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Why studying the XY model

• Simplest vector model, have different critical properties 
than Ising models


• Experiments on spin glass materials show some glassy 
features (e.g. rejuvenation and memory) are reduced by 
the spin anisotropy (i.e. in Ising models)


• Vector models allow for small perturbation to study 
low-energy excitations via the spectrum of the Hessian



Why on a sparse random graph

• Analytically solvable (although more complex solution 
than on fully-connected topology, i.e. SK limit)


• Distances can be defined, correlations can be measured


• More similar to finite dimensional lattices:


• local fluctuations


• finite critical field at T=0


• The SK limit can be recovered for diverging degree



XY model
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   defines the interaction graph
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E

we study random regular graphs 
with fixed degree equal to 3
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Known phase diagrams
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Abstract

A reliable description of the behaviour of spin glasses in a magnetic field represents a crucial milestone in the
seek of a full comprehension of disordered systems. Today we know (almost) everything about the Ising model
in a field (e. g. RFIM), but what about vector spin glasses?

Known results about them regards fully-connected topologies. When a uniform external field is present, two
different instabilities can be detected in the field (H) vs temperature (T) plane: a longitudinal one (known as
de Almeida-Thouless) and a transverse one (known as Gabay-Toulouse). When the field is instead random, only
the longitudinal one survives [1].

Analogous studies are missing in the random dilute case, and our work will generalize previous results for
the XY model on this topology. First of all, BP equations for vector spin glasses will be presented, both at finite
and zero temperature. Some key features of continuous variables models will also be highlighted, together with
the discretization for numerical simulations. Then, we will recover dAT and the GT lines and also find that the
random field XY model possesses a non-zero-measure RSB phase at very low temperatures. In the end, we will
focus on the meaning of zero-temperature marginal perturbation of that model.

Vector spin glasses and the XY model

Random magnet with m-dimensional unit spins~si :

H[{~s}] = � Â
(i,j)

~si · bUij ·~sj � Â
i

~Hi ·~si

We restrict to the most simple case m = 2, aka the XY model:
? A unique angle qi 2 [0, 2p] is enough to describe spin~si
? bUij is a rotation matrix of a random angle wij 2 [0, 2p] in the xy plane
? ~Hi can be written as Hi e ifi

Furthermore we choose:
? wij 2 {0, p} ) ~si · bUij ·~sj = Jij cos (qi � qj) with Jij 2 {�1,+1}
? Hi = H for each site, while fi ⇠ P(fi)

so that:
HXY[{q}] = � Â

(i,j)
Jij cos (qi � qj)� H Â

i
cos (qi � fi)

BP equations and the clock-model approximation

We use a large enough C = 3 RRG, so Bethe approximation is correct for N ! •.
Belief-Propagation (BP) equations provide the marginals that yield the minimum
of Bethe free energy:

8
>>>><

>>>>:

bhk!i(qi) =
1
bZk!i

Z
dqk e bJik cos (qi�qk) hk!i(qk) ⌘ bFb[hk!i]

hi!j(qi) =
1

Zi!j
e bH cos (qi�fi) ’

k2∂i\j
bhk!i(qi) ⌘ Fb[{bhk!i}]

Zero-temperature limit (b ! •) can be analytically performed by using large-
deviation formalism:

hi!j ⌘ e bhi!j , bhi!j ⌘ e bui!j

and saddle-point evaluations of integrals. BP equations become:
8
><

>:

ui!j(qj) ' max
qi

⇥
Jij cos (qi � qj) + hi!j(qi)

⇤

hi!j(qi) ' H cos (qi � fi) + Â
k2∂i\j

uk!i(qi)

In a few cases BP equations can be solved analytically (Fourier transform), but
most of times numerical computations are performed ) need for a discretization!
We pass from the XY model to the Q-state clock model:

q(a)
i ⌘ 2p

Q
⇥ a , a 2 {0, 1, . . . , Q � 1}

It is both a reliable and efficient approximation since provides an error in estimat-
ing physical observables exponentially small in Q both at finite and zero temper-
ature [2].
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Linear stability of BP fixed-points

Critical lines in the phase diagram can be detected by studying linear stability of
BP equations fixed-points. Performing functional derivatives at finite T:

dbhk!i =
d bFb[hk!i]

dhk!i
dhk!i , dhi!j = Â

k2∂i\j

dFb[{bhk!i}]
dbhk!i

dbhk!i

Perturbations are themselves smooth functions of angles! Stability is given by the
growth rate of the global norm of these perturbations:

kdh(t+1)k = lBP kdh(t)k )

8
><

>:

lBP < 1 stability
lBP = 1 marginality
lBP > 1 instability

When T ! 0 linearized BP equations acquire a very simple form:
8
<

:

duk!i(qi) ' dhk!i(q
⇤
k (qi))

dhi!j(qi) ' Â
k2∂i\j

duk!i(qi)
, q⇤k (qi) = argmax

qk

[Jik cos (qi � qk) + hk!i(qk)]

Two additive normalizations are allowed:
(1) put the zero of perturbations on the top of large-deviation marginals
(2) put the mean of perturbations to zero
and both them reproduce the results extrapolated from finite temperature.
Despite their simplicity, zero-temperature linearized BP equations are tricky to
solve. Discretization plays a crucial role, in evaluating maxima and related posi-
tions we have to interpolate over the real values of angles!

GT and dAT lines

Gabay-Toulouse results [1] are recovered when Jij = ±1 is used:
(a) GT line: First instability coming from paramagnetic phase. Transverse degrees
of freedom with respect to ~H get frozen, it exists only in a uniform external field.
Replica symmetry also breaks!
(b) dAT line: Instability at a lower temperature/field. Longitudinal degrees of
freedom get now frozen, it exists only in a random external field. Analogue to the
Ising one, again replica symmetry breaks.
Also critical exponents are the same!
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Random Field XY model

When Jij = +1 the only
disorder is due to the field
) Random Field XY model

The RFXYM shows pecu-
liar features respect to the
Ising case:
? Marginality at very low
temperature and field values
? RS instability at very
low temperatures and larger
values of the field
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T = 0 perturbations have a physical meaning:
) longitudinal and transverse excitations!
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Fully-connected spin glass (SK-like) model

Gabay-Toulouse (1981)

(a) GT line, only if H=const.  

freezing of transverse d.o.f. 
effectively in zero field 
breaking of spin symmetry


(b) dAT line, for any H 
breaking of replica symmetry



GT and dAT lines for SG XY model 
on c=3 RRG
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We use a large enough C = 3 RRG, so Bethe approximation is correct for N ! •.
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Linear stability of BP fixed-points

Critical lines in the phase diagram can be detected by studying linear stability of
BP equations fixed-points. Performing functional derivatives at finite T:
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Perturbations are themselves smooth functions of angles! Stability is given by the
growth rate of the global norm of these perturbations:
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When T ! 0 linearized BP equations acquire a very simple form:
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Two additive normalizations are allowed:
(1) put the zero of perturbations on the top of large-deviation marginals
(2) put the mean of perturbations to zero
and both them reproduce the results extrapolated from finite temperature.
Despite their simplicity, zero-temperature linearized BP equations are tricky to
solve. Discretization plays a crucial role, in evaluating maxima and related posi-
tions we have to interpolate over the real values of angles!
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Gabay-Toulouse results [1] are recovered when Jij = ±1 is used:
(a) GT line: First instability coming from paramagnetic phase. Transverse degrees
of freedom with respect to ~H get frozen, it exists only in a uniform external field.
Replica symmetry also breaks!
(b) dAT line: Instability at a lower temperature/field. Longitudinal degrees of
freedom get now frozen, it exists only in a random external field. Analogue to the
Ising one, again replica symmetry breaks.
Also critical exponents are the same!
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constant field


 
random field

�i = 0

�i 2 [0, 2⇡)



How to solve models on sparse random graphs

Use cavity method (i.e. Bethe approximation)


that is assume neighbors of the cavity vertex to be 
uncorrelated in the cavity graph


It is correct for trees and for locally tree-like graphs if 
correlations are not too strong



How to solve models on sparse random graphs

b⌘k!i(✓i)

ik

⌘i!j(✓i)

j

i

Cavity marginals

⌘i!j(✓i) =
1

Zi!j
e�H cos(✓i��i)

Y

k2@i\j

b⌘k!i(✓i)

b⌘i!j(✓j) =
1

bZi!j

Z
d✓i e

�Jij cos(✓i�✓j�!ij) ⌘i!j(✓i)

Self-consistency equations



How to solve models on sparse random graphs

From cavity marginals to (full) marginals

⌘i(✓i) =
1

Zi
e�H cos(✓i��i)

Y

k2@i

b⌘k!i(✓i)

i



Range of validity

• The above cavity method is exact:  
- on trees (no loops) 
- on random graph (long loops) in replica symmetric (RS) 
phases (paramagnetic, ferromagnetic)


• May give a very good approximation in graph with loops 
(regular lattices) in RS phases (e.g. RFIM)


• 1RSB cavity method (Mézard & Parisi, 2001 & 2003)  
more complex, requires populations of cavity marginals



Complexity of the cavity solution
• Ising (m=1) 

just 1 scalar per marginal -> mean local magnetization  

• XY (m=2)  

the mean local magnetization      is not enough!  

a function in 1 variable        is required (∞ d.o.f.)


• m>2 (e.g. Heisenberg, m=3)  

        is a measure on the m-dimensional unit sphere

⌘(si) =
1 +misi

2

⌘i(✓i)

⌘i(~�i)

h~�ii



How to solve the XY model cavity eqns.

• A discretization is needed for the numerical solution


• Fourier series 
 
 

• Approximate via the clock model with q states

⌘k!i(✓k) =
1

2⇡


1 +

1X

l=1

⇣
a(k!i)
l cos (l✓k) + b(k!i)

l sin (l✓k)
⌘�

Hard for m>2 !!✓i 2
⇢
0,

2⇡

q
,
4⇡

q
, . . . ,

q � 1

q
2⇡

�



Expanding in Fourier series (H=0)

• High temperature -> all coefficients null


• For continuous transitions -> coefficients small close to 
the critical temperature -> expand to linear order 
 
 

• Ferromagnetic order -> mean of     grows  
Spin glass order -> variance of     grows


• Good for critical lines at H=0, bad for the low T and H≠0

⌘(✓i) =
1

2⇡

a(i!j)
l =

X

k2@i\j

Il(�Jik)

I0(�Jik)
a(k!i)
l

a1
a1



q states clock model

• Marginals        described by q-1 numbers (q=2 is Ising)  
Same XY model eqns. with integrals -> sums


• We expect fast convergence in q to the XY model 
 
E.g., Bessel function  
 
 
discretized Bessel fn.

In(z) =
1

2⇡

Z
2⇡

0

d✓ ez cos ✓
cos (n✓)

I(q)n (z) =
1

q

q�1X

a=0

e z cos ✓a
cos(n✓a)

log

h
I(q)n (z)� In(z)

i

z = 5
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Clock model converges fast to XY model

• Exponential convergence 
- critical lines  
- observables at T>0  

• Stretched exponential 
convergence with 
at T≈0
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Abstract

A reliable description of the behaviour of spin glasses in a magnetic field represents a crucial milestone in the
seek of a full comprehension of disordered systems. Today we know (almost) everything about the Ising model
in a field (e. g. RFIM), but what about vector spin glasses?

Known results about them regards fully-connected topologies. When a uniform external field is present, two
different instabilities can be detected in the field (H) vs temperature (T) plane: a longitudinal one (known as
de Almeida-Thouless) and a transverse one (known as Gabay-Toulouse). When the field is instead random, only
the longitudinal one survives [1].

Analogous studies are missing in the random dilute case, and our work will generalize previous results for
the XY model on this topology. First of all, BP equations for vector spin glasses will be presented, both at finite
and zero temperature. Some key features of continuous variables models will also be highlighted, together with
the discretization for numerical simulations. Then, we will recover dAT and the GT lines and also find that the
random field XY model possesses a non-zero-measure RSB phase at very low temperatures. In the end, we will
focus on the meaning of zero-temperature marginal perturbation of that model.

Vector spin glasses and the XY model

Random magnet with m-dimensional unit spins~si :

H[{~s}] = � Â
(i,j)

~si · bUij ·~sj � Â
i

~Hi ·~si

We restrict to the most simple case m = 2, aka the XY model:
? A unique angle qi 2 [0, 2p] is enough to describe spin~si
? bUij is a rotation matrix of a random angle wij 2 [0, 2p] in the xy plane
? ~Hi can be written as Hi e ifi

Furthermore we choose:
? wij 2 {0, p} ) ~si · bUij ·~sj = Jij cos (qi � qj) with Jij 2 {�1,+1}
? Hi = H for each site, while fi ⇠ P(fi)

so that:
HXY[{q}] = � Â

(i,j)
Jij cos (qi � qj)� H Â

i
cos (qi � fi)

BP equations and the clock-model approximation

We use a large enough C = 3 RRG, so Bethe approximation is correct for N ! •.
Belief-Propagation (BP) equations provide the marginals that yield the minimum
of Bethe free energy:

8
>>>><

>>>>:

bhk!i(qi) =
1
bZk!i

Z
dqk e bJik cos (qi�qk) hk!i(qk) ⌘ bFb[hk!i]

hi!j(qi) =
1

Zi!j
e bH cos (qi�fi) ’

k2∂i\j
bhk!i(qi) ⌘ Fb[{bhk!i}]

Zero-temperature limit (b ! •) can be analytically performed by using large-
deviation formalism:

hi!j ⌘ e bhi!j , bhi!j ⌘ e bui!j

and saddle-point evaluations of integrals. BP equations become:
8
><

>:

ui!j(qj) ' max
qi

⇥
Jij cos (qi � qj) + hi!j(qi)

⇤

hi!j(qi) ' H cos (qi � fi) + Â
k2∂i\j

uk!i(qi)

In a few cases BP equations can be solved analytically (Fourier transform), but
most of times numerical computations are performed ) need for a discretization!
We pass from the XY model to the Q-state clock model:

q(a)
i ⌘ 2p

Q
⇥ a , a 2 {0, 1, . . . , Q � 1}

It is both a reliable and efficient approximation since provides an error in estimat-
ing physical observables exponentially small in Q both at finite and zero temper-
ature [2].
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Linear stability of BP fixed-points

Critical lines in the phase diagram can be detected by studying linear stability of
BP equations fixed-points. Performing functional derivatives at finite T:

dbhk!i =
d bFb[hk!i]

dhk!i
dhk!i , dhi!j = Â

k2∂i\j

dFb[{bhk!i}]
dbhk!i

dbhk!i

Perturbations are themselves smooth functions of angles! Stability is given by the
growth rate of the global norm of these perturbations:

kdh(t+1)k = lBP kdh(t)k )

8
><

>:

lBP < 1 stability
lBP = 1 marginality
lBP > 1 instability

When T ! 0 linearized BP equations acquire a very simple form:
8
<

:

duk!i(qi) ' dhk!i(q
⇤
k (qi))

dhi!j(qi) ' Â
k2∂i\j

duk!i(qi)
, q⇤k (qi) = argmax

qk

[Jik cos (qi � qk) + hk!i(qk)]

Two additive normalizations are allowed:
(1) put the zero of perturbations on the top of large-deviation marginals
(2) put the mean of perturbations to zero
and both them reproduce the results extrapolated from finite temperature.
Despite their simplicity, zero-temperature linearized BP equations are tricky to
solve. Discretization plays a crucial role, in evaluating maxima and related posi-
tions we have to interpolate over the real values of angles!

GT and dAT lines

Gabay-Toulouse results [1] are recovered when Jij = ±1 is used:
(a) GT line: First instability coming from paramagnetic phase. Transverse degrees
of freedom with respect to ~H get frozen, it exists only in a uniform external field.
Replica symmetry also breaks!
(b) dAT line: Instability at a lower temperature/field. Longitudinal degrees of
freedom get now frozen, it exists only in a random external field. Analogue to the
Ising one, again replica symmetry breaks.
Also critical exponents are the same!
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liar features respect to the
Ising case:
? Marginality at very low
temperature and field values
? RS instability at very
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values of the field
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T = 0 perturbations have a physical meaning:
) longitudinal and transverse excitations!
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A reliable description of the behaviour of spin glasses in a magnetic field represents a crucial milestone in the
seek of a full comprehension of disordered systems. Today we know (almost) everything about the Ising model
in a field (e. g. RFIM), but what about vector spin glasses?

Known results about them regards fully-connected topologies. When a uniform external field is present, two
different instabilities can be detected in the field (H) vs temperature (T) plane: a longitudinal one (known as
de Almeida-Thouless) and a transverse one (known as Gabay-Toulouse). When the field is instead random, only
the longitudinal one survives [1].

Analogous studies are missing in the random dilute case, and our work will generalize previous results for
the XY model on this topology. First of all, BP equations for vector spin glasses will be presented, both at finite
and zero temperature. Some key features of continuous variables models will also be highlighted, together with
the discretization for numerical simulations. Then, we will recover dAT and the GT lines and also find that the
random field XY model possesses a non-zero-measure RSB phase at very low temperatures. In the end, we will
focus on the meaning of zero-temperature marginal perturbation of that model.

Vector spin glasses and the XY model

Random magnet with m-dimensional unit spins~si :
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We restrict to the most simple case m = 2, aka the XY model:
? A unique angle qi 2 [0, 2p] is enough to describe spin~si
? bUij is a rotation matrix of a random angle wij 2 [0, 2p] in the xy plane
? ~Hi can be written as Hi e ifi

Furthermore we choose:
? wij 2 {0, p} ) ~si · bUij ·~sj = Jij cos (qi � qj) with Jij 2 {�1,+1}
? Hi = H for each site, while fi ⇠ P(fi)

so that:
HXY[{q}] = � Â

(i,j)
Jij cos (qi � qj)� H Â

i
cos (qi � fi)

BP equations and the clock-model approximation

We use a large enough C = 3 RRG, so Bethe approximation is correct for N ! •.
Belief-Propagation (BP) equations provide the marginals that yield the minimum
of Bethe free energy:
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In a few cases BP equations can be solved analytically (Fourier transform), but
most of times numerical computations are performed ) need for a discretization!
We pass from the XY model to the Q-state clock model:

q(a)
i ⌘ 2p

Q
⇥ a , a 2 {0, 1, . . . , Q � 1}

It is both a reliable and efficient approximation since provides an error in estimat-
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Linear stability of BP fixed-points

Critical lines in the phase diagram can be detected by studying linear stability of
BP equations fixed-points. Performing functional derivatives at finite T:

dbhk!i =
d bFb[hk!i]

dhk!i
dhk!i , dhi!j = Â

k2∂i\j

dFb[{bhk!i}]
dbhk!i

dbhk!i

Perturbations are themselves smooth functions of angles! Stability is given by the
growth rate of the global norm of these perturbations:

kdh(t+1)k = lBP kdh(t)k )
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lBP < 1 stability
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lBP > 1 instability

When T ! 0 linearized BP equations acquire a very simple form:
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duk!i(qi) ' dhk!i(q
⇤
k (qi))

dhi!j(qi) ' Â
k2∂i\j

duk!i(qi)
, q⇤k (qi) = argmax

qk

[Jik cos (qi � qk) + hk!i(qk)]

Two additive normalizations are allowed:
(1) put the zero of perturbations on the top of large-deviation marginals
(2) put the mean of perturbations to zero
and both them reproduce the results extrapolated from finite temperature.
Despite their simplicity, zero-temperature linearized BP equations are tricky to
solve. Discretization plays a crucial role, in evaluating maxima and related posi-
tions we have to interpolate over the real values of angles!

GT and dAT lines

Gabay-Toulouse results [1] are recovered when Jij = ±1 is used:
(a) GT line: First instability coming from paramagnetic phase. Transverse degrees
of freedom with respect to ~H get frozen, it exists only in a uniform external field.
Replica symmetry also breaks!
(b) dAT line: Instability at a lower temperature/field. Longitudinal degrees of
freedom get now frozen, it exists only in a random external field. Analogue to the
Ising one, again replica symmetry breaks.
Also critical exponents are the same!
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q=64 clock model ≈ XY model

• Hereafter q=64, s.t. clock model ≈ XY model


• Random field 
 
of intensity


• Couplings


• ferro


• spin glass

P (!ij) =
1

q

q�1X

a=0

�

✓
!ij �

2⇡a

q

◆

Jij = 1

Jij = ±1

H



Computing critical lines for H≠0

• Stability of BP fixed point


• Perturb marginals


• Write linear equations for perturbations


• Check growing rate of their norm

⌘(✓) + �⌘(✓) , b⌘(✓) + �b⌘(✓)
Z

�⌘(✓) d✓ = 0 ,

Z
b�⌘(✓) d✓ = 0 , ||�⌘(✓)||, ||�b⌘(✓)|| ⌧ 1

||�⌘(t+1)|| = �BP ||�⌘(t)||



XY spin glass model (J=±1)

�BP < 1

�BP > 1
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In a SG phase

• BP run on a given graph does not converge


• Population dynamics solves


• The linear stability of BP is measured on the stationary 
distribution of marginals

⌘(t+1)(✓)
d
=

1

Z
e�H cos(✓��)

c�1Y

k

Z
d✓k e

�Jk cos(✓�✓k) ⌘(t)k (✓k)

{⌘(1)(✓)}



Random field XY model (J=1)
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Random field XY model (J=1)
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Random field XY model (J=1)
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Random field XY model (J=1)
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Some marginals
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Simpler BP equations at T=0

• Rewrite marginals as large deviation functions


• Take the limit  

• Taking the max on the reals or on the discrete set?

⌘(✓) / e�h(✓) b⌘(✓) / e�u(✓)

� ! 1

hi!j(✓i) = H cos(✓i � �i) +

X

k2@i\j

uk!i(✓i) + cost.

ui!j(✓j) = max

✓i

⇥
hi!j(✓i) + Jij cos(✓i � ✓j)

⇤
+ cost.



Some marginals at T=0
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Some marginals at T=0
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BP perturbations at T=0

�hi!j(✓i) =
X

k2@i\j

�uk!i(✓i) + cost.

�ui!j(✓j) = �hi!j(✓
⇤
i (✓j)) + cost.

✓⇤i (✓j) = argmax✓i

⇥
hi!j(✓i) + Jij cos(✓i � ✓j)

⇤

✓⇤i (✓j) = ✓̄i 8i =) �ui!j(✓j) = 0

Perturbations can vanish in case 
 
 
e.g. in presence of a very strong field



How perturbations evolve at T=0

• Models with a finite alphabet (Ising, clock, …) have a 
finite probability     of generating the same perturbation 
on all the q values -> null perturbation  
Non-zero perturbations remain O(1), do not shrink/grow  
 
 
At criticality (          ) the fraction of spins correlated 
at distance r decays as  

• Vector models (XY, Heisenberg, …), infinite alphabet,  
all perturbations are non-null, study their shrinking rate

p0

p0 = 0

�BP = (1� p0)(c� 1)

�BP = 1
✓

1

c� 1

◆r



Clock model + interpolations
• To avoid problems related to finite alphabet


• Even in case of strong fields is unlikely to have the 
maximum always on exactly the same real value


• Perturbations may become small, but never vanish 
(very small fluctuations are always allowed)

takes q values interpolate values 
around maximum  
with a parabola

✓⇤i (✓j) = argmax✓i

⇥
hi!j(✓i) + Jij cos(✓i � ✓j)

⇤



Some perturbations at T=0
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Evolution of perturbations at T=0
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Connected correlations

Compute exactly the joint marginal of spins at distance

r0

r
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b⌘k(✓r)⇥ e�J cos(✓r�✓r+1)

Outcome: population of joint marginals
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Connected correlations

µ0(✓0) =
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Hessian and low energy excitations

• Ground state configuration


• Hessian matrix 

• Above the critical line (                      at T=0) we 
compute true ground states, not just metastable states  
- run BP until convergence  
- few steps of T=0 Monte Carlo


• Below the critical line, we reach low energy states

H = �H
X

i

cos(✓i � �i)�
X

(i,j)2E

Jij cos(✓i � ✓j)

{✓⇤i }

H > HdAT ' 1.06

@2H
@✓i@✓j

����
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Hessian becomes gapless at large fields

• The gap closes at very large fields H≈4  
 
 
 

• The system has many localized low-energy excitations, 
that have nothing to do with long range correlations
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Why Hessian is gapless at large fields

• Very simple explanation in terms of random matrices  
by expanding in J/H


• Ground state 


• Computing the  
Hessian up to  
second order 
in J/H

✓⇤i = �i +
X

j2@i

Jij
H

sin(�j � �i)

J = ±1

H = 4.0



Why Hessian is gapless at large fields

• Very simple explanation by expanding in J/H


• Ground state 


• Computing the Hessian up to second order in J/H
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Hessian low-energy spectrum
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Hessian lowest eigenvectors
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Conclusions
• Clock model approximate well XY model (useful for numerical 

simulations)


• XY more glassy than Ising: may reproduce experimental results?


• Random field XY model has RSB phase and marginal ferro phase


• Different nature of long range correlations:


• Ising -> few spins highly correlated


• XY -> all spins correlated, but correlations are spread over 
many different orders of magnitude


• Low-energy excitations arise very far from the critical point


• Very hard to infer the critical point from Hessian spectrum


