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The diagonal ensemble is the infinite time average of a quantum state following unitary dynamics in systems
without degeneracies. In analogy to the time average of a classical phase-space dynamics, it is intimately related
to the ergodic properties of the quantum system giving information on the spreading of the initial state in the
eigenstates of the Hamiltonian. In this work we apply a concept from quantum information, known as total
correlations, to the diagonal ensemble. Forming an upper bound on the multipartite entanglement, it quantifies
the combination of both classical and quantum correlations in a mixed state. We generalize the total correlations
of the diagonal ensemble to more general α-Renyi entropies and focus on the cases α = 1 and α = 2 with further
numerical extensions in mind. Here we show that the total correlations of the diagonal ensemble is a generic
indicator of ergodicity breaking, displaying a subextensive behavior when the system is ergodic. We demonstrate
this by investigating its scaling in a range of spin chain models focusing not only on the cases of integrability
breaking but also emphasize its role in understanding the transition from an ergodic to a many-body localized
phase in systems with disorder or quasiperiodicity.
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I. INTRODUCTION

Attempts to recover statistical mechanics from the underly-
ing unitary dynamics of a quantum system have been around
since the inception of quantum theory with the pioneering
approaches of both von Neumann [1] and Schrödinger [2].
Although these works showed impressive foresight, until
relatively recently these foundational studies were almost
forgotten and seen as irrelevant due to the fact that uni-
tary evolution was not relevant over dynamical time scales
in the laboratory. Arguments for the validity of statistical
mechanics predominantly consisted of invoking coupling to
the larger bath of the universe and hence thermalization by
dissipation.

In the past two decades, these foundational questions have
seen an unprecedented resurgence in interest by theorists
from several different scientific communities, ranging from
condensed matter physics to quantum information [3–10].
This revival is due, in no small part, to great advances in
experimental ultracold atomic physics [11] where pioneering
experiments were successful in generating and probing co-
herent unitary dynamics over long time scales [12–15]. This
includes an experimental realization [13] of the Lieb-Liniger
model of interacting bosons in one dimension, in which the
existence of an extensive set of conserved quantities, due to the
integrability of the model, renders the dynamics nonergodic
[16].

Experimental motivations aside, there have also been
developments in theoretical condensed matter physics, which
have forced us to carefully think about the foundations
of statistical mechanics beyond the paradigm of integrable
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systems. In particular Basko, Aleiner, and Altshuler have
demonstrated that Anderson localization [17] is stable in the
presence of interactions [18] leading to a new type of transition
to a phase, which is known as many-body localization (MBL)
[19–21]. Interestingly this transition is between an ergodic and
a nonergodic phase [22] and has led to an intense interest in
the phenomenology of ergodicity and its breaking in quantum
dynamics.

Physically motivated, an approach known as the eigenstate
thermalization hypothesis (ETH) has proven to be popular
among researchers from this community. The ETH was born
out of a realization by Berry [23], who postulated that, in the
semiclassical limit of quantum systems with chaotic classical
counterparts, the Wigner function evaluated on eigenstates
reduces to the microcanonical distribution. This was extended
to arbitrary systems by Deutsch [24], who proposed to assume
that generic eigenstates of ergodic systems are like eigenstates
of full random matrices. Building on these ideas Srednicki
formulated what is now known as the ETH, which is an ansatz
on the behavior of matrix elements of observables with the
consequence that ergodic systems can show thermal behavior
at the level of individual eigenstates [25–27].

Another approach, popular in the quantum information
and mathematical physics communities, is the concept of
normal and canonical typicality [28–32]. This approach has
the advantage of not just replacing one hypothesis (that
systems tend to equilibrate to Gibbs states) with another
equally unproven one (that systems generically fulfill the
ETH), but it replaces the equal a priori probability postulate
(all states in a microcanonical shell are equally probable) with
a strictly weaker assumption, by showing rigorously that the
overwhelming majority of states in a microcanonical shell have
nearly the same properties with respect to certain observables,
such as, for example, local ones. However, the generality of
the results obtained based on these concepts makes it difficult
to apply this approach to concrete systems, as in realistic
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situations interesting dynamics usually starts from a highly
untypical initial condition.

In addition to the above, in recent years dynamical equi-
libration of expectation values and density matrices of sub-
systems under unitary dynamics has been studied extensively
[32–37] (see also Ref. [8] for a review). Such equilibration
can be rigorously shown to happen if the spectrum of the
Hamiltonian fulfills certain nonresonance conditions, and the
initial state has overlap with many energy eigenstates or
the second most populated eigenstates are occupied with only
a small probability (a weaker requirement). In these results, the
equilibrium expectation values or reduced states are given by
the diagonal ensemble (also known as infinite time averaged
state, dephased state, or pinched state). How and to which state
equilibration occurs, of course, is closely connected to whether
a system is ergodic or not, which motivates us to consider in
more detail the correlations in this diagonal ensemble to study
ergodicity breaking.

Concepts of quantum information have been useful in
the typicality approach (system-bath entanglement) [30],
the dynamical equilibration approach, and in the ETH
approach; for example, in studying the volume law scaling
of entanglement in eigenstates, the crossover to an area
law is a signature of the MBL transition [38]. In a recent
work, some of the current authors have proposed a different
information-theory-inspired approach [39]. The idea is to look
at the correlations within the diagonal ensemble to understand
nonergodic behavior in the context of the MBL transition
[39]. The purpose of the current work is to demonstrate that
this concept is more generally useful and can detect ergodicity
breaking in a range of scenarios beyond and including MBL.
The formalism offers a fresh approach to ergodicity and its
breaking in quantum systems, while at the same time giving
us novel insights into the structure of correlations in the
equilibrium state of dynamical systems.

II. ERGODICITY AND TOTAL CORRELATIONS

Due to the absence of a universally valid phase-space
picture in quantum systems it is not obvious how to generalize
the concept of ergodicity to the quantum realm, especially in
systems that do not have a well-defined classical limit. As
was outlined in Ref. [39], the total correlations in the diagonal
ensemble offer a physically meaningful way to define and
probe ergodicity and its breaking in quantum systems. Here
we generalize this approach.

A. A condition for ergodicity

The (quasi)ergodic hypothesis in classical systems states
that over time a system’s dynamics uniformly covers its
entire phase space so that the (infinite time) time average and
the microcanonical averages agree [40]. It is thus natural to
define ergodicity in quantum systems in an analogous way via
the portion of the explored Hilbert space. A complication is
that quantum systems explore all of the available phase space
uniformly such that time and microcanonical average agree
exactly only for very special initial states. This naturally leads
us to build a notion of ergodicity in quantum systems based
on the fraction of the available Hilbert space that is explored,

as opposed to the classical notion of ergodicity that requires
that all of the available phase space is explored uniformly.
The available Hilbert space hereby can be usually naturally
defined as, for example, the fixed magnetization or fixed filling
fraction subspace if the system has such symmetries. To define
ergodicity via the fraction of Hilbert space that is explored
one obviously first needs to devise a way of quantifying the
explored fraction. It is this question that we elucidate in this
work, going beyond the initial proposal in Ref. [39].

For a fixed initial state ρ and nondegenerate Hamiltonian
H the diagonal ensemble is defined as

ω :=
∑

n

|En〉〈En| ρ |En〉〈En|= lim
τ→∞

1

τ

∫ τ

0
dt e−itH ρ eitH ,

(1)

where |En〉 are the eigenvectors of H . The state ω is the
state that maximizes the von Neumann entropy subject to all
constants of motion [41]. For pure initial states ρ = |�〉〈�|,
the inverse purity 1/tr(ω2) of the diagonal ensemble can be
seen as a measure for how spread out the initial state was over
the different eigenstates of the Hamiltonian and it often goes
under the apt name of effective dimension or participation
ratio. If the effective dimension is high, expectation values
of observables can be rigorously shown [4,6,8,32,33] to
equilibrate on average during the time evolution towards their
values in the state ω. The effective dimension, however, is not
the only way of quantifying the spreading of the initial state.
Another measure is the von Neumann entropy of the diagonal
ensemble S(ω) = −∑

n pn log2 pn with pn = |〈En|�〉|2 and
derived quantities; this was the route taken in Ref. [39].

Both of these quantities are special cases of a whole family
of entropies, the so-called α-Renyi entropies, which for 0 <

α < ∞ are defined as

Sα(ρ) := 1

1 − α
log2[tr(ρα)]. (2)

The 2-entropy S2 = log2[1/tr(ρ2)] is the log of the inverse
purity, the 1-entropy S1 = S is the von Neumann entropy, and
the two extreme cases are defined as S∞(ρ) := log2(1/‖ρ‖∞)
and S0(ρ) := log2[rank(ρ)]. The Renyi entropies are mono-
tonically nonincreasing as a function of α. In other words, for
any fixed ρ, it holds that Sα(ρ) � Sα′(ρ) whenever α′ � α. For
ψ a pure state and ρ a normalized quantum state of a system
with Hilbert space dimension d, it holds that

0 = Sα(ψ) � Sα(ρ) � Sα(1d×d/d) = log2(d). (3)

Except in the case α = 0 the inequalities hold with equality
only if ρ is either pure or maximally mixed, respectively.

It is the upper bound that interests us here. Given a
Hamiltonian H , an initial state ρ explores all of Hilbert space if
Sα(ω) = log2(d). As said above, this, however, only happens
for very special states for which ω is maximally mixed. A
natural relaxation of this condition is to demand that for some
chosen 0 � α � ∞ there exists a constant λ > 0, independent
of N and d, such that Sα(ω) � log2(λ d), i.e., that the state
explores a λ fraction of the Hilbert space as measured by the
α-Renyi entropy.

That this is a sensible condition for ergodicity is further
illustrated by the following consideration: For any fixed initial
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state ρ and Hamiltonians H with eigenbasis randomly drawn
from a unitary invariant ensemble on a Hilbert space of dimen-
sion d one can show for the α = 1 entropy [Ref. [42], Eq. (B6)]
and the α = 2 entropy [33] that the probability that the state
explores less than half of the available Hilbert space is at least
almost exponentially suppressed with growing d (as the Renyi
entropies are nonincreasing as a function of α this then holds
for all 0 � α � 2). That is, any fixed initial state is with high
probability ergodic according to our condition with respect
to Hamiltonians drawn unitarily at random—as one would
expect. To be more precise: Generalizing the considerations
from Ref. [39] we hence demand that a system should be
considered α ergodic only if the initial states explore at least
a constant fraction of the available Hilbert space in the sense
that for some λ it holds that Sα(ω) � log2(λ d). In the models
that we will consider the Neel states are suitable initial states.

We have so far defined a family of conditions parametrized
by α that appear as natural quantum generalizations of the
concept of ergodicity, but have not yet said much about the role
of α. Remember that the Renyi entropies are monotonically
nonincreasing as a function of α. Thus, demanding that,
for example, S2 � log2(λ d) is a stronger requirement than
demanding that the same scaling holds for S1. As we will see
later, the fact that a system fulfills our condition for ergodicity
for a given α has direct consequences on the scaling of the
total correlations with the number of particles.

B. Total correlations

Phase transitions that involve the breaking of ergodicity,
such as the MBL transition, have in the past been analyzed with
various measures of correlations. A focus thereby was on the
mutual information, which was found to saturate to a constant
in Anderson localization, grow logarithmically in time in the
MBL phase, and linearly in ergodic phases [43]. Further, it
decays exponentially with the distance between subsystems
in the localized phase, but slower than exponentially in the
ergodic phase. Here we concentrate on a correlation measure
called the total correlations and its Renyi generalizations.

Concretely we define the α-Renyi total correlations as

Tα(ρ) :=
N∑

m=1

Sα(ρm) − Sα(ρ), (4)

where ρm is the marginal (reduced state) of ρ on site m. In the
special case α = 1 the total correlations have the following
operational meaning: Let P be the set of all product states of
an N -partite quantum system, i.e., for spin systems, states of
the form π = π1 ⊗ π2 · · · ⊗ πN , and the obvious analogs for
fermionic and bosonic systems, then [44]

T1(ρ) = min
π∈P

S(ρ‖π ), (5)

where S(ρ‖σ ) := −tr(ρ log2 σ ) − S1(ρ) is the relative en-
tropy between the states ρ and σ and it can be thought of
as a measure of distinguishability of the two states. More
precisely, the relative entropy quantifies how difficult it is
to distinguish between many copies of ρ and many copies
of σ in a hypothesis testing scenario [45]. It turns out that
there is a unique product state that minimizes the relative
entropy in the above expression and this is the product of

the reduced states ρm of ρ, i.e., π = ⊗N
m=1ρm [44]. In the

case α = 1 the total correlations can hence be thought of as
the distinguishability from the closest product state. No such
straightforward operational interpretation exists for α 
= 1 to
the best of our knowledge. As we will explain in the next
sections, insights into integrability breaking can be obtained
through the various Renyi total correlations.

C. Scaling of the total correlations

In the following we analyze the total correlations, and in
particular T1 and T2, of the diagonal ensemble ω for Neel initial
states in various spin-chain models. One characteristic that will
be very insightful is the scaling of the total correlations with
N .

Inspecting Eq. (4) one might expect that the total correla-
tions T (ω) in the diagonal ensemble should generally scale
extensively in the system size N , i.e., for large N , to leading
order, it should scale like

Tα(ω) ∝ N, (6)

as Tα(ω) involves the sum
∑N

m=1 Sα(ωm) of the N subsystem
entropies.

If a family of systems of increasing size satisfies the
condition for ergodicity defined above, then the contribution
linear in N from the first sum can be precisely canceled by
the −Sα(ω) term; Sα(ω) is known as the diagonal entropy
[46] and is a measure of localization in the energy eigenbasis.
Consider a quantum spin chain of local dimension 2 in the
zero magnetization subspace.1 The available Hilbert space
dimension is d = (

N

N/2

) = N !/(N
2 !)

2 �
√

8 π e−2 2N/
√

N and
Sα(ωm) � log2 2 = 1, so that if the condition for ergodicity
Sα(ω) � log2(λ d) holds, one finds at most the logarithmic
scaling

Tα(ω) � log2(N )/2 − log2(λ
√

8 π e−2). (7)

One furthermore retains a logarithmic scaling for ergodic
systems for all other constant magnetization/fillings subspaces
η 
= 1/2 in the case α = 1 [39].

This subextensive scaling can also be understood intu-
itively: The transport present in ergodic systems correlates
the different parts of the system to the extent that they
appear, for most times during the evolution, so mixed that
the time-averaged state starts to resemble a product state.

In conclusion we can say that whenever we see a faster
than logarithmic scaling in the α-Renyi total correlations of
the diagonal ensembles ω of an initial state from the half-filling
subspace, then the condition for ergodicity for that value of α

is violated. On the contrary, a logarithmic scaling suggests
ergodic behavior.

1The diagonal entropy, or Shannon entropy in the energy eigenbasis,
measures delocalization/localization in that basis and therefore its
scaling can give information about ergodicity. However, the total
correlations and its Renyi generalizations give far more information;
in particular it not only scales differently in different phases but
also shows divergence of the correlations in the critical region—an
interesting phenomenon in its own right, which cannot be studied just
looking at the diagonal entropy alone.
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III. EXAMPLES

Low-dimensional many-body quantum systems, such as
spin-1/2 chains are systems commonly used to study ergodicity
breaking phenomena. In what follows we will always consider
dynamics starting from the trivial initial Hamiltonian, H0

defined as

H0 =
N∑

i=1

Jzs
i
zs

i+1
z , (8)

where si are spin-1/2 operators, and we choose as an initial
state the Neel state |�0〉 = |↑↓↑↓↑↓ . . . 〉. Now imagine a
quench where we turn on additional terms denoted by an
interaction part Hint such that dynamics is initiated and
governed by the Hamiltonian HF = H0 + Hint. We shall
build the diagonal ensemble defined by Eq. (1) by exact
diagonalization and then investigate the scaling of the total
correlations T (ω) as defined in Eq. (4), both in the case
of the von Neumann total correlations (α = 1) and of
the 2-Renyi total correlations (α = 2). We choose the initial
state |�0〉 as a Neel state for two principal reasons: First, in
the models we shall consider, the Neel state can be shown
to sample eigenstates of HF at the center of the spectrum
and in the half-filling subspace [47]. In this regime we expect
the finite-size effects to be minimized. Second, the Neel state
(charge density wave in fermion picture), is by now routinely
prepared by experimentalists to study ergodicity breaking, for
example in the recent studies of MBL systems [48,49].

A. Integrability breaking

Let us begin with the following model studied by Santos
in 2004 [50]. The model is an XXZ spin chain with open
boundary conditions, which includes a single defect at the
center of the chain of strength ε,

HF =
N∑

i=1

[
Jxs

i
xs

i+1
x + Jys

i
ys

i+1
y + Jzs

i
zs

i+1
z

] + εsN/2
z . (9)

The integrability of the chain is broken [50], indicated by
a crossover from Poissonian to Wigner-Dyson statistics, for
defect strengths which are comparable to the interaction
energy. As the strength of the single defect is increased the
system becomes integrable again as the chain is cut into two
XXZ chains. Our theory predicts then that we should see a
linear-log-linear behavior in the scaling of the total correlations
as we increase the defect strength from zero. This is indeed
what results from the numerical computation of T1(ω), shown
in the main plot of Fig. 1 for three values of ε, ε = 0, 0.5,
and 10: T1 scales linearly for the values ε = 0 and ε = 10
and approximately logarithmically for ε = 0.5 as a function of
system size. The same happens to the 2-Renyi total correlations
T2(ω), shown in the main plot of Fig. 2.

The second model that we consider is the clean XXZ model
with next-nearest-neighbour interaction,

HNNN =
N∑

i=1

[
Jxs

i
xs

i+1
x + Jys

i
ys

i+1
y + Jzs

i
zs

i+1
z

+ J ′
xs

i
xs

i+2
x + J ′

ys
i
ys

i+2
y

]
. (10)

FIG. 1. The von Neumann total correlations of the diagonal
ensemble starting with the Neel state for an XXZ chain with defect
of strength ε placed at center of the chain [Eq. (9) with parameters
Jx = Jy = 1, and Jz = 0.5]. When the defect strength is zero or
very strong the model is integrable, which is reflected in a linear
scaling of the total correlations, and when it is comparable with
the interaction energy it shows a logarithmic growth indicative
of ergodic dynamics. Inset: Total correlations for an XXZ chain
with next-nearest-neighbour interaction [Eq. (10) with parameters
Jx = Jy = 1, Jz = 0.5, and J ′

x = J ′
y = 1, compared to the same

model with J ′
x = J ′

y = 0]. The model is nonintegrable and thus the
scaling of the total correlations is logarithmic in the system size.

For J ′
x,J

′
y 
= 0 integrability is broken and the scaling of the

total correlations T1(ω) with the system size is logarithmic, as
is shown in the inset of Fig. 1. Also in this model we see an
analogous behavior for the 2-Renyi total correlations T2(ω),
which are logarithmically scaling with the system size (see

FIG. 2. The 2-Renyi total correlations of the diagonal ensemble
starting with the Neel state for an XXZ chain with defect of strength
ε placed at center of the chain [Eq. (9) with parameters Jx = Jy = 1,
and Jz = 0.5]. When the defect strength is zero or very strong T2

scales linearly with system size and when it is comparable with the
interaction energy it scales logarithmically. Inset. Total correlations
for an XXZ chain with next-nearest-neighbour interaction [Eq. (10)
with parameters Jx = Jy = 1, Jz = 0.5, and J ′

x = J ′
y = 1, compared

to the same model with J ′
x = J ′

y = 0]. The scaling of the total
correlations is logarithmic in the system size.
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FIG. 3. The von Neumann total correlations of the diagonal
ensemble, starting with a Neel state, for the Heisenberg model with
random fields [whose Hamiltonian is Eq. (11) with hi ∈ [−h,h] and
Jx = Jy = Jz = 1], rescaled with the system size. The markers on the
top axis denote the positions of the local peak h∗(N ). The curves show
a system-size-dependent peak (see Fig. 7) and collapse for h � 2.5.
Inset: System size scaling of the total correlations for three example
values of h, showing a logarithmic scaling deep in the delocalized
phase and a linear scaling for disorder values near the transition
(which is at hc ≈ 3.7) and in the localized phase.

the inset of Fig. 2). In both cases of integrability breaking, the
total correlations displays the predicted behavior.

B. Many-body localization

Let us now consider models that have an MBL transition
that separates an ergodic phase and a nonergodic one where a
sufficient number of local integrals of motion exists in order
to have a breaking of the ETH [51]. We look at a system with
the Hamiltonian

HMBL =
N∑

i=1

[
Jxs

i
xs

i+1
x + Jys

i
ys

i+1
y + Jzs

i
zs

i+1
z + his

i
z

]
, (11)

where hi ∈ [−h,h] is a disordered field (Heisenberg model
with random fields) or hi = h cos (2πφ−1i + δ), where φ is
the golden ratio and δ is a random phase in [0,2π ), that is a
pseudodisordered cosine field (Aubry-André model). For both
models we compute the total correlations for the diagonal
ensemble with the Neel initial state, averaging over many
disorder or pseudodisorder realizations, the latter obtained
through the random phase δ (105 realizations for N � 12,
104 for N = 14, and 250–1000 for N = 16). The results for
the von Neumann total correlation rescaled with the system
size, T1(ω)/N , are shown in Figs. 3 and 4, respectively, for
the two models, as a function of the disorder or quasidisorder
strength.

We note two features: the curves collapse for h � h∗,
indicating a linear scaling of the total correlations and
thus nonergodicity, and T1(ω)/N peaks at a value h∗(N ).
Remarkably, the presence of a peak can be understood as a
divergence of correlations at the MBL transition point and its
asymptotic position in the infinite-size limit gives the transition
value hc [39]. We are able to perform such extrapolation

FIG. 4. The von Neumann total correlations of the diagonal
ensemble, starting with a Neel state, for the Aubry-André model
[whose Hamiltonian is Eq. (11) with the cosine hi fields and
Jx = Jy = Jz = 1], rescaled with the system size. The curves show a
system-size-dependent peak and collapse for h � 3.5. Inset: System
size scaling of the total correlations for three example values of h,
showing a logarithmic scaling deep in the delocalized phase and a
linear scaling in the localized phase.

(see Fig. 7), thus obtaining hH
c = limN→∞ hH∗ = 4.0 ± 0.2 for

the random potential and hAA
c = limN→∞ hAA∗ = 4.5 ± 0.9

for the Aubry-André potential. Note that for the latter case the
extrapolation suffers from much larger errors due to the smaller
movement of the peak of the finite-size data with respect to
its error.

For the Heisenberg model with random fields the transition
value has been estimated through other numerical evidence
[38,52,53] to be equal to hH

c = 3.7(2) at the center of the
band for the parameters that we used, although its actual
value could be larger (hH

c � 4.5 according to Ref. [54]); an
equivalent high-quality numerical result is not available for
the Aubry-André model, although experimental works find
the localization transition at similar values [48]. Interestingly,
as soon as interactions are introduced, the Aubry-André model
acquires almost identical features to the Heisenberg with
random fields model first studied by total correlations in
Ref. [39]. Finally, for both models, for weak (quasi)disorder
(h � h∗), the scaling of the total correlations is logarithmic,
implying an ergodic phase.

Let us now consider the 2-Renyi total correlations, focusing
first on the Heisenberg model with random fields. The total
correlations rescaled by the system size T2(ω)/N are shown in
Fig. 5, showing a collapse for h � 2 for the available system
sizes, to be compared with an analogous behavior of T1(ω)/N ,
where the collapse point is ≈ 2.5. For a system of infinite size,
one would expect that the collapse points (or equivalently the
peak positions) should be the same for all total correlations
Tα; due to the stronger ergodicity requirement of higher-α
Renyi entropies, however, it is understandable that T2 gives an
underestimation at finite, small system sizes.

As expected, T2 scales linearly with the system size for h �
h∗

2 and logarithmically for h � h∗
2. Moreover, the curves in

Fig. 5 peak on a system-size-dependent value h∗
2(N ). In Fig. 7

we show the scaling of the T1 and T2 peak positions with the
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FIG. 5. The 2-Renyi total correlations of the diagonal ensemble,
starting with a Neel state, for the Heisenberg model with random
fields [whose Hamiltonian is Eq. (11) with hi ∈ [−h,h] and Jx =
Jy = Jz = 1], rescaled with the system size. The markers on the top
axis denote the positions of the local peak h∗(N ), excluding the case
N = 8, where no local maximum can be discerned. The curves show a
system-size-dependent peak (see Fig. 7) and collapse for h � 2. Inset:
System size scaling of the total correlations for three example values
of h, showing a logarithmic scaling deep in the delocalized phase and
a linear scaling for disorder values near the transition (which is at
hc ≈ 3.7) and in the localized phase.

system size. For both the T1 and T2 peak positions, the finite-
size scaling is very well approximated by a linear behavior
in 1/N ; the infinite-size extrapolation for the 2-Renyi case
is h∗

2(∞) = 3.6 ± 0.2, which is lower than the value obtained
from the von Neumann total correlations. This is again a signal
of the underestimation of the breaking of ergodicity and of
stronger finite-size effects due to the hierarchy in the Renyi
entropies.

FIG. 6. The 2-Renyi total correlations of the diagonal ensemble,
starting with a Neel state, for the Aubry-André model [whose
Hamiltonian is Eq. (11) with the cosine hi fields and Jx = Jy =
Jz = 1], rescaled with the system size. The curves show a system-
size-dependent peak (see Fig. 7) and collapse for h � 3. Inset: System
size scaling of the total correlations for three example values of h,
showing a logarithmic scaling deep in the delocalized phase and a
linear scaling in the localized phase.

FIG. 7. System size scaling of the peak of the total correlations
in the Heisenberg model with random fields, for both T1 and T2.
The peak is extracted from a polynomial interpolation of each of the
curves in Figs. 3 and 5, in which it is denoted with a marker on the
top axis. We perform a linear fit in 1/N and obtain the infinite size
extrapolation given in the text.

Finally, in Fig. 6 we show the results for the 2-Renyi
total correlations of the Aubry-André model. The qualitative
behavior is again the same as for the model with random
fields, showing once again that the interactions remove the
special integrability features of a noninteracting Aubry-André
model. Specifically, T2(ω)/N has a peak, which scales to
h∗

2(∞) = 3.5 ± 0.6, which, analogously to what happens
in the random fields model, is a lower value than the result
for the extrapolated peak of the rescaled von Neumann total
correlations.

IV. CONCLUSIONS

The results displayed in this work demonstrate that the total
correlations of the diagonal ensemble is a powerful concept to
understand ergodicity breaking in quantum systems in general.
The numerics performed in different models confirm that the
scalings predicted in the theory first outlined in Ref. [39]
work in the cases of both integrability breaking and also
ergodic to MBL transitions. Within the context of systems that
show ergodicity breaking, a number of methods have proven
useful, especially in the case of localizable systems, consisting
in examining the participation ratio [55], the entanglement
entropy [56], and the full entanglement spectrum [57]. The
total correlations presented here are an additional tool for
such systems. Where MBL systems are concerned the rescaled
quantity offers the additional feature of peaking around the
expected transition point; given that this may be seen as a
divergence of correlations in the infinite time steady state,
it represents a novel contribution to the theory of quantum
correlations. The peak was observed in two models displaying
a MBL transition.

We have examined the total correlations (4) for two values
of α, α = 1 and α = 2; the 2-Renyi total correlations has
the numerical advantage, being more suitable to be computed
avoiding the diagonalization of the density matrix through
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faster techniques such as t-DMRG, where a finite time
average could be performed. A topic for future research
is to increase the system sizes dramatically by applying
t-DMRG and finite time averaging to compute the 2-Renyi total
correlations.

Finally, given the rapid progress in experimental techniques
it seems possible that the total correlations could be experi-
mentally measured in the near future. The total correlations
amount to subtracting the diagonal entropy from the sum of the
entropies of the marginal states. The marginal states and their
entropies can already be measured in a quench starting from
a Neel state [49]. Measuring the diagonal entropy is a more
challenging task, however, some progress has been made in this
direction for small systems [58] and given the current interest
in measuring Renyi entropies in experiments [59] we believe
that further advances could yield the experimental extraction
of total correlations.
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R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science 349,
842 (2015).

[49] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,
P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys.
12, 907 (2016).

[50] L. Santos, J. Phys. A: Math. Gen. 37, 4723 (2004).
[51] V. Ros, M. Müller, and A. Scardicchio, Nucl. Phys. B 891, 420

(2015).
[52] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[53] F. Pietracaprina, V. Ros, and A. Scardicchio, Phys. Rev. B 93,

054201 (2016).
[54] T. Devakul and R. R. P. Singh, Phys. Rev. Lett. 115, 187201

(2015).

[55] A. De Luca and A. Scardicchio, Europhys. Lett. 101, 37003
(2013).

[56] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.
109, 017202 (2012).

[57] F. Pietracaprina, G. Parisi, A. Mariano, S. Pascazio, and
A. Scardicchio, arXiv:1610.09316 [cond-mat.dis-nn] .

[58] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz,
Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, A.
Dunsworth, E. Jeffrey, J. Kelly, J. Mutus, P. J. J. O’Malley, C.
Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A.
Polkovnikov, and J. M. Martinis, Nat. Phys. 12, 1037 (2016).

[59] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin,
M. Rispoli, and M. Greiner, Nature (London) 528, 77
(2015).

125118-8

https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.93.054201
https://doi.org/10.1103/PhysRevB.93.054201
https://doi.org/10.1103/PhysRevB.93.054201
https://doi.org/10.1103/PhysRevB.93.054201
https://doi.org/10.1103/PhysRevLett.115.187201
https://doi.org/10.1103/PhysRevLett.115.187201
https://doi.org/10.1103/PhysRevLett.115.187201
https://doi.org/10.1103/PhysRevLett.115.187201
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
http://arxiv.org/abs/arXiv:1610.09316
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nphys3830
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750



