
Chapter 7

Measurement of Carrier Localization Degree,
Electron Effective Mass, and Exciton Size
in InxGa12xAs12yNy Alloys

A. Polimeni, F. Masia, G. Baldassarri Höger von Högersthal,
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ABSTRACT

We employ photoluminescence under a magnetic field to investigate the electronic

properties of InxGa12xAs12yNy/GaAs heterostructures. We studied samples with

nitrogen concentration from the doping ðy , 0:01%Þ to the alloy ðy ¼ 5%Þ limit.

In the alloy limit, we found that the origin of the radiative recombination at low

temperatures (T lower than 100 K) is not excitonic, contrary to previous

assignments, and is due to free holes recombining with electrons localized in

N-rich regions. The evolution of the electron effective mass, me; and exciton

radius, rexc; was studied in GaAs12yNy epilayers and quantum wells with N

concentration varying from y , 0:01% to y ¼ 2:0%: In particular, by exploiting the

capability of post-growth hydrogen irradiation to fine tune the electronic properties

of GaAs12yNy, we are able to assess that a major change in me and in rexc takes place

within a very narrow interval of N concentrations, which is centred at y ¼ 0:1%:

Alloying of GaAs12yNy with In ðx , 0:3Þ results in a shift of such interval to

y ¼ 1:0%:

7.1. INTRODUCTION

Recently, nitrogen incorporation in InxGa12xAs-based materials has attracted much

interest owing to the strong modifications exerted by N on the band structure of the

host lattice. These include a giant bandgap reduction [1–4] and a decrease in the rate at

which the bandgap depends on hydrostatic pressure [5–8] and temperature [5,9–18].

Moreover, a strong dependence of the electron effective mass, me; on the nitrogen

concentration has been found by a variety of experimental techniques [19–32]. The

introduction of N in the host lattice is also a source of a high degree of disorder, which

manifests itself on the optical properties of the material. This leads to a sizeable

Dilute Nitride Semiconductors
Edited by M. Henini
q 2005 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

223



inhomogeneous broadening of the radiative transitions [11], to a large Stokes shift

between absorption and emission [33], and to the presence of localized states, which at

low temperatures dominate often the emission spectra [11,12,17,34–37]. It has been

shown that localization phenomena in InxGa12xAs12yNy reflects on the electron

transport too [38,39]. Furthermore, InxGa12xAs12yNy alloys show surprising effects

when irradiated with atomic hydrogen. Indeed, our group reported a fully tunable and

reversible variation of the electronic (i.e. bandgap value, response to temperature

changes, effective mass, and exciton radius) and structural (lattice constant and lattice

vibrational properties) properties of InxGa12xAs12yNy by means of ex situ H irradiation

[40–49]. In particular, H passivates N atoms in the lattice leading to an effective N

concentration, which has allowed us to study the evolution of the material’s properties

with N concentration in a very careful manner. The microscopic origin of the surprising

effects of H in InxGa12xAs12yNy has been investigated theoretically by many groups

[50–57] and it has been established that the formation of a specific N-dihydrogen

complex (referred to as N–H2
p) is responsible for N passivation. This picture has been

questioned very recently on the grounds of infrared absorption measurements [58].

Here, we report on a comprehensive study of the effects of a magnetic field

(B ¼ 0–12 T) on the photoluminescence (PL) properties of InxGa12xAs12yNy/GaAs

heterostructures. The samples investigated and the experimental methods employed

are described in Section 7.2. In Section 7.3, we show that the shift of the PL peak

energy induced by B decreases sizably and changes its dependence on B from linear

to quadratic on going from low to high T : These findings indicate that the PL

emission at low temperatures is not excitonic and it is determined, instead, by the

recombination of loosely bound electron–hole pairs in which one carrier (electron) is

localized by N-induced potential fluctuations and the other carrier (hole) is

delocalized. Section 7.4 describes electron effective mass measurements. First, we

review the data reported in the literature and the different methods used for obtaining

those data. Then, we describe the evolution of the electron effective mass in

GaAs12yNy epilayers when N concentration varies from the dilute limit ðy , 0:01%Þ

to the alloy limit ðy ¼ 0:5%Þ as measured by magneto-PL. By exploiting the

capability of H to tune the bandgap of GaAs12yNy, we asses that a major increase in

me occurs for y , 0:1%: This change in me parallels the shrinking of the exciton

wave function size rexc with increasing N concentration. A similar study performed in

GaAs12yNy quantum wells QWs with y , ð1:0–2:0Þ% shows that me remains nearly

constant over this y’s range. Finally, we consider the magneto-PL properties of

InxGa12xAs12yNy/GaAs QWs, having x , 30% and y ¼ ð0:7–5:2Þ%: For these

samples, the electron effective mass increases with y up to a N concentration equal

to 1%, namely, one order of magnitude higher than that found in In-free samples. In

the last section, we draw the conclusions of our work.
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7.2. EXPERIMENTAL

The samples considered in this review were grown by different techniques on (001)-

oriented GaAs substrates. One set of samples consists of four 0.5 mm-thick GaAs12yNy

epilayers (y ¼ 0.043, 0.1, 0.21, 0.5%) grown by metalorganic vapor phase epitaxy [7].

From the same source we studied GaAs12yNy/GaAs multiple QWs (number of wells equal

to three) having thickness L ¼ 20 nm and y ¼ 1:1; 1.4, and 1.8%. Another set of samples

was grown by solid source molecular beam epitaxy and consists of 300 nm-thick

GaAs12yNy epilayers having y ¼ 0% and y , 0:01%; and InxGa12xAs12yNy/GaAs single

quantum wells having x ¼ ð25–42Þ% and x ¼ 0%; y ¼ ð0:7–5:2Þ%; and QW thickness

L ¼ ð6:0–8:2Þ nm. In all cases, sample composition and layer thickness were determined

by X-ray diffraction measurements. A GaAs1 – yNy epilayer with y ¼ 0:1% was

hydrogenated at 3008C by a low-energy ion gun (beam energy ,100 eV) in order to

vary finely the effective N concentration into the sample [40–49]. PL measurements were

carried out in a liquid He optical cryostat for T ranging from 10 to 200 K. The magnetic

field was applied parallel to the growth axis of the samples. PL was excited by the 515 nm

line of an Arþ laser or the 532 nm line of a vanadate-YAG laser, dispersed by a double

3/4 m monochromator, and detected by a N-cooled Ge detector or by a N-cooled InGaAs

linear array.

7.3. SINGLE CARRIER LOCALIZATION IN InxGa12xAs12yNy

We now address the localization degree of carriers involved in recombination processes at low

temperatures in InxGa12xAs12yNy by studying the effect of temperature on magneto-PL.

Recombination from localized states generally dominates emission processes at low

temperatures in semiconductor alloys [59–62]. Local fluctuations in the composition lead

to an exponential tail of localized states within the crystal forbidden gap [59,63]. The

preferential occupancy of these low-energy states by carriers at low T is responsible for

asymmetric photoluminescence spectra [11,17,34,35,60,62,64,65], a blue shift of the PL

peak energy as the excitation power increases [11,12,34–36,65], a decreasing emission

decay time of PL with increasing emission energy [15,17,34,35,37,62], and for an

anomalous dependence of the PL maximum energy on temperature [11,15,35,36,62]. All

these effects are particularly important in InxGa12xAs12yNy. Figure 7.1(a) shows the PL

spectra at T ¼ 50 K as a function of the laser power, P; of a QW with x ¼ 0:25; y ¼ 0:011;

and L ¼ 6:0 nm. At low P; the PL line shape shows a double-peaked structure. The band at

lower energy is characterized by a long low-energy tail due to localized states (LS). The

higher energy band in Figure 7.1(a) is due to free exciton (or free states, FS) recombination

in the InxGa12xAs12yNy quantum well, instead. Similar features were found in other

InxGa12xAs12yNy QWs and epilayers [7,10,35,66] and in a large variety of semiconductor
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alloys [60,61,67]. The origin of the LS band was attributed to excitons localized on In–N

clusters in InxGa12xAs12yNy/GaAs heterostructures [7,10] and InGa12yNy/GaN QWs

[67]. For increasing P; the FS band increases its intensity with respect to the LS band due

to carrier filling of the localized states. Eventually, at the highest power emission the PL

spectrum is dominated by the FS band. The presence of localized states can be inferred

also from the temperature dependence of the PL spectra shown in Figure 7.1(b). In fact,

with increasing T localized carriers are thermally excited out of N-induced potential

minima and for T ¼ 70 K only free exciton recombination can be detected. Interestingly,

the PL lineshape of localized states presents several features common to other

semiconductor alloy systems [59–61,64,65]. The lineshape of the LS band can be

accounted for by alloy fluctuations [60] which give rise to an exponential density of

localized states [59,68,69]

gðEÞ ¼ g0 exp
n
2 ½ðEexc 2 EÞ=E0�

3=2
o
; ð7:1Þ

1.1 1.14 1.18
Energy (eV)

y=0.011 x=0.25
L=6.0 nm

x1

x19

x1.9

x1.2

x15

x8.8

x3.7

T=10 K

20 K

30 K

40 K

50 K

60 K

70 K
FS

LS

E
exc

1.06 1.1 1.14

PL
 In

te
ns

ity
 (

ar
b.

 u
ni

ts
)

Energy (eV)

T=50 K 

x1

x77

x28

x5.2

y=0.011 x=0.25
L=6.0 nm FS

LS

P0

3 P0

12 P0

60 P0

(a) (b)

Figure 7.1. (a) Photoluminescence spectra recorded on a InxGa12xAs12yNy quantum well for different laser

power intensities (P0 ¼ 1:2 W/cm2). FS and LS indicate free and localized states, respectively. PL multiplication

factors are given. (b) Photoluminescence spectra recorded on a InxGa12xAs12yNy quantum well for different

temperatures (P0 ¼ 3:3 W/cm2). FS and LS indicate free and localized states, respectively. PL multiplication

factors are given. The open circles represent the result of a simulation through Eq. (7.2). Eexc indicates the energy

position of the free exciton state. The spectra are normalized to their peak intensity.
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where Eexc is the free exciton energy, E0 is a characteristic energy and g0 is a constant. The

PL spectrum is then given by [60,61]

LðEÞ / gðEÞtðEÞexp½f ðEÞ�: ð7:2Þ

tðEÞ is the carrier radiative lifetime and t21ðEÞ / 1 þ exp{d½EM 2 ðEexc 2 EÞ�}; where

d is the inverse of an effective temperature and EM is the energy at which the radiative

recombination probability equals the transfer probability toward deeper states [59]. For

E , EM; localized carriers recombine radiatively, whereas, for E . EM; carriers relax to

lower energy states E0 , E: Finally, f ðE;E0;Eexc; d;EMÞ is a function whose expression

can be found in Ref. [60]. The open circles superimposed on the PL spectrum at T ¼ 10 K

are a simulation using LðEÞ with d ¼ 0:38 meV21, Eexc ¼ 1:153 eV, E0 ¼ 21 meV, and

EM ¼ 1:145 eV. The satisfactory agreement between Eq. (7.2) and the experimental PL

lineshape confirms that alloy disorder is the main source of carrier localization at low T :

As far as the nature of localized carriers is concerned, it is assumed usually that potential

fluctuations arising from composition disorder localize excitons. Very recently this

assumption has been questioned for GaAs12yNy, where the fast rise time (, 25 ps) of the

PL signal was used to establish that radiative recombination at low temperatures occurs

between localized electrons and delocalized holes [70].

The degree of localization and/or confinement of carriers in semiconductor

heterostructures can be investigated suitably through the dependence of carrier energy

levels on magnetic field as measured for instance by magneto-PL [71]. Figure 7.2 shows

the PL spectra for different B values of the same InxGa12xAs12yNy QW shown in

Figure 7.1(a) and (b) (very similar results have been obtained in all N-containing samples).

Parts (a) and (b) of Figure 7.2 show the magneto-PL spectra at T ¼ 30 and 180 K,

respectively. As shown before, at T ¼ 30 K the PL lineshape shows a long low-energy tail

characteristic of localized state recombination, which is absent at T ¼ 180 K where

emission is dominated by free excitons [11,12]; see also Figure 7.1. The shift, DEd; of the

PL peak energy induced by the magnetic field is shown in Figure 7.3 as a function of B for

the two measurement temperatures. Since the highest value of the magnetic energy in

these samples is comparable with the exciton binding energy, the high T data have been

fitted by using a variational method, which will be detailed in Section 7.4. The model does

not fit the low T dependence of DEd on B; which is linear at least for B . 4 T. It should be

noticed that for any value of B; DEd is higher at low T than at high T (a factor two for

B ¼ 12 T). This indicates that at low temperatures the recombining electron–hole pair is

more loosely bound than an exciton, either localized or free. Indeed, the interaction of

these electron–hole pairs at low T with a magnetic field results in a perturbation stronger

than Coulomb attraction and, therefore, in a greater diamagnetic shift with respect to the

exciton case. Before continuing, we point out that (i) DEd is independent of T at high

temperatures where free excitons only contribute to PL [72], (ii) DEd measured at low T

decreases when very high power densities are employed (namely, when free excitons start
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contributing to the PL signal), (iii) these effects are absent in the N-free InxGa12xAs QWs

studied for comparison purposes.

On the basis of these observations, the PL emission at low temperatures can be

attributed to recombination of a localized with a delocalized carrier. As for the charge of

the localized carriers, one can invoke the model proposed first by Hopfield, Thomas, and

Lynch, who suggested that N in GaP is an isoelectronic electron trap [73]. Since N in GaAs

shares several common features with GaP:N, we argue that N in InxGa12xAs behaves as an

isoelectronic electron trap, too. Consequently we argue that the potential minima due to N

compositional disorder capture electrons with which free holes can recombine, as shown

very schematically in the inset of Figure 7.3. Under this hypothesis the electron is strongly

localized and the shift of the PL peak with B can be ascribed entirely to the free hole,

namely, DEd ¼ ðe~=2mp
hÞB where mp

h is the hole in-plane effective mass. The continuous

line in Figure 7.3 is a fit of this formula to the T ¼ 30 K data with mp
h ¼ 0:074m0 (m0 is the

electron mass in vacuum); as B approaches zero, DEd deviates from a linear behavior

likely because of a residual electrostatic interaction between electrons and holes. A

somewhat similar approach has been used for deriving the electron effective mass from the

B-induced shift of free-electron to neutral-acceptor recombinations [74–82] and will be

used in Section 7.4.
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Figure 7.2. (a) Magneto-photoluminescence spectra recorded on a InxGa12xAs12yNy quantum well at

T ¼ 30 K and laser power density P ¼ 15 mW/cm2. (b) The same as in (a) but T ¼ 180 K and P ¼ 20 W/cm2.

The spectra are normalized to their peak intensity.
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Figure 7.4. Dependence of the in-plane hole effective mass in InxGa12xAs12yNy quantum wells as a function of

the In concentration, x: The dashed lines are the values of the in-plane light (upper line) and heavy (lower line)

hole, as estimated by using the Luttinger parameters [83]. Reprinted with permission from Ref. [82], copyright

(2004) by the American Institute of Physics.
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Figure 7.3. Diamagnetic shift, DEd; of the PL peak measured in a 6.0 nm-thick In0.25Ga0.75As0.989N0.011 QW at

T ¼ 30 K (filled dots) and T ¼ 180 K (open circles) versus magnetic field, B: The dashed curve is a fit to the

T ¼ 180 K data by the variational method described in Section 7.4.2. The continuous line is a fit to the T ¼ 30 K

data (B . 4 T) by DEd ¼ ðe~=2mp
hÞB; where mp

h is the in-plane hole effective mass. The inset depicts the

recombination at low temperatures occurring in InxGa12xAs12yNy in a reciprocal space scheme at k , 0 for

B ¼ 0 T (continuous parabolas) and B ¼ 12 T (dashed parabolas). L indicates the localized levels related to

nitrogen. Reprinted with permission from Ref. [82], copyright (2004) by the American Institute of Physics.
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Figure 7.4 shows the mp
h values derived in InxGa12xAs12yNy QWs as a function of the In

concentration. Since N incorporation affects mainly the conduction band states, we

compare the mp
h values derived here with those of the heavy and light hole of the N-free

InxGa12xAs host. In fact, due to the different types of strain, compressive in

InxGa12xAs12yNy and tensile in GaAs12yNy, in-plane heavy and light holes should be

considered in the former and latter case. The dashed lines in Figure 7.4 are the InxGa12xAs

in-plane hole masses as estimated through the Luttinger parameters [83]. The good

agreement of the experimental data with the hole curves supports our hypothesis about the

hole nature of the delocalized carrier.

As a final comment, our results show that a measure of the properties of extended states

through magneto-PL needs to be done at temperatures high enough to get rid of localized

carrier contributions.

7.4. MEASUREMENT OF THE ELECTRON EFFECTIVE MASS

AND EXCITON WAVE FUNCTION SIZE

N incorporation in InxGa12xAs modifies strongly the electronic properties of the host

lattice as it is widely reported in the present book. There is a general consensus that the

origin of these modifications is related to the quite strong carrier localization around the N

atom, which is produced by the high electronegativity and small size of the N atoms with

respect to those of the replaced As atoms. Different models have been proposed to explain

the effects N has on the host material. In a first theoretical model, the strong perturbation of

the translational symmetry of the host lattice potential due to N incorporation gives rise to

perturbed host states [84]. In turn, this leads to a downward shift of the conduction band

(CB) minimum (CBM) for increasing N concentration and to a progressive disappearance

of the energy levels of N clusters in the bandgap [84]. In a band anticrossing model,

instead, a phenomenological repulsive interaction between the CBM and a single N level

resonant with the CB continuum of states accounts for most N-related effects [6]. This

model has been supported by recent tight-binding calculations [85]. Finally, the effects of

the interaction among N atoms and/or clusters and the ensuing impurity-band formation in

invoked in a third model [19]. In all the models a decrease in the host bandgap is predicted

when the N concentration increases, in quite a good agreement with all the experimental

data reported from different groups. The effect of N incorporation on the electron effective

mass me is more subtle and it may represent a more stringent test for the validity of the

different theoretical approaches aimed at explaining the puzzling effects of N in

InxGa12xAs12yNy. Unfortunately, the experimental data on me reported in the literature do

not show a common and clear trend with increasing N concentration.

Figure 7.5 shows the values of the electron effective mass as a function of y for different

GaAs12yNy QWs and epilayers as measured by different groups. A large difference both in

the me values and trends with y can be observed. The data of Refs. [19,21] were derived
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from a fit of the transition energies of GaAs12yNy QWs within the envelope function

approximation, which needs some unknown parameters as the bandgap offsets between

GaAs12yNy and GaAs. The data of Ref. [19] show a continuous decrease in me with y;

which supports the impurity-band formation model proposed therein. On the contrary, in

the same N concentration interval, the me values reported in Ref. [21] are very different

and do not change sizably with y: The data of Ref. [22] were determined by combining

four different transport measurements and display a decrease in me when y increases. This

behavior was justified within a k·p approach [22]. A more direct measurement of me was

used by Hai and coworkers through optically detected cyclotron resonance measurements

[20]. In this case me increases linearly with y:

The data of electron effective mass reported in the literature for InxGa12xAs12yNy alloys

display a less scattered distribution with respect to the GaAs12yNy case. This is shown in

Figure 7.6. Most of the me data were derived from a fit of the InxGa12xAs12yNy QW

transition energies using the electron effective mass as one of the fitting parameters [25–27,

29,30]. A combination of infrared reflectivity and Hall measurements were employed in

Ref. [28], whereas electron energy loss measurements were reported in Ref. [31]. For

InxGa12xAs12yNy a rather common behavior can be deduced from the experimental data

reported. me increases with increasing y and it tends to saturation for y . 1:0%:

We now present the data on the electron effective mass and exciton size determined by

us through magneto-PL measurements.
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Figure 7.5. GaAs12yNy electron effective mass as a function of N concentration as derived from the literature

(see figure legend).
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7.4.1 GaAs12yNy

We describe briefly the PL properties of the investigated samples.

Figure 7.7 shows the PL spectra of a set of GaAs12yNy epilayers having different N

concentration. At the very early stage of N incorporation in GaAs (N concentration lower

than 0.01%, bottommost curve in Figure 7.7), the PL spectrum is characterized by a

number of sharp lines (linewidth ,0.5 meV) between 1.40 and 1.48 eV. These lines are

attributed to carrier recombination from electronic levels due to N pairs and/or clusters

[86–91] and are superimposed on a broad band also related to N incorporation. The

luminescence intensity of these transitions varies from line to line and increases with y (not

shown here). An exact assignment of each line to a given N complex is made rather

difficult by the strong dependence of the material optical properties on the growth

conditions, as extensively reported in the literature [87,89–91]. Free-electron to neutral-

carbon acceptor, (e, C), and free-exciton, E2; recombinations are observed at 1.493 and

1.515 eV, respectively. As the nitrogen concentration is increased further ðy ¼ 0:043 and

0:1%Þ; the energy of the excitonic recombination from the material’s bandgap E2 as well

as the (e, C) recombination band start red shifting very rapidly, thus coexisting with and

taking in the levels associated with the N complexes. The energy of these levels does not

change with N concentration [7,89,90]. These features highlight the strongly localized

character of the N isoelectronic traps, contrary to that of shallow impurities whose wave

functions overlap at smaller concentrations (1016–1018 cm23). Eventually at higher N

0.05

0.07

0.09

0.11

0 0.01 0.02 0.03 0.04

Ref. 25 x=0.38 
Ref. 26 x=0.3 
Ref. 27 x=0.23 
Ref. 28 x=1.0 

Ref. 30 x=0.35 
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Figure 7.6. InxGa12xAs12yNy electron effective mass as a function of N concentration as derived from

the literature (see figure legend, where different In concentration values are reported).
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concentrations (alloy limit, y . 0:1%) the GaAs12yNy bandgap keeps red shifting [92]

along with the C-related states [89].

Figure 7.8 shows the PL spectra of another set of GaAs12yNy samples (from the same

source of the samples shown in Figure 7.7) consisting of GaAs12yNy/GaAs 20 nm-thick

quantum wells. The data have been recorded at a temperature and laser power so as to

highlight the contribution of the free-electron to neutral-carbon acceptor (and its LO

phonon replica) recombination in the GaAs12yNy well. The contribution of the free-

exciton is also indicated in the spectra. We point out that at lower P and T the contribution

from localized states becomes predominant and we have not considered these

experimental conditions when performing magneto-PL measurements.

The presence of the (e, C) transitions in our samples plays an important role in the

determination of the electron effective mass as it will be shown in the following.

Figure 7.9(a) and (b) shows the PL spectra recorded under different B values for

GaAs12yNy epilayers having y ¼ 0:043 and 0.1%, respectively. In both the samples, the

E2 and (e, C) peak energies blue shift upon application of B at a rate decreasing with

increasing N concentration. On the contrary, the emission lines located below the (e, C)

band and due to carrier recombination on N complexes remain fixed as B increases,

according to the strongly localized character N pairs and clusters have. The different
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Figure 7.7. Peak-normalized low-temperature (10 K) photoluminescence spectra of GaAs12yNy epilayers with

different ys. E2 and (e, C) indicate the free-exciton and free-electron to neutral-carbon acceptor recombination,

respectively. (e, C)-LO indicates the longitudinal optical phonon replica of the (e, C) transition.
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Figure 7.9. (a) Peak-normalized photoluminescence spectra of a GaAs12yNy epilayer with y ¼ 0:043% taken at

different magnetic fields (T , 30 K). E2 and (e, C) indicate the free-exciton and free-electron to neutral-carbon

acceptor recombinations, respectively. (b) Same as in (a) but y ¼ 0:1%: Reprinted with permission from Ref.

[81], copyright (2003) by the American Institute of Physics.
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behavior of localized and extended states can be best observed in Figure 7.10(a) and (b),

which shows the dependence of the peak energy of each PL emission on magnetic field for

the same samples of Figure 7.9. In particular, the E2 band shifts with B at a lower rate than

the (e, C) band, owing to the larger Coulomb attraction between the electron and hole in

the former case. A qualitatively similar finding is observed in GaAs12yNy/GaAs quantum

wells. Figure 7.11 shows the PL spectra recorded at different B values for a 20 nm-thick

GaAs12yNy/GaAs QW sample. As shown in Figure 7.8, free-electron to neutral-carbon

recombination is the most intense feature in the PL spectra.

We exploit the (e, C) energy shift to derive the electron effective mass in GaAs12yNy for

different N concentrations as explained in the following. Figure 7.12 sketches the E2 and

(e, C) recombinations in a reciprocal space scheme at k , 0: Following the arguments first

invoked by Rossi, Wolfe, and Dimmock [74] and followed by many other authors

[75–82], the C-related level stays fixed in energy because of the dispersion-less

characteristics (i.e. infinite effective mass) of the C impurity level in k-space. On the

contrary, the conduction band bottom and the valence band top shift upon application of B:

Therefore, in this approximation the shift of the (e, C) transition is ascribed entirely to the

shift of the first Landau electron level associated with the conduction band bottom.

Figures 7.13 and 7.14 show the B-induced diamagnetic shift, DEd ¼ EðBÞ2 Eð0Þ; of the

(e, C) recombination band for different N concentrations; the data are offset vertically for
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Figure 7.10. (a) B dependence of the peak energy of the different recombination bands observed in Figure

7.9(a). (b) B dependence of the peak energy of the different recombination bands observed in Figure 7.9(b). Note

that only the (e, C) and E2 transitions display a sizable shift with B:
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ease of comparison. The dashed lines are a fit to the data by means of the formula for

the magnetic field dependence of the bottommost Landau level of the conduction band, i.e.

DEd ¼ sB ¼ ð~e=2meÞB: The slope s of the shift of the (e, C) transition in the B-linear

region of DEd provides directly the value of the electron effective mass. Note that at zero

magnetic field, DEd extrapolates to a negative value, of order of kBT=2; as found in other

magneto-PL measurements of the B-induced shift of free-electron to neutral-acceptor
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Figure 7.11. Peak-normalized photoluminescence spectra (T ¼ 30 K) recorded at different magnetic fields for

a GaAs12yNy quantum well with y ¼ 1:1%: E2 and (e, C) indicate the free-exciton and free-electron to neutral-

carbon acceptor recombinations, respectively.

(e,C)

E−
C k

E(k)  

Figure 7.12. Sketch of the free-exciton ðE2Þ and free-electron to neutral-carbon acceptor [(e, C)]

recombinations in a reciprocal space scheme at k , 0 for B ¼ 0 T (continuous parabolas) and B ¼ 12 T

(dashed parabolas). C indicates the dispertion-less carbon level in the reciprocal space.
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recombinations [75–80]. This behavior is usually attributed to the change in the density of

states of the system from three- to one-dimensional due to the applied magnetic field. In

addition, a residual Coulomb attraction between the CB electron and the hole localized on

the C acceptor may be responsible for a non-linear behavior at low B values.

Figure 7.15 shows the dependence of the electron effective mass on N concentration.

Circles and squares refer to GaAs12yNy epilayers and quantum wells, respectively. Two

main features can be observed. First, the me values show a steep increase already for

y , 0:1% within a very narrow concentration interval. Second, the electron effective mass

does not change much from y , 0:1 up to ,2%. We comment briefly on the first finding.

Figure 7.7 shows that when increasing y the CB minimum red shifts rapidly while the

N-related cluster states (CS) remain pinned in energy. Furthermore, for y , 0:1% the CB

minimum crosses the CS and concomitantly the electron effective mass increases

suddenly. Such an increase can be attributed to a strong interaction between N-complex

states and the states of the CB minimum. The role of CS was invoked as essential for

accounting for the electronic properties of dilute nitrides, in particular the bandgap

reduction [45], and it has been taken into account very recently for explaining the data

shown in Figure 7.15 [93]. We have to mention that a band anticrossing model [6,85]

provides a means to calculate the electron effective mass. However, this model

0

4

8

12

5 6 7 8 9 10 11 12

∆E
d 

(m
eV

)

B (T)

y=0%

y<0.001%

y=0.1%

y=0.043%

s=0.89 meV/T

s=0.83 meV/T

s=0.76 meV/T

s=0.44 meV/T

(e,C)

Figure 7.13. B-induced shift value, DEd; of the (e, C) peak energy as a function of the magnetic field for

different GaAs12yNy epilayers. The continuous lines are fits to the data by DEd ¼ ð~e=2meÞB: The electron

effective mass me is derived directly from the line slope s; also shown in the figure. The data for y ¼ 0% are offset

by 4.0 meV, for y , 0:001% by 1.5 meV, for y ¼ 0:043% by 0.1 meV for ease of comparison.
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Figure 7.15. Electron effective mass versus N concentration for GaAs12yNy epilayers (circles) and quantum

wells (squares). The gray area highlights the concentration interval where the electron effective mass varies most.

The dashed line is a guide to the eye. Reprinted with permission from Ref. [81], copyright (2003) by the American

Institute of Physics.
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underestimates the electron effective mass increase, at least for reasonable values of the

interaction potential.

In order to follow closely the variation of me with the N effective concentration, we

performed a study similar to that described above in a sample irradiated at different H

doses. As already reported by us, H tunes in a controllable and reversible way the

electronic properties of InxGa12xAs12yNy and GaP12yNy [40–49]. This is illustrated in

Figure 7.16 for a GaAs12yNy epilayer ðy ¼ 0:1%Þ: H irradiation leads first to a passivation

of the N cluster states (see second curve from bottom) and then to an apparent reopening of

the GaAs12yNy bandgap toward that of the GaAs reference (topmost continuous curve).

As a matter of fact, both the (e, C) and the E2 recombination bands converge to those of

the GaAs reference with increasing H dose, as shown by continuous lines in Figure 7.16.
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Figure 7.16. Peak-normalized photoluminescence spectra of a GaAs0.999N0.001 alloy treated with different

hydrogen doses dH: Measurements have been performed at about T ¼ 30 K to reduce the contribution from

possible N-related localized states and donor-acceptor pair recombination. The bottommost and topmost spectra

refer to an untreated GaAs12yNy and a reference GaAs sample, respectively. Continuous and dashed lines indicate

PL spectra taken under zero and 12 T magnetic field, respectively. (e, C) indicates the free-electron to neutral-

carbon recombination and E2 indicates the free-exciton recombination. Different laser power densities have been

employed for the different samples in order to highlight the presence of both (e, C) and E2 bands. Reprinted with

permission from Ref. [49], copyright (2004) by the American Physical Society.
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With applying a magnetic field (dashed curves in Figure 7.15), the E2 and (e, C) bands

blue shift with increasing B: Notice that the energy separation between these two

transitions increases on going from the H-free to the H-treated samples, due to a

corresponding decrease in the tensile strain with decreasing the effective N concentration

[48]. In fact, for decreasing N concentration the top of the valence band acquires a more

pronounced heavy-hole character and, in turn, the binding energy of the acceptor impurity

increases.

In Figure 7.17, the energy shift, DEd; of the (e, C) recombination lines are shown as a

function of B for GaAs12yNy (both untreated and hydrogenated) and for the GaAs

reference. The same analysis performed for the untreated samples (see Figures 7.13 and

7.14) has been applied to the hydrogenated samples. We point out that the slope s of the

lines fitting the (e, C) transitions increases with increasing H dose until the slope of the

GaAs reference is obtained.

Figure 7.18 shows the electron effective mass as a function of the energy of the band-

gap exciton. Note that a sound value of me ð¼ 0:065m0; where m0 is the electron mass in

the vacuum) is obtained for the GaAs reference with this method. Filled circles refer to the

GaAs12yNy alloy with y ¼ 0:1% for both the untreated sample (gray symbol) and the
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Figure 7.17. B-induced shift value, DEd; of the (e, C) peak energy as a function of the magnetic field for

different GaAs12yNy epilayers. The continuous lines are fits of DEd ¼ ð~e=2meÞB to the data. The electron

effective mass me is derived directly from the line slope s; also shown in the figure.
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hydrogenated samples (black symbols). Gray filled triangles are the me values measured in

unhydrogenated samples with different N concentration (y ¼ 0; y , 0:01%; y ¼ 0:043;

and 0.21% both untreated and H-irradiated). me varies biuniquely with the sample

bandgap energy, namely, it depends on the effective N concentration in the crystal

regardless of how this concentration has been achieved (either by N incorporation in

GaAs or by H irradiation of GaAs12yNy). Most importantly, these findings allow

monitoring the evolution of the electronic properties of GaAs12yNy in a virtually

continuous manner. In particular, the sudden change in me shown in Figure 7.15 is

confirmed, thus providing further evidence that N-induced localization effects start at

very low values of y: Interestingly, the energy at which the electron effective mass

increases abruptly (,1.485 eV) falls in a spectral region where many N-related complexes

emit [7,86–91]. In particular, a cluster emitting at 1.478 eV can be observed in the

bottommost spectrum of Figure 7.7 ðy , 0:01%Þ: In turn, the interaction between this

cluster (or others falling in a nearby energy interval) might be responsible for the large

variation in me:

Theoretical calculations predict that the electron wave function at the conduction band

edge E2 has a given percentage of non-G character because of translation symmetry

breaking of the lattice stemming from N incorporation [89,94]. This results in a sizeable

wave function localization despite the fact that the E2 state has an extended character far

away from nitrogen [84,94]. Such localization affects the electron effective mass as well as

the exciton wave function size. Magneto-PL can be used to estimate the average spatial

extent of bound-carrier systems [95]. Several theories and calculation techniques have
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Figure 7.18. Dependence of the electron effective mass on the free-exciton peak energy at 10 K. Filled dots

refer to the untreated (gray) and hydrogenated (black) GaAs0.999N0.001 samples, gray triangles refer to GaAs12yNy

alloys with different y values (both untreated and irradiated with H). The gray area highlights the concentration

interval where the electron effective mass varies most (see also Figure 7.15). The dashed line is a guide to the eye.

Reprinted with permission from Ref. [49], copyright (2004) by the American Physical Society.
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been developed to study the properties of magnetoexcitons in semiconductors [96–101].

The simultaneous effect of the Coulomb interaction and an external magnetic field on an

electron–hole bound system is a difficult problem, which often can be solved only under

specific magnetic field limits. For excitons in bulk GaAs12yNy we restrict ourselves to

magnetic fields low enough to treat B as a perturbation [95].

Figure 7.19 shows the dependence of the exciton diamagnetic shift on B for different N

concentrations. The continuous lines are fits of DEd ¼ aB2 ¼ e2kr2
ehl=ð8mÞB

2 to the exciton

diamagnetic shift in the low-field regime (small perturbation limit [95]). reh and m are,

respectively, the electron–hole distance and the reduced effective mass of excitons. At very

low N concentration,a rapidly decreases by a factor of,2 with respect to the value it has in

GaAs and tends to saturate for y . 0:1% (not shown here). This behavior matches well with

that found for me: By using the me values determined previously, we get an estimate of

rexc ¼
ffiffiffiffiffiffi
kr2

ehl
q

for each sample from the diamagnetic shift formula DEd ¼ aB2: The rexc

values are shown as a function of y in the inset of Figure 7.19. The fast decrease in rexc

provides further evidence that N-induced localization effects start at very low values of y:

We performed a similar study in hydrogenated GaAs12yNy epilayers. Figure 7.20 shows

the shift DEd of the exciton energy as a function of B2 for GaAs12yNy with y ¼ 0:1% (both

untreated and hydrogenated, filled symbols) and for the GaAs reference (open symbols).

The continuous lines are a fit of DEd ¼ ½e2kr2
ehl=ð8mÞ�B

2 to the E2 data in the quadratic

low-field region similar to what shown in Figure 7.19. The inset of Figure 7.20 shows in
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Figure 7.19. Energy shift with magnetic field of the free-exciton recombination E2 for different GaAs12yNy

epilayers. The continuous lines are fits of DEd ¼ ½e2kr2
ehl=ð8mÞ�B

2 to the data, where kr2
ehl is a fit parameter. The

inset shows the dependence of rexc ¼
ffiffiffiffiffiffi
kr2

ehl
q

on N concentration.
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detail the B range where a B2 approximation holds. Figure 7.21 shows the dependence of

the exciton size on the exciton bandgap energy. Symbols have the same meaning as in

Figure 7.18. Similar to me; the combined use of untreated and H-irradiated samples allows

us to follow the evolution of the electronic properties of carriers in GaAs12yNy in detail,

thus providing firm guidelines to models aimed at describing the electronic properties of

dilute nitrides.
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Figure 7.21. Exciton size dependence on the free-exciton peak energy at 10 K. Filled dots refer to the untreated

(gray) and hydrogenated (black) GaAs0.999N0.001 sample, gray triangles refer to GaAs12yNy alloys with different

y values. Reprinted with permission from Ref. [49], copyright (2004) by the American Physical Society.
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7.4.2 InxGa12xAs12yNy

InxGa12xAs12yNy alloys present several interesting features. Indeed, a preferential

formation of In-N over Ga-N bonds in annealed InxGa12xAs12yNy was reported in

Refs. [102,103] by using bandgap and vibrational mode measurements, respectively.

Strain reduction was proposed as the driving mechanisms leading to an In-rich

environment of the N atoms [102,103]. Monte Carlo simulations confirmed the

experimental findings [104], although recent X-ray absorption measurements showed a

much reduced effect of short-range ordering [105]. Another important feature of

InxGa12xAs12yNy is the variation of the relative energy distance between the levels

introduced by N atoms and the CBM of the host matrix due to In alloying. A slower

rate in the bandgap reduction upon N incorporation is usually observed in

InxGa12xAs12yNy with respect to GaAs12yNy [1–4]. Also, the rate at which the

bandgap depends on temperature as compared with the N-free lattice shows a smaller

variation in In-containing than in In-free nitrides [11,12]. We now consider the effect

of N on the electron effective mass of InxGa12xAs alloys with high x (,30%).

Figure 7.22(a) and (b) shows the magneto-PL spectra at T ¼ 100 K of 6.0 nm-thick

In0.32Ga0.68As12yNy QWs having y ¼ 0 and 2.7%, respectively. The data were

recorded at a temperature high enough as to have no emission contribution from
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Figure 7.22. (a) Peak-normalized photoluminescence spectra recorded at T ¼ 100 K and different magnetic

fields for a 6 nm-thick In0.32Ga0.68As12yNy QWs having y ¼ 0%. (b) Same as in (a) but y ¼ 2:7%:
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localized carriers. The N-containing sample shows a smaller diamagnetic shift

consistent with a heavier reduced mass and smaller wave function extent of exciton.

Since carriers in present samples have an enhanced two-dimensional character because

of the strong confining potential provided by the high In concentration ðx , 0:3Þ in the

QWs, we analyze the diamagnetic shift of the exciton by considering a variational

method in two dimensions. We use the exciton effective mass ðmÞ as an adjustable

parameter [100,101]. The Hamiltonian of the system is given by

Hr ¼ 2
›2

›r2
2

1

r

›

›r
þ

g2r2

4
2

2

r
: ð7:3Þ

r is the exciton radial coordinate in the QW plane,

g ¼
eB~

2mRy

Ry is the exciton binding energy

Ry ¼
e2

8p1a0

;

where 1 is the absolute dielectric constant of the host lattice and

a0 ¼
4p1~2

me2

is the exciton Bohr radius. The 22=r term in the right-hand side of Eq. (7.3) represents the

Coulomb potential [99,100]. The value ofm is found by rendering minimum the expectation

value of Hr calculated over the trial wave function of the exciton given by [101]

fðr; l;sÞ ¼ exp 2
gr2

4s
2 2lr

 !
; ð7:4Þ

where l and s are two variational parameters.

Figure 7.23 shows the result of the fitting procedure applied to the experimental

diamagnetic shift values for the two QWs shown in Figure 7.22. The exciton effective

mass values are m ¼ 0:039m0 and 0:049m0 for y ¼ 0 and 2.7%, respectively. In order to

derive the electron effective mass from our data we set the in-plane effective mass of holes

equal to 0:11m0 in agreement with the data reported in Ref. [106] and shown in Figure 7.4

of Section 7.3. Figure 7.24 shows the dependence of me (filled symbols) on N

concentration. Data derived from the literature are also shown (open symbols) for

comparison purposes. A good agreement is found between our results and those obtained

by different experimental techniques. This is in contrast with the scattered values of me

reported by various authors in GaAs12yNy (see Figure 7.5).
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Figure 7.23. Diamagnetic shift, DEd; measured at T ¼ 100 K in an In0.32Ga0.68As0.973N0.027 QW (circles) and

in an In0.32Ga0.68As reference QW (squares) versus magnetic field, B: The continuous lines are fits of the

variational method reported in Section 7.4.2 to the data. The exciton reduced mass resulting from the fit is

reported.
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Figure 7.24. N concentration dependence of the electron effective mass me for the InxGa12xAs12yNy samples

studied in this work (filled symbols) and taken from the literature (open symbols).
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In InxGa12xAs12yNy the dependence of me (and rexc; not shown here) on y shows two

main differences with respect to the GaAs12yNy case. These quantities show a sizable

change when y , 1% (one order of magnitude greater than the value found in

GaAs12yNy). In addition, the variation in me and rexc occurs over a larger N

concentration interval possibly due to different indium concentrations considered.

These observations point toward a softening of N-related effects in InxGa12xAs, due to a

lower degree of interaction between N states and the levels of continuum associated with

the conduction band.

7.5. CONCLUSIONS

We studied the electronic properties of InxGa12xAs12yNy/GaAs heterostructures by

magneto-PL. The samples investigated cover a N compositional range spanning from the

doping to the full alloy limit continuously. Several important aspects emerged from our

investigations.

(i) We showed that magneto-PL as a function of temperature provides a new clue on the

origin of radiative recombination at low temperatures in InxGa12xAs12yNy. Indeed,

the shift of the PL peak energy induced by B decreases sizably and changes its

dependence on B from linear to quadratic when going from low to high temperatures.

This counterintuitive result shows that the origin of the radiative recombination at

low temperatures (T lower than 100 K) is not excitonic, contrary to the previous

assignments, and is due to free holes recombining with electrons localized in

N-rich regions.

(ii) The electron effective mass (and exciton wave function extent) is a much more

insightful parameter than the bandgap energy in assessing the origin of the puzzling

evolution of the electronic properties of dilute nitrides when the N concentration

varies. Indeed, with increasing y the electron effective mass shows a sudden change

for y , 0:1% (corresponding to a GaAs12yNy bandgap value of ,1.48 eV) within a

very narrow interval of N concentrations. A crossing between the red shifting CBM

extended states and one or more electronic levels in the gap due to N clusters is the

likely physical origin of the sudden change in me (and rexc). Qualitatively similar

dependences of me and rexc are found in InxGa12xAs12yNy alloys with x , 30%: In

this case a large variation in the electron effective mass and exciton radius occurs

for y , 1%:

(iii) Finally, our work indicates that an effective mass scheme is applicable also to

InxGa12xAs12yNy notwithstanding the large fluctuations in the host crystalline

potential, which are induced by N.
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