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Why studying the XY model

e Simplest vector model, have different critical properties
than Ising models

e EXxperiments on spin glass materials show some glassy
features (e.g. rejuvenation and memory) are reduced by
the spin anisotropy (i.e. in Ising models)

e Vector models allow for small perturbation to study
low-energy excitations via the spectrum of the Hessian



Why on a sparse random graph

Analytically solvable (although more complex solution
than on fully-connected topology, i.e. SK limit)

Distances can be defined, correlations can be measured
More similar to finite dimensional lattices:

e local fluctuations

e finite critical field at T=0

The SK limit can be recovered for diverging degree



XY model

13;| = 1, unit vectors in R?

H{o;} = Z 0;U;i0; — Zﬁﬁ}
(i,j)€E ’\ U

rotates by Wi
mul’riplies by J@'j

E defines the interaction graph
- a regular lattice

- a random graph  we study random reqular graphs
with fixed degree equal to 3



XY model

change of variables &; = ¢'”

H[{0;}] = Z Jijcos(0; —0; +w;j) — ZH’L cos(0; — ¢;)
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XY model

change of variables &; = ¢'”

H{0;}] = Z Jijcos(0; —0; +w;j) — ZHz cos(8; — @;)

(1,J)eE
Ferro Spin glass Gauge glass
Jij:J Jij:::J(:)Jij:J JZJ:‘]
Wi = 0 Wij = Wij & {O,ﬂ'} Wij € [0,27'(')
Field: uniform random

H, =H b; =0 i € 10, 27)



Known phase diagrams

Fully-connected spin glass (SK-like) model

Gabay-Toulouse (1981)
(a) GT line, only if H=const.

\ ’“\k freezing of transverse d.o.f.
1\\ \, effectively in zero field
L breaking of spin symmetry

\ (b) dAT line, for any H
\ \,] breaking of replica symmetry
{h\




GT and dAT lines for SG XY model
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How to solve models on sparse random graphs

Use cavity method (i.e. Bethe approximation)

A ¢
(

that is assume neighbors of the cavity vertex to be
uncorrelated in the cavity graph

It is correct for trees and for locally tree-like graphs if
correlations are not too strong



How to solve models on sparse random graphs

Cavity marginals v
AN . /l:
A‘ﬁ:i (6;) L Mg (0i)

Self-consistency equations

1 cos(0; —@; -~
Ni—j(0i) = eP H cos(0i=9:) H Mk—i(0:)

7
v k€di\ j

) 1 e
i



How to solve models on sparse random graphs

From cavity marginals to (full) marginals

1 Y ~
_eﬁH cos(0;—¢;) H nk—m(ez)
keo1

1i(0:)



Range of validity

e The above cavity method is exact:
- on trees (no loops)
- on random graph (long loops) in replica symmetric (RS)
phases (paramagnetic, ferromagnetic)

 May give a very good approximation in graph with loops
(regular lattices) in RS phases (e.g. RFIM)

e IRSB cavity method (Mézard & Parisi, 2001 & 2003)
more complex, requires populations of cavity marginals




Complexity of the cavity solution

e Ising (m=1)
Just 1 scalar per marginal -> mean local magnetization
1+ my;s;
n(si) = ——

e XY (m=2)
the mean local magnetization (7;) is not enough!

a function in 1 variable 7;(0;) is required (e d.o.f.)

e m>2 (e.g. Heisenberg, m=3)

1n:(0i) is a measure on the m-dimensional unit sphere



How to solve the XY model cavity eqgns.

e A discretization is needed for the numerical solution

e Fourier series

1
Nk—i (k) = oy _

1_|_Z( (k=) cos (10x) + b(k_”) sin (l@k))_

e Approximate via the clock model with q states

2m 4w — 1
Hi ~ {07 ) gy o e ey ! 27—‘-} Hard FOr m>2 !l
q g q



Expanding in Fourier series (H=0)

High temperature -> all coefficients null 7(6;) = —

For continuous transitions -> coefficients small close to
the critical temperature -> expand to linear order

(i—j) Z L(BJik)  (k—i)

a, — —=ay
kedi\ j Lo (B Jik)

Ferromagnetic order -> mean of a; grows
Spin glass order -> variance of a; grows

Good for critical lines at H=0, bad for the low T and H#0



q states clock model

e Marginals 7n;(6;) described by g-1 numbers (q=2 is Ising)
Same XY model eqns. with integrals -> sums

e We expect fast convergence in q to the XY model

E.g., Bessel function )
1 27 ::i::\\\
I,(z) = —/ do e °°*? cos (n) e
2T 0 -8 | —
discretized Bessel fn. 2
| - 16 |
IW(z) = = Z e* 5% cos(nb,) T
q =0 24 |
-28




Clock model converges fast to XY model

. —1.26 ‘
e EXxponential convergence 0
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q state clock model (H=0)
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q state clock model (H=0)

, Ji. = +1 b.
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q=64 clock model = XY model

o Hereafter q=64, s.t. clock model = XY model

e Random field P(w;;) Z(s (ww 2”)
q

of intensity H
e Couplings

o ferro J;; =

° spin glass Jij = +1



Computing critical lines for H#0

e Stability of BP fixed point

e Perturb marginals n(0) +dnd), n(d)+ ino)
[an@rds =0, [@yas=o. o). I157O)]| < 1

e Write linear equations for perturbations

e Check growing rate of their norm

16D = Agp |||



XY spin glass model (J=%1)
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In a SG phase

e BP run on a given graph does not converge

e Population dynamics solves

c—1

1

10(0) £ e OO [ o030 )
k

e The linear stability of BP is measured on the stationary
distribution of marginals {1{>°)(9)}



Random field XY model (J=1)
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Random field XY model (J=1)
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Random field XY model (J=1)
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Random field XY model (J=1)

1.5 ¢

1.25 +

Para
HdAT ~ 1.00 —

SG

T 075

0.5 +

Ferro

0.25 ¢

0 0.02 0.04 0.06 0.08

0.1



1(6)

Some marginals

ferro
phase

on(6)

Low temperature T=0.1

H=20  para
phase




Simpler BP equations at T=0

e Rewrite marginals as large deviation functions

n(6) o ePh(0) 7(6) ePu(0)

e Take the limit 8 — o0
hz'_>j ((97,) — HCOS(QZ' — ¢z) -+ Z uk_m(é’z) -+ cost.

Uj— 4 ((9]) — In@a [hz—m ((9@) + Jz’j COS(HZ' — (9])] -+ cost.

e Taking the max on the reals or on the discrete set?



Some marginals at T=0

ferro
phase




Some marginals at T=0

ferro
phase

All the large deviation
function is required for
the exact solution!

H=20 ‘ ‘ para

/




BP perturbations at T=0

5ui_>j (6)]) — 5hz_>3 (6’;’< (93)) -+ cost.
9; (93) — argmaxgi [hZ—U ((9@) + Jij COS(QZ' — 93)}

Perturbations can vanish in case

e.g. in presence of a very strong field



How perturbations evolve at T=0

e Models with a finite alphabet (Ising, clock, ...) have a
finite probability py of generating the same perturbation
on all the q values -> null perturbation
Non-zero perturbations remain O(1), do not shrink/grow

App = (1 —po)(c—1)

At criticality (Agpp = 1) the fraction of spins correlated
at distance r decays as ( 1 )7«

c— 1

e Vector models (XY, Heisenberg, ...), infinite alphabet, po = 0
all perturbations are non-null, study their shrinking rate




Clock model + interpolations

e To avoid problems related to finite alphabet

07 (0;) = argmaxy, [hi;(0:) + Jij cos(0; — 6;),

|

takes q values interpolate values
around maximum
with a parabola

e Even in case of strong fields is unlikely to have the
maximum always on exactly the same real value

e Perturbations may become small, but never vanish
(very small fluctuations are always allowed)
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Some perturbations at T=0
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Connected correlations

Compute exactly the join’r marginal of spins at distance r

77k—>z

. YY .

|
D+ (60, 0,4 1) 2 ~ / 40,77 (6o. 0,) x

c—2
eﬁH cos(6,—) H ﬁk (‘97“) > eﬁJ cos(0,—0,11)

Outcome: population of joint marginals
d r
(6o, 0r) = n(00)n'"™ (6o, 0, )n(;)




Connected correlations

1o(6o) = / 46,1(00,6,) 1 (6,) = / d6011(0.6,)

C (6o, 0;) =~ ||u(bo, 0r) — po(Oo)pr(6r)]
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Hessian and low energy excitations

H = —HZCOS(&; — ¢;) — Z Jij cos(0; — 0;)

(2,7)€E
Ground state configuration {0; }

0*H
00,00, | ,.

Hessian matrix

Above the critical line ( H > Hyat ~ 1.06 at T=0) we
compute true ground states, not just metastable states
- run BP until convergence

- few steps of T=0 Monte Carlo

Below the critical line, we reach low energy states



Hessian becomes gapless at large fields

e The gap closes at very large fields H=4
wp e H = 5.0

0.7 -

0.6 -

0.5 -

N = 10°

< 04 r

03 -

H =40
0.1 H — 30

s g ()

e The system has many localized low-energy excitations,
that have nothing to do with long range correlations



Why Hessian is gapless at large fields

e Very simple explanation in terms of random matrices
by expanding in J/H

e Ground state 6 = ¢; + Z —= sin(¢; — ¢;)

3687,

e Computing the
Hessian up fo

second order e
in J/H | . O(2)
" oW)
J=+1 | ' o(1)
H = 4.0 !

......................

8 |




Why Hessian is gapless at large fields
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Hessian low-energy spectrum

HdAT ~ 1.00 Hgap ~ 4

RSB l gapless l gap

T v T T

0.0001
rank/N



Hessian lowest eigenvectors

Standard analysis of Inverse Participation Ratio (IPR) is
very sensitive to finite size effects and not conclusive
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Hessian lowest eigenvectors
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Conclusions

Clock model approximate well XY model (useful for numerical
simulations)

XY more glassy than Ising: may reproduce experimental results?
Random field XY model has RSB phase and marginal ferro phase
Different nature of long range correlations:

e Ising -> few spins highly correlated

o XY -> all spins correlated, but correlations are spread over
many different orders of magnitude

Low-energy excitations arise very far from the critical point

Very hard to infer the critical point from Hessian spectrum



