
Progress on QCD 
evolution equations

Rome,  8 September ’08

Guido Altarelli
Roma Tre/CERN

In honour of Giorgio Parisi for his 60th birthday



In the years 1976-78 I have done a few papers on QCD 
with Giorgio

Charmed Quarks and Asymptotic Freedom in Neutrino 
Scattering. Guido Altarelli (Rome U. & INFN, Rome) , G. Parisi 
(Frascati) , R. Petronzio (Rome U. & INFN, Rome). 
Phys.Lett.B63:183,1976. Cited 75 times 

Asymptotic Freedom in Parton Language. Guido Altarelli 
(Ecole Normale Superieure) , G. Parisi (IHES, Bures-sur-Yvette) .  
Nucl.Phys.B126:298,1977. Cited 3719 times 

Transverse Momentum in Drell-Yan Processes. Guido 
Altarelli (Rome U. & INFN, Rome) , G. Parisi (Ecole Normale 
Superieure) , R. Petronzio (CERN) . Phys.Lett.B76:351,1978. 
Cited 169 times 

Transverse Momentum of Muon Pairs Produced in 
Hadronic Collisions. Guido Altarelli (Rome U. & INFN, Rome) , 
G. Parisi (Ecole Normale Superieure) , R. Petronzio (CERN) . 
Phys.Lett.B76:356,1978. Cited 143 times 

In particular the “French” paper was on the QCD evolution
equations for parton densities.

Still a subject of great actual interest. I review recent progress





Deep Inelastic Scattering

l + N -> l ' + X,
l =e,µ,ν

A fundamental role in the development of QCD:

from the beginning:  Establishing quarks and gluons as partons
         Constructing a field theory of strong int.ns
along the years: Quantitative testing of QCD

Totally inclusive
QCD theory of scaling violations crystal clear
(based on ren. group and operator  exp.)
Q2 dependence tested at each x value)
Measuring q and g densities in the nucleon
Instrumental to compute all hard processes
Measuring αs
Always presenting new challenges:
Structure functions at small x
Polarized parton densities

•Many structure functions
•Fi(x,Q2): two variables
•Neutral currents, charged currents
•Different beams and targets
•Different polarization



•Approximate Scaling 
•Success of Naive Parton Model  Bjorken, Feynman

From constituent quarks (real? fictitious?) to parton quarks
(real!)

In the ‘70’s a great role in establishing QCD 

•R= σL/σT  ---> 0  Spin 1/2 quarks
•~50% of momentum carried by neutrals     Gluons
•Quark charges:

F=2F1~F2/x
                              ...... = small sea

Fγp=4/9 u(x) + 1/9 d(x) + ......
Fγn=4/9 d(x)  + 1/9 u(x)  + ......
Fνp~ Fνn = 2 d(x)  + ......
Fνn~ Fνp = 2 u(x)  + ......

F= F(x), u=u(x), d= d(x): 
naive parton model (scaling)  

σL~0

•
•• •• d
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The basic experimental set ups:

• no initial hadron (....LEP, ILC, CLIC)

• 1 hadron (....HERA, LHeC)

• 2 hadrons (....SppS, Tevatron, LHC)

Progress in particle physics
needs their continuous
interplay to take full 
advantage of their 
complementarity

αs(Q2)

αs(Q2) & q(x,Q2), g(x,Q2)



Parton densities extracted from DIS are used to compute hard 
processes, via the Factorisation Theorem:

For example, at hadron colliders

P

P

PA

PB

X

X=V, jets, QQ, H.....

Q=b,c,t

•Very stringent tests of QCD
•Feedback on constraining parton densities

V=γ*,W,Z

x times density of parton A

reduced X-section

σ (s) = dx1
x1

∫
A,B
∑ dx2
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Proton Structure 
Function F2(x,Q2)

Great progress in the DIS 
data culminated at  HERA





The scaling violations are clearly observed
and the (N)NLO QCD fits are remarkably good.
These fits to Fi(x,Q2) provide

•an impressive set of QCD tests
•measurements of q(x,Q2), g(x,Q2)
•measurements of αs(Q2)

For example in the theory of scaling violations

Progress in experiment has been matched by 
impressive achievements in theory 

Gribov, Lipatov; Altarelli, Parisi; Dokshitser



Example of NLO QCD evolution fit to HERA data

NLO fits to
HERA data
are not
perfect but
amazingly
good!!

ZEUS



Even at small x the NLO fit is rather good!

But terms in (αslog1/x)n should be important!!

At HERA for Q2 values
3, 10, 102,103 GeV2

αslog1/x can be
as large as 
4.3, 3.0, 1.2, 0.6



For over a decade all splitting funct.s P have been known to 
only NLO accuracy: αsP ~ αsP1+αs

2P2 +....... 
Floratos et al; Gonzales-Arroyo et al; Curci et al; Furmanski et al

Finally, in 2004, the calculation of the NNLO splitting functions
has been totally completed αsP ~ αsP1+ αs

2P2 + αs
3P3+.......

Moch, Vermaseren, Vogt ‘04

A really monumental, fully analytic, computation

Then the complete, analytic NNLO results have been
derived for the first few moments (N<13,14).

Larin, van Ritbergen, Vermaseren+Nogueira

Splitting functions stimulated the development of the most
advanced computational techniques over the years



A completely analytical result
Moch, Vermaseren, Vogt ‘04



Anomalous dimensions vs N, the Mellin index

Good convergence is apparent



At HERA for Q2 > 1 GeV2

1/x < 105

bulk of data at 

1/x ~ 103 --104

At HERA&LHC
at small x and realistic Q2 
(αslog1/x)n ~ o(1)
must be controlled!

x

At the LHC for producing
a M = 10 GeV mass
(a bb pair) 1/x < few 106

depending on the
rapidity y

 

x1x2s = (2mb )
2 ⇒ x = x1x2 

2mb

s
~ 0.7 ⋅10−3



The problem is clear:

• At HERA & LHC at small x the terms in (αs log 1/x)n cannot 
be neglected in the singlet splitting function

• BFKL have computed all coeff.s of (αs log 1/x)n (LO BFKL) 

• Just adding the sequel of (αs log 1/x)n terms leads to a
dramatic increase of scaling violations which is not observed
(a too strong peaking of F2 and of gluons is predicted)

• Later, also all coeff.s of αs(αs log 1/x)n (NLO BFKL) have been 
calculated 

• (Fortunately) they completely destroy the LO BFKL prediction

The problem is to find the correct description at small x

• The inclusion of running coupling effects in BFKL is an issue



Our goal is to construct a relatively simple, closed form, 
improved anomalous dimension γI(α,N) or 
splitting function PI(α,x)

PI(α,x) should

• reproduces the perturbative results at large x

• based on physical insight resum BFKL corrections at small x

• properly include running coupling effects

• be sufficiently simple to be included in fitting codes

The comparison of the result with the data provides a
new quantitative test of the theory



Moments

For each moment: singlet eigenvector with
largest anomalous dimension eigenvalue

Singlet quark

Inverse MT (ξ>0)t-evolution eq.n

γ: anom. dim

known

Pert. Th.: LO NLO

Mellin transf. (MT)

NNLO

Moch, Vermaseren, Vogt ‘04



Recall:

At 1-loop:

This corresponds to the “double scaling” behavior at
small x:

β(α) = −β0α2+...

A. De Rujula et al ‘74/Ball, Forte ‘94

Amazingly supported by the data

splitting function anomalous dimension



LO

LO+NLO

LO+NLO+NNLO

The singlet splitting function in perturbation theory

due to 
αs

3log1/x
term

αs = 0.2

αxP1l+ α2xP2l+ α3xP3l +.....~ α + α2 log1/x + α2 + α3 (log1/x)2 + 
+ α3 (log1/x) +.... accidentally missing



Moch et al found that the approximation to the 2-loop
singlet splitting function in terms of leading logs is not good

leading log 
term

exact



In principle the BFKL approach provides a tool to control 
(α/N)n corrections to γ(N, α), that is (α log1/x)n to xP(x,Q2)/α

Define t- Mellin transf.:

with inverse:

ξ-evolution eq.n (BFKL) [at fixed α]:

with
known

Bad behaviour, bad convergence

χ0, χ1 contain all
info on (αlog1/x)n 

and α(αlog1/x)n



At 1-loop:

Near M=0:

At M=1/2

Note the 1/M behaviour and that the constant and linear
terms in M are missing



χ

M

αs=0.2

αχ0+α2χ1

αχ0

The minimum value of αχ0 at M=1/2 is the Lipatov intercept:

It corresponds to (for x->0, Q2 fixed):

xP(x)~αx-λ0 Too hard, not supported by data

χ1 totally 
overwhelms χ0!!

But the NLO terms
are very large



Basic ingredients of our resummation procedure

• Duality relation

• Momentum conservation

• Symmetry properties of the BFKL kernel

• Running coupling effects

from consistency of ξ and t evolution

as γ(α,1) = 0



Based on G.A., R. Ball, S.Forte:

NPB 575,313,’00
hep-ph/0001157 (lectures)
NPB 599,383,’01, hep-ph/0104246

    More specifically on
 NPB 621,359,’02, NPB 674,459,’03
   hep-ph/0310016

and finally, on our most recent works:
 hep-ph/0606323, NPB 742,1,’06,
 NPB 799,199,’08

Related work (same physics, same conclusion,
different techniques): Ciafaloni, Colferai, Salam, Stasto;
Thorne&White



In the region of t and x where both

are approximately valid, the "duality” relation holds:

Note: γ is leading twist while χ is all twist.
Still the two perturbative exp.ns are related and improve 
each other.
Non perturbative terms in χ correspond to power or
exp. suppressed terms in γ.



χ γ

M N

M

χ

χ(γ(N)) = N

Example: if

4α

1/2 4α

1/2

Graphically duality is a reflection

Note: γ contains (α/N)n terms



For example at 1-loop: χ0(γs(α,N))=N/α
χ0  improves γ  by adding a series of terms in (α/N)n:

χ0 ->

γDL is the naive
result from
GLAP+(LO)BFKL
The data discard
such a large rise
at small x

from γDL

αs=0.2



Similarly it is very important to improve χ by using γ1l.

Near M=0,   χ0~1/M,   χ1 ~ -1/M2.......

Duality + momentum cons. (γ(α,N=1)=0)

{

Double Leading Expansion

γ(χ(M)) = M



Momentum conservation: γ(1, α)=0 A(1)=1

Duality: γ(χ(M)) = M



n n

α/N

α

αN

(α/N)3

(α/N)5

m m

γDL
χDL

In the DL expansion one sums over “frames” rather than
over vertical lines like in ordinary perturb. theory



χ

DL, LO:

BFKL, LO

αχ0+α2χ1

αχ0

The NLO-DL is good 
near M=0, but it is
still bad near M=1

Can be fixed 
by
symmetrization 



Symmetrization

The BFKL kernel is symmetric 
under exchange of the external
gluons

This implies a symmetry 
under M <--> 1- M for
χ(α,M) broken by two effects:

• Running coupling effects (α(Q2) breaks the symmetry)
• The change of scale from the BFKL symm. scale ξ=ln(s/Qk)

to the DIS scale ξ=ln(s/Q2)

G. Salam ‘98



Symmetrization makes χ regular at M=0 AND M=1 

In symmetric variables:

Note how the symmetrized LO DL and NLO DL are very close!

fixed coupling: α=0.2



The same now in DIS variables

All χ curves have a minimum and follow GLAP closer.
The remaining ingredient is the running of the coupling.



A considerable further improvement is obtained by including 
running coupling effects

Recall that the x-evolution equation was at fixed α

The implementation of running coupling in BFKL is not simple.
In fact in M-space α becomes an operator

In leading approximation:



By taking a second MT the equation can be written as 
[F(M) is a boundary condition]

It can be solved iteratively

or in closed form:

H(N,M) is a homogeneous eq. sol. that vanishes faster 
than all pert. terms and can be dropped.



The small x behaviour is controlled by the minimum of χ(M)

We make a quadratic expansion of χ(M) near the minimum.

We can solve the equation exactly:

For c, k proportional to α : the solution is an Airy function
For example, if we take χ(α,M) ~ α χ0(M)

For  general c(α), κ(α), to the required accuracy, it is sufficient 
to make a linear expansion in 
the solution is a Bateman function.



The asymptotic small x behaviour is considerably softened
by the running!
Note that the running effect is not replacing α --> α(Q2) in the
naive exponent

quadratic kernel
(LO res)

naive exponent

true
exponent



DL resummation with symmetrization and running coupling
effects progressively soften the small x behaviour

αs ~ 0.2



The goal of our recent work is to use these results to construct
a relatively simple, closed form, improved anom. dim. γI(α,N)
or splitting funct.n Pl(α,x) 

PI(α,x) should

• reproduces the perturbative results at large x

• based on physical insight resum BFKL corrections at small x

• include running coupling effects

• be sufficiently simple to be included in fitting codes

The comparison of the result with the data provides a
qualitatitevely new test of the theory



Here are the complete results using the DL resummation,
symmetry and running coupling effects at LO and NLO

naive BFKL

γI

our best 
result



The anomalous dimension



An expanded view at small N

The perturbative γ has poles at N=0. The resummed at NB>0



The comparison with Ciafaloni et al (CCSS) is simply too good
not to be in part accidental (given the th ambiguities in each
method)

The main diff.
with CCSS is
that they
solve numerically
the running
coupling eqn.
(no quadratic
expansion near 
minimum). They
do not include
NLO GLAP 1/x



Q2= 10 GeV2

       100
       1000

input
Q2=4

Example: the resummed 
gluon at not too small x is
less enhanced

Due to the dip thereare less 
scaling violations at HERA 
than from NLO



x = 10-2

x = 10-4

x = 10-6

NNLO GLAP

NLO Res: MSbar
NLO Res: Q0

Initial pdfs at Q0 = 2GeV adjusted so that F2
Res = F2

NLO  etc.

x = 10-6

x = 10-4
Effect of 

resummation
opposite 
to NNLO

As an effect of the dip there is less evolution for F2 
than at NLO (while for NNLO the opposite is true)

ABF ‘08



Initial pdfs at Q0 = 2, 5 and 10GeV adjusted so that F2
Res = F2

NLO  etc.

NLO Res: Q0

NLO Res: MSbar

NNLO GLAP

Q0  =  2GeV,  5GeV,   10GeV

x = 10-4

x = 10-6

Resummation:
fewer gluons 

at LHC

K-factors for gluons

Neglecting resummation makes a 10-20% error on pdf’s 
in going from HERA to the LHC



Summary and Conclusion

• The matching of perturbative QCD evolution at large x and of
BFKL at small x is now understood.

• Duality, momentum conservation, symmetry under gluon
exchange of the BFKL kernel and running coupling effects are
essential

• The resulting asymptotic small x behaviour is much softened
with respect to the naive BFKL, in agreement with the data.

• We used these results to construct an improved splitting
function that reduces to the pert. result at large x and
incorporates BFKL with running coupling effects at small x.

• The impact of the small x corrections is small-to-moderate at
the LHC, but would be large at a future hadron supercollider



Extra slides



Improved anomalous dimension

1st iteration: optimal use of γ1l(N) and χ0(M)

Properties: • Pert. Limit α->o , N fixed

• Limit α->o , α /N fixed

o(α α/N)

Pole in 1/N
Cut with branch in α c0 

the Airy term cancels the cut and introduces a pole at N=N0

o(α2)



γ γI

GLAP LO&NLO

γDL

αs=0.2

γDL(α,N)=•

•



Also adding the NLO pert. anom. dim., this is the best one
can get from χ0(M).

1/x

LO+NLO GLAP

γI
NL

naive BFKL

Here, since we started from χ0, symmetrization was not
used and we only have naive BFKL + running coupling effect


