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Abstract

This is the �rst of a series of papers devoted to the interpretation of the
Replica Symmetry Breaking ansatz (RSB) of Parisi et Al. [2]. Let ΩN

be the space of con�gurations of an N−spins system, each spin having a
�nite set Ω of inner states, and let µ : ΩN → [0, 1] be some probability
measure. Here we give an argument to encode any probability measure µ
into a kernel function M̂ : [0, 1]2 → Ω, and use this notion to reinterpret
the assumptions of the RSB ansatz, without using replicas. The present
work is mainly intended to give the necessary mathematical background
for further developments. 1

1 Introduction

Originally introduced by Parisi in order to interpret its exact solution of the
Sherrington-Kirkpatrick model (SK) [1, 2], the Replica Symmetry Breaking
(RSB) ansatz proved to be an extremely valuable tool in explaining proper-
ties of disordered systems. Despite many technical advances, worth to cite the
proof of the free energy functional by Guerra and Talagrand [3, 4], some of its
fundamental features remain quite mysterious after more than thirty years.

A central role is played by the elusive concept of pure state. Despite a precise
de�nition is still lacking, it is widely acknowledged that they must satisfy some
properties. For example, it is expected that the connected correlation functions
associated to these states vanish in the thermodynamic limit [2, 5]. This imply
that in some sense the measure conditioned to those states can be described by
a mean �eld model of some kind (see Part III of [5], updated 2014 version, for
a non-rigorous but detailed discussion of the �nite volume pure states).

Perhaps, the most striking and unconventional property is that the pure
states are predicted to have a hierarchical structure such that the support of the
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overlaps is ultrametric [2]. A considerable amount of work has been produced
on this subject, culminating in a proof of ultrametricity for the SK model by
Panchenko [6]. Anyway, whether ultrametricity and other properties of the
pure states hold in some general framework, including their representation as
well de�ned mathematical objects, proved to be an extremely hard task and
remains an open question.

Inspired by a remarkable series of papers by Coja-Oghlan et al. which intro-
duce tools from Graph Theory to study Belief Propagation algorithms [9, 10, 11],
we propose that the set of pure states can be represented using a kernel, a two
variables function

M̂ : [0, 1]
2 → Ω (1.1)

that encodes the states of magnetization (hereafter we assume Ω = {−1, 1}).
As we shall see, this will allow for critical simpli�cations in reproducing the
results of the RSB scheme, which we interpret as a technique to approximate
some probability measure through a mean �eld �ltered algebra2 (in a sense
that will become clear along the path). Since our theory need quite much
space to be properly explored, we decided to split its presentation into a series
of papers, the �rst being dedicated to the introduction and discussion of the
general mathematical structures that subtend it.

The paper is organized as follows. In the next section we introduce a kernel
representation for probability distributions. Then in Sections 2 and 3 we intro-
duce an approximation argument to use matrices instead of kernels, which will
greatly simplify our notation. We introduce our notion of Pure States in Section
4, and use it to construct a martingale representation. Finally, in Section 5 we
use this representation to deal with the ultrametricity assumption of the Parisi
ansatz, and identify the associated trial probability distribution (which is the
main result of the present paper).

We do not apply our results to the Sherrington-Kirkpatrick model, being
the applicative aspects the main subject of the second paper of this series. Al-
though we will brie�y confront our �ndings with the classical methods along the
exposition (and when this is possible) we won't give an exhaustive comparative
analysis since this would require substantial additional work to be carried on in
a dedicated work.

2 Kernel representation

Let ΩN be the product space of N spins with �nite set Ω of inner states, let
P
(
ΩN
)
be the ensemble of all probability measures on ΩN and let µ ∈ P

(
ΩN
)

some probability measure. We denote by µK the marginal distribution of µ over
a subset K ⊂ {1 ... N} of |K| distinct spin coordinates (hereafter the modulus
| · | when applied to a set returns its size). Then, if Sα, α ≥ 1 is a partition
of ΩN into a number of disjoint subsets we call µα the measure conditioned

2In a �ltered algebra there are distinguished subspaces Sα, indexed by the elements of a
totally ordered group, such that Sα ⊆ Sβ for α < β, and Sα ⊗ Sβ ⊆ Sα+β .
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to Sα and by µαK the marginal distribution of µα over K. For this paper we
indicate random variables with bold characters (for example any bold variable
X is assumed to be random, while X is not) .

The connection between kernels and the pure states of the RSB ansatz has
been �rst noticed in [9], where a kernel encoding of µ is introduced in order to
prove the following

Lemma. (Bapst, Coja-Oghlan, 2016) For any µ ∈ P
(
ΩN
)
it is possible to

take some arbitrary small ε > 0 and a partition of ΩN into a �nite number
n ≥ n (ε, |K|), not dependent from N , of disjoint subsets Sα, 0 ≤ α ≤ n such
that µ (S0) ≤ ε and∑

K∈{1, ... N}|K|

∥∥µαK −⊗i∈K µ
α
i

∥∥
TV
≤ εN |K|, ∀α, |K| ≥ 1 (2.1)

if N is chosen large enough (we denoted by ‖ · ‖TV the total variation3). For
example, in the case |K| = 2 we can write∑

{i,j}∈{1, ... N}2

∥∥∥µα{i,j} − µαi ⊗ µαj ∥∥∥
TV
≤ εN2, ∀α. (2.2)

Proof. It is essentially a measure theoretic version of the Szemeredi Regularity
Lemma, see Chapter 9.2 and 9.3 of [14] for a detailed review. A proof of Eq.s
(2.1) and (2.2) can be found in the �rst part of [9], after the statements of
Theorem 2.2 and Corollaries 2.3-2.5.

The above result tells us that for any measure µ describing a system of
variables with �nite set Ω of inner states we can decompose our sample space ΩN

into a �nite number n (ε, |K|) of regular disjoint subsets Sα, 1 ≤ α ≤ n (ε, |K|)
plus one irregular S0 with µ (S0) ≤ ε such that for any regular subset Sα the
marginals of µα over a randomly chosen setK can be approximated by a product
measure in the sense of Eq. (2.1). Surprisingly, the number n (ε, |K|) of such
regular subsets only depends on k, |Ω| and the level of precision ε we want to
achieve for our approximation, and it does not depend on the size N of the
system.

This and many other results can be obtained by noticing that both proba-
bility measures and graphs can be exactly encoded into kernel functions. For
example, in [9, 10] a new distance on P

(
ΩN
)
based on Graph Theory is intro-

duced to characterize Gibbs Measures directly in the thermodynamic limit (Cut
Distance45, see Chapter 8.2 of [14], or [10] for the measure theoretic approach).

3Given two measures µ , ν : S → [0, 1] and some A ⊆ S the total variation distance between
µ and ν is given by the formula ‖µ− ν‖TV = 2 supA |µ(A)− ν(A)|.

4Let M , W be two kernels and let θ = (θ1, θ2) be a pair of measure preserving maps. We
call cut norm the positive quantity ‖M‖� = supA,B |

´
A,BM (x, y) dxdy| and cut distance

D� (W,U) = infθ
∥∥W − Uθ∥∥�, where Uθ stands for U(θ1(x), θ2(y)) [14].

5In the context of probability theory the cut distance between µ , ν : S → [0, 1] is the cut
distance D�(Mµ,Mν) between the associated kernels Mµ, Mν of Eq.(2.6) below. It can be
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The above Lemma is itself a probabilistic version of the celebrated Szemeredi
Regularity Lemma (Chapter 9.2 and 9.3 of [14]), whose typical mark can be rec-
ognized in the independence of the partition size from the size of the partitioned
set.

Unfortunately the technical complexity of these arguments would require
quite much space to be properly explained. Since the original arguments pre-
sented in this work do not necessarily require the use Szemeredi Partitions (at
the cost of working with �nite systems only) we won't systematically deepen this
argument here, but we stress that these are useful mathematical concepts and
we warmly advice the reader to look at [14] for further reading on this important
subject. In general, here we try to avoid mathematical concepts unfamiliar to
the physics literature as much as we can (indeed, we try to avoid inessential
technicalities in general).

Before entering in the core of the discussion some mathematical introduction
is mandatory in order to justify our later arguments. In the following we show
how to encode any probability distribution µ ∈ P

(
ΩN
)
into a spin array with a

countably in�nite number of entries. We start by introducing an exact Kernel
Representation of µ

De�nition 1. (Magnetization Kernel) Let label the sample space as follows

ΩN = {σa : 1 ≤ a ≤ 2N} (2.3)

where σa ∈ ΩN are the sample vectors

ΩN 3 σa = {σak ∈ Ω : 1 ≤ k ≤ N} . (2.4)

Then, the Magnetization Kernel

M̂µ : [0, 1]
2 → Ω (2.5)

associated to µ ∈ P
(
ΩN
)
is the step function

M̂µ (x, y) =

2N∑
a=1

N∑
k=1

σ ak I{x∈V̂k, y∈Ŝa} (2.6)

where V̂k and Ŝa are the intervals

V̂k = [xk−1, xk) , Ŝa = [ya−1, ya) (2.7)

with boundaries xk and ya given by

xk = k/N, ya =

a∑
a′=1

µ(σa
′
). (2.8)

An example is given in Figure 2.1 .

shown that the kernel space is compact cut distance, and that convergence in cut distance
is stronger than weak* convergence when dealing with intensive quantities, such as the free
energy density associated to a Gibbs measure (see Chapter 8 of [14] and therein, or the �rst
part of [9, 10]).

4



Figure 2.1: Kernel representation M̂µ (x, y) of Eq. (2.6) for a system of N = 4
spins described by an atomic probability distribution with µ (σa) = 0 for 6 ≤ α ≤
16 and µ (σa) > 0 for 1 ≤ a ≤ 5, with σ1 = (+,+,−,+), σ2 = (+,−,+,−),
σ3 = (−,+,+,−) , σ4 = (−,−,+,+) , σ5 = (−,+,−,+). The column index y
has been rescaled for a better visualization.

It is intuitively clear that for �nite spin systems the magnetization kernel M̂µ

exactly encodes the associated probability measure µ from which is computed.
In fact, we can reconstruct µ from M̂µ using the following lemma

Lemma 2. (Reconstruction Lemma) Given the kernel M̂µ : [0, 1]
2 → Ω associ-

ated to the probability density function µ ∈ P
(
ΩN
)
, then for any sequence

x̂ = { x̂k ∈ V̂k : 1 ≤ i ≤ N } (2.9)

and any measure preserving map θ : [0, 1] → [0, 1] the probability density func-
tion µ is exactly reconstructed using the following relation

µ(σ) =

ˆ
y∈[0,1]

dy

N∏
k=1

(
1+M̂µ(x̂k,θ(y))σi

2

)
. (2.10)

Proof. We start from the chain of identities

µ(σ) = 〈 I{σ=σ}〉µ = 〈
N∏
k=1

(
1+σk σk

2

)
〉µ =

2N∑
a=1

µ(σa)

N∏
k=1

(
1+σak σk

2

)
(2.11)

then we notice that by de�nition

µ(σa) =

ˆ
y∈Ŝa

dy (2.12)
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and that M̂µ (x̂k, ya) = σak for any y ∈ Ŝa. Putting together we can write

µ(σ) =

2N∑
a=1

ˆ
y∈Ŝa

dy

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
=

=

ˆ
y∈

⋃
a Ŝa

dy

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
=

=

ˆ
y∈[0,1]

dy

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
. (2.13)

The invariance under y → θ (y) is granted by the fact that the integral operator
is independent from the order of the in�nitesimal steps dy.

An intriguing fact is that M̂µ is a graphon6, but is not clear at �rst look
what kind of physical meaning could have its associated graph, whose edges
�connect� in some sense the spin space with the states of the magnetization.

Even if array representations in the context of Spin Glasses have been con-
sidered since the very beginning (ie, overlap matrix of [2]), their use to repre-
sent probability distributions is quite recent. Before [9, 10], for example, the
Aldous-Hoover theorem has been invoked in [7] in order to encode the replicated

distribution of the SK model into a function W : [0, 1]
4 → Ω, but the use of

a four dimensional order parameter is redundant in view of the Kernel repre-
sentation above, that only requires a two dimensional function. The formula
of Lemma 2 should be rather confronted with the De Finetti representation for
exchangeable sequences [12]. Notice that for �nite systems the kernel of µ is
not unique because there is an in�nite number of possible choices { for x̂ and
for the map θ that points to the same µ, and we can also change the integral
on y with a sum on ŷa ∈ Ŝa. Also notice that M̂µ is de�ned up to an arbitrary
index relabeling. Formally, if we take two bijections

θV̂ : {1 ... N} → {1 ... N}, θŜ : [0, 1]→ [0, 1] (2.14)

such that k′ = θV̂ (k), y′ = θŜ (y), then clearly holds that

µ(σ) =

ˆ
y∈[0,1]

dy

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
=

ˆ
y′∈[0,1]

dy′
N∏
k′=1

(
1+M̂µ(x̂k′ ,y′)σk′

2

)
.

(2.15)
By the way, these are the only sources of ambiguity when encoding measures
into kernels, and it will prove a useful property later.

The following simple lemma express one of the main technical advantages of
the kernel representation.

6Contraction for graph(functi)on, �rst introduced by Lovasz. See Chapter 7.1 of [14] and
therein for a detailed review of kernel functions in the context of Graph Theory.
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Lemma 3. (Correlations and Overlaps) Let 1 ≤ k, k′ ≤ N and let x̂k ∈ V̂k,
x̂k′ ∈ V̂k′ , then the scalar product between the two rows x̂k and x̂k′ of M̂µ is the
two point correlation function

〈σkσk′〉µ =

ˆ
y∈[0,1]

dy M̂µ (x̂k, y) M̂µ (x̂k′ , y) . (2.16)

Moreover, let σa and σa
′
be two states of magnetization, and let y∗a ∈ Ŝa and

y∗a′ ∈ Ŝa′ , then the scalar product between the columns ŷa and ŷa′ of the kernel

M̂µ is the magnetization overlap between these states

q (σa, σa
′
) =

1

N

N∑
i=1

σakσ
a′

k =

ˆ
x∈[0,1]

dx M̂µ (x, ŷa) M̂µ (x, ŷa′) . (2.17)

Proof. The proof trivially follows by substituting the de�nition of M̂µ into the
above formulas.

As we can see the kernel function provides a powerful visual encoding of
both correlations and overlaps (and the event algebra in general). Clearly we can
write higher order correlation functions and overlaps using the same proceeding,
which suggests a �rst de�nition for the Pure States of the magnetization.

De�nition 4. (Microscopic Pure States) We call Microscopic Pure States of µ
the stepfunctions corresponding to the columns {M̂µ (x, y) : x ∈ [0, 1]} of M̂µ,
with y ∈ [0, 1].

Although they are still not the Pure States as intended in the Parisi Ansatz,
the latter will be obtained starting from the above objects.

3 Matrix approximation

Another important fact about the kernel representation is that in Eq. (2.10) the
weighted average 〈 · 〉µ is replaced by a uniform average on y ∈ [0, 1]. Clearly, if
we could encode most of our distribution µ into some matrix M rather than a
real valued kernel M̂µ then we would still work with a uniform average on the
pure states while recovering all the simpli�cation given by working with atomic
measures.

De�nition 5. (Magnetization Matrix) Let S and V be two integer vectors

V = {i ∈ N : 1 ≤ i ≤ |V |} , S = {α ∈ N : 1 ≤ α ≤ |S|} , (3.1)

then we call Magnetization Matrix M : S ⊗ V → Ω any binary matrix of the
kind

M = {mα
i ∈ Ω : 1 ≤ i ≤ |V |, 1 ≤ α ≤ |S|} (3.2)
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and de�ne the atomic probability distribution ηM : ΩV → [0, 1] that is obtained
from the Magnetization Matrix as follows

ηM (σ) =
1

|S|
∑
α∈S

∏
i∈V

(
1+mαi σi

2

)
. (3.3)

We call Microscopic Pure States of ηM the columns of M , ie the magneti-
zation vectors corresponding to the atoms of ηM . Hereafter we will assume
Ω = {−1, 1}, |V | = N and |S| = n > N .

In [9, 10] the concept of ε−regularity is introduced to approximate µ with an
atomic probability distribution with �nite number of atoms independent from
the dimension N of σ, this at the cost of an error ε when computing the averages
of intensive quantities. This can be done by using Szemeredi Regularity Lemma
to approximate in cut distance the kernel M̂µ with a step function with �nite
numbers of steps, and then use the fact that cut distance convergence is stronger
than weak convergence (Chapter 8, Lemma 8.22 of [14]).

This approach allows to work directly in the thermodynamic limit N →∞,
and we point out that some form of Szemeredi partitioning seems unavoidable
in order to achieve this remarkable feature. Fortunately, if we drop this require-
ment we can approximate µ with ηM using almost trivial arguments.

Theorem 6. (Matrix approximation of µ) Let ε > 0. For any probability density
function µ ∈ P

(
ΩN
)
there is an integer

n (ε,N) ≤ 2N+1/ε, (3.4)

in general dependent from N , and a Magnetization Matrix

M : S ⊗ V → Ω (3.5)

having |V | = N rows and |S| = n ≥ n (ε,N) columns such that for any bounded
function of the kind f : ΩN → R, with ‖f‖ <∞ holds

|〈f (σ)〉µ − 〈f (σ)〉ηM | ≤ ε ‖f‖ , (3.6)

where ηM is the distribution obtained from the matrix M using Eq. (3.3). Here-
after we write ηM ≈ µ, or equivalently M ≈ M̂µ, to indicate that the magneti-

zation matrix M approximates M̂µ in the sense of Eq.(3.6) above.

Proof. The �rst step is to notice that if µ (σα) ∈ Q for any α then µ can be
encoded into a Magnetization matrix exactly. By confronting the kernel M̂µ

de�ned in Eq. (2.6) with the magnetization kernel associated to the regularized
measure ηM

M̂ηM (x, y) =
∑
α∈S

∑
i∈V

mα
i I {x∈[(i−1)/N, i/N), y∈[(α−1)/|S|, α/|S|)}. (3.7)

we see that the partition parameters of the rows [0, 1) 3 x are already the same
if we take k = i, and by de�nition of rational number some n ∈ N must exist
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such that nµ (σa) ∈ N for all a. We can split [0, 1) 3 y into |S| = n equally
sized subsets being sure that

{ ya : 1 ≤ a ≤ 2N} ⊆ {α/n : 1 ≤ α ≤ n} , (3.8)

with ya given in Eq. (2.8). Then, if ya − ya−1 = µ (σa) ∈ Q holds for all a it
su�ces to re�ne the column indexes [0, 1) 3 y of M̂µ up to subsets of size 1/n

to obtain M̂ηM .
The extension to general case µ (σa) ∈ R can be obtained via the following

surgery on [0, 1) 3 y. Starting from the de�nition of Eq. (2.6) we can rewrite
the parameters ya using the recursive formula

ya = ya−1 + µ(σa), (3.9)

then we introduce the modi�ed variables

ya,n = ya−1 + bnµ (σa)c /n (3.10)

where ya−1 is unchanged and b · c indicates the lower integer part. Using this
new set of variables we can split each interval Ŝa into two components

Ŝa = [ ya−1, ya) = [ ya−1, ya,n) ∪ [ ya,n, ya) = S̄a ∪ [ ya,n, ya) (3.11)

such that |S̄a| ∈ Q and | [ ya,n, ya) | ∈ R. Let group these intervals into two sets,
the �rst is

S̄ =
⋃

1≤a≤2N

[ ya−1, ya,n) =
⋃

1≤a≤2N

S̄a (3.12)

and is composed by the union of intervals of rational size. The second set

S̄0 =
⋃

1≤a≤2N

[ ya,n, ya) (3.13)

is the union the reminders. Clearly [0, 1) = S̄ ∪ S̄0, then 1− |S̄0| = |S̄| with

|S̄0| =
2N∑
a=1

(µ (σa)− bnµ (σa)c /n ). (3.14)

The above procedure is illustrated in Figure 3.1.
At this point we are ready to compute the bound for the average 〈f (σ)〉µ

by separating the contributions of S̄ and S̄0. By Lemma 2 we can split the two
contributions into

〈f (σ)〉µ =

ˆ
y∈[0,1]

dy
∑
σ∈ΩN

f (σ)

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
=

=

ˆ
y∈S̄

dy
∑
σ∈ΩN

f (σ)

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
+

+

ˆ
y∈S̄0

dy
∑
σ∈ΩN

f (σ)

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
, (3.15)
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Figure 3.1: Surgery on M̂µ with n = 19 for the same µ of Figure 2.1. The black
areas are the sub-kernel associated to the reminders [ ya,n, ya). A map is also
applied (shown in gray color) that collects the reminders at the bottom of the
kernel to highlight the Magnetization Matrix. The column index y has been
rescaled as in Figure 2.1.
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then, applying the de�nitions we �nd

ˆ
y∈S̄

dy
∑
σ∈ΩN

f (σ)

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
= |S̄| 〈f (σ)〉ηM =

(
1− |S̄0|

)
〈f (σ)〉ηM

(3.16)
for the �rst term and

ˆ
y∈S̄0

dy
∑
σ∈ΩN

f (σ)

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
= |S̄0| 〈f (σ)〉µ0 (3.17)

for the correction. Then, we just bound with

|〈f (σ)〉µ − 〈f (σ)〉ηM | = |S̄0| |〈f (σ)〉µ0 − 〈f (σ)〉ηM | ≤ 2 |S̄0| ‖f‖ . (3.18)

It remains to compute the upper bound of the reminder |S̄0|. This can be done
by arguing that µ (σa)− bnµ (σa)c /n ≤ 1/n holds for all n ∈ N, then we must
have |S̄0| ≤ 2N/n < ε/2, from which n > 2N+1/ε. Notice that this bound is far
from being optimal. Although su�cient for our aims, we remark that it could
be greatly improved even in this very general setting (for example iterating the
above construction to approximate the irregular subset S̄0 and so on, or using
Szemeredi Regularity Lemma as in [9, 10]).

Obviously for N <∞ we can always choose n big enough to make the error
bound 2N+1/ε arbitrarily small, then for the rest of this paper we will mostly
work with the Magnetization Matrix M , and automatically assume M ≈ M̂µ

with ε in�nitesimally small (unless speci�ed otherwise).
It worth notice that M , like M̂µ, is de�ned up to a pair of bijections

θV : V → V, θS : S → S (3.19)

in fact also in this case if i′ = θV (i), α′ = θS (α) then obviously

ηM (σ) =
1

|S|
∑
α∈S

∏
i∈V

(
1+mαi σi

2

)
=

1

|S|
∑
α′∈S

∏
i′∈V

(
1+mα

′
i′ σi′

2

)
. (3.20)

Working with a magnetization matrix largely simpli�es the notation, and allows
for an easier visualization of the kernel operations, as we can appreciate from
the following simple lemmas that will be useful in the next sections.

Lemma 7. (Correlation functions of ηM ) Given a magnetization matrix M
having N rows, n > N columns with n/N ∈ N, and a generalized N−point
function of the kind

G (σ) =
∏
i∈V

g (σi) (3.21)

with g : Ω→ R, ‖g‖ <∞, then the average is given by

〈G (σ)〉ηM = 〈
∏
i∈V

g (σi)〉ηM =
1

|S|
∑
α∈S

∏
i∈V

g (mα
i ) . (3.22)
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Proof. Follows directly from the de�nition of ηM

〈
∏
i∈V

g (σi)〉ηM =
∑
σ∈ΩN

ηM (σ)
∏
i∈V

g (σi) =

=
1

|S|
∑
α∈S

∏
i∈V

∑
σi∈Ω

g (σi)
(

1+mαi σi
2

)
=

1

|S|
∑
α∈S

∏
i∈V

g (mα
i ) .

Lemma 8. (Overlaps distribution of ηM ) Given a magnetization matrix M
having N rows, n > N columns with n/N ∈ N, let ηM be the associated measure
and let

PM (q) = 〈 I{q−q (σ,σ′)}〉ηM⊗ ηM (3.23)

be the overlap distribution between two independent samples σ and σ′ distributed
according to ηM . Then

PM (q) =
1

n2

n∑
α=1

n∑
α′=1

δ( q − q (ma,ma′) ), (3.24)

supported by the discrete set

Q = { q(mα, mα′ ) : α, α′ ∈ S }, (3.25)

of normalized scalar products between the columns of M ,

q (mα,mα′) =
1

N

N∑
i=1

mα
i m

α′

i . (3.26)

Proof. Obvious from de�nition of ηM . The support of ηM is the set of columns
of M by construction, all equally weighted with probability 1/n.

Let us end this section with a result that should help in understanding the
connection of the kernel representation with the Replica Theory. In particular,
we show how to encode the kernel into a square matrix.

Lemma 9. Given some M having N rows, n > N columns with n/N ∈ N, and
the generalized N−point function of Eq. (3.21), there is a squared magnetization
matrix Msq with |V | = |S| = n, de�ned as follows

Msq = {ταj ∈ Ω : 1 ≤ j ≤ n, 1 ≤ α ≤ n}, (3.27)

with associated atomic distribution

ηMsq
(τ) =

1

n

∑
α∈S

n∏
j=1

(
1+ταj τj

2

)
, (3.28)

such that the following bounds hold

〈
n∏
j=1

g (τ j)
1/n〉ηMsq ≤ 〈

N∏
i=1

g (σi) 〉1/NηM ≤ 〈
n∏
j=1

g (τ j)〉1/nηMsq
. (3.29)

12



Proof. Let partition the V set into a number N of subsets Vi of equal sizes
|Vi| = n/N ∈ N. Then, let Msq be as follows

ταj = mα
i , ∀j ∈ Vi. (3.30)

The probability distribution associated to Msq is

ηMsq (τ) =
1

n

∑
α∈S

n∏
j=1

(
1+ταj τj

2

)
=

1

n

∑
α∈S

∏
i∈V

∏
j∈Vi

(
1+mαi τj

2

)
. (3.31)

Now let τ be a random spin vector of n spins

Ωn 3 τ ∼ ηMsq (3.32)

distributed according to ηMsq
. It is easy to verify that

〈
N∏
i=1

g (σi) 〉ηM = 〈
N∏
i=1

∏
j∈Vi

g (σi)
N/n〉ηM = 〈

n∏
j=1

g (τ j)
N/n〉ηMsq , (3.33)

and since N/n < 1 by Jensen inequality we �nd

〈
n∏
j=1

g (τ j)
1/n〉ηMsq ≤ 〈

n∏
j=1

g (τ j)
N/n〉1/NηMsq ≤ 〈

n∏
j=1

g (τ j)〉1/nηMsq
(3.34)

which proves our claim.

After this the meaning of our Microscopic Pure States should be a little bit more
clear. In fact ηMsq

can be interpreted as the probability distribution of n/N
correlated replicas of the N−spin system described by ηM , and the Microscopic
Pure States of ηM are then the same of ηMsq

of the replicated system.
We do not further deepen the connection with the Replica Theory as many

simpli�cations will come from working with the rectangular matrix M of the
actual system. We hope to properly explore this argument in a dedicated paper.

4 Random distributions

At this point we should open a parenthesis on how to deal with random prob-
ability measures, since this is one of the main technical issues that comes with
the approximation of Theorem 6. Let �rst spot that if we work with kernels the
representation is almost trivial.

Let µ ∼ φ be a random probability measure distributed according to

φ : P(ΩN )→ [0, 1] (4.1)

Since there is a correspondence between measures and kernels it su�ces to take
M̂ = M̂µ so that we can de�ne the associated kernel distribution

ψ(M̂) =

ˆ
µ∈P(ΩN )

φ (dµ) δ(M̂ − M̂µ) (4.2)
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and denote byM the kernel space. Then by construction holds that

M̂ ∼ ψ : M→ [0, 1] . (4.3)

is an exact encoding of the random distribution µ. For example, let us consider
some bounded function f : ΩN → [0, 1], and suppose that we are interested in
computing the average of log 〈f (σ)〉µ respect to the distribution φ, then from
Lemma 3,

µ(σ) =

ˆ
y∈[0,1]

dy

N∏
k=1

(
1+M̂µ(x̂k,y)σk

2

)
, (4.4)

plus a trivial change of measure one easily �nds the formula

Eφ log 〈f (σ)〉µ = Eψ log

ˆ
y∈[0,1]

dy
∑
σ∈ΩN

f (σ)

N∏
k=1

(
1+M̂(x̂k,y)σk

2

)
. (4.5)

Unfortunately, if we try to obtain the same relation using matrices instead of
kernels we encounter some technical problems.

Although the approximation argument of Theorem 6 ensures that at least the
annealed average µ̄ (σ) = Eφµ (σ) can be encoded into a deterministic matrix
by choosing |S| = n larger than some threshold depending on to the number of
atoms (essentially because

µ̄ (σ) =

2N∑
a=1

Eφµ(σa)

N∏
k=1

(
1+σak σk

2

)
=

2N∑
a=1

µ̄ (σa)

N∏
k=1

(
1+σak σk

2

)
(4.6)

is still an atomic distribution) to deal with quenched averages we would rather
like to approximate the samples µ with a collection of matrices M (µ) having
the same number of rows and columns for all µ and such that

M (µ) ≈ M̂µ, ∀µ ∈ P(ΩN ). (4.7)

It is clear that to extend our approximation in this sense we would need to
�nd a common surgery over Ŝ that allows to simultaneously approximate all
the kernels M̂µ. But our crude bounds for the sizes of the irregular sets |S̄0|
grow with the number of atoms, that may be in�nite even for �nite N if φ is
continuously supported.

This his is exactly the kind of technical problems for which we would need
the Szemeredi Lemma. By the way, we can still approximate the empirical
average over any subset of measurements

P(ΩN ) ⊃ X =
{
µt ∈ P(ΩN ) : 1 ≤ t ≤ T

}
(4.8)

if we keep T large but �nite. Let de�ne the empirical distribution

φX (µ) =
1

ΓX (φ)
φ (µ) I {µ∈X} (4.9)
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where the normalization ΓX (φ) is the partition function

ΓX (φ) =

ˆ
µ∈P(ΩN )

φ (dµ) I {µ∈X} =

T∑
t=1

φ (µt) . (4.10)

This distribution has T atoms by de�nition, each one being in itself a distribu-
tion of at most 2N atoms. This gives a total of 2NT atoms that clearly allows
for a common surgery if n is taken large enough.

Then, if we accept to deal with φX instead of φ (which is realized in virtually
any experimental setting) we can always �nd a sequence of matrices of N rows
and n columns

M (X ) = {M (µ) : µ ∈ X} (4.11)

such that eachM (µ) approximates the corresponding M̂µ in the sense of Lemma
6 simultaneously for all µ ∈ X , provided that the total number of columns is
n > 2N+1T/ε. Then we can de�ne the atomic distribution

ψX (M) =
1

T

∑
µ∈X

φX (µ) I{M=M(µ)}, (4.12)

where M (µ) ≈ M̂µ for each µ ∈ X , and introduce the notation

M
X
≈ M̂µ (4.13)

to indicate that M approximates M̂µ in the sense that M ∼ ψX . We remark
once again that this technical issue can be completely overcome by following
the approximation argument of [9, 10], which uses a probabilistic version of the
Szemeredi Lemma.

5 Pure States

It is now time to introduce the main mathematical objects we will deal with.
Hereafter we work only with ηM , automatically assuming that M ≈ M̂µ. We
do this because matrices greatly simplify the presentation of these ideas, but we
also remark from now that everything we are going to de�ne and prove in this
section has its natural counterpart in a continuous kernel formulation.

Essentially, we will introduce a sequence of re�nements for the sets S and
then use this construction to de�ne the Pure States, and a Martingale represen-
tation for ηM . The �rst de�nition that we need is a tree indexing to control the
re�nements.

De�nition 10. (Tree Indexing for S) Let S be as in De�nition 5, let L be a
�nite integer and let

s = { s` ∈ N : 0 ≤ ` ≤ L,
∏

0≤ `≤L s` = n }. (5.1)
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be a collection of L + 1 integer parameters such that their product is n. Then
we de�ne the following tree index

α1α2...α`+1 ∈
⊗̀
`′=0

{1, 2 ... , s`′} , (5.2)

with 0 ≤ ` ≤ L and each subindex α` running from 1 to s`−1. The level ` = 0 is
the �rst generation of nodes originating from the root. The root has s0 children,
indexed by the variables 1 ≤ α1 ≤ s0. All the other indexes α`, ` ≥ 1 up to ` = L
label the layers of internal nodes 1 ≤ α` ≤ s`−1. The the last level ` = L + 1
represents the external nodes αL+1 (also called leaves)..

We can now use the above indexing to describe the main de�nition of this
section, ie a partition structure for the sets S. We anticipate that the following
construction will be central to our de�nition of the Pure States

De�nition 11. (Filtration of S). Let de�ne the subsets

Sα1...αL+1
= {α (α1...αL+1)} (5.3)

each composed by only one element of S mapped onto the Tree Index of Def-
inition 10 by some bijection θS. Then we call �ltration of S the sequence of
re�nements

S = {Sα1...α` : 1 ≤ α` ≤ s`−1, 0 ≤ ` ≤ L+ 1 }, (5.4)

obtained from joining the subsets Sα1...α` ⊆ S from the last layer Sα1...αL+1
via

the recursive relations

Sα1...α` =

s⋃̀
α`+1=1

Sα1...α`+1
, (5.5)

down to the root level ` = 0. The root level

S =

s0⋃
α1=1

...

sL⋃
αL+1=1

Sα1...αL+1
, (5.6)

is associated to the set S itself.

Notice that by de�nition there is a bijection between α ∈ S and the leaves
indexes α1...αL+1 that establish which state is placed in which set

θS :

L+1⊗
`′=1

{1, ... , s`′} → {1, ... , n} . (5.7)
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This is a free parameter of the construction, and can be eventually tuned for
our aims. In fact, the �ltration above is completely identi�ed by the set of
parameters (L, s, θS) ∈ A. For notation convenience we will write

α (α1...αL+1) = α1...αL+1 (α) , (5.8)

to explicitly indicate the map θS , so that it clearly exploits the correspondence
from α ∈ S to α1...αL+1. Analogously, we write α1...α` (α) to indicate the �rst
` indexes of α1...αL+1 (α). By construction also holds that

Sα1...α` ⊆ Sα1...α`−1
(5.9)

for all 1 ≤ ` ≤ L + 1, and we can eventually rewrite the sets in the equivalent
form

Sα1...α` =

s⋃̀
α`+1=1

...

sL⋃
αL+1=1

Sα1...αL+1
, (5.10)

Their sizes are nL = |Sα1...αL+1
| = 1 for the last layer ` = L+ 1 and

n` = |Sα1...α` | =
L∏
`′=`

s`′ , (5.11)

for all the other layers, up to S = n for the root level ` = 0.
We can already identify this construction with a �ltration for the subset al-

gebra of S, uniquely identi�ed trough the parameters (L, s, θS). It only remain
to introduce the kernel variables.

De�nition 12. (Magnetization Averages) Let mα, α ∈ S, be the columns of the
Magnetization Matrix M and let S be a �ltration of parameters (L, s, θS). We
introduce a notation for the the averages of the �eld components on the states
Sα1...α` . The last layer ` = L+ 1 is associated to the external nodes

ΩV 3 mα1...αL+1 = mα(α1...αL+1). (5.12)

For all the other layers we de�ne

[0, 1]
V 3 mα1...α` =

1

|Sα1...α` |
∑

α∈Sα1...α`

mα, (5.13)

down to the root level ` = 0, for which we drop the tree index and use the simple
notation

m =
1

n

∑
α∈S

mα. (5.14)

An equivalent de�nition that uses the tree indexing only can be

mα1...α` =
1

s`

s∑̀
α`+1=1

...
1

sL

sL∑
αL+1=1

mα1...αL+1 . (5.15)
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and it is important to notice that all these kernel quantities are implicitly de-
pendent from the parameters (L, s, θS) of the �ltration from which are de�ned.
For any α ∈ S and a given level ` we indicate with

mα1...α`(α) =
1

|Sα1...α`(α)|
∑

α′∈Sα1...α`(α)

mα′ (5.16)

the averaged magnetization vector conditioned to the state Sα1...α`(α) to which
α belongs.

De�nition 13. (Magnetization Increments) Let 0 ≤ ` ≤ L + 1, then starting
from the Magnetization Averages we de�ne the parameters

δmα1...α` =
1

|Sα1...α` |
∑

α∈Sα1...α`

mα − 1

|Sα1...α`−1
|

∑
α′∈Sα1...α`−1

mα′ (5.17)

that indicate the increment of the averaged magnetization from mα1...α`−1 of the
layer `−1 to mα1...α` of the layer `. For the the root level ` = 0 we simply write
δm = m, while the �rst generation ` = 1 is δmα1 = mα1 −m. The other levels
are obtained iterating

δmα1...α` = mα1...α` −mα1...α`−1 = mα1...α` − 1

s`−1

s`−1∑
α′`=1

mα1...α`−1α
′
` (5.18)

down to the last level δmα1...αL+1 = mα1...αL+1 − mα1...αL associated to the
external nodes.

We remark that, by construction, the average of any δmα1...α` respect to the
index α` is zero

1

s`−1

s`−1∑
α`=1

δmα1...α` = 0 (5.19)

and any averaged magnetization mα1...α` can be reconstructed from the incre-
ments according to the formula

mα1...α` = m+ δmα1 + δmα1α2 + ...+ δmα1...α` =
∑̀
`′=0

δmα1...α`′ (5.20)

Clearly also the above quantities are implicitly dependent from the �ltration
parameters (L, s, θS). For any α ∈ S there is a correspondence with the mag-
netizations of S,

mα = mα1...αL+1(α) =

L+1∑
`=0

δmα1...α` (α) ∈ Ω (5.21)
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while we can write

mα1...α`(α) =
∑̀
`′=0

δmα1...α`′ (α) (5.22)

to indicate the average magnetizations of the state Sα1...α`(α) to which the index
α belongs. We can now give our interpretation of the Pure States as intended
in the RSB ansatz

De�nition 14. (Pure States) Let 0 ≤ ` ≤ L+ 1 and let M be a magnetization
matrix M : S ⊗ V → Ω of N rows and n columns, then we de�ne the sequence
of magnetization matrices

M` : S ⊗ V → [0, 1] (5.23)

where the columns are the average magnetization vectors

M` = {mα1...α`(α) ∈ [0, 1]
V

: 1 ≤ α ≤ n}, (5.24)

given in De�nition 12 and ML+1 = M . Then, for each 1 ≤ ` ≤ L we call Pure
States of ηM the average magnetization vectors associated to the internal nodes
of the �ltration. We also introduce the matrices sequence

δM` : S ⊗ V → [0, 1] (5.25)

such that the matrix elements of

δM` = {δmα1...α`(α) ∈ [0, 1]
V

: 1 ≤ α ≤ n}, (5.26)

are the increments of De�nition 13, and

M = ML+1 =

L+1∑
`=0

δM`. (5.27)

Although the invariance of the sum order guarantees that the observables
don't change under the action of the map θS of Eq. (5.7), when we switch con-
�gurations between the states this can change both the magnetization averages
and the magnetization increments. In essence, we interpret the Pure States
as hidden parameters that we can use to control a Lebesgue approximation of
a Riemann integrable kernel (the Magnetization kernel of a �nite volume spin
system is always Riemann integrable7).

The above De�nition 14 is intended to give a rigorous formulation for the
�nite volume pure states argued by Marinari et al. in [5], except for the ultra-
metricity assumption that we discuss in the next section. Since we are working
with �nite systems here we avoid a comparison with the usual DLR states of
the in�nite systems8.

7In cut distance approximation we would do the opposite. If we use a Szemeredi Partition
to construct a stepfunction approximation of the kernel in the thermodynamic limit, then we
are performing a Riemann approximation of a Lebesgue integrable kernel.

8Concerning the thermodynamic limit of our �nite volume pure states, notice that the
support ΩN of a �nite N−spin system can be represented by the vertex of an N−dimensional
hypercube. In the continuous kernel representation we embed the hypercube into a compact
space, where it is possible to de�ne a convex envelope for it, following the prescriptions of the
Krein-Milman theorem [8].
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Figure 5.1: Pure states representation of De�nition (14) for a non-random 2-
RSB system (L = 2) and size parameters n0 = 2 and n1 = 3. The vertical lines
highlight the pure states of each layer M0, M1 and M2 of the kernel M . The
last kernel M3 = M not shown for better visualization. See also Figure 6.1.
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Notice that the re�nement sequence S is indeed a �ltered algebra and can
be used to de�ne martingale processes. In particular, it is possible to associate
this construction with a Doob martingale (see below). This property has been
�rst observed by Guerra et al. in [16, 17, 18], where it is proven using dif-
ferent techniques that the pure states of the RSB ansatz admit a martingale
representation.

The Doob martingale [15, 19] is a martingale that approximates any random
variable according to a given �ltration. Given a random set

J T 3X = {Xt ∈ J : 0 ≤ t ≤ T} ∼ ξ : J T → [0, 1] (5.28)

and some f : J T → R, then we call Doob Martingale f of initial condition

f0 = E ξ (f (X)) (5.29)

stopped at time T the stochastic process

f t = E ξ (f (X) |X1,X2, ... ,Xt) , (5.30)

where the average is taken on last T − t variables only. We can use the �ltration
S to construct a Doob martingale having ηM as initial condition.

First we need to introduce the distributions of the increments, and we remark
that the next de�nition will be instrumental for the identi�cation of the Pure
States

De�nition 15. (Distribution of the increments) Let consider a magnetization
matrix M of N rows and n columns. Let

pα1...α` : [0, 1]
V → [0, 1] ; 0 ≤ ` ≤ L (5.31)

be a sequence of atomic probability distributions de�ned as

pα1...α` (φ) =
1

s`

s∑̀
α`+1=1

N∏
i=1

δ
(
φi − δm

α1...α`+1

i

)
(5.32)

where the parameters δmα1...α` are the increments of magnetization in De�nition
13 and φ the associated dummy variable

[0, 1]
V 3 φ = {φi ∈ [0, 1] : i ∈ V } . (5.33)

Then, the Doob Martingale stopped at time L+1 having ηM as initial condition
is given by the following theorem

Theorem 16. (Doob Martingale approximation of ηM ) For any choice of the
�ltration parameters (L, s, θS) the distribution ηM can be represented as follows

ηM (σ) = E p E pα1 ...E pα1...αL ηα1...αL+1 (σ) , (5.34)
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with ηα1...αL+1 random probability measure

ηα1...αL+1 (σ) = 2−N
N∏
i=1

(
1 +

∑
0≤`≤L+1 δm

α1...α`
i σi

)
(5.35)

dependent on the random vectors δmα1...α` ∼ pα1...α` given in De�nition 15.
The sequence of random probability measures

ηα1...α` (σ) : [0, 1]
V → [0, 1] ; 0 ≤ ` ≤ L+ 1 (5.36)

de�ned trough the recursion

ηα1...α` (σ) = E pα1...α` ηα1...α`+1 (σ) (5.37)

is the Doob martingale of ηα1...αL+1 stopped at L+ 1 with initial condition

ηM = Ep ηα1 (σ) . (5.38)

Proof. We need to prove the �rst equation only, being the rest simply a de�nition
for the Doob Martingale (see [15], also Section 12.11 of [19] for the related Doob
Representation). The claim becomes evident if we rewrite the de�nition

ηM (σ) =
1

|S|
∑
α∈S

∏
i∈V

(
1+mαi σi

2

)
(5.39)

using the tree indexing and the kernel variables above. We can write mα
i in

therm of the increments

mα
i →

L+1∑
`=0

δmα1...α`
i (5.40)

and change to the appropriate sum operator

1

|S|
∑
i∈S
→ 1

|S|

s0∑
α1=1

...

sL∑
α
L+1

=1

→ 1

s0

s0∑
α1=1

...
1

sL

sL∑
α
L+1

=1

, (5.41)

up to �nd the iteration

ηM (σ) =
1

s0

s0∑
α1=1

...
1

sL

sL∑
α
L+1

=1

ηα1...αL+1 (σ) , (5.42)

where the initial condition is

ηα1...αL+1 (σ) = 2−N
N∏
i=1

(
1 +

∑
0≤`≤L+1 δm

α1...α`
i σi

)
. (5.43)

Applying the de�nition of the sequence pα1...α` we also change

1

s`

s∑̀
α
`+1

=1

→ E pα1...α` (5.44)
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and the increments δmα1...α` with their random version δmα1...α` . Doing this
we automatically obtain

ηα1...αL+1 (σ)→ ηα1...αL+1 (σ) , (5.45)

from which the claim follows.

Before discussing the Parisi Ansatz it worth notice that although the above
martingale is here described as a forward process, the construction of its �ltra-
tion has been obtained by joining the set backward, from the �ner level that
corresponds to the stopping time ` = L+ 1 to the initial condition ` = 0. Then,
from the probabilistic point of view this construction should rather be viewed as
a backward process, and if we want to consider it a forward process we should
keep in mind that the �nal conditions mα1...αL+1(α) are the microscopic states
of M , and then must always be binary vectors for each state.

6 Parisi Ansatz

The martingale representation of Eq. (5.34) holds for any choice of (L, s, θS)
by construction, then we have a lot of freedom in tuning the parameters to
elaborate further.

Indeed, we believe that this is the point in which the ultrametricity assump-
tion of the Parisi Ansatz �nd its mathematical ratio, ie in the possibility of tun-
ing the free parameters (L, s, θS) in such a way that the increments δmα1...α`

can be treated as i.i.d. random variables (at least on average, if we deal with
a random magnetization matrix M). To make this argument more precise we
can proceed as follows. First, consider the overlap support of ηM ,

Q = { q(mα, mα′ ) : α, α′ ∈ S }, (6.1)

then by Lemma 8 we have that

q(mα, mα′ ) =
1

N
mαmα′ =

1

N

∑
i∈V

mα
i m

α′

i , (6.2)

Let see what happen when we rewrite it using the following tree indexing

α = α1...αL+1 (α) = α1...αL+1 = αL+1, (6.3)

α1...α` (α) = α1...α` = α`. (6.4)

By de�nition holds that

Nq(mα, mα′ ) = q(mα1...αL+1 , mα′1...α
′
L+1 ) =

= mα1...αL+1 mα′1...α
′
L+1 =

L+1∑
`=0

L+1∑
`′=0

δmα1...α`δmα′1...α
′
`′
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and after some simple algebra we arrive to the expression

L+1∑
`=0

L+1∑
`′=0

δmα1...α`δmα′1...α
′
`′ =

=

L+1∑
`=0

δmα1...α` δmα′1...α
′
` +

∑
6̀=`′

δmα1...α`
i δm

α′1...α
′
`′

i =

=

`∗(α,α′)∑
`=0

| δmα1...α` | 2 +

L+1∑
`=`∗(α,α′)+1

δmα1...α` δmα′1...α
′
` +

+
∑
6̀=`′

δmα1...α` δmα′1...α
′
`′ (6.5)

where in the last equation we introduced the index

`∗(α, α′) = sup {` ∈ N : α1...α` = α′1...α
′
`} =

L+1∑
`=1

∏̀
`′=1

I{α`′=α′`′}. (6.6)

In practice, we separated the o� diagonal terms of the overlap matrix of the
increments, that bring us to the following expression for the overlap support:

Nq(mα, mα′ ) =

`∗(α,α′)∑
`=0

| δmα1...α` | 2 +R (α, α′) , (6.7)

where we collected the reminders into the estimator

R (α, α′) = R1 (α, α′) +R2 (α, α′) =

=

L+1∑
`=`∗(α,α′)+1

δmα1...α` δmα′1...α
′
` +

∑
` 6=`′

δmα1...α` δmα′1...α
′
`′ . (6.8)

It is clear from the above expression that if we could �nd a con�guration of
(L, s, θS) for which R (α, α′) is small this would be quite like having indepen-
dence between the increments, and this would induce a hierarchical topology
for the martingale evolution (although not necessarily ultrametric as we shall
see in short).

Based on the above considerations, if we restrict our analysis to the case

L2 =
{
M ∼ ψ : Eψm

α = 0, Eψ |mα|2 ≤ CmaxN
}

(6.9)

of L2−bounded random matrices with vanishing magnetizations we can give a
straightforward su�cient condition for this property to hold on average

Lemma 17. (Tree Topology Condition, TTC). Let consider some random mag-
netization matrix M ∈ L2 of N rows and n columns. Then, let de�ne the
average overlap matrix of the increments,

Cψ (α`, α
′
`′) = Eψ δm

α1...α` δmα′1...α
′
`′ (6.10)
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computed from M , and call A the set of choices for the parameters (L, s, θS).
Given the (possibly empty) subset

A∗ψ (ε) =
{

(L, s, θS) ∈ A : supα, 6̀=α′,`′ |Cψ (α`, α
′
`′)| ≤ εN/L2

}
, (6.11)

then ∀ (L, s, θS) ∈ A∗ψ (ε) there is a collection of bounded real numbers

Γ̃ (L, s) 3 γ̃ = { γ̃α1...α` ∈ [ 0, C 1/2
max ] : 1 ≤ α` ≤ s`−1, 0 ≤ ` ≤ L+ 1 } (6.12)

such that the following condition holds for any pair α`, α
′
`

|Eψ δm
α1...α` δmα′1...α

′
`′ −N γ̃2

α1...α`
I{α1...α`=α′1...α

′
`′} | ≤ 2εN. (6.13)

We say that M has an ε−tree topology if A∗ψ (ε) contains at least one element.

Proof. We only need to prove the existence of γ̃ when (L, s, θS) ∈ A∗ψ (ε). Since
by hypothesis hold

sup
α, 6̀=α′,`′

|Cψ (α`, α
′
`′)| ≤ εN/L2 (6.14)

we can start from Eq. (6.8) to obtain the following trivial bound

EψR (α, α′) ≤
∑

`≥`∗(α,α′)

|Cψ (α`, α
′
`)|+

∑
` 6=`′
|Cψ (α`, α

′
`′)| ≤

≤ 2L2 sup
α, 6̀=α′,`′

|Cψ (α`, α
′
`′)| ≤ 2εN (6.15)

and then de�ne γ̃ from γ̃2
α1...α`

= Cψ (α`, α`) /N ∈ [0, Cmax].

Strictly speaking, the TTC above is equivalent to ask that the overlap ma-
trix of the increments is almost diagonal, and seems to describe some kind of
decorrelation process where the states α, α′, α′′, ... evolves together up to some
abstract time `∗(α, α′, α′′, ...) at which they are separated by the �ltration pro-
cess. Essentially, each kernel column evolves like a Markov Process in `, but the
evolution of di�erent states is coupled until they are in the same group, then
their evolutions become independent.

We believe that this generalized approximation could �nd useful applications
in studying models that exhibit a non self-averaging free energy density respect
to the disorder. Notice also that many intriguing questions may come from the
interpretation of the RSB parameter `. Mathematically, we presented it as an
abstract time for the evolution forward of the Doob martingale, but we wonder
if some physical interpretation is possible in therm of block renormalization, or
other scaling operations of some kind.

To avoid distracting technicalities, in the present work we don't even try to
establish for which ψ the subset A∗ψ (ε) is non-empty in the limit of in�nitesimal
ε, nor we attempt to apply these ideas to practical situations, but we remark that
more re�ned (and useful, depending on the case) estimates can be developed
starting from the concept of TTC above.
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Anyway, it is important to understand that TTC alone does not imply ul-
trametricity. In fact, the averaged support of the overlap is given by

Eψ q(m
α, mα′ ) =

`∗(α,α′)∑
`=0

γ̃2
α1...α`

. (6.16)

and it is not necessarily ultrametric. Even if the dependence from `∗(α, α′)
imply a hierarchical organization of the overlap support, we also need to assume
equality in distribution of the increments within each layer `, ie

δmα1...α` d
= δmα′1...α

′
` , (6.17)

to get all γ̃α1...α` equal to some γ`. We can give a simple formal condition
for this property to hold, independent from the TTC above. We conjecture,
but not prove here, that for M ∈ L2 the State Equivalence described below
should correspond to the Replica Equivalence of [20] and the Stochastic Stability
introduced in [21]. In general, it seems much less exotic than TTC.

De�nition 18. (States Equivalence Condition, SEC) Let γ be a collection of
L+ 1 bounded real parameters

Γ (L) 3 γ = { γ` ∈ [ 0, C 1/2
max ] : 0 ≤ ` ≤ L+ 1 }, (6.18)

let Γ (L) be the space of these parameters and let A 3 (L, s, θS). For some
random magnetization matrix M ∈ L2 we de�ne the index

∆ (α, γ`) = Cψ (α`, α`)−Nγ2
` . (6.19)

computed respect to each layer ` of �ltration. Then, we say that the Pure States
of M are ε−equivalent if the subset

A†ψ (ε) =
⋃

γ∈Γ(L)

{
(L, s, θS) ∈ A : supα,` |∆ (α, γ`)| ≤ εN

}
(6.20)

has at least one element.

If TTC and SEC hold for some kernel M , then the associated overlap dis-
tribution is ultrametric. That said, we can �nally introduce the class of Parisi
Kernels, that we expect to include the Magnetization Matrix associated the SK
model.

Theorem 19. (Parisi Kernel) We call Parisi Type Matrix an array M ∈ L2

such that for some choice of (L, s, θS) ∈ A and γ ∈ Γ (L) both TTC and SEC
hold exactly,

Eψ δm
α1...α` δmα′1...α

′
`′ = Nγ2

` I{α1...α`=α′1...α
′
`′}. (6.21)

Then, the support of the overlap is ultrametric on average

Eψ q(m
α, mα′ ) =

`∗(α,α′)∑
`=0

γ2
` . (6.22)

We call Parisi Distribution ηM the probability distribution associated to M .
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Proof. It su�ces to take the average of Eq.s (6.7), (6.8) and use the hypothesis
in Eq. (6.21) to �nd EψR (α, α′) = 0, corresponding to TTC, and γ̃α1...α` = γ`,
that is the SEC. Then Eq. (6.22) follows.

Notice that if we also assume concentration of the random overlap support Q
on its averaged version

EψQ = {Eψ q(m
α, mα′ ) : α, α′ ∈ S }, (6.23)

(in general, a property still dependent from the choice of ψ) we can compare
with the usual expressions of the averaged overlap distribution from Replica
Theory. By the following change of variable

γ`+1 =
√
q`+1 − q`, (6.24)

we obtain the expression

Eψ q(m
α, mα′ ) =

`∗(α,α′)∑
`′=1

(q`′ − q`′−1) = q`∗(α,α′) (6.25)

and by assuming concentration we get

Eψ PM (q) =
1

n2

n∑
α=1

n∑
α′=1

δ( q − q`∗(α,α′) ). (6.26)

Concerning the sizes n` of the blocks in which the step function `∗(α, α′) is
divided, as suggested by Lemma 9 and considerations afterward they must be
proportional to the blocks λ`−1 of the RSB ansatz in the Replica Formulation,
then we �nd λ`−1/λ` = s`.

To avoid long detours, we won't discuss the connection with the classical
probabilistic Point Process description of [6], although it is not hard to prove
that assuming concentration the random parameters of the above measure will
be distributed according to a Ruelle Cascade, with rates of each layer corre-
sponding to our �ltration parameters s`.

We also avoid to give a detailed physical interpretation at this point, because
for this purpose we will need to introduce a joint �ltration for S and V , and
construct a more re�ned martingale approximation to capture the factorization
of the pure states of Lemma 2. By the way, notice that usual mean �eld theories
approximate the target functional, for example the free energy density, by sup-
pressing the correlations between the spin sites. The RSB ansatz seems instead
a mean �eld theory that suppresses correlations between the states (in a rather
nontrivial way if we take L > 1), and this can be interpreted as a suppression
of time correlations between di�erent quenched measurements.

In Figure 6.1 we show the Magnetization kernel of a non-random 2-RSB
measure, where a measure preserving map has been applied also to V to high-
light the factorization of the pure states. For each state mα the stripes Vk ⊂ V
de�ne collections of spin con�gurations

mα
Vk

= {mα
i ∈ Ω : i ∈ Vk} (6.27)
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Figure 6.1: Magnetization kernel of a non-random 2-RSB measure. For each
Vk the state components mα

Vk
of Eq.(6.27) are dependent inside the same state

and orthogonal between di�erent ones. Using an opportune measure preserving
mapping of V to match with the Figure 5.1 it is possible to show that the above
kernel satisfy both TTC and SEC.
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that are dependent inside the same state and orthogonal between di�erent states.
As shown in Fig. 6.1, if α1...αk−1 6= α′1...α

′
k−1 and

α ∈ Sα1...αk−1
, α′ ∈ Sα′1...α′k−1

(6.28)

then mα
Vk
mα′

Vk
= 0, while if α, α′ ∈ Sα1...αk−1

then mα
Vk
mα′

Vk
> 0. If we interpret

the kernel columns of Figure 6.1 as the results of an in�nite series of consec-
utive physical measurements of the spin con�guration σ ∼ µ, then this kernel
describes a spin system in which the spin space V is partitioned into zones that
evolves almost independently9, but according to di�erent self-correlation times
for each Vk (here V1 is the slowest and V3 is the fastest). This will be investi-
gated in the next paper, where we show how to deal with the Cavity method by
applying these ideas not to the magnetization kernel, but to the kernel of the
Cavity �elds.

As �nal remark, we insist that almost all the arguments presented here are
not limited to the Magnetization kernel. As we shall see, we can build kernels
from any bounded random variable, and then chose the one that best �t to our
problem.

7 Acknowledgments

I wish to thank Amin Coja-Oghlan for explaining the ideas presented in[9],
and their connection with Graph Theory and Replica Symmetry Breaking. I
also wish to thank Giorgio Parisi, Francesco Guerra, Pietro Caputo, Nicola
Kistler, Pan Liming, Francesco Concetti and Riccardo Balzan for interesting
discussions and suggestions, and the anonymous Referee for his question on the
Doob martingale.

This project has received funding from the European Research Council
(ERC) under the European Union's Seventh Framework Programme (grant
agreement No [278857]) and the European Union's Horizon 2020 research and
innovation programme (grant agreement No [694925]).

References

[1] G. Parisi, A sequence of approximate solutions to the S-K model for spin
glasses, Journal of Physics A 13 (1980).

[2] G. Parisi, M. Mezard, M. Virasoro, Spin Glass theory and Beyond, World
Scienti�c (1987).

9Actually, the zones show a peculiar correlation structure since there is a hierarchy between
the evolution of the volumes Vk. In fact, when the magnetization of Vk jumps to a new
con�guration then all volumes with Vj , j > k also change. This is an expression of the
fractal landscape, in which to escape from a certain cluster one must also escape from all its
sub-clusters.

29



[3] F. Guerra, Broken replica symmetry bounds in the mean �eld spin glass
model, Communications in Mathematical Physics 233 (2003).

[4] M. Talagrand, The Parisi Formula, Annals of Mathematics 163 (2006).

[5] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. Ruiz-Lorenzo, F. Zuliani,
Replica Symmetry Breaking in Short-Range Spin Glasses: Theoretical
Foundations and Numerical Evidences, Journal of Statistical Physics 98
(2000). Updated 2014 version: https://arxiv.org/abs/cond-mat/9906076

[6] D. Panchenko, The Sherrington-Kirckpatrick Model, Springer (2013).

[7] D. Panchenko, Spin glass models from the point of view of spin distributions,
Annals of Probability 41 (2013).

[8] M. Krein, D. Milman, On extreme points of regular convex sets, Studia
Mathematica 9 (1940).

[9] V. Bapst, A. Coja-Oghlan, Harnessing the Bethe Free Energy, Random
Structures and Algorithms 49 (2016).

[10] A. Coja-Oghlan, W. Perkins, K. Skubch, Limits of discrete distributions
and Gibbs measures on random graphs, European Journal of Combinatorics
66 (2017).

[11] A. Coja-Oghlan, W. Perkins, Belief propagation on replica symmetric ran-
dom factor graph models, to appear in Annales de L'Institut Henri Poincare
D (2017).

[12] P. Diaconis, S. Janson, Graph limits and exchangeable random graphs, Ren-
diconti di Matematica e delle sue Applicazioni VII 28 (2008).

[13] E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et
théorie des graphes, Colloques Internationaux du CNRS 260, Paris (1978).

[14] L. Lovasz, Large Networks and Graph Limits, AMS Colloquim Publications
60 (2012).

[15] J. L. Doob, Regularity properties of certain families of chance variables,
Transactions of the American Mathematical Society 47 (1940)

[16] F. Guerra, Fluctuations and thermodynamic variables in mean �eld spin
glass models, Stochastic Processes, Physics and Geometry II, World Scien-
ti�c Singapore (1995).

[17] F. Guerra, Functional order parameters for the quenched free energy in
mean �eld spin glass models, Field Theory and Collective Phenomena,
World Scienti�c Singapore (1995).

[18] A. Barra, A. Di Biasio, F. Guerra, Replica symmetry breaking in mean-�eld
spin glasses through the Hamilton�Jacobi technique, Journal of Statistical
Mechanics 09 (2010).

30



[19] D. Williams, Probability with Martingales, Cambridge University Press
(1991).

[20] G. Parisi, F. Ricci-Tersenghi, On the origin of ultrametricity, Journal of
Physics A 33 (2000).

[21] M. Aizenman, P. Contucci, On the Stability of the Quenched state in Mean
Field Spin Glass Models, Journal of Statistical Physics 92 (1998).

31


