the two
communities of vertices which are η+ = 1+m

2 and η− = 1−m
2 .

The symmetric case, as studied in Sec. IV H, is recovered for
m = 0. We write the matrix M as

M =
(

M++ M+−
M−+ M−−

)

= 1

2

(
1 + m 1 − m

1 + m 1 − m

)
+ θ

1

2

(
1 − m −1 + m

−1 − m 1 + m

)
,

(109)

i.e., Mστ = 1+τm
2 + στθ 1−σm

2 . This is indeed the only Markov
matrix reversible with respect to η with the second eigenvalue
θ . To connect with the definition of the SBM in Sec. III A 1
the parameter θ is defined as θ = 1 − c−+/d , where c−+ =
c+− is N times the probability that nodes in different groups
are connected and d is the average degree. Given the group
sizes η±, the condition of equal average degree in the two
groups then implies uniquely the parameters c−− and c++.
In the context of the SBM the degree distributions p and
p̃ are Poissonian with average d; we will, however, consider
generic degree distributions, as they are relevant from the tree
reconstruction perspective.

The range of allowed values of the parameters (m, θ ) is a
subset of [−1, 1]2: Imposing the non-negativity of the matrix

elements of M implies indeed that

θ � −1 − |m|
1 + |m| , (110)

which is always fulfilled for θ � 0 but restricts the range of
allowed biases m when θ < 0. The transformed version M̂ of
M defined in Eq. (47) reads thus

M̂στ = Mστ

1

ητ

= 1 + θστ
1 − σm

1 + τm
. (111)

Due to the binary nature of the variables, the probability
laws η can be parametrized by a single real and the recur-
sion equation (34) can be rewritten in a simpler form with
this parametrization. This expression, along with some more
technical details on the numerical resolution of the cavity
equations, can be found in Appendix A.

1. Critical asymmetry

Let us now apply the generic results of the moment ex-
pansions presented in Sec. IV D to this specific case. Because
of the normalization condition δ+ + δ− = 0, the deviation
δσ = ησ − ησ is equal to σ multiplied by a scalar random
variable. We can thus write the matrix A(n)

στ = E(n)[δσ δτ ] as
A(n)

στ = a(n) 1
2στ , where a(n) is a scalar; the factor 1/2 is chosen

in such a way that 1
2στ coincides with the matrix Kστ of (98),

in the case q = 2. Once again we have a positivity requirement
on this covariance, a(n) � 0. From the expression of M̂ given
in Eq. (111) one sees that∑

σσ ′
M̂σσ ′σ ′ = θ

1

ησ

σ, (112)

hence with the relation (58) one obtains

Â(n)
στ = θ2a(n) 1

ησητ

1

2
στ. (113)

The linear evolution of (59) thus becomes

a(n+1) 1
2στ = Ẽ[]θ2a(n) 1

2στ, (114)

i.e., a(n+1) = Ẽ[]θ2a(n), which reproduces the expected
Kesten-Stigum threshold at Ẽ[]θ2 = 1.

We now look for a fixed-point solution in the neighborhood
of the Kesten-Stigum transition, by injecting the above forms
of A and Â in Eq. (65). This yields, after a short computation,

a = Ẽ[]θ2a + Ẽ[( − 1)]θ4 2(3m2 − 1)

(1 − m2)2
a2. (115)

A simple consistency check is provided by the coincidence of
(99) and (115) when q = 2 and m = 0. Moreover, when q =
2 the nontrivial eigenvalue of M is unique, hence certainly
nondegenerate; one can check that (115) is also a consequence
of Eq. (94) derived in Sec. IV G under this nondegeneracy
assumption for all m.

The crucial property of (115) we would like to emphasize
is the change of sign of the coefficient of a2 depending on
whether |m| is larger or smaller than mc = 1/

√
3. Because

of the condition a � 0 this implies that the nontrivial pertur-
bative solution exists when Ẽ[]θ2 > 1 at small asymmetry
(|m| < mc) and when Ẽ[]θ2 < 1 at large asymmetry (m >

mc). In the latter case one has, in the tree reconstruction
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m = 0.4
m = 0.7

dθ2

a

1.041.031.021.0110.99
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FIG. 7. Value of a in the fixed-point solution of the cavity equa-
tions reached from an informative initial condition, as a function of
the signal-to-noise ratio, for the ferromagnetic (θ > 0) asymmetric
Ising model. We used a regular degree distribution p̃ = δ,d with
d = 3, each point corresponding to a different value of θ > 0. The
two sets of symbols correspond to m = 0.4 < mc and m = 0.7 > mc.
The vertical dashed line indicates the location of the Kesten-Stigum
transition, while the inclined line is our analytical prediction from
(115) for m = 0.4.

language, a reconstructible phase below the Kesten-Stigum
threshold, which is not tight in this case. Quite strikingly,
the critical asymmetry mc does not depend on the degree
distribution; this explains why this value of 1/

√
3 was also

obtained previously in the large-degree limit [27,28] and in
related dense inference problems [16,26]. Very recently this
critical asymmetry was also discovered for the reconstruction
of the Ising model on regular trees [29]; this paper proved
rigorously the nontightness of the Kesten-Stigum bound for
m > mc and its tightness for m < mc at large enough degrees.

As an illustration of this phenomenon we present in Fig. 7
the results of a numerical resolution of the cavity equations for
two asymmetries below and above mc. One can clearly see that
in the latter case reconstruction is possible below the Kesten-
Stigum threshold and that in the former case our analytical
prediction (115) is in agreement with the numerical results.

2. Further expansions around the critical asymmetry

Let us now further describe the phase diagram of the prob-
lem in the (θ, m) plane (for simplicity of the discussion we

assume the degree distribution to be held fixed) (see Fig. 4 for
an example). In the low-asymmetry (|m| < mc) situation there
are only two phases, the tree reconstruction being possible
if and only Ẽ[]θ2 > 1. This tightness of the Kesten-Stigum
bound at small nonzero asymmetry was proven in Ref. [20],
but that paper did not estimate the value of mc. In terms
of the SBM inference problem, the Kesten-Stigum transition
separates an easy phase from an information-theoretic impos-
sible phase; this was proven in the symmetric (m = 0) case in
Refs. [42,43].

The large-asymmetry (|m| > mc) part of the phase diagram
is richer. In terms of the tree reconstruction problem there
will be two lines of transition θsp,±(m) such that reconstruc-
tion is possible for θ < θsp,−(m) < 0 and θ > θsp,+(m) > 0,
with Ẽ[]θsp,±(m)2 < 1; the subscript ± indicates the fer-
romagnetic (θ > 0) or antiferromagnetic (θ < 0) part of the
phase diagram. Note that the average offspring degree Ẽ[]
has to be larger than (2 + √

3)/(2 − √
3) ≈ 13.928 for the

large asymmetry antiferromagnetic part of the phase dia-
gram to be nonempty, because of the condition (110). This
discontinuous transition of the tree reconstruction problem,
depicted in Fig. 1(d), is not directly relevant for the SBM
graph inference problem. The latter has an easy phase for
Ẽ[]θ2 > 1 and a hard phase for θ < θIT,−(m) < 0 and θ >

θIT,+(m) > 0, with Ẽ[]θIT,±(m)2 ∈ [Ẽ[]θsp,±(m)2, 1], while
the inference is information-theoretically impossible for θ ∈
[θIT,−(m), θIT,+(m)]. This information-theoretic (IT) line is
defined by the vanishing of the free entropy computed in the
nontrivial solution of the cavity equations.

In the remainder of this section we will describe more
precisely the neighborhood of the (ferromagnetic and antifer-
romagnetic when they exist) points (θ, m) = (θKS, mc) of the
phase diagram and in particular present an analytic description
of the lines θsp,±(m) and θIT,±(m) when |m| → m+

c . To reach
this goal we will exploit the next order in our generic moment
expansions, as summarized in Eqs. (71)–(76). We first note
that for symmetry reasons the tensors B and C depend on
their spin indices as Bστγ = bστγ and Cστγ β = cστγ β, with
b and c two reals. The form of the matrix M̂ given in Eq. (111)
leads to

B̂στγ = θ3b
1

ησητηγ

στγ , Ĉστγ β = θ4c
1

ησητηγ ηβ

στγ β.

(116)

Plugging these expressions into (71)–(73) leads, after a short
computation, to a set of equations for a, b, and c, namely,

a = Ẽ[]θ2a + Ẽ[( − 1)]
2(3m2 − 1)

(1 − m2)2
θ4a2 + Ẽ[( − 1)]

32m

(1 − m2)2
θ5ab + Ẽ[( − 1)]

16

(1 − m2)2
θ6ac

+ Ẽ[( − 1)( − 2)]
4

3

5 − 42m2 + 45m4

(1 − m2)4
θ6a3, (117)

b = Ẽ[]θ3b − Ẽ[( − 1)]
3m

1 − m2 θ4a2, (118)

c = Ẽ[]θ4c + Ẽ[( − 1)]
3

4
θ4a2. (119)
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Alternatively, these equations can be obtained via the computation of the free entropy (77), which is found to be

1

E[]
φ(a, b, c) = Ẽ[]θ2 − 1

(1 − m2)2
θ2a2 − 16

3

Ẽ[]θ3 − 1

(1 − m2)3
θ3b2 + 32

3

Ẽ[]θ4 − 1

(1 − m2)4
θ4c2 + Ẽ[( − 1)]

4

3

3m2 − 1

(1 − m2)4
θ6a3

+ Ẽ[( − 1)]
32m

(1 − m2)4
θ7a2b + Ẽ[( − 1)]

16

(1 − m2)4
θ8a2c

+ Ẽ[( − 1)( − 2)]
2

3

5 − 42m2 + 45m4

(1 − m2)6
θ8a4; (120)

its derivatives with respect to a, b, and c do indeed vanish when Eqs. (117)–(119) are fulfilled.
Equations (118) and (119) can be immediately solved to obtain b and c as a function of a; reinjecting these results in Eq. (117),

one obtains a quadratic equation for a,

0 = u + va + wa2, (121)

with

u(θ ) = Ẽ[]θ2 − 1, (122)

v(θ, m) = Ẽ[( − 1)]
2(3m2 − 1)

(1 − m2)2
θ4, (123)

w(θ, m) = Ẽ[( − 1)( − 2)]
4

3

5 − 42m2 + 45m4

(1 − m2)4
θ6 (124)

+Ẽ[( − 1)]2 12θ9

(1 − m2)2

(
− 8m2

1 − m2

1

1 − E[]θ3
+ θ

1 − E[]θ4

)
. (125)

We want to study this equation in the neighborhood of the
point (θKS, mc), taking simultaneously the limits θ → θKS and
m → mc; we define as before ε = Ẽ[]θ2 − 1. The coeffi-
cients u = ε and v will thus both be small in this regime,
while w̃ = w(θKS, mc) �= 0. In order to have the three terms
in Eq. (121) of the same order, one realizes that the two si-
multaneous limits must be taken with ε = t (m − mc)2, where
t is finite and constitutes the relevant control parameter in
this scaling regime. Then, defining v(θKS, m) = ṽ(m − mc) +
O((m − mc)2), we reduce (121) at lowest order to

0 = t (m − mc)2 + ṽ(m − mc)a + w̃a2. (126)

Defining a reduced unknown ã = a
m−mc

, which will be finite
in the limit, we obtain finally

0 = t + ṽã + w̃ã2, (127)

hence ã = − ṽ
2w̃

± 1
2w̃

√
ṽ2 − 4w̃t . The coefficients ṽ and w̃

only depend on the degree distribution; to determine them at
dominating order one replaces θ by its value at the Kesten-
Stigum transition, i.e., sgn(θ )/

√
Ẽ[], and obtains

ṽ = 9
√

3
Ẽ[( − 1)]

Ẽ[]2
, (128)

w̃ = −27
Ẽ[( − 1)( − 2)]

Ẽ[]3
− 27

(
Ẽ[( − 1)]

Ẽ[]2

)2

×
(

4

sgn(θ )
√
Ẽ[] − 1

− 1

Ẽ[] − 1

)
. (129)

It is rather easy to check that w̃ < 0 in the ferromagnetic
case [sgn(θ ) > 0] for all degree distributions with Ẽ() > 1 (a

necessary condition for the Galton-Watson tree to be infinite
with positive probability and for the Kesten-Stigum transition
to exist). We believe that w̃ < 0 also in the antiferromag-
netic case whenever the point (−1/

√
Ẽ[], mc) belongs to the

authorized domain of parameters according to the condition
(110) for all offspring degree distributions, but could only
check it explicitly in the regular and Poisson cases. Note that
in the large-degree limit both coefficients ṽ and w̃ remains
finite, namely, ṽ → 9

√
3 and w̃ → −27.

As a consequence of w̃ < 0, the real solutions of (127)
exist for t � tsp = ṽ2/4w̃. This is precisely the condition that
defines the line θsp; translating back from rescaled units yields
the lowest-order expansion of θsp(m) in the limit m → m+

c ,

θsp(m) = θKS

(
1 − ṽ2

8|w̃| (m − mc)2 + o((m − mc)2)
)

.

(130)

Note that w̃ depends on sgn(θ ), giving two distinct expansions
for the ferromagnetic and antiferromagnetic lines θsp,+ and
θsp,−.

Using the expression (120) of φ, one can also expand the
IT line θIT around (θ, m) = (θKS, mc). Indeed, in the scaling
regime described above one finds that

φ = 9

2

E[]

Ẽ[]
(m − mc)4

(
1

2
t ã2 + 1

3
ṽã3 + 1

4
w̃ã4

)
. (131)

The IT line corresponds to φ = 0 (this is the value on the
trivial fixed point), hence the IT threshold corresponds to the
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FIG. 8. Study of the scaling regime in the neighborhood of the point (θKS, mc ) for the ferromagnetic asymmetric Ising model with degree
distribution p̃ = δ,d , d = 3. The rescaled signal-to-noise ratio parameter is t = (dθ2 − 1)/(m − mc )2; the Kesten-Stigum transition thus
corresponds to t = 0. (a) Rescaled accuracy ã = a/(m − mc ) as a function of t . The lines are the analytic predictions for the stable (solid) and
unstable (dashed) branches of fixed points obtained in Eq. (127) and the symbols are numerical results that approach the analytic line when
m → m+

c . (b) Rescaled free entropy φ̃ = φ/(m − mc )4 as a function of t . The analytic lines have been obtained by inserting in Eq. (131) the
two branches of ã from (127); the threshold tIT corresponds to the crossing with the horizontal line φ̃ = 0.

solution of

0 = t + ṽã + w̃ã2,

0 = 1

2
t + 1

3
ṽã + 1

4
w̃ã2 ⇒ ã = − 2ṽ

3w̃
, (132)

t = 2ṽ2

9w̃
.

The IT threshold tIT = 2ṽ2

9w̃
is thus distinct at this order from

the spinodal one tsp = ṽ2

4w̃
(even though the difference in

the coefficient is small). Translating back in terms of the
parameters (θ, m) gives

θIT(m) = θKS

(
1 − ṽ2

9|w̃| (m − mc)2 + o((m − mc)2)
)

,

(133)

with again two different expressions for the ferromagnetic and
antiferromagnetic transitions.

These two expansions (130) and (133) on the behavior of
the spinodal and IT lines in the neighborhood of the critical
asymmetry where the transition crosses over from second to
first order constitute our main results for the asymmetric Ising
model. We have shown in Fig. 4(b) that they are in agreement
with our numerical data, within the accuracy we could reach.
As a further illustration we show in Fig. 8 the numerical
determination of a and φ in the scaling regime and compare it
to our analytical formulas.

J. Application 4: The q1 + q2 case

We now turn our attention to the model introduced in
Sec. III D 3, which breaks the symmetry between q labels in
a minimal way, generalizing the two previous cases (i.e., q
symbols with maximal symmetry studied in Sec. IV H and
q = 2 without any symmetry in Sec. IV I).

Let us consider indeed an alphabet of q labels χ =
{1, . . . , q}, divided into two supergroups (or supercommuni-

ties) G1 and G2 containing, respectively, q1 and q2 symbols
(in such a way that q = q1 + q2), namely, G1 = {1, . . . , q1}
and G2 = {q1 + 1, . . . , q}. We break the symmetry among
the q labels in a minimal way, according to this subdivi-
sion in two groups, by taking ησ constant in G1 and G2:
ησ = η1 if σ ∈ G1 and ησ = ηq if σ ∈ G2, with the nor-
malization condition q1η1 + q2ηq = 1. We parametrize the
fraction of vertices in G1 and G2 by m ∈ [−1, 1], according
to

ησ =
{

1
q1

1+m
2 if σ ∈ G1

1
q2

1−m
2 if σ ∈ G2;

(134)

this notation is reminiscent of the asymmetric Ising case,
which would be obtained by coarse graining the labels σ ∈ G1

(σ ∈ G2) as σ = + (σ = −). We also perform this minimal
symmetry breaking on the matrix M, assuming that its matrix
elements Mστ only depend on the group to which σ and
τ belong and on whether σ = τ or not (the shape of the
associated connectivity matrix in the SBM interpretation is
sketched in Fig. 5).

Imposing in addition the reversibility of the stochastic
matrix M with respect to η (this condition corresponds to the
equality of the average degrees in G1 and G2 in the SBM
interpretation), one realizes that such a matrix M is necessarily
of the form

Mστ = 1 + m

2q1
I(τ ∈ G1)

+ 1 − m

2q2
I(τ ∈ G2) + μ1I(σ, τ ∈ G1)

(
δσ,τ − 1

q1

)

+μ2I(σ, τ ∈ G2)

(
δσ,τ − 1

q2

)

+μ0

(
1 − m

2
I(σ ∈ G1) − 1 + m

2
I(σ ∈ G2)

)

×
(

1

q1
I(τ ∈ G1) − 1

q2
I(τ ∈ G2)

)
. (135)
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One can check that M admits 1 as an eigenvalue, with eigen-
vectors η on the left and constant vector on the right; the
parameters μ0, μ1, and μ2 introduced in Eq. (135) correspond
to the nontrivial eigenvalues of M. There are q1 − 1 (q2 − 1)
degenerate eigenvalues μ1 (μ2) with eigenvectors supported

on G1 (G2) and a simple eigenvalue μ0 whose eigenvector is
constant inside each of the two groups. For a given choice
of m ∈ [−1, 1] the requirement of positivity of the matrix
elements of M restricts the allowed domain of the parame-
ters (μ0, μ1, μ2) to the subset of [− 1−|m|

1+|m| , 1] × [− 1
q1−1 , 1] ×

[− 1
q2−1 , 1] that fulfills the condition

μ0 � max

(
2μ1 − 1 − m

1 − m
,
−2(q1 − 1)μ1 − 1 − m

1 − m
,

2μ2 − 1 + m

1 + m
,
−2(q2 − 1)μ2 − 1 + m

1 + m

)
. (136)

One sees that the relevant eigenvalue for the Kesten-Stigum transition, i.e., the maximal one in absolute value, can be either μ1,
μ2, or μ0 depending on the choice of the parameters. In other words, the signal on the labels transmitted through the edges of
the SBM can be stronger inside G1, inside G2, or in the difference of behavior between G1 and G2.

We will now specialize the equations of Sec. IV D to this particular case. We first have to describe the matrices Aστ = E[δσ δτ ].
Because of the permutation invariance inside each of the two groups of labels, the matrix element Aστ should only depend on
whether σ = τ or not and on the group of the two communities σ and τ . In addition, the matrix A has to be symmetric and
the sum of every row or column has to vanish. A moment of thought reveals that the vector space of such matrices is three
dimensional and is spanned by the three matrices K1, K2, and K0 defined as

(K1)στ = I(σ, τ ∈ G1)

(
δσ,τ − 1

q1

)
,

(K2)στ = I(σ, τ ∈ G2)

(
δσ,τ − 1

q2

)
, (137)

(K0)στ = 1

qq1q2
[q2I(σ ∈ G1) − q1I(σ ∈ G2)][q2I(τ ∈ G1) − q1I(τ ∈ G2)]. (138)

These matrices, which are defined similarly to the matrix K of the symmetric Potts model introduced in Eq. (98), are linearly
independent and obey in addition the simple algebra

K2
1 = K1, K2

2 = K2, K2
0 = K0, KiKj = 0 if i �= j.

(139)

We can thus parametrize A(n) as a(n)
1 K1 + a(n)

2 K2 + a(n)
0 K0; the nonzero eigenvalues of A(n) are then found to be a(n)

1 , a(n)
2 , and a(n)

0 .
These three reals must thus be non-negative for A(n) to be semipositive definite.

The matrix M̂ defined in Eq. (47) can then be expressed as

M̂στ = 1 + μ1
1

η1
(K1)στ + μ2

1

ηq
(K2)στ + μ0qη1ηq

1

ησ

(K0)στ

1

ητ

(140)

and a simple computation based on the algebraic properties stated above reveals that

ησητ Â(n)
στ = (

μ2
1a(n)

1 K1 + μ2
2a(n)

2 K2 + μ2
0a(n)

0 K0
)
στ

. (141)

Hence the linearized evolution equation (59) yields

a(n+1)
i = Ẽ[]μ2

i a(n)
i for i = 0, 1, 2. (142)

The trivial fixed point a1 = a2 = a0 = 0 becomes unstable as soon as one of the three coefficients ai grows under these iterations,
hence we recover the Kesten-Stigum criterion Ẽ[] max(μ2

1, μ
2
2, μ

2
0) = 1 at the limit of stability of the trivial fixed point, the

parameters μi being the nontrivial eigenvalues of M.
Following our usual program, we incorporate the next-order correction and look for a perturbative nontrivial fixed point

around the Kesten-Stigum transition. Inserting the form given above for the matrices A and Â into the generic equation (65)
yields, after some computations, the following system of quadratic equations for a0, a1, and a2:

a1 = Ẽ[]μ2
1a1 + Ẽ[( − 1)]

2q1

(1 + m)2

(
(q1 − 3 − m)μ4

1a2
1 + 2q2

q
μ2

0μ
2
1a0a1

)
, (143)

a2 = Ẽ[]μ2
2a2 + Ẽ[( − 1)]

2q2

(1 − m)2

(
(q2 − 3 + m)μ4

2a2
2 + 2q1

q
μ2

0μ
2
2a0a2

)
, (144)

a0 = Ẽ[]μ2
0a0 + Ẽ[( − 1)]

(
4q1q2

q

3m2 − 1

(1 − m2)2
μ4

0a2
0 + qq1(q1 − 1)

2q2

(1 − m)2

(1 + m)2
μ4

1a2
1 + qq2(q2 − 1)

2q1

(1 + m)2

(1 − m)2
μ4

2a2
2

)
. (145)
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From this system of equations one can recover, as a con-
sistency check, the equations (99) of the symmetric q-state
model and (115) of the asymmetric Ising case. The latter
is indeed obtained with q1 = q2 = 1, in which case K1 =
K2 = 0 and the only parameter is a0, which obeys indeed
(115) with the identification μ0 = θ . To recover the former
case one takes μ1 = μ2 = μ0 = θ , a1 = a2 = a0, and m =
(q1 − q2)/2; then the three equations (143)–(145) reduce to
(99). Note also that these equations coincide, in the special
case q1 = q2, μ1 = μ2, and m = 0, for which a1 = a2, with
the moment recursions derived in Ref. [30].

Let us now return to an arbitrary choice of parameters
in Eq. (143)–(145) and discuss the bifurcation of the non-
trivial solution of this system of equations at the Kesten-
Stigum transition. This discussion must be divided according
to which eigenvalue μi causes the transition by fulfill-
ing the condition Ẽ[]μ2

i = 1 (we will assume for sim-
plicity that only one among μ1, μ2, and μ0 becomes
critical).

1. Bifurcation driven by μ0

Let us first consider the case where the bifurcation is
driven by μ0, i.e., where Ẽ[]μ2

0 = 1 + ε with ε small, while
Ẽ[]μ2

1 < 1 and E[]μ2
2 < 1. Since the dominant direction of

the bifurcation is a0 one can simplify the system (143)–(145)
at lowest order into a single equation for a0:

0 = ε + Ẽ[( − 1)]
4q1q2

q

3m2 − 1

(1 − m2)2
μ4

0a0. (146)

Recalling the positivity condition a0 � 0, one realizes that the
bifurcating solution exists above the Kesten-Stigum transition
(i.e., for ε > 0) if and only if the asymmetry between the
two groups of labels is small enough, namely, if m < mc =
1/

√
3, as in the asymmetric Ising case. As on the right-hand

sides of (143) and (144) there are no terms proportional to a
power of a0 (without further multiplication by a1 or a2), the
nonbifurcating unknowns a1 and a2 remain strictly equal to 0
in this solution.

2. Bifurcation driven by μ1

Suppose now that μ1 is the critical eigenvalue (the case
where μ2 becomes critical can be deduced from this one
by exchanging the two groups), i.e., that Ẽ[]μ2

1 = 1 +
ε with ε small, while Ẽ[]μ2

2 < 1 and Ẽ[]μ2
0 < 1. The

lowest-order equation for the bifurcating direction a1 thus
becomes

0 = ε + Ẽ[( − 1)]
2q1

(1 + m)2
(q1 − 3 − m)μ4

1a1, (147)

with the subdominant coefficient a0 being O(a2
1) = O(ε2),

while a2 remains strictly zero [within the system (143)–
(145)]. The sign of ε for which the nontrivial solution satisfies
the constraint a1 � 0 is thus the one of −(q1 − 3 − m). To
analyze the sign of this quantity we can exclude the cases

where m = ±1, as these reduce to purely symmetric models
with either q1 or q2 labels. The type of bifurcation thus
depends on the (integer) value of q1 as follows.

(i) If q1 � 4, for any value of m, the bifurcating solution
exists for ε < 0, leading to the nontightness of the Kesten-
Stigum bound for the reconstruction. This is the conclusion
reached in Ref. [30], in the special case q1 = q2 and m = 0.

(ii) If q1 ∈ {1, 2}, for any value of m, the continuous
solution is present above the Kesten-Stigum transition (for
ε > 0).

(iii) If q1 = 3 the scenario depends on the asymmetry
parameter m: For m < 0 the bifurcating solution exists for
ε < 0, yielding a first-order transition with the nontightness
of the Kesten-Stigum bound. On the other hand, if m > 0
the nontrivial solution appears continuously in the large-SNR
regime, above the Kesten-Stigum transition.

Note that this classification is independent of the number
q2 of labels in the group, which does not become critical at
the Kesten-Stigum transition.

3. Higher-order terms and the existence
of algorithmic spinodals

We have computed the next order in the expansion of
(143)–(145), computing the coefficients of the terms that are
cubic in the ai, by specializing the generic equations (71)–(73)
to the symmetry pattern of the q1 + q2 model. This requires
in particular the determination of the most generic symmetric
tensors with three and four indices, Bστγ and Cστγ β , that are
invariant under permutations of the labels inside G1 and G2.
The resulting equations are rather long and hence we will
not write them completely but concentrate on the additional
predictions they led us to.

As long as the coefficient of the quadratic term in the
equation for the bifurcating ai is nonzero on the right-hand
side of (143)–(145), these higher-order terms can only affect
the solution quantitatively, but not qualitatively. Suppose first
that the bifurcation is driven by μ0, and that m = mc = 1/

√
3,

in such a way that the first nonlinear term in a0 vanishes.
In this case a0 is the solution of a quadratic equation of
the form 0 = ε + wa2

0; our computation yields explicitly the
value of this coefficient w, which turns out to be proportional
(with a positive constant depending only on q1 and q2) to the
corresponding expression found in the asymmetric Ising case
and written in Eq. (129), with μ1 playing the role of θ . We
argued this coefficient to be always negative for all degree
distributions and sign of μ1; this case thus offers no novelty
with respect to the situations investigated previously.

Suppose now that the bifurcation is driven by μ1, and that
q1 = 3 and m = 0, in such a way that the coefficient of a2

1
in Eq. (143) vanishes. In this much more interesting case
the leading-order bifurcation equation becomes 0 = ε + wa2

1,
with the following expression for the coefficient w (with
Ẽ[]μ2

1 = 1 at lowest order):

w = 36

[
−3

Ẽ[( − 1)( − 2)]

Ẽ[]3
+
(
Ẽ[( − 1)]

Ẽ[]2

)2
(

4

Ẽ[] − 1
− 12

sgn(μ1)
√
Ẽ[] − 1

− 2μ0

1 − μ0
+ Ẽ[]μ2

0

1 − Ẽ[]μ2
0

)]
. (148)
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The crucial point we want to emphasize is that w can be
made positive for well-chosen values of the parameters of
the model, in particular when |μ0| is close to |μ1| (but still
strictly smaller for the bifurcation to be driven by μ1). In
such a case the nontrivial solution a1 of the equation exists
for ε < 0, hence the Kesten-Stigum bound is not tight. Let
us now argue that the situation depicted in Fig. 2 must occur
in some part of the phase diagram of the q1 + q2 model;
for simplicity, let us consider that the degree distribution
is Poissonian with average c, which we take as the SNR.
Suppose that q1 = 3 and fix the values of the μi in such a
way that w > 0 in the expression of (148). For m = 0 the
analysis above shows the existence of reconstruction down to
csp(m = 0) < cKS, while calg(m = 0) = cKS as the bifurcating
solution exists only for ε < 0. Suppose now that m is slightly
increased to a small positive value; from (147) we conclude
that a nontrivial perturbative solution exists for some range
of c > cKS, but by continuity with the situation for m = 0
must undergo a bifurcation at some calg(m) > cKS. Also, by
continuity the spinodal of the high-accuracy branch csp(m)
must persist for small enough m > 0, hence the existence of a
bifurcation diagram as in Fig. 2. When m is further increased
the two spinodals csp(m) and calg(m) collide and for even
larger values of m the bifurcation diagram becomes the one in
Fig. 1(a). Indeed, when m → 1 the model reduces to a sym-
metric SBM with q1 = 3 communities. Preliminary numerical
results obtained by a resolution of the cavity equations via the
population dynamics algorithm suggest a rather narrow do-
main of parameters for which this phenomenon of coexistence
of two nontrivial stable solutions is observable; for this reason
we do not present numerical data to illustrate this model.

K. Definition of accuracy and the maximal overlap estimator

The covariance matrix Aστ = E[δσ δτ ] appeared naturally
in our expansions as a measure of the deviation between the
fixed-point distribution P(η) solution of the cavity equations
and the trivial fixed point δ(η − η). Let us now briefly com-
ment on its interpretation as the accuracy of an estimation pro-
cedure and its connection with the maximal overlap estimator.

Consider the tree reconstruction problem explained in
Sec. III C 1 and assume that the root had value τ in the
broadcast process; an observer, who has no direct knowledge
of τ , computes its posterior probability distribution η given
the values of spins on far away vertices of the tree. If the
observer proposes as an estimator of τ a random spin value
chosen with probability η, the probability of success of the
reconstruction is, on average with respect to the broadcast,
the estimation and the tree, Eτ [ητ ]. The probability of success
if one had discarded all the observations, i.e., if one draws
the estimator with the prior probability η, is ητ ; the accuracy,
defined as the difference of these two probabilities, is thus
Eτ [δτ ]. Averaging finally over the value τ of the unknown
spin, we obtain the accuracy

a =
∑

τ

ητEτ [δτ ] =
∑

τ

Aττ = TrA, (149)

where we used the identity (50) between conditional and
unconditional distributions. For binary spins σ = ±1 there is
an affine mapping between the MMSE and the accuracy.

Consider now the maximal overlap estimator defined in
Sec. II A, for which the observer estimates the value of the
root as argmaxσ ησ . The probability of correct estimation can
be expressed in different forms involving the conditional or
unconditional distributions of η, namely,

Pcorr =
∑

τ

ητEτ

[
I

(
argmax

σ

ησ = τ

)]

= E

[∑
τ

ητI

(
argmax

σ

ησ = τ

)]
= E

[
max

σ
ησ

]
,

(150)

the first step resulting from the general change of density
between condition and unconditional distributions expressed
in Eq. (48). This quantity can easily be evaluated numerically
from the resolution of the cavity equations by the population
dynamics algorithm; it is however much more difficult to
characterize it analytically than the accuracy (149). If we
could indeed determine systematically Aστ as a perturbative
expansion in the small parameter κ in the neighborhood of the
Kesten-Stigum transition, a similar determination is not possi-
ble for Pcorr. The scaling ansatz (61) means that around the KS
transition, the dominant behavior of δ under P is described by

δ/
√

κ
d→ X (where X has a symmetric distribution). We can

thus conclude that Pcorr should behave as maxσ ησ + C
√

κ , but
with a prefactor C that involves the whole distribution of the
rescaled random vector X , and thus cannot be computed from
a finite number of moments. An explicit determination of Pcorr

can be achieved in the large-degree limit, due to the Gaussian
simplifications explained in Sec. IV F. One finds indeed in this
limit

Pcorr = E

[
exp

(
max

σ
Lσ

)]
, (151)

where the expectation is over a Gaussian vector L defined
by its moments in Eq. (91). For instance, in the symmetric
Ising case (q = 2 and m = 0), defining λ = lim(Ẽ[]θ2) as
the SNR, a short computation yields

Pcorr = 1

2
+
∫ √

2λa

0

dt√
2π

e−t2/2, (152)

where a = a(λ) is the solution of

a = e−λaE

[
e2

√
2λaZ

e
√

2λaZ + e−√
2λaZ

]
− 1

2
, (153)

with Z a standard Gaussian random variable (of zero mean
and unit variance). Expanding now these expressions around
the Kesten-Stigum transition, i.e., setting λ = 1 + ε with ε →
0+, one obtains the leading behavior a ∼ ε/2, while Pcorr ∼
1
2 + √

ε/2π .

V. MOMENT EXPANSIONS FOR k-WISE INTERACTING
ISING VARIABLES

We turn now to the second specialization of the formalism
of Sec. III: We will consider generic k-wise interactions,
but we restrict the discussion now to binary variables (q =
2), which for convenience we will represent as Ising spins
χ = {−1, 1}. As most of the reasonings are similar to the
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ones presented in Sec. IV, we will give fewer details of the
computations and underline the main differences with the case
of pairwise interacting Potts variables.

A. Fourier transforms of Boolean functions

The main ingredient defining the models under study here
is a joint probability pj(σ1, . . . , σk ) over {−1,+1}k , invariant
under all permutations of its arguments. This symmetry im-
plies that pj is a function of (σ1 + · · · + σk ) only and can thus
be specified by k real numbers (taking into account the nor-
malization condition). The occupation models of [46], whose
definition was recalled in Sec. III, correspond to the special
case of a pj vanishing for some values of (σ1 + · · · + σk ) and
constant otherwise. A convenient way to specify a generic
permutation invariant pj is via the representation

pj(σ1, . . . , σk )

= 1

2k

⎡
⎣1 + γ1

k∑
i=1

σi + γ2

∑
i< j

σiσ j + · · · + γkσ1 · · · σk

⎤
⎦,

(154)

where the γn are the Fourier coefficients of pj. They can be
expressed as

γn = E[τ1, . . . , τn], (155)

where the average is over a configuration (τ1, . . . , τk ) drawn
with probability pj(τ1, . . . , τk ). Let us describe in these terms
the conditional distribution pc(τ1, . . . , τk−1|τ ) obtained from
pj. Because of its invariance under the permutations of its
k − 1 first arguments, it is fully described by the averages of
products of n spins. These values are easily expressed in terms

of the Fourier coefficients of pj as

E[τ1, . . . , τn|τ ] = γn + τγn+1

1 + τγ1
for n = 1, . . . , k − 1.

(156)

In what follows we will assume that the stationary prob-
ability distribution η is unbiased, i.e., η+ = η− = 1

2 . For the
reversibility assumption of Sec. III to hold in this case one
needs the marginal probability of a single variable drawn from
pj to also be unbiased. In terms of the Fourier coefficient
representation this is equivalent to γ1 = 0 [see Eq. (155)]. We
will actually make a stronger hypothesis on pj, namely, that
it is invariant under a global spin reversal: pj(σ1, . . . , σk ) =
pj(−σ1, . . . ,−σk ). This implies that not only γ1 but all the
Fourier coefficients γp with p odd vanish. With this assump-
tion, (156) can be simplified into

E[τ1, . . . , τ2p−1|τ ] = τγ2p, E[τ1, . . . , τ2p|τ ] = γ2p.

(157)

B. Cavity equations and free-entropy functional

We have given in Sec. III recursive equations obeyed by the
distributions P(n)

τ (η) and P̂(n)
τ (ν) and their unconditional ver-

sions P(n)(η) and P̂(n)(ν) [see (15)–(20)]. As we are dealing
now with Ising variables, we can use more succinct nota-
tion, a probability distribution over a Boolean variable being
parametrized by a single real. We will use the notation

ησ = 1 + mσ

2
, νσ = 1 + uσ

2
, (158)

with m and u in [−1, 1], and hence denote by P(n)
τ (m), P(n)(m),

P̂(n)
τ (u), and P̂(n)(u) the above distributions expressed with

this parametrization. The belief propagation equation (17) can
then be reformulated as

m = f (u1, . . . , u) =
∏

i=1(1 + ui ) −∏
i=1(1 − ui )∏

i=1(1 + ui ) +∏
i=1(1 − ui )

= tanh

(
∑

i=1

arctanh(ui )

)
, (159)

with the normalization factor

z(u1, . . . , u) = 1

2

∏
i=1

(1 + ui ) + 1

2

∏
i=1

(1 − ui ). (160)

The other BP equation (18) reads, in this notation,

u = f̂ (m1, . . . , mk−1) = γ1 + γ2
∑k−1

i=1 mi + γ3
∑

i< j mim j + · · · + γkm1 · · · mk−1

1 + γ1
∑k−1

i=1 mi + γ2
∑

i< j mim j + · · · + γk−1m1 · · · mk−1
. (161)

With the assumption of invariance of pj under global spin reversal, the odd Fourier coefficients vanish and one can simplify this
equation into

u = f̂ (m1, . . . , mk−1) = 1

ẑ(m1, . . . , mk−1)

(
γ2

k−1∑
i=1

mi + γ4

∑
i1<i2<i3

mi1 mi2 mi3 + · · ·
)

,

ẑ(m1, . . . , mk−1) = 1 + γ2

∑
i< j

mim j + γ4

∑
i1<i2<i3<i4

mi1 mi2 mi3 mi4 + · · · . (162)
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Let us now discuss the symmetry properties of the distributions P(n)
τ (m) and P(n)(m) and the relationships between them. The

consequences of the Bayes theorem stated in Eq. (22) become, for an unbiased stationary distribution η,

P(n)(m) = 1

2
P(n)

+ (m) + 1

2
P(n)

− (m), P(n)
τ (m) = (1 + τm)P(n)(m),

∫
dP(n)(m)m = 0. (163)

Actually the assumption of invariance under global spin reversal has further consequences: Not only does P(n) have zero average,
but it is also symmetric. Hence one has

P(n)(m) = P(n)(−m), P(n)
+ (m) = P(n)

− (−m). (164)

Combining these two set of properties yields particularly simple identities between moments of these distributions. The change
of densities between P(n)

τ and P(n) means indeed that E(n)
+ [ f (m)] = E(n)[(1 + m) f (m)] for any function f (m). Applying this

identity with f (m) = m2p and f (m) = m2p−1 yields

E(n)
+ [m2p] = E(n)[m2p] + E(n)[m2p+1] = E(n)[m2p], E(n)

+ [m2p−1] = E(n)[m2p−1] + E(n)[m2p] = E(n)[m2p], (165)

where we exploited the symmetry of P(n) that makes its odd moments vanish. These identities are well known in the context
of low-density parity check codes (see, for instance, Lemma 3 in Ref. [59]). Spelling out these identities for the lowest-order
moments, we obtain

E(n)
+ [m] = E(n)

+ [m2] = E(n)[m2], E(n)
+ [m3] = E(n)

+ [m4] = E(n)[m4]. (166)

The distributions P̂(n)
τ and P̂(n) have exactly the same symmetry properties as P(n)

τ and P(n), hence the random variables u enjoy
the same identities as the m.

The identity P(n)
+ (m) = P(n)

− (−m) that follows from the invariance under global spin flip allows one to close the equations
(15) and (16) on the two distributions P(n)

+ (m) and P̂(n)
+ (u), which are found to evolve with n according to

P(n+1)
+ (m) =

∞∑
=0

p̃

∫
dP̂(n)

+ (u1) · · · dP̂(n)
+ (u)δ(m − f (u1, . . . , u)), (167)

P̂(n)
+ (u) =

∑
τ1,...,τk−1

pc(τ1, . . . , τk−1|+)
∫

dP(n)
+ (m1) · · · dP(n)

+ (mk−1)δ(u − f̂ (τ1m1, . . . , τk−1mk−1)), (168)

where the function f and f̂ are given in Eq. (159) and (162), respectively. This form is very convenient for a numerical resolution
by the population dynamics algorithm (see Appendix A for more details on this point). Equivalently, the unconditional versions
of the cavity equations read

P(n+1)(m) =
∞∑

=0

p̃

∫
dP̂(n)(u1) · · · dP̂(n)(u)δ(m − f (u1, . . . , u))z(u1, . . . , u), (169)

P̂(n)(u) =
∫

dP(n)(m1) · · · dP(n)(mk−1)δ(u − f̂ (m1, . . . , mk−1))ẑ(m1, . . . , mk−1). (170)

The free-entropy functional can be expressed in these two versions of the cavity formalism from (24) and (28) as

φ(P, P̂) = −E[]
∫

dP(m)dP̂(u)ze(m, u) ln ze(m, u)

+ E[]

k

∫
dP(m1) · · · dP(mk )zc(m1, . . . , mk ) ln zc(m1, . . . , mk )

+
∞∑

=1

p

∫
dP̂(u1) · · · dP̂(u)zv(u1, . . . , u) ln zv(u1, . . . , u), (171)

φ(P+, P̂+) = −E[]
∫

dP+(m)dP̂+(u) ln ze(m, u)

+ E[]

k

∑
σ1,...,σk

pj(σ1, . . . , σk )
∫

dP+(m1) · · · dP+(mk ) ln zc(σ1m1, . . . , σkmk )

+
∞∑

=1

p

∫
dP̂+(u1) · · · dP̂+(u) ln zv(u1, . . . , u), (172)

where

ze(m, u) = 1 + mu, (173)
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zc(m1, . . . , mk ) = 1 + γ2

∑
i< j

mim j + γ4

∑
i1<i2<i3<i4

mi1 mi2 mi3 mi4 + · · · , (174)

zv(u1, . . . , u) = 1

2

∏
i=1

(1 + ui ) + 1

2

∏
i=1

(1 − ui ). (175)

C. Stability analysis of the trivial fixed point
via moment expansions

The functions f ({ui}) and f̂ ({mi}) defined in Eqs. (159)
and (162) vanish when all their arguments are equal to 0,
which traduces the stationarity of the unbiased distribution
η. As a consequence, the distributions P(n)(m) = δ(m) and
P̂(n)(u) = δ(u) form a fixed point of the cavity equations.
Following the same strategy as in Sec. IV D, we will now
investigate its stability, by first locating the Kesten-Stigum
transition where the trivial fixed point goes from stable to
unstable and then looking for a bifurcating nontrivial fixed
point in the neighborhood of the transition.

1. Linear analysis

Linearizing for small arguments the functions f ({ui}) and
f̂ ({mi}) defined in Eq. (159) and (162) and inserting this
expansion in the conditional distribution recursions (167) and
(168) yields very easily

E(n+1)
+ [m] = Ẽ[]E(n)

+ [u],

E(n)
+ [u] = (k − 1)γ2E[τ1|+]E(n)

+ [m], (176)

with E[τ1|+] = γ2 as proven before in Eq. (157). Putting
these two equations together and expressing the conditional
first moments in terms of the unconditional second moments
according to (166) gives

E(n+1)[m2] = Ẽ[](k − 1)γ 2
2 E

(n)[m2]. (177)

This implies that the Kesten-Stigum transition occurs when

Ẽ[](k − 1)γ 2
2 = 1; (178)

in the following we will assume that the second Fourier
coefficient does not vanish, γ2 �= 0, for this bifurcation to
occur at a finite value of Ẽ[] (this excludes notably the case
of a XORSAT constraint for pj whenever k � 3).

2. Second-order expansion: Continuity
of the Kesten-Stigum transition

We look now for a fixed-point distribution P(m) in the
neighborhood of the Kesten-Stigum transition. We need
to make an ansatz for the behavior of its moments in
order to reduce the functional bifurcation problem to a
finite-dimensional one, as already explained for the case
of Potts variables in Sec. IV D. Due to the spin-reversal
symmetry, we known that for all odd moments E[m2p+1] =
E[u2p+1] = 0; we assume the existence of a small parame-
ter κ such that the even moments scale as E[m2p] = O(κ p)
and E[u2p] = O(κ p). Pushing the expansion of f ({ui}) and
f̂ ({mi}) to the order needed to obtain the first correction to
the variances of u and m yields, after a short computation,

E[m2] = Ẽ[]E[u2] − Ẽ[( − 1)](E[u2])2 + O(κ3), (179)

E[u2] = (k − 1)γ 2
2 E[m2]

− (k − 1)(k − 2)γ 3
2 (E[m2])2 + O(κ3). (180)

Eliminating the variance of u gives us a single equation for
E[m2]; we will define a = E[m2]/2 in such a way that this
quantity corresponds to the one of Sec. IV D, which obeys

a = Ẽ[](k − 1)γ 2
2 a − 2Ẽ[](k − 1)(k − 2)γ 3

2 a2 − 2Ẽ[( − 1)]
[
(k − 1)γ 2

2 a
]2 + O(κ3). (181)

Defining Ẽ[](k − 1)γ 2
2 = 1 + ε, with ε parametrizing the distance to the Kesten-Stigum transition, dividing the equation by a,

and taking ε = 0 in the correction term gives

0 = ε − 2

[
(k − 2)γ2 + Ẽ[( − 1)]

Ẽ[]2

]
a. (182)

We will show now that the expression in the large square brackets is non-negative for all the models encompassed by the study of
this section and hence that the bifurcating solution (which must certainly obey the positivity condition a = E[m2] > 0) always
exists for ε > 0, i.e., in the regime of parameters where the trivial fixed point is unstable. To prove our claim we first notice that
the Fourier coefficient γ2 lies necessarily in the interval [− 1

k−1 , 1]. Indeed, from the interpretation of these coefficients as spin
averages given in Eq. (155) we obtain

E[(τ1 + · · · + τk )2] = E
[
kτ 2

1 + k(k − 1)τ1τ2
] = k[1 + (k − 1)γ2] � 0 ⇒ γ2 � − 1

k − 1
, (183)

where we have merely exploited the permutation invariance and the fact that Ising spins square to 1. Moreover, the upper bound
γ2 = E[τ1τ2] � 1 is obvious. Then we rewrite the term in large square brackets in Eq. (182) as

Ẽ[2] − Ẽ[]2

Ẽ[]2
+ 1 − 1

Ẽ[]
+ (k − 2)γ2 = Ẽ[2] − Ẽ[]2

Ẽ[]2
+ [

1 − (k − 1)γ 2
2 + (k − 2)γ2

]
, (184)
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where we used the Kesten-Stigum condition Ẽ[](k − 1)γ 2
2 = 1. The first term in Eq. (184) is proportional to the variance of

the offspring distribution and hence is non-negative; as 1 − (k − 1)x2 + (k − 2)x � 0 for x ∈ [−1/(k − 1), 1], the authorized
interval of variation of γ2, the second term in Eq. (184), is also non-negative.

3. Third-order expansion

We have also pushed the expansion in moments to the next order; compared to the Potts case, the computations are much
easier, due, on the one hand, to the binary nature of the variable (hence the moments to be determined are scalar quantities that
do not bear any spin index) and, on the other hand, to the spin-flip symmetry (which cancels the moments of odd order). Let us
introduce for convenience some more compact notation that is reminiscent of that used in Sec. IV:

a = 1
2E[m2], b = E[m4], â = 1

2E[u2], b̂ = E[u4]. (185)

These quantities obey the set of equations

a = Ẽ[]â − 2Ẽ[( − 1)]â2 + Ẽ[( − 1)]âb̂ + 20

3
Ẽ[( − 1)( − 2)]â3,

b = Ẽ[]b̂ + 12Ẽ[( − 1)]â2,

â = (k − 1)γ 2
2 a − 2(k − 1)(k − 2)γ 3

2 a2 + (k − 1)(k − 2)γ 4
2 ab + 4(k − 1)(k − 2)(k − 3)

(
γ 2

4

6
− γ 2

2 γ4 + 5γ 4
2

2

)
a3,

b̂ = (k − 1)γ 4
2 b + 12(k − 1)(k − 2)γ 4

2 a2, (186)

where in a and â (b and b̂) we have neglected terms of order κ4 (κ3).
The expansion of the free entropy to the corresponding order yields

φ(a, b, â, b̂) = (k − 1)γ 2
2 a2 − 4

3
(k − 1)(k − 2)γ 3

2 a3 + 1

24
(k − 1)γ 4

2 b2 + (k − 1)(k − 2)γ 4
2 a2b

+ 2(k − 1)(k − 2)(k − 3)

(
γ 2

4

6
− γ 2

2 γ4 + 5γ 4
2

2

)
a4 + Ẽ[]â2 − 4

3
Ẽ[( − 1)]â3

+ 1

24
Ẽ[]b̂2 + Ẽ[( − 1)]â2b̂ + 10

3
Ẽ[( − 1)( − 2)]â4 − 2aâ − 1

12
bb̂; (187)

one can check that the derivatives of this expression vanish
when the cavity equations (186) are fulfilled, a property
which arises from the variational character of the free entropy.
Another short computation also reveals that the free entropy,
computed on the nontrivial perturbative fixed point which
here always exists for ε > 0, behaves as ε3 (with a positive
prefactor) when ε → 0+.

D. Numerical results for two examples

In order to confirm our analytical expansions and to com-
plement them with a global bifurcation analysis, we have
solved numerically the cavity equations for two cases of
occupation models, as we will now detail.

1. Bicoloring

We consider first the bicoloring problem, for which the
joint probability pj(σ1, . . . , σk ) is 0 if σ1 = · · · = σk = ±1
and 1/(2k − 2) otherwise. This constraint forbids monochro-
matic hyperedges and gives an equal weight to all configu-
rations with at least one positive and at least one negative
variable around it. One easily finds the corresponding value
of the Fourier coefficients,

γn = − 1

2k−1 − 1
(188)

for all even n between 2 and k (the odd coefficients vanish due
to the up-down symmetry). We use for the degree distributions

p = p̃ Poisson laws of average αk, which corresponds to a
random hypergraph with M = αN constraints. The criterion
(178) shows then that the Kesten-Stigum transition happens at

αKS = (2k−1 − 1)2

k(k − 1)
. (189)

Figure 6, discussed in Sec. III D 4, presents the variance a =
E[m2]/2 of the fixed-point solutions of the cavity equations
reached from the reconstruction (informative) and robust re-
construction (uninformative) initial conditions. As discussed
there, our analytical prediction on the existence of a bifurcat-
ing solution above the Kesten-Stigum transition is confirmed
by these numerical results, and for k = 3, 4, 5 we find explicit
realizations of the bifurcation diagrams presented in Figs. 1(a)
and 2. In Fig. 9 we plot the complexity (i.e., minus the free
entropy) of these fixed points; the location of the discontinuity
in the derivative of the solution that minimizes the complexity
defines the threshold αIT reported in Table I. We chose here
to plot the opposite of the free entropy as it is a more
familiar quantity in the context of random, instead of planted,
constraint satisfaction problems. The interpretation of this
coexistence of solutions in this context has been discussed,
also in the example of the bicoloring, in Ref. [58].

2. The 2-in-4 satisfiability model

We have also considered the so-called 2-in-4 satisfi-
ability model in the nomenclature of [46], defined by
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α

Σ
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(a) α
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-0.004
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(c)

FIG. 9. Complexity � = −φ for the fixed-point solutions of the cavity equations for the hypergraph bicoloring problem for (a) k = 3,
(b) k = 4, and (c) k = 5. The symbols are the same as in Fig. 6; pluses correspond to an informative initial condition and circles to an
uninformative one.

k = 4 and pj(σ1, σ2, σ3, σ4) = I(σ1 + σ2 + σ3 + σ4 = 0)/6:
The constraint imposes that among the four variables exactly
two are positive and two negative. The corresponding Fourier
coefficients are

γ1 = γ3 = 0, γ2 = − 1
3 , γ4 = 1. (190)

Note that this case saturates the lower bound on γ2.
In our numerical investigation we have used truncated

Poisson distributions for p and p̃, namely,

p = 1

ec − 1 − c

c

!
I( � 2), p̃ = 1

ec − 1

c

!
I( � 1).

(191)

The averages of these distribution are

E[] = c
1 − e−c

1 − (c + 1)e−c
, Ẽ[] = c

1 − e−c
. (192)

In terms of this parameter c, the Kesten-Stigum transition is
thus found to happen at cKS ≈ 2.821 44.

Note that this is a locked model in the sense of [46], as the
minimal degree of a variable is 2 and no pair of configurations
allowed by pj differs from one single spin flip: The typical
solutions of such a constraint satisfaction problem on a locally
treelike factor graph are separated by a Hamming distance
that diverges with the graph size. Nevertheless, this property
does not have any effect on the existence of a continuously
bifurcating solution above the Kesten-Stigum transition. In
some sense the locked property is a high-frequency condition
on pj, whereas we have shown that the criterion (184) only
depends on the low-frequency Fourier coefficient γ2.

Indeed, our numerical resolution of the cavity equations
showed that a continuously growing solution exists right
above the Kesten-Stigum transition and disappears at calg ≈
2.84. Note that the interval [cKS, calg] is very small, which
explains why it remained unnoticed in Ref. [11]. This model
thus falls in the scenario sketched in Figs. 2(b) and 2(d), with
the other thresholds csp ≈ 1.256 and cIT ≈ 1.853 correctly
determined in Ref. [11]. Actually, for locked models the high-
accuracy fixed point is perfectly informative, as it corresponds
to Pτ (m) = δ(m − τ ); the transition at csp corresponds to a
change of stability of this perfectly informative fixed point,
which can be tested by taking ε → 1 after n → ∞ in Eq. (30),
a procedure termed small noise reconstruction in Ref. [46].

VI. NUMERICAL EXPERIMENTS ON SINGLE SAMPLES

This section is devoted to a study of the behavior of the
belief propagation algorithm run on given instances of two
inference problems defined and studied analytically in the
previous sections, namely, the planted hypergraph bicoloring
and the asymmetric SBM with two groups. As a matter
of fact, most of the analytical results presented in the rest
of the paper directly apply to (infinite) tree reconstruction
problems and their interpretation in terms of inference on
(large but) finite-size graphs relying on delicate conjectures
of the cavity method, as briefly discussed in Sec. III C 2.
The experiments reported in this section will allow us to test
this connection and to confront quantitatively the predictions
of the tree reconstruction problem, studied numerically via
the population dynamics algorithm, and the results of BP on
single large instances. Because of the local convergence of
the graph problems towards trees, it is quite simple to see
that a finite number of iterations of BP can be described
analytically, in the thermodynamic limit, by a finite number
of the tree distributional iterations (15) and (16). There are
however two aspects that make the graph-tree connection
much less trivial and justify these numerical tests: (i) On finite
graphs BP can be run until convergence to a fixed point, i.e.,
for a number of iterations much larger than the girth of the
graph, this regime cannot a priori be described in terms of
treelike local properties and could be sensitive to the long
cycles of the graph, and (ii) in the graph problems there
is initially no observation of the labels on the vertices and
the infinitesimal information of the tree robust reconstruction
problem must thus arise from the amplification of noise in the
initial condition of BP.

A. Generation of planted problems,
BP equations, and observables

The models that we study numerically, namely, random
hypergraph bicoloring and asymmetric SBM with two groups,
have already been defined in detail in Sec. III A. Here we
just give additional information about the generation of the
instances with a planted solution and about the BP equations
and the way we solve them, for the convenience of the reader
who would like to repeat our numerical tests. Both models
have Ising (i.e., binary) variables σi ∈ {−1, 1} and thus the
marginals can be written in terms of a single scalar variable.
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1. Random hypergraph bicoloring

The random ensemble of hypergraph bicoloring problems
has three parameters: the number of variables N , the number
of constraints M = αN , and the degree of the factor nodes k
(i.e., the number of variables per constraint). The N variables
are divided into two groups of equal size and the planted
configuration is defined as σ ∗

i = 1 in the first group and
σ ∗

i = −1 in the second one. For each of the M constraints
we extract k variables uniformly at random, conditional on
the k variables not all belonging to the same group (we im-
plemented this condition by a rejection method). The random
graph thus obtained can be described by the set E of edges
(ia) connecting variable nodes and factor nodes (1 � i � N ,
1 � a � M, and |E | = KM).

One can write the posterior distribution of σ given the
observation of the graph and treat this probability measure
with the BP algorithm, which can be put, after some simplifi-
cation, in the form of messages ηi→a and η̂a→i passed between
variables and interactions obeying the equations

η
(t )
i→a =

∏
b∈∂i\a η̂

(t−1)
b→i∏

b∈∂i\a η̂
(t−1)
b→i +∏

b∈∂i\a

(
1 − η̂

(t−1)
b→i

) , (193)

η̂
(t )
a→i = γ η̂

(t−1)
a→i + (1 − γ )

× 1 −∏
j∈∂a\i η

(t )
j→a

2 −∏
j∈∂a\i η

(t )
j→a −∏

j∈∂a\i

(
1 − η

(t )
j→a

) , (194)

where ∂i = {a : (ia) ∈ E} and ∂a = {i : (ia) ∈ E} are the lo-
cal neighborhoods of variable and factor nodes, respectively,
and γ is a damping factor set to 0.5 in most of our numerical
simulations. The BP messages ηi→a and η̂a→i represent the
probability that variable i belongs to a given group (say, the
first group) in a modified graph where some of the edges have
been removed: in particular ηi→a considers the graph where
constraint a has been removed, while η̂a→i considers the graph
where constraints in ∂i \ a have been removed.

Belief propagation messages are initialized in the follow-
ing way: With probability q0 we set η̂(0)

a→i = η
(0)
i→a = I[σ ∗

i = 1]
and with probability 1 − q0 we set η̂

(0)
a→i = 0.5 and η

(0)
i→a ∈

[0.45, 0.55] uniformly at random. The parameter q0 (the q0

and q of this section should not be confused with the number
of states of the Potts model in the rest of the paper) thus
controls the amount of direct information on the planted
configuration we use in this initial condition. Of course only
q0 = 0 should be considered if we want to study BP as an
inference algorithm that does not use any information on the
hidden labels. It is however useful to allow arbitrary values
of q0 as a tool to investigate the connections between the tree
and graph problems. The choice of distributing the messages
in the interval [0.45,0.55] for the uninformed vertices is made
to avoid the trivial fixed point with all messages η = η̂ = 0.5.

Belief propagation messages are not updated all in parallel,
as the time indices in Eqs. (193) and (194) may suggest. In
each step of BP we visit all the variables once in a random or-
der: For each variable i we compute all the outgoing messages
ηi→a according to Eq. (193) and immediately we update all the
BP messages leaving neighboring factor nodes according to
Eq. (194). By these tricks (and the use of damping) we avoid
any undesirable oscillation and improve convergence to fixed

points. Convergence is declared achieved if, in a given step
of BP, all messages change by less than a pre-fixed threshold,
i.e., |η(t+1)

i→a − η
(t )
i→a| < 10−8.

At a fixed point {η�
i→a, η̂

�
a→i} of the BP equations, the local

magnetizations are given by

m�
i =

∏
a∈∂i η̂

�
a→i −∏

a∈∂i(1 − η̂�
a→i )∏

a∈∂i η̂
�
a→i +∏

a∈∂i(1 − η̂�
a→i )

. (195)

Because of the global spin-flip symmetry of the model, the
mean magnetization m = ∑

i m�
i /N is zero, while detection

of the planted solution is signaled by the following order
parameters: the staggered magnetization ms (i.e., the absolute
value of the mean overlap with the planted configuration);
the magnetization variance m2 (recall that m = 0 here), which
equals the mean overlap between two real replicas; and the
maximum overlap q with the planted configuration, defined
as

ms = 1

N

∣∣∣∣∣
∑

i

m�
i s∗

i

∣∣∣∣∣,
m2 = 1

N

∑
i

(m�
i )2, (196)

q = 1

N

∣∣∣∣∣
∑

i

sgn(m�
i )s∗

i

∣∣∣∣∣.
The Bethe (replica symmetric) entropy is given by the expres-
sion

S = 1

N

∑
i

ln

[∏
a∈∂i

η̂�
a→i +

∏
a∈∂i

(1 − η̂�
a→i)

]

+ 1

N

∑
a

ln

[
1 −

∏
i∈∂a

η�
i→a −

∏
i∈∂a

(1 − η�
i→a)

]

− 1

N

∑
(ia)

ln[η̂�
a→iη

�
i→a + (1 − η̂�

a→i )(1 − η�
i→a)], (197)

which reduces to Spara = [ln(2) + α ln(1 − 21−k )] on the para-
magnetic (trivial) BP fixed point, where all messages are
uninformative η̂�

a→i = η�
i→a = 1/2.

2. Asymmetric two-group SBM

An instance of the asymmetric SBM with two groups is
generated using the following four parameters: the number of
variables N , the mean degree d , the asymmetry m, and the pa-
rameter θ related to the SNR. The N variables are divided into
two groups of sizes N1 = 1+m

2 N and N2 = 1−m
2 N such that the

planted configuration is σ ∗
i = 1 in the first group and σ ∗

i = −1
in the second group. Then the edge set E of the interaction
graph between the variable nodes is generated by selecting

uniformly at random M11 = N2
1

2
c++
N edges among the variables

in the first group, M22 = N2
2

2
c−−
N edges among the variables in

the second group, and M12 = N1N2
c+−
N edges joining variables

in different groups, where cστ = d (1 + θ (σ−m)(τ−m)
1−m2 ). It is

easy to check that M11
N1

+ M12
2N1

= M22
N2

+ M12
2N2

= d
2 , i.e., the mean

degree in each group is the same. It is worth noting that these
rules define a microcanonical ensemble of random graphs
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having a fixed number of edges. In the canonical ensemble of
random graphs, each possible edge is chosen independently
with a given probability and thus the number of edges is a
random variable. The difference between the two ensemble
vanishes in the large-N limit and produces fluctuations of
O(1/

√
N ) in intensive observables measured in finite graphs.

The BP equations for the posterior measure of the SBM were
written in the general case in Refs. [8,9]; we reproduce here
this derivation for the asymmetric two-group model.

We rewrite the posterior probability as the Gibbs measure
of an Ising model

P[σ ] ∝ exp

⎡
⎣∑

i

Hiσi +
∑
i< j

Ji jσiσ j

⎤
⎦. (198)

Here and in the following ∝ denotes proportionality up to a
constant independent of the spin variables. Indeed, the prior is
given by

∏
i

1 + mσi

2
∝ exp

(
H
∑

i

σi

)
with tanh(H ) = m, (199)

while the likelihood is proportional to

∏
(i j)∈E

1

N
cσiσ j

∏
(i j)/∈E

(
1 − 1

N
cσiσ j

)

�
∏

(i j)∈E

1

N
cσiσ j exp

⎛
⎝− 1

N

∑
i< j

cσiσ j

⎞
⎠, (200)

where c is the affinity matrix with which the edges have
been generated. We have approximated the product over the
nonedges (i.e., pairs of vertices not connected by an edge)
with a sum over all pairs of variables, the difference being
a correction of O(1/N ) in the large-N limit. The algebraic
relation that holds for σ, τ ∈ {−1, 1},

cστ = d

(
1 + θ

(σ − m)(τ − m)

1 − m2

)
∝ eJστ−K (σ+τ ), (201)

with

J = 1

4
ln

[
(1 + θ )2 − m2(1 − θ )2

(1 − θ )2(1 − m2)

]
, (202)

K = 1

4
ln

[
1 − m2 + θ (1 + m)2

1 − m2 + θ (1 − m)2

]
, (203)

allows us to rewrite the first term of the likelihood in exponen-
tial form

exp

⎡
⎣J

∑
(i j)∈E

σiσ j − K
∑

i

diσi

⎤
⎦. (204)

The second term of the likelihood (the one given by all the
edges, including those absent from the graph) provides a term
proportional to

exp

⎡
⎣− dθ

2(1 − m2)N

(∑
i

σi − Nm

)2
⎤
⎦. (205)

So the posterior distribution that we have to study is given by
the expression

P[σ ] ∝ exp

[∑
i

(
H − diK + dθm

1 − m2

)
σi

+ J
∑

(i j)∈E

σiσ j − dθ

(1 − m2)N

∑
i< j

σiσ j

⎤
⎦, (206)

which corresponds to an Ising model with local fields and
couplings given by

Hi = H − diK + dθm

1 − m2 , (207)

Ji j =
{

J − dθ

(1−m2 )N
� J if (i j) ∈ E

− dθ

(1−m2 )N
if (i j) /∈ E .

(208)

The corresponding BP equations are very well known,

ui→ j = arctanh

⎡
⎣tanh(Ji j ) tanh

⎛
⎝Hi +

∑
k �= j

uk→i

⎞
⎠
⎤
⎦. (209)

Unfortunately, these BP equations involve N (N − 1) mes-
sages ui→ j with i �= j (we assume ui→i = 0) and we need to
simplify them if we want BP to run in a time linear in the
system size. The main observation to achieve such a simplifi-
cation is that BP messages running along the nonedges, i.e.,
sent between vertices not connected in E , are O(1/N ) and
thus very small. The following equations hold up to terms of
O(1/N ) if (i j) /∈ E :

ui→ j = Ji j tanh

⎛
⎝Hi +

∑
k �= j

uk→i

⎞
⎠ = Ji jmi. (210)

Here the first equality comes from Ji j being O(1/N ), while
the second one comes from ignoring uj→i ∼ O(1/N ) in the
definition of local magnetization

mi ≡ tanh

(
Hi +

∑
k

uk→i

)
. (211)

Eliminating BP messages on nonedges via the substitution
ui→ j = −dθmi/(1 − m2)N , we end up working only with the
O(N ) BP messages running on the edges in E . These are
updated according to the iterative equation

u(t+1)
i→ j = γ u(t )

i→ j + (1 − γ )arctanh

×
⎡
⎣tanh(J ) tanh

⎛
⎝H̃ (t )

i +
∑

k∈∂i\ j

u(t )
k→i

⎞
⎠
⎤
⎦, (212)

where ∂i = { j : (i j) ∈ E} and we have redefined the local
fields including also the effect of the nonedges

H̃ (t )
i = H − diK + dθ

1 − m2

(
m − 1

N

∑


m(t )


)
. (213)

The local magnetizations are defined via

m(t )
i = tanh

(
H̃ (t )

i +
∑
k∈∂i

u(t )
k→i

)
. (214)
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FIG. 10. Order parameter ms detecting the planted configuration for (a) k = 3, (b) k = 4, and (c) k = 5, obtained by running BP on three
samples of size N = 106 for each value of α. The lines are the predictions obtained by solving the cavity equations for the reconstruction
problem on a tree (plotted also in Fig. 6), with the correspondence ms = 2a explained in the text.

We solve Eq. (212) starting from a set of BP messages
strongly biased towards a configuration τ 0, that is, u(0)

i→ j =
Lτ 0

i , where L is a large number (we set L = 100 in our
simulations, but the results are independent of L). Again we
call q0 the similarity between the starting configuration and
the planted one, that is, the components of τ 0 are independent
random variables distributed according to

P
[
τ 0

i = s
] = q0δs,σ ∗

i
+ (1 − q0)

1 + ms

2
. (215)

Belief propagation messages are updated in a random order
and convergence is determined by the condition∣∣m(t+1)

i − m(t )
i

∣∣ < 10−8 ∀i. (216)

At the BP fixed point, the local magnetizations are given by

m�
i = tanh

⎛
⎝H̃ �

i +
∑
j∈∂i

u�
j→i

⎞
⎠. (217)

The parameters ms, m2, and q defined in Eq. (196) signal
again the detection of the planted configuration (for m �= 0 the
absolute value in the definition of ms is not strictly required,
but keeping it is not an error). It is worth noting that in this
case the uninformative fixed point is characterized by the
BP messages u�

i→ j = K and by the order parameters ms =
m2 = m2 and m2 = m, due to the asymmetry in the model.
With a little bit of algebra, the Bethe RS free entropy can be
simplified to the form

ln(Z ) = N (1 − d ) ln(2) −
∑

i

1 − di

2
ln[1 − (m�

i )2] + dθ

2(1 − m2)N

(∑
i

m�
i

)2

+
∑

(i j)∈E

ln
∑
σi,σ j

exp

⎡
⎣
⎛
⎝H̃ �

i +
∑

k∈∂i\ j

u�
k→i

⎞
⎠σi +

⎛
⎝H̃ �

j +
∑

k∈∂ j\i

u�
k→ j

⎞
⎠σ j + Jσiσ j

⎤
⎦. (218)

B. Results for random hypergraph bicoloring

We present results for k = 3, 4, 5 and system size N = 106

(some samples of size N = 105 are shown just for the scaling
of the convergence time). Every time we present three plots in
a row, the left one refers to k = 3, the middle one to k = 4,
and the right one to k = 5.

In Fig. 10 we show the order parameter ms that detects
the planted configuration. Red closed circles correspond to
the BP fixed point reached starting with the q0 = 0 initial
condition (i.e., with no direct information on the planted con-
figuration), while blue open circles correspond to the BP fixed
point reached from the q0 = 1 initial condition (complete
information on the planted configuration). For comparison
we also draw with lines the results obtained by solving, via
population dynamics, the cavity equations: The red (blue)
line corresponds to results obtained with an initial condition
(30) having ε = 10−3 (ε = 1), while the green line is the
result that is obtained with both initial conditions (i.e., it is
independent of the initial conditions). These cavity equation
results have already been plotted in Fig. 6 in slightly different

units, namely, a = ms/2. Let us explain the reasoning behind
this conversion. A technical statement of the tree-graph con-
nection hypothesis of the cavity method is that the empirical
distribution of the magnetizations m�

i computed at a BP fixed
point of a large finite graph, conditional on σ ∗

i = τ , should be
well approximated by the distribution Pτ (m) (on the infinite
tree), in the formula∑

i g(m�
i )δσ ∗

i ,τ∑
i δσ ∗

i ,τ

≈ Eτ [g(m)], (219)

for any function g. Applying this identity with g(m) = m
and recalling that for models with a global spin-flip symme-
try E+[m] = −E−[m] = E[m2] = 2a yields the identification
ms = 2a.

For each α value we run BP on three different samples and
we report in the plots only the data corresponding to cases
where the convergence criterion was met within 104 BP steps
(Fig. 11 shows that this happens most of the time). Zooming
in on the plots, one should be able to see three data points very
close; if one fails to see three different points it is because the
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FIG. 11. Times to meet the BP convergence criterion (i.e., any marginal must change by less than 10−8) for (a) k = 3 and (b) k = 5, two
system sizes (N = 105, 106), and two different initial conditions (q0 = 0, 1). A data point with a time 104 means BP did not reach convergence.

data from different samples perfectly coincide or because the
BP on some samples did not reach convergence (the latter case
happens especially at αKS and very close to it).

We note that for all the cases where BP reaches a fixed
point, the latter is very well described by the cavity equations
derived in the thermodynamic limit for the tree reconstruc-
tion problem. When different initial conditions of BP lead
to different fixed points one observes, as expected, that the
one reached with q0 = 0 is associated with the robust recon-
struction version of the tree problem (ε → 0), while q0 = 1
reproduces the reconstruction one (ε = 1). Sample-to-sample
fluctuations can be appreciated only slightly on the right of
αKS and close to the spinodal points at αsp and αalg.

We observe that for α > αKS BP with q0 = 0, i.e., the
version of the algorithm that does not use any direct infor-
mation on the planted configuration, can actually detect it in
all the samples we have studied, although for α < αalg the
detection is suboptimal (hybrid-hard phase). For α < αalg BP
can achieve the optimal detection only if initialized with a
q0 value large enough (we will discuss this point later, when
searching for the unstable fixed point, separating the two
stable fixed points already found).

In Fig. 11 we show the convergence times of BP for
k = 3 [Fig. 11(a)] and k = 5 [Fig. 11(b)]. For each system
size (N = 105, 106) and initial condition (q0 = 0, 1) we study
three samples.

For k = 3 we observe that convergence times strongly
increase around the KS threshold, where also strong sample-

to-sample fluctuations arise and the size dependence can be
appreciated (consider that at αKS BP did not reach a fixed point
for any of the N = 106 samples). Away from αKS convergence
times are size independent and only weakly dependent on the
initial condition for α < αKS.

For k = 5 convergence times increase not only at αKS, but
also at the spinodal points αsp and αalg. The behavior of BP
strongly depends on the initial condition [recall that in the
region αsp < α < αalg BP reaches two different fixed points
depending on the value of q0; see Fig. 10(b)]. The dependence
on the system size between N = 105 and N = 106 is not
evident and sample-to-sample fluctuations for N = 105 are
definitely larger.

In Fig. 12 we show several order parameters that can detect
the planted configuration: ms, m2, and q. In order to make
the plot cleaner we have averaged over the samples where BP
reached a fixed point.

We note that the Nishimori equality ms = m2 is very well
satisfied in all the BP fixed points we reached. This is expected
from the fact that the planted configuration is a typical config-
uration of the posterior distribution; the mean overlap with the
planted configuration ms should be equal to the mean overlap
between two replicas m2. One can also derive this property
from the correspondence (219) to the tree computation and the
consequence of the Bayes theorem stated as a moment identity
in Sec. V.

As expected, the maximum overlap q is the largest order
parameter (larger than ms). According to Sec. IV K, q should

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

K=3

αKS

(a)

α

 m2
 ms
 q

 0

 0.2

 0.4

 0.6

 0.8

 1

 3.8  4  4.2  4.4  4.6  4.8  5

K=4

αKS αsp αalg

(b)

α

 ms
 m2
 q

 0

 0.2

 0.4

 0.6

 0.8

 1

 9  9.5  10  10.5  11  11.5  12  12.5  13  13.5

K=5

αsp αKS αalg

(c)

α

 ms
 m2
 q
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FIG. 13. Bethe RS entropy computed at the BP fixed points for (a) k = 3, (b) k = 4, and (c) k = 5. (d)–(f) The difference with respect to
the paramagnetic entropy is shown in order to show better the difference which is tiny in some cases. For k = 5 the difference is too small to
be estimated reliably via population dynamics and so we report only data obtained via BP.

have a square root singularity at αKS; this is not visible from
the data because of strong fluctuations in the neighborhood of
αKS.

We investigated further the properties of the BP fixed
points by computing their Bethe entropy given in Eq. (197),
the results being displayed in Fig. 13. In Figs. 13(a)–13(c)
we also show the paramagnetic entropy (the one of the trivial
fixed point) with a green straight line. A comparison with the
results of the cavity equations is made with the correspon-
dence S = Spara + φ, with φ the free entropy of Eq. (172),
to compensate for a different choice of normalization. The
dominating fixed point, that is, the fixed point providing the
right entropy of the posterior probability distribution, is the
one with the largest entropy at each value of α. The case k = 5
clearly shows that, while on some branches the entropy can be
negative, the dominating one is always positive (as it should
be by definition of the entropy of a probability measure over a
discrete set).

Figures 13(d)–13(f) serve to highlight the way the entropy
departs from the paramagnetic curve at αKS. In particular,
for k = 4 it is possible to appreciate the crossing of the
entropies obtained with the two different initial conditions
(q0 = 0 and q0 = 1) taking place at αIT, which is hardly
visible in the corresponding Figs. 13(a)–13(c). Note that for
k = 5 the difference S − Spara is extremely small, hence we
did not manage to estimate it from the population dynamics
algorithm. Nonetheless, the entropy computed on the BP
fixed point clearly shows a stable increase with respect to
the paramagnetic value, with quite strong sample-to-sample
fluctuations (given by the spread of the three points in the
figure).

We have shown evidence that for k � 4, in the range
αsp � α � αalg there exist at least two different fixed points

of BP (along with their symmetric partners under the global
spin-flip symmetry). At αIT the entropies of these two BP fixed
point cross and this corresponds, in the thermodynamic limit,
to a first-order transition between two different thermody-
namic states. Running BP without information on the planted
configuration (q0 = 0), the drastic change in the posterior
distribution taking place at αIT is not visible: The algorithm
remains confined to the low-informative branch until αalg. By
analogy with the bifurcation theory of fixed-point systems
of equations (even if α here is not a parameter modifying
smoothly a set of equations of constant dimension), we expect
a branch of unstable fixed points of BP to exist in the range of
parameters αsp � α � αalg and to connect these two branches
as in the scalar toy model sketched in Fig. 2. However, getting
evidence of the existence of this unstable fixed point is very
difficult, because it is repulsive by its very nature.

We report in Fig. 14 the evidence we have gathered in favor
of this hypothesis. In Fig. 14(a) we show the evolution of the
order parameter ms as a function of the number of iterations of
the BP updates, for different values of the initialization param-
eter q0. During the evolution all variables are updated; in order
words, q0 is not the fraction of variables pinned to the value of
the planted configuration. So any fixed point we find is a fixed
point of the standard BP algorithm. The initial condition is just
used to aim the algorithm at different fixed points, but then the
BP algorithm is unconstrained. The evolution of BP at α =
4.68 with different values of q0 reported in Fig. 14(a) clearly
shows that for q0 large enough BP converges to the same high-
information fixed point reached for q0 = 1, while for q0 small
enough only the low-information fixed point can be reached.
Note that it is very hard to precisely define a separatrix value
q∗

0 that separates the two regimes, because BP is a stochastic
algorithm, so its behavior is not deterministically fixed by the
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FIG. 14. Search for the unstable fixed point of BP in the range [αsp, αalg]. In (a) the lowermost (uppermost) curves have been obtained with
q0 = 0 (q0 = 1); the rest of the curves for α = 4.68 have been obtained varying q0 by �q0 = 0.01 in the range [0.2,0.29] and by �q0 = 0.002
in the range [0.26,0.27]. (b) The value of ms at the various fixed points as a function of α.

initial condition, but by the random numbers used during the
evolution to choose the order of update of the BP messages.
This means that, for the same q0 ≈ q∗

0, it may happen that two
evolutions converge to different fixed points. Nevertheless,
Fig. 14(a) show evidence that some evolutions of BP (those
with q0 = 0.266 and q0 = 0.268 in the present figure) remain
for a long time on a stationary regime which is neither of the
two stable fixed points already found: We define this regime
as the unstable fixed point of BP. Although the precise value
of q0 is not significant for the argument we just made, the
value of ms on the unstable fixed point can be measured with
a reasonable uncertainty. We repeated the above procedure
for several α values in the range [αsp, αalg] and we report in
Fig. 14(b) the summary of the results for k = 4, with blue
open symbols showing the unstable branch in addition to the
results already presented in Fig. 10.

C. Results for the asymmetric stochastic block
model with two groups

As discussed in Sec. IV I, the asymmetric SBM with two
groups undergoes different kinds of phase transitions depend-
ing on the level of the asymmetry: For |m| < mc = 1/

√
3 the

transition is continuous, while for |m| > mc the transition is

discontinuous. We focused our analysis on two values of m,
namely, m = 0.4 belonging to the former case and m = 0.8
belonging to the latter case. We will present results for a rather
small average degree d = 4, for which the Kesten-Stigum
transition occurs at θKS = 0.5, but we have checked that the
same conclusions apply to the case d = 8. We run BP only on
problems of a very large size (N = 107) in order to reduce as
much as possible the finite-size effects.

We show in Fig. 15 a comparison of the properties of
the fixed point reached by BP on single samples with the
results of the population dynamics study of the tree problem,
concentrating on values of θ close to the Kesten-Stigum
transition, where fluctuations become more significant. In
Fig. 15(a) we show data for m = 0.4 where the transition
is continuous: We report the values of both ms and m2 at
the fixed point in order to show how well the Nishimori
condition is satisfied on a given sample. For each sample
(we run BP on three different samples for each θ value)
both runs with q0 = 0 and q0 = 1 converge to exactly the
same fixed point or did not converge within the maximum
number of iterations tmax = 104 (the latter happened for all
three samples at θ = 0.5 and for one sample at θ = 0.502).
We conclude that the main effects of being close to the
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FIG. 15. Comparison between BP and population dynamics in detecting the planted configuration in the asymmetric SBM with d = 4. For
each θ value we have simulated three samples of size N = 107. The asymmetry is (a) m = 0.4 < mc and (b) m = 0.8 > mc. In both cases the
planted configuration can be detected purely from the graph (q0 = 0) for θ > θKS. Despite visible sample-to-sample fluctuations, the prediction
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FIG. 16. Different fixed points reached by BP run with an uninformative initial condition on samples of the asymmetric SBM (d = 4,
m = 0.4, and N = 107). Red closed circles represent the dominating fixed point having the largest ln(Z ), while blue open circles represent the
subdominating fixed point. (a)–(f) Several observables, indicated on the axis, are displayed for the two fixed points as a function of θ .

critical point are the lack of convergence and some visible
sample-to-sample fluctuations (recall that we run BP on
samples of size N = 107). Nevertheless, the prediction from
population dynamics is accurate even in the vicinity of θKS.

In Fig. 15(b) we show data for the overlap with the planted
configuration ms measured in three samples of size N = 107

and asymmetry m = 0.8 > mc. Starting from an uninforma-
tive initial condition (q0 = 0), the planted configuration can
be detected only for θ � θKS, while with an informative initial
condition (q0 = 1) the planted configuration can be detected
for θ � θsp. The Nishimori condition m2 = ms is verified with
such good accuracy that we do not plot the data for m2, the
points being almost perfectly superimposed. The prediction
of the population dynamics is faithful, although sample-to-
sample fluctuations are still clearly visible, even for such large
sizes. The quantity that changes the most from sample to
sample is the location of the spinodal point θsp, where the
informative fixed point first appears: Given θsp, the rest of the
curve is pretty well conserved and sample independent.

One may wonder how we can follow a sample varying θ

[see Fig. 15(b)] given that at different θ values the graph has
a different number of links within and between the commu-
nities. The construction of the graph for each value of θ is a
random process and we identify the sample with the random
seed used by the algorithm. The stochastic algorithm that
builds the graph is such that when it is run with the same seed
(and so with the same sequence of pseudorandom numbers)
and two not too different θ values, most of the links are in
common between the two graphs. This is the reason why we
can follow a sample in θ .

The very good agreement between the BP results and
the population dynamics shown in Fig. 15 actually hides a

subtle point that we will now explain in the case m = 0.4,
for which the transition at θKS is continuous. We have indeed
observed that, with the uninformative initial condition (q0 =
0), different runs of BP on the same sample converge to
two different fixed points when θ > θKS, with comparable
probability (as soon as q0 > 0 this issue disappears, but as
an inference algorithm BP should not use any information on
the planted configuration). The properties of these two fixed
points are displayed in Fig. 16 (for θ � θKS the trivial fixed
point is unique and has ms = m2 = m2 and m = q = m). We
report with red closed circles the data corresponding to the
dominating fixed point, i.e., the one having the largest value of
ln(Z ), and with blue open circles the data corresponding to the
subdominant fixed point. Comparing Figs. 16(a) and 16(b),
we see that the dominating fixed point satisfies the Nishimori
condition ms = m2, while the subdominant one does not.
Also, the condition m = m is satisfied by the dominant fixed
point (within finite-size fluctuations), while the subdominant
fixed point typically violates such a condition. For all these
reasons we consider the dominant fixed point as the correct
one, which is why we reported in Fig. 15 only the data
corresponding to this one.

The existence of two fixed points beyond the KS threshold
can be justified by the following reasoning. Consider first
the symmetric case m = 0, which enjoys an exact global
spin-flip symmetry (corresponding to the exchange of the two
communities in the SBM interpretation). As a consequence
of this symmetry there must be (at least) two nontrivial fixed
points that arise at the Kesten-Stigum transition from the
bifurcation of the trivial one, these two fixed points having
opposite values of the local magnetizations. Consider now
a slight increase of m; by continuity one expects the two
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FIG. 17. (a) Illustration of the way we estimate the value of ms for the unstable fixed point of BP (here θ = 0.492), which plays the role of
separatrix for the BP dynamics. (b) This value of ms obtained in the coexistence region θsp < θ < θKS (here m = 0.8).

fixed points to persist, even if they are no longer symmetric
to each other, and in particular they do not have the same
value for their free entropy ln(Z ). Somewhat unexpected is
the observation that BP reaches both fixed points with similar
probabilities. The only difference is in the time BP takes to
reach these two fixed points; this is shown in Fig. 16(f), where
it is evident that reaching the dominating fixed point requires
a smaller number of iterations (the interpolating power-law
fit has an exponent approximately equal to −2/3). It seems
that the small difference in ln(Z ) between the two fixed
points does not influence enough the BP evolution at the very
beginning, when the choice of the basin of attraction is made;
the only effect is to speed up the evolution in case the basin of
attraction of the dominating fixed point is eventually chosen.

From the data shown in Fig. 16 it is clear the dominating
fixed point is the one we would like BP to reach, since it
is the one better correlated with the planted configuration
satisfying the right conditions. However, when running BP
from an uninformative initial condition we may likely end up
at the subdominating fixed point. The simplest solution is to
run BP several times, until both fixed points are found and the
one with largest Z is then chosen. Actually this procedure may
be slow, and so we have found a more efficient way to reach
both fixed points in just one run of BP.

At θKS the bifurcation of the trivial fixed point produces
two fixed points which are on opposite sides, that is, the
unstable fixed point stays more or less at the midpoint of the
line joining the two stable fixed points. This property remains
approximately true also for θ > θKS and we can exploit it in
order to jump from one fixed point to the other. Once BP
reaches a fixed point with messages {u�

i→ j} we can produce an
initial condition for a second BP run with the transformation

u(0)
i→ j = 2K − u�

i→ j (220)

(recall that the uninformative fixed point has all messages
equal to K). We have checked that this initial condition always
leads BP to the other fixed point. Thus we can find both fixed
points with just two runs (the second being very fast, due to
the initial condition which is pretty close to the fixed point).

The BP initial condition for the first run, u(0)
i→ j = Lτ 0

i with
L = 100 and τ 0

i distributed according to Eq. (215), is quite

drastic (i.e., has very strong messages) in order to be far from
the uninformative fixed point. For θ > θKS this is actually not
necessary, given that the uninformative fixed point is locally
unstable. So, in order to check that all what we have described
above does not depend on such a drastic first initial condition
we have repeated the numerical experiments in the regime θ >

θKS by using a different initial condition, which is much closer
to the uninformative fixed point

u(0)
i→ j = K

(
1 + ετ 0

i

)
, (221)

with ε = 10−3 and τ 0
i again distributed according to Eq. (215).

The results are identical to those with the drastic first initial
condition.

For the sake of completeness, let us also mention that for
θ > θKS and m large enough (e.g., at θ = 0.6 in the range m �
0.46) we observed a divergence of the BP convergence time to
the subdominant fixed point. Increasing m further, some runs
of BP converge to the dominant fixed point and others keep
wandering in a region of the message space that is far from
the dominant fixed point but no longer contains a strict fixed
point. This phenomenon could be interpreted as a spontaneous
replica symmetry breaking of the subdominant fixed point.
To fix the algorithm in such a way that it always converges
to the dominant fixed point, we adopted the following rule:
Stop BP after tmax iterations and apply the transformation in
Eq. (220) to the current BP messages. Even if the BP messages
do not correspond to a true fixed point, their transformation
is actually close enough to the other fixed point to make the
second BP run converge to the dominant fixed point with high
probability (this trick worked for all the hundreds of samples
we tried).

Finally, we present in Fig. 17 a study of the unstable branch
of fixed points of BP for the discontinuous case m > mc in
the range θsp < θ < θKS. Similarly to what we did for the
hypergraph bicoloring (cf. Fig. 14), well chosen parameters
q0 for the initial condition allow us to identify the value of ms

that plays the role of separatrix for the BP evolution (this value
with its uncertainty is marked by a cyan strip in the inset). In
Fig. 17(b) we report the data of the first sample already shown
in Fig. 15(b) together with the values of ms measured at the
unstable fixed point in the coexistence region θsp < θ < θKS.
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VII. CONCLUSION

We have discussed in this paper the typology of phase tran-
sitions in inference problems, emphasizing in particular the
possible existence of hybrid-hard phases. Our main technical
contribution is a rather generic expansion of the functional
cavity equations for sparse models around their trivial fixed
point. Let us briefly sketch some possible directions for future
work.

Some of our results could probably be proven rigorously.
In particular, the techniques of [22] combined with the higher-
order expansions we obtained should yield the nontightness of
the Kesten-Stigum bound for the reconstruction of the q = 4
antiferromagnetic Potts model on a tree with low enough de-
gree (more directly than using the bound on the information-
theoretic threshold of [45]).

We performed our expansions assuming either pairwise
interactions between arbitrary discrete spins or k-wise in-
teractions between binary-value variables. One could relax
this assumption and consider k-wise interactions between q-
value variables, as was done in Ref. [25] (but truncating the
expansion to a low order).

We believe the q1 + q2 SBM we introduced warrants fur-
ther investigation. We argued that its phase diagram must
contain some hybrid-hard phases, but probably in a narrow
range of parameters. As a first step the large-degree limit
of this model could be studied. The corresponding dense
model also exhibits this hybrid-hard phenomenon while being
much easier to study, with evolution equations bearing on
covariance matrices of Gaussian random variables instead of
probability distributions.
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APPENDIX A: NUMERICAL RESOLUTION
OF THE CAVITY EQUATIONS

1. Population dynamics algorithm

We give in this Appendix some details on the numerical
procedure we used to solve the cavity equations and produce
the curves presented in the main text. It has become customary
to solve recursive distributional equations like (33) by a popu-
lation dynamics method [48,60]. The main idea of this method
is to approximate a probability distribution, for instance, P(n)

τ ,
by the empirical distribution of a large number N � 1 of
representatives of P(n)

τ , namely,

P(n)
τ (η) = 1

N

N∑
i=1

δ(η − η(n,τ,i) ), (A1)

where the η(n,τ,i) are independent and identically distributed
samples from P(n)

τ . The iterative equation (33) is then trans-
lated into a rule to generate the representative elements
(i.e., the population) at iteration n + 1 from the one at it-
eration n, as follows. For each of the τ and independently
for i = 1, . . . ,N , (i) draw  from p̃, (ii) draw τ1, . . . , τ

with probability Mττ1, . . . , Mττ
, (iii) draw i1, . . . , i inde-

pendently, uniformly in {1, . . . ,N }, and (iv) set η(n+1,τ,i) =
f (η(n,τ1,i1 ), . . . , η(n,τ,i ) ).

Average values over the conditional distributions P(n)
τ or

over the unconditional distribution P(n) are then evaluated
as empirical averages over the population: For an arbitrary
function f one computes

E(n)
τ [ f (η)] = 1

N

N∑
i=1

f (η(n,τ,i) ),

E(n)[ f (η)] =
∑

τ

ητ

1

N

N∑
i=1

f (η(n,τ,i) ). (A2)

This approach is very natural, simple to implement, and
becomes exact in the limit N → ∞. Unfortunately, it suffers
in many cases from an instability problem at finite N that
requires additional care. In order to explain the origin of
this difficulty we recall that the unconditional distribution
must obey, for all iterations n, the condition E(n)[η] = η. A
consequence of this identity and of the Bayes theorem as
stated in Eq. (22) is that, for all τ , the conditional distributions
should obey

E(n)
τ

[
ητ

ητ

]
= 1. (A3)

The elements of the population at iteration n + 1 should thus
be such that

1

N

N∑
i=1

ητ

η
(n+1,τ,i)
τ

= 1. (A4)

If the condition E(n)[η] = η is verified exactly then it will
also be the case at iteration n + 1; however, when N is finite
there are necessarily some small fluctuations around this value
that turn out to be amplified under the iteration whenever
Ẽ[]|θ2| > 1 (as in the expression of the KS transition, but
without the square on the eigenvalue). In that case the im-
plementation presented above is bound to fail because of this
instability.

Depending on the model, there are different ways to treat
this problem. If the problem has an explicit symmetry, like
the permutation invariance for the symmetric q-state Potts
model or the up-down symmetry for the Ising models studied
in Sec. V, this can be exploited to tame the instability (see
below for more details on the practical implementation).

The most difficult cases arise when there is no explicit
symmetry to use, for instance, for the asymmetric Ising model
studied in Sec. IV I with m �= 0. In such a case one needs to
compute, at each iteration, the left-hand side of (A4) from the
newly generated elements and if this average is not equal to
1 apply some transformation rules on the population samples
in order to bring it closer to this target value. There are still
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many ways to implement this idea; we will be more explicit
below for the asymmetric Ising case.

2. Symmetric problems

As mentioned above, the population dynamics algorithm
can be simplified and stabilized when the problem to solve ex-
hibits some additional symmetries. Consider, for instance, the
symmetric Potts model with q states, as defined in Sec. IV H.
The invariance under any permutation π of the q states im-
plies that P(n)(η) = P(n)(η ◦ π ), where (η ◦ π )σ = ηπ (σ ) is the
probability measure on χ obtained from η by the reshuffling
π of the q states. This observation allows us to express all
conditional distributions Pτ in terms of a single one, for
instance, τ = 1, and close the iteration equation for P1 as

P(n+1)
1 (η) =

∞∑
=0

p̃

∑
π1,...,π

ρ(π1) · · ·

ρ(π)
∫

dP(n)
1 (η1) · · · dP(n)

1 (η)

× δ(η − f (η1 ◦ π1, . . . , η
 ◦ π)), (A5)

where the π are permutations on q colors and ρ is a probability
distribution on them such that with probability 1

q + θ (1 − 1
q )

the permutation π is uniform under the condition π (1) = 1;
otherwise it is uniform under the condition π (1) �= 1. This
equation is much simpler than the generic one, as it involves
only one population instead of q, and also much more stable
numerically.

Even simpler is the treatment of Ising spin models (q =
2) which are symmetric under the spin-reversal operation, for
instance, those studied in Sec. V. In that case the probability
laws on χ are encoded by a single real m, the magnetization,
and the conditional and unconditional distributions verify the
identities P(n)(m) = P(n)(−m) and P(n)

− (m) = P(n)
+ (−m). This

allows us to close the cavity equation for a single population
P(n)

+ (m) [see, in particular, Eqs. (167) and (168)].

3. Asymmetric Ising model

Let us finally turn to the case of the asymmetric Ising
model, defined in Sec. IV I. The general BP equation (34)
for ησ can be written as a scalar recursion by parametrizing
ησ = 1+σm

2 . The BP equation reads, in this parametrization,
m = f (m1, . . . , m), with

m = z+(m1, . . . , m) − z−(m1, . . . , m)

z(m1, . . . , m)
,

z(m1, . . . , m) = z+(m1, . . . , m) + z−(m1, . . . , m), (A6)

z+(m1, . . . , m) = 1 + m

2

∏
i=1

(
1 + θ

mi − m

1 + m

)
,

z−(m1, . . . , m) = 1 − m

2

∏
i=1

(
1 − θ

mi − m

1 − m

)
. (A7)

One can see immediately that zσ (m, . . . , m) = 1+σm
2 , hence

z(m, . . . , m) = 1 and m = f (m, . . . , m) is a fixed point, as
expected.

The naive implementation of the population dynamics
algorithm explained above corresponds to a representation
of P(n)

+ (m) [P(n)
+ (m)] by N reals m(n,+,i) (m(n,−,i)). In order

to cure the instability and to enforce the condition (A4) at
each iteration, we have proceeded as follows: Once the 2N
magnetizations m(σ,i) have been generated according to the
standard procedure (we remove the iteration index to simplify
the notation) we compute

β+ = 2

1 − m

(
1

N

N∑
i=1

1 + m

1 + m(+,i)
− 1 + m

2

)
,

β− = 2

1 + m

(
1

N

N∑
i=1

1 − m

1 − m(−,i)
− 1 − m

2

)
(A8)

and replace the elements of the population by

m′(+,i) = β+(1 + m(+,i) ) − (1 − m(+,i) )

β+(1 + m(+,i) ) + (1 − m(+,i) )
,

m′(−,i) = (1 + m(−,i) ) − β−(1 − m(−,i) )

(1 + m(−,i) ) + β−(1 − m(−,i) )
. (A9)

One can check that this procedure strictly enforces the identity
(A4), the coefficients β measuring the deviation of the naively
generated population elements from the symmetry respecting
probability distributions.

APPENDIX B: MOMENT EXPANSION FOR PAIRWISE
INTERACTION POTTS VARIABLES

The goal of this Appendix is to justify some of the state-
ments made in Sec. IV D, in particular the ansatz (61) for the
scaling of the centered moments of the perturbative nontrivial
fixed point and the third-order expansion given in Eqs. (71)–
(73).

Let us consider a fixed-point solution P(η) of the recursion
equation (37) and look for a hierarchy of equations between
its centered moments. As in the main text we define δσ =
ησ − ησ as the centered random variable with distribution P
and δ̂σ = ∑

σ ′ M̂σσ ′δσ ′ as a linearly transformed version of δ.
Denoting by E[•] the average with respect to P, we have by
definition E[δσ ] = 0 and we assume E[δσ δσ ′] to be nonzero
but small, of an order denoted by κ . From the self-consistent
equation (37) on P and the expression (51) of the function
f we can write the pth centered moment of P (p � 2 is
understood below) as

E
[
δσ1 , . . . , δσp

] = E

[(
zσ1

z
− ησ1

)
· · ·

(
zσp

z
− ησp

)
z

]
,

(B1)

where on the right-hand side zσ = ησ

∏
i=1(1 + δ̂i

σ ), z =∑
γ zγ ,  is drawn from p̃, and for i = 1, . . . ,  the

δ̂i are linearly transformed [according to (52)] versions
of ηi independent and identically distributed samples
drawn from P(η). To simplify this expression we intro-
duce the notation εσ = ∏

i=1(1 + δ̂i
σ ) − 1 in such a way

that zσ = ησ (1 + εσ ) and z = 1 +∑
γ ηγ εγ . Equation (B1)
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thus becomes

E
[
δσ1 , . . . , δσp

] = ησ1
· · · ησp

E

⎡
⎣
(

εσ1 −
∑
γ1

ηγ1
εγ1

)
· · ·

⎛
⎝εσp −

∑
γp

ηγp
εγp

⎞
⎠
(

1 +
∑

γ

ηγ εγ

)1−p
⎤
⎦

= ησ1
· · · ησp

∞∑
m=0

(
1 − p

m

) ∑
γ1,...,γp+m

(
δσ1,γ1 − ηγ1

) · · · (δσp,γp − ηγp

)
ηγp+1

· · · ηγp+m
E
[
εγ1 , . . . , εγp+m

]
, (B2)

where the binomial coefficient with negative argument takes its conventional value
(1−p

m

) = (−1)m
(p−2+m

m

)
. In order to close

these equations we should now express the average of products of the ε in terms of centered moments of P. As an intermediate
step let us further define μσ = εσ + 1 = ∏

i=1(1 + δ̂i
σ ). Exploiting the independence of the random variables ηi for distinct i,

one can easily compute the average of products of the μ,

E
[
μσ1 , . . . , μσp

] =
∞∑

=0

p̃

⎛
⎝1 +

∑
S

E

⎡
⎣∏

j∈S

δ̂σ j

⎤
⎦
⎞
⎠



, (B3)

where S is summed over subsets of {1, . . . , p} of cardinality |S| � 2 (because of the property E[δ̂σ ] = 0). Expanding the last
power, we rewrite this as

E
[
μσ1 , . . . , μσp

] = 1 +
∞∑

r=1

Ẽ

[(


r

)] ∑
S1,...,Sr

E

⎡
⎣∏

j∈S1

δ̂σ j

⎤
⎦ · · ·E

⎡
⎣∏

j∈Sr

δ̂σ j

⎤
⎦, (B4)

where the subsets S satisfy the same properties as above and the average denoted by Ẽ is over  drawn with probability p̃, the
requirement  � r being kept understood. We can now return to the computation of the average of products of the ε, noting that

E
[
εσ1 , . . . , εσp

] = E
[(

μσ1 − 1
) · · · (μσp − 1

)] =
∑

T

(−1)p−|T |E

⎡
⎣∏

j∈T

μσ j

⎤
⎦, (B5)

where T runs over all subsets of {1, . . . , p}. Before proceeding let us recall the following version of the inclusion-exclusion
principle: If E is an arbitrary finite set, T runs over all the subsets of E , and F is a subset of E , then∑

T ⊂E

(−1)|E |−|T |I(F ⊂ T ) = (1 − 1)|E |−|F | = I(F = E ), (B6)

which can be easily proven by enumerating the number of subsets T that contain F and that are contained in E . Consider now
an arbitrary function g(S) of the subsets of E , and an integer r; as a consequence of the above identity we have∑

T ⊂E

(−1)|E |−|T | ∑
S1⊂T,...,Sr⊂T

g(S1) · · · g(Sr ) =
∑

S1⊂E ,...,Sr⊂E

g(S1) · · · g(Sr )
∑
T ⊂E

(−1)|E |−|T |I(S1 ⊂ T ) · · · I(Sr ⊂ T )

=
∑

S1⊂E ,...,Sr⊂E

g(S1) · · · g(Sr )I(S1 ∪ · · · ∪ Sr = E ). (B7)

Inserting (B4) in Eq. (B5) and using this last form of the inclusion-exclusion principle yields finally

E
[
εσ1 , . . . , εσp

] = Ẽ[]E
[
δ̂σ1 , . . . , δ̂σp

]+
∞∑

r=2

Ẽ

[(


r

)] ∑
S1,...,Sr

E

⎡
⎣∏

j∈S1

δ̂σ j

⎤
⎦ · · ·E

⎡
⎣∏

j∈Sr

δ̂σ j

⎤
⎦, (B8)

where we have treated the term r = 1 separately as it is
simpler than the general terms for r � 2. In the latter the
summation is over S1, . . . , Sr subsets of {1, . . . , p} of cardi-
nality |Si| � 2 whose union must cover {1, . . . , p} (but they
do not need to be disjoint). Each term in this sum can be
associated with a diagram, i.e., an hypergraph on p vertices
with r hyperedges that connect at least two vertices in such a
way that no vertex remains isolated. Furthermore, in Eq. (B2)
some of the εσ appear multiplied by ησ and summed over σ ; in

that case the only diagrams that contribute are those in which
the corresponding vertex has degree of at least 2, because of
the property

∑
σ ησ δ̂σ = 0.

The two expressions (B2) and (B8) form an infinite hier-
archy of equations that formally determine all the centered
moments of the possible distribution P(η) fixed-point solu-
tions of (37); as η is bounded, these moments are enough
to characterize P itself. The results presented in Sec. IV D
have been obtained by truncating this hierarchy under the
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hypothesis that

E
[
δσ1 , . . . , δσp

] = O(κ�p/2�), E
[
εσ1 , . . . , εσp

] = O(κ�p/2�),
(B9)

where κ is a small parameter controlling the distance between
the studied fixed point P(η) and the trivial one δ(η − η). The
self-consistency of this ansatz can be checked in Eq. (B2)
and (B8). Using the hypothesis on E[εσ1 , . . . , εσp] on the
right-hand side of (B2) leads to a compatible scaling for
E[δσ1 , . . . , δσp], the dominant contribution coming from the
term m = 0 if p is even and from m = 0 and m = 1 if p is
odd. Similarly, one can insert the hypothesis in E[δσ1 , . . . , δσp]
on the right-hand side of (B8); the first term corresponding to
r = 1 is obviously compatible with the ansatz. The order in κ

of the generic term with r � 2 is⌈ |S1|
2

⌉
+ · · · +

⌈ |Sr |
2

⌉
�
⌈ |S1| + · · · + |Sr |

2

⌉
�
⌈ p

2

⌉
,

(B10)

as the sets S1, . . . , Sr have to cover {1, . . . , p} and hence these
terms are not strictly dominant with respect to the case r = 1,
which concludes our verification of the consistency of the
ansatz. From (B2) and (B8) it is relatively easy to obtain the
third-order expansion given in Eqs. (71)–(73), exploiting the
ansatz to truncate the hierarchy of equations at the desired
order in κ and the diagrammatic representation of the terms
in Eq. (B8) to organize their bookkeeping.

APPENDIX C: EXPANSION OF THE FREE ENTROPY FOR
PAIRWISE INTERACTING POTTS VARIABLES

We provide in this Appendix some details on the derivation
of the expansion (77) for the free entropy of pairwise interact-
ing models. Let us start from the expression (40), which we
rewrite in more compact notation

φ(P) = E[zv ln zv] − 1
2E[]E[ze ln ze], (C1)

where the expressions of zv and ze are given in Eq. (34) and
(39), respectively.

To deal with the second term of φ we write ze = 1 +∑
σ δ1

σ δ̂2
σ , where δ1

σ = η1
σ − ησ and δ̂2

σ = ∑
σ ′ M̂σσ ′ (η2

σ ′ −
ησ ′ ), with η1 and η2 two independent samples from P(η).
Using the power-series expansion of (1 + x) ln(1 + x) around
x = 0 gives

E[ze ln ze] =
∞∑

p=2

(−1)p

p(p − 1)

∑
σ1,...,σp

E
[
δσ1 , . . . , δσp

]
E

× [
δ̂σ1 , . . . , δ̂σp

]
. (C2)

Neglecting the terms with p � 5 yields the first line in
Eq. (77).

In the first term we write zv = 1 +∑
σ ησ εσ , where the no-

tation εσ = ∏
i=1(1 + δ̂i

σ ) − 1 is the same as in Appendix B,
the only difference being that  is now drawn from the
distribution p instead of p̃. This yields

E[zv ln zv] =
∞∑

p=2

(−1)p

p(p − 1)

∑
σ1,...,σp

ησ1
· · · ησp

E
[
εσ1 , . . . , εσp

]
,

(C3)

where the expression of E[εσ1 , . . . , εσp] can be read off from
(B8) with the modification p̃ → p. Enumerating the various
terms that contribute up to order κ4 using the diagrammatic
representation explained in Appendix B yields the remaining
terms of (77). We factored out in these terms a common factor
E[], using the identity

E[( − 1) · · · ( − r + 1)]

= E[]Ẽ[( − 1) · · · ( − r + 2)], (C4)

which follows from the size bias between p and p̃ expressed
in Eq. (12).

Finally, let us write down an expression that is equivalent to the expansion (77) but where the centered moments are expressed
in the basis of eigenvectors of M,

1

E[]
φ(P) = 1

4

∑
jk

(A′
jk )2θ jθk (Ẽ[]θ jθk − 1) − 1

12

∑
jkl

(B′
jkl )

2θ jθkθl (Ẽ[]θ jθkθl − 1)

+ 1

24

∑
jklm

(C′
jklm)2θ jθkθlθm(Ẽ[]θ jθkθlθm − 1)

+ 1

12
Ẽ[( − 1)]

⎡
⎢⎣ ∑

j1 j2 j3
k1k2k3

A′
j1k1

A′
j2k2

A′
j3k3

θ j1θk1θ j2θk2θ j3θk3 f j1 j2 j3 fk1k2k3 − 2
∑
j1 j2 j3

A′
j1 j2 A′

j2 j3 A′
j3 j1θ

2
j1θ

2
j2θ

2
j3

⎤
⎥⎦

− 1

2
Ẽ[( − 1)]

∑
jkl

j1 j2

B′
jkl A

′
j1kA′

j2lθ jθ j1θ j2θ
2
k θ2

l f j j1 j2 + 1

4
Ẽ[( − 1)]

∑
jklm

C′
jklmA′

jkA′
lmθ2

j θ
2
k θ2

l θ2
m

+ 1

48
Ẽ[( − 1)( − 2)]

∑
j1 j2 j3 j4
k1k2k3k4

A′
j1k1

A′
j2k2

A′
j3k3

A′
j4k4

θ j1θk1θ j2θk2θ j3θk3θ j4θk4 h j1 j2 j3 j4
k1k2k3k4

, (C5)
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with the definitions of the tensors that encode the structure of the eigenvectors of M,

f j1 j2 j3 =
∑

σ

ησ r ( j1 )
σ r ( j2 )

σ r ( j3 )
σ , (C6)

g j1 j2 j3 j4 =
∑

σ

ησ r ( j1 )
σ r ( j2 )

σ r ( j3 )
σ r ( j4 )

σ ,

h j1 j2 j3 j4
k1k2k3k4

= g j1 j2 j3 j4 gk1k2k3k4 − 6g j1 j2 j3 j4δk1k2δk3k4 − 12 f j1 j2 j3 fk1k2 j4δk3k4 + 3δ j1 j2δk1k2δ j3 j4δk3k4 + 12δk4 j1δk1 j2δk2 j3δk3 j4 . (C7)
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