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Who am 1

Discuss today:

* Variational inference and approximation in graphical
models.

Reasons I find Statistical Physics inspiring:

LDPC, kSAT, compressed sensing : where are the hard
problems, why does local search fail or slow down, can
nucleation help avoid metastability? phase characteristics
and transitions.



My research: Edinburgh University; Martin Evans

Self-propelled particles (non-equilibrium physics on a 1d
lattice).



My research: Aston University (NCRG); David Saad

* Code Division Multiple Access (analysis of protocols for
multi-user access channels).
Noisy computation (robustness of computation on random
directed acyclic graphs).
1-in-k SAT on random graphs (a boolean constraint
satisfaction problem).



My research: Hong Kong UST; Michael Wong

Typical case hard optimization (next nearest neighbor Ising
models on random graphs).

Compressed sensing (extracting a sparse signal of N
components from M < N measurements).



My research: University of Rome; Federico
Ricci-Tersenghi

* Loop-correction algorithms (improvements to tree-like
iterative algorithms).

* Linear response for inverse problems (improvements to
simple matrix inverse methods).
Compressed sensing.
Typical case hard optimization (vertex cover/ resource
allocation).



Short summary

I have been to a lot of photogenic places...
I like optimization problems on random graphs.

Next The MARG problem, graphical model representations.



Graphical models

The probability for N interacting variables  can be described:
1
Pe) = 7 [Tvute)

A factor graph representation is very general:

| Interactions

O O OVaxiables J

The marginalization and maximization problems:
MARG Approximate P(z;),P({z;,z;}) and other marginals
efficiently.
MAX Approximate argmax, P(x).
Inference (marg. / max) is NP-hard in the (interesting regimes)
of the problems presented.



My research as graphical models

e.g. Code Division Multiple Access

Factor Graph

Decoding

Transmitted bit estimates
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Given signal reconstruct best source (MAX), or best marginal
estimates (MARG).
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Working from the free energy for graphical models

The free energy is
F=- logz Hq/;a(xa)
x a

The sum over N states should not be done naively:

1 Transfer-Matrix method (Junction Tree algorithm), or
Markov Chain Monte Carlo (MCMC).

If too slow:

2 Advanced or simple mean-field methods (variational
methods).



Graphical models, a restricted example

essential exponential family of probabilities; discrete states.

digestible Pairwise interactions; spin variables z; = +1, § = 1.

P(z) =exp | > Jywix; + ZH:Bl + F(J,H)

j

The free energy ensures normalization

F(J,H)=—log Zexp Z Jijxixy + ZH:@



Graphical models, a restricted example

P(z) = exp(Y_ Jijziz; + Y Hiwi + F(J, H)) . (2)
i i
To do:
1 (Direct) Infer marginal distributions E[z;] and E[z;x;]
given couplings J and fields H.
2 (Inverse) Infer couplings and fields from M data samples
{zt, ... 2™} or statistics E[v;] , E[z;z;].

top DI pairs



Short summary

Graphical models can represent a range of disordered
problems, revealing features through graph theoretic
properties.

The MARG problem is to approximate P(z;) from an
intractable distribution P(z).

Next Solving the MARG problem from the variational free
energy or by local iterative schemes.



Relation between the free energy and marginals

The free energy is the moment generating function, the
marginals are simple functions of the moments

F(H, J) = —log Z exp Z Jij:ci:vj + Z H;x; . (3)
T i %

Magnetizations (1st order cumulants):

0
0H;

Elz] = F (4)

Connected Correlations (2nd order cumulants, responses):
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Variational principle

VP From a tractable family of probability models Q(z), select a
model minimizing the Kullback-Leibler Divergence to P(z).

L@QIP) = 3 Q) (8)20 (6)

The variational free energy is an upper bound to F(H,J)
Fy,5(Q) = EQllog Q(x)] = > _ JijEqlwiz;]) — Y HiEq[xi]
i %

H,J are the quenched parameters, {Q(z) : > Q(x) =1} is
variational and easily marginalized.



LI

NMF

BP

Local iteration schemes

Define local probability approximations (e.g. magnetization
E[z;]), pass information locally to refine the estimates
under consistency constraints.

Mean-field argument (exact for weak correlations): all
variables have a magnetization, observing neighbor states
and local interactions one can reestimate:

M; = tanh(Hi + Z JleJ) (8)

J

Belief propagation (exact for locally tree like graphs):
variables have a set of conditional magnetizations one for
each outward neighbor, which is the magnetization
excluding the effect of that neighbor (J;; = 0). These
conditional magnetizations are updated

mi—; = tanh ¢ H; + Z atanh[tanh(Jx)myg ] (9)
k\j



Local iteration versus variational schemes

e Mean field iterative scheme = local minima of Mean field
free energy.

e Belief propagation iterative scheme (Gallagher,
Bethe-Peiels, ... ) = local minima of Bethe free energy
(Yedidia 2005).

e Expectation propagation schemes (Minka) = Weighted sum
of Gaussian and Marginal free energies (Wainwright and
Jordan, 2008).

Most common iterative schemes represent specifiic ways to
minimze non-convex free energies.



Belief propagation (Bethe free energy): it does work

Factor Graph Belief Propagation

Transmitted ]\wu estimates
h

©
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The MARG problem is solved in practice by BP for

N ~ 0O(100),0(1000), in CDMA, LDPC (channel coding),
compressed sensing, community detection models. Large,
disordered "locally tree like” or ”fully connected” networks.



Belief propagation (Bethe free energy): it doesn’t work

Locally homogeneous graphs:

L,
1) Insensitive to boundary
2) Insensitive to dimensionality

For locally identical problems coupling J, field H, connectivity
k:
MF

M = tanh {H + kJM} (10)

BP
m_, = tanh {H + (k — 1)atanh[tanh(J)m_]} (11)



Corrections for short and long loops, sensitivity to
dimensionality and boundary.

*Short loops: Cluster Variational Method (Kikuchi,51)

pay an exponential price in cluster width, loops can remain but
on larger regions.

Long loops: Loop calculus (Chertkov and Chernyak,05)
many interesting graphs have a factorial number of loops, how
to select a subset?

something else...:

Moment matching: Minka and Qi (2004), Opper and Winther
(2005).

*Linear Response: Kappen et al. (1998), Welling and Teh
(2004), Montanari and Rizzo (2005), Yasuda et al (2013),
Opper and Winther (2001)

Variable Clamping: Eaton et al. (2008), Mooij et al (2005)



How to calculate linear response

Using an unconstrained representation of the free energy e.g.

1 + (Mz* + 5MZ)1'1

Free energy about the fixed point (by Taylor expansion)
* 1 T 82F’model
Frnodet, 1,0 (M) = Fnodel(M )+0+§5M OMOMT |,,. oM (13)

A small change in H, will lead to a correspondingly small
change in the magnetization

OF,,
Frnoder, 50,7 (M* + M) = Frpqer(M*) + 6HT odel |
OH |-
82F del 1 82F del
gT 2 omodel) shp o g T S omedel s (14
M ormont |, M M Garanr ), M ()

Need to minimize in the variational parameter (the
perturbation § M)



How to calculate linear response (continued..)

The new saddle-points

0*F, 0*F,

o T model T model
0 = off OHOMT |,, oM B TaMT
aiM - o aQFmodel

oH| — 9MoMT|,,

Inverse correlation matrix is a simple function of the Hessian.
Infact

{aM]l _PF(M*,CY)  8PF(MT,C7) {82F(M*,C*)]1 O2F(M*,C*)

OH OMOMT — OMACT 0CoCT 0CoOMT™T

In the case of Bethe and NMF, the estimates obtained depend
on the loops. Note we can also use the expression to estimate
couplings:

—1 2 data data 2 * *
([Cdata] ) :8F(M ¢ )—...:—Jij+|:7aS(M’C)_
i,j

M, OM, M, OM,



Next

Short summary

Choose a variational form @) and minimize.

Possibly improve the estimation of correlations with linear
response.

Belief Propagation values for M*, C* are ignorant of loops;
linear response dM/dH can see loops, but is also inexact.
The linear response expression can be inverted to get J as
simple functions of M and C (from data).

Recent work with Federico Ricci-Tersenghi; making
variational approximations self-consistent with linear
response constraints



A simple idea

1 Clamp out some small subset of troublesome variables.

2 Use cluster methods to coarse grain the problem (deal with
short loops), use expansion methods for important long
loops.

3 Calculate message perturbations (linear response) to yield
extra information (connected correlations).

3(NEW) Require consistency between the message information and
the linear response information.

J. Raymond and F. Ricci-Tersenghi, “Mean-field method with
correlations determined by linear response,” Phys. Rev. F,
vol. 87, p. 052111, 2013.



Why should the constraints help?

A variational approach based on trial probability distribution @

F(Q) =) [Q(z)log Q(x)]
_ZJi,j Z[ x)x;x;| — ZH Z ;] (15)

1 Constraints on the physical quantity make the method
consistent (in its predictions).

2 In a good variational approximations Q* ~ P + ed P: 1st
order derivative errors O(e), n'" order derivative errors
O(€™). (e.g. Opper, 2003).

3 First derivative conditions introduce local consistency. The

Hessian related constraints introduces a global consistency
(Welling and Teh, 2004).

NEW Fix parameters by second order constraints, reduce errors
and include extra graph wide consistency.



Two ways to get the self response

At the minima of the variational free energy

2
1- |:6Fmodel:| =1- (M’L)2 .

0H;
If we were using the exact free energy, this would equal the
response
OM; 0?
= Frodel -
0H; 0H;0H;

but this is violated in NMF, Bethe and other
approximations. we introduce a constraint.



Variational approach implemented

Reasonable trial distribution (e.g. NMF, independent variables)

N N .
Q) = [T @itm =TT 5" (16)
i=1

i=1
Kullback-Leibler divergence (relative entropy) is:
D(QIIP) = =) JijEqlwix;] = Y HiEg[ri] + Eqllog(Q)]
ij i
—F(J,H)>0. (17)

Eg is the expectation with respect to the trial distribution. The
model free energy is

Fmodel(M) = Emodel(M) - Smodel(M) > F. (18)

STD Minimize w.r.t M. Oy F =0
NEW Minimize subject to (1 — M?) = [0%F(M)];..



Diagonal and Off-diagonal consistency

Beliefs can always be represented by magnetization (M) and
correlations (C) in a consistent way:

1 + MZ'{EZ' Cl i Ly 4
bz(:z:l) = T bij(xz‘) = bz‘(ifz’)bj(fﬁj) + #

On-diagonal constraint: Lagrange multiplier A;

aF‘model 2 o N2 | a21‘7‘model
- () <] 1 [ e

Off-diagonal constraint: Lagrange multiplier A; ;

aF‘model . aFmodel aF‘model | . |= a2F‘model
dJij oH;, 0H; | Y | 0H0H;

NB: derivatives evaluated at M*, C*



Diagonal and Off-diagonal consistency

To minimize the constrained variational free energy

ouF(M,C,\) = 0 saddle-point
OcF(M,C;\) = 0 saddle-point
)

Oy, 11, F (b, A

= 1— M} on-diagonal consistency
= Cj; off-diagonal consistency
Normally we fix M, C' by the first two conditions, with A = 0.

Now we introduce new variables A and new constraints, and
solve jointly.



Belief propagation

Standard

mi—j = tanh | H; + Z atanh (tanh(Jy; )mg—;)
k=neigh.\j

vs New (new effective field, effective coupling)

k=neigh

> atanh (tanh(Ji; — )\ki)mk_,i)}
k=neigh.\j

A are Lagrange multipliers for the constraints, M are
magnetizations to be fixed self-consistently.

O(N) algorithm on sparse graph.

To calculate all linear response we simply perturb these
messages O(N?) algorithm.



Schematically

On diagonal only Off (off + on) diagonal

With only on-diagonal constraints same as I-SUSP
algorithm (Yasuda et al., 2013).

Take simultaneously messages {u_cqy.} and responses
{u—can.,z} incident on the edge/vertex region.

Calculate consistently M ,C' and A on the region, generate
new internal messages.

One choice among many available from variational
formulation.



Weak coupling/ high temperature result

Correlation [C _1] On diagonal error  [C _1] Off diagonal error
Parameter error (Reaction term error)

NME (& @ K.v. 0@0 :v:

o A A AN A

Ameliorated error sources

Magnetization and Connected Correlation errors by expansion
about independent variables.

e NMF errors: O(J2, 53).

e A-NMF errors: mag. O(J3, 5%) and c.c. O(J%, 3).
Bethe errors: O(J3, %) .

A-Bethe errors: O(J4, 3°).



Opper Winther (2001): (Ising spins, equivalent to
adaptive-TAP)

Recovery and extension of adaptive-TAP framework (Opper
and Winther, 2001)

M; = tanh | H; + Z JigMj + N M; | (19)
3(#9)
1 -1
2 .

A; is the Onsager reaction term, we needn’t know the
distribution of J in order for its calculation.

Exact in (advanced) "mean-field” models (includes Sherrington
Kirkpatrick model, Hopfield model, fully connected disordered
models).



Next

Short summary

We shift the point of evaluation for the free energy from the
minima, to a new minima consistent with linear response.
We gain an order of magnitude in estimate quality, adding
constraints transforms a bad standard approximation

(NMF) into an optimal choice (TAP) for a broad range of
models.

We can also formulate "message passing like” algorithms.

Brief introduction of a more advance variational method,
some applications.



The cluster variational (region based) approximations

Empirically, the entropy on large regions {5} can be unde
rstood in terms of contributions from smaller constitutent parts
The unexplained part is S and typically decays exponentially
with cluster size.

S = Z So + Z S‘B = Z S. + correlation/loop correction.
« B a

We truncate the Mobius transform of the entropy (An,88).
e.g. {a} ={i} NMF, o = {(4,7)} U {i} Bethe.

The model parameters of the approximation are beliefs b
(marginal probabilities)

pid

Cijk: 1
NMF Bethe Plaquette

Smodel = ansa

«




The cluster variational (region based) approximations

Si(bs)

Sij(bij, bi, by)

Sijr({b.3)

_ Z bi(z:) log bi(z:)

bi' Tiy X4
— Z bi;(xi,z;) log 717(;()1)(;))
i(T4)0;5 (X5

T;,T;
bijk (@i, x5, Tk )bi (i) b; (x5)br (k)
bij (zi, 5)bjk (@i, ;5)bik (i, T;)

= biji(wi, x5, wx) log




Asymptotic phenomena low temperature

Fully frustrated triangular lattice model.

§ 0.2 Fparameter=LR curve f(lattice,boundary)
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Disordered models

8 by 8 2D square lattice Edward Anderson model (J=pm 1,H=0) , 8 samples

0.4 T T T - -
Bethe
Bethe (+off-diagonal constraints) -
CVM (Lage-Castellanos et al. 2012) =
CVM (+off-diagonal constraints) =
@ _—
Q -
£ e
. . —_ =
2 On diagonal constraint S 6///////
~ . . —~ =
e o1l further improves high = ///////// ]
2 temperature behaviour =
35: Ta): =
T g ~ o
S ~ -
- < Significant improvements
g / [better handling of unfrustrated subdomains}:- - -
= .
0.02 TSampling error floor  (specialized monte—carlo (Zhou,2012))
02 0.25 0.3 0.35 0.4 0.45 0.5

P Inverse Temperature

Disordered and frustrated model, complicated phase space.



Disordered models, e.g. Random field Ising model

2D square lamce random field Ismg model: J=1, H iid Gaussian vanables N(O. 2 0. 5) L=5
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Exact Magnetization

Exact Connected Correlation

e For models dominated by a single pure state (weakly
correlated) convergence is robust. e.g. small and large 8 (if
unique ground state).

e Adding constraints boosts performance significantly



and other algorithms?

T T T

No constaint (CVM-plaquettes) =

» o @ reeEP
treeRWBP

001 .o 4
-
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libDAI C++ library of Mooij (standard implementations)
Tree EP (Qi and Minka 2005): A structured moment matching
algorithm.
Gen. BP (Yedidia et al.2005, Heskes et al. 2003) : A Kikuchi free
energy (plaquette regions).
TRW BP (Wainwright et al., Wiegerinck et al. 2003): A convexified
form of the Bethe approximation.



Inverse examples

Fully frustrated triangular latuce L=5 Square Lattice diluted (0. 7) ferromagnet L=7
01 B2%00g "Sessak—Monasson *09 NMF/TAP (x 0) y

o 5 Bagg_®%cog i

= & Bgg e icci—Tersenghi *1 Bethe 7\=0 [KR
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Coupling, J Coupling, J

Form:
J . = — [C—l i

1,] datal?:]

J’i»j = _[Cczz%ta] 4,J + A (Mdatm C*) ) [Cdata] 1,3 + A (Mdatm Cdata)
Similar expressions for magnetization.

e Provably improved scaling for weak-coupling limit.

e From realistic data: Improvement in an intermediate range
of temperatures

e Works well away from phase transitions.



Inverse examples: Protein

Residue contact maps for protein (length 161 residues [21 states])
Comparison of largest inferred couplings and true structure
NMF free energy

Mutual information Bethe (like) free ener;

Blue is true contact structure (well understood special case), [Morcosa et al PNAS 2011

Yellow indicate true positives (on largest inferred couplings), grey false positives ]

The sequence of residues (each one of 21 states) in a protein of
length O(100) are correlated through evolutionary function.

If residues fold together they coevolve (show strong correlation),
we can use a pairwise model to infer functional relationships
(i.e. spatial proximity in folding).



Inverse examples: RNA families (telemorase)

Q”b

State of the art for proteins and RNA (Morcos 2009), simple

inverse; we can add A" to determine tertiary structure?

Jij = —[Cuk.)i;+ AV (M, C)



Thanks for attention

A consistent variational approximation, using information
implicit to the approximation.

e weak-coupling limit validation.

e Significant results: Montanari-Rizzo approximation
for loop corrections; adaptive-TAP;
Sessak-Monasson inverse Ising expression; and
extensions.

e Variational framework: algorithmic flexibility and
expansion methods available.

e With distributed message passing O(N?) frameworks (and
proven I-SUSP, Yasuda et al.)

J. Raymond and F. Ricci-Tersenghi, “Mean-field method with
correlations determined by linear response,” Phys. Rev. E,
vol. 87, p. 052111, 2013.

http://chimera.romal.infn.it/JACK jack.raymond@physics.org
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Single loop scheme (Bethe level)

O30 o___.O
(vx vertex "cavity" :\ ;‘:
\\\Jl 4‘,// edge "cavity" | 47 % |

@ O In: u, du/dH ® | \L

Out: u, duw/dH Q\! O

A message passing scheme uses u_, and u_, , = du/JH, akin to
Belief Propagation and Susceptibility Propagation.
Knowing {M, A} we have BP/SP subject to modified fields and
couplings
Hy = Hi + MM + Y \ijM; ; Jij = Jij = Nij -
J

Scheme (a) for on-diagonal constaints (Yasuda et al. I-SUSP)

M; = tanh(H; + \M; + Z uzﬁl)

J

1 t



Single loop scheme (Bethe level)

O O o___.O

\CP'/%\VG“CX "cavity" :\ |
R et

I

N edge "cavity" | |

I

@ O In: u, du/dH ‘ A \L
Out: u, du/dH O o

Scheme (b) for on and off-diagonal constraints (i <> j):

M; = tanh <Hi + XM+ X My + > ug L+ ajai> .
k\j
~ 1
A= [2)‘77 +’“‘7—>1>‘ ] Uji — a M2 Z“kﬂz i +u7_” Zuk‘”, .
- k\Jj k\i
(1 - M3) A, ,
Aij = - |:>‘i + (1— M2)>\j + oy NG| Gy — (1— M2 Zuk%‘] i +uz—>] Zuk}ﬁl il -
i k\j k\j

. Oty
@j,; = atanh |:tanh(Ji]-)tanh(Hj A M+ Xy M+ Zu;ﬂ.)] ; ;= aJTﬂ .
k\i J



Exact marginals

Log(JEnCVM - Enl|)
oF

2+

Exact Mag;\\—> N

gl Exact Corr——="

\
1 1 TN
0.2 0.4 0.6 0.8

Comparison of entropy approximation error when entering
exact or partially exact marginal information (relative to
standard maximum entropy [solid thick line]). A residual error
remains because of the entropy truncation.



Full correlation (—energy/3)
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Asymptotic phenomena continued..

T

Divergence of lin. response. 4L ‘
Recovery of magnetized solution
Recovery of magnetized solution.

Parameter=LR curve f(lattice,boundary)
| Parameter curve, f(connectivity)

| Ferromagnetic

triangular lattice model
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Interesting phenomena (i.e. outstanding challenges)

Absence of solutions in some models at low temperature
(e.g. 2D ferromagnetic lattices)

Absence of continuous transitions where expected

Absence of message-passing scheme meeting “message
passing paradigm”

Non-convexity (concavity/convexity) of free energy (the
feasibility of finding solutions is in general unclear)

The main problem with the algorithm remains convergence and
complexity... being addressed in libdai “double loop”
formulation.



Abstract

Variational free energies when minimized can make inconsistent
predictions of physical quantities, as defined by first and second
derivative identities. Minimizing subject to consistency of these
derivatives can be shown to improve approximation. The
constraints allow a connection with a number of disparate
results: From a constrained naive mean-field free energy we
recover a type of expectation-propagation algorithm. From a
constrained Bethe approximation, applied to the inverse
problem of coupling estimation, we recover and extend the
Sessak-Monasson expression.



The End



	Background
	Inference in graphical models
	Variational approximations and linear response
	A new method based on self-consistent constraints
	Cluster variational methods, and experiments on models
	Conclusions
	References and extra material

