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A Serena,

per quanto cercassi il senso delle cose,

la risposta sei sempre stata tu.





“Il caos è un ordine da decifrare.”

José Saramago, L’uomo duplicato

“Tutte le isole, anche quelle conosciute, sono sconosciute finché non vi si sbarca.”

José Saramago, Il racconto dell’isola sconosciuta





“Chaos is order yet undeciphered.”

José Saramago, The double

“Even known islands remain unknown until we set foot on them.”

José Saramago, The tale of the unknown island





Abstract

This thesis focuses on the XY model, the simplest vector spin model, used for
describing numerous physical systems, from random lasers to superconductors,
from synchronization problems to superfluids. It is studied for different sources of
quenched disorder: random couplings, random fields, or both them. The belief
propagation algorithm and the cavity method are exploited to solve the model
on the sparse topology provided by Bethe lattices. It is found that the discretized
version of the XY model, the so-called Q-state clock model, provides a reliable and
efficient proxy for the continuous model with an error going to zero exponentially
in Q, so implying a remarkable speedup in numerical simulations. Interesting
results regard the low-temperature solution of the spin glass XY model, which is
by far more unstable toward the replica symmetry broken phase with respect to
what happens in discrete models. Moreover, even the random field XY model with
ferromagnetic couplings exhibits a replica symmetry broken phase, at variance
with both the fully connected version of the same model and the diluted random
field Ising model, as a further evidence of a more pronounced glassiness of the
diluted XY model. Then, the instabilities of the spin glass XY model in an external
field are characterized, recognizing different critical lines according to the different
symmetries of the external field. Finally, the inherent structures in the energy
landscape of the spin glass XY model in a random field are described, exploiting
the capability of the zero-temperature belief propagation algorithm to actually
reach the ground state of the system. Remarkably, the density of soft modes in
the Hessian matrix shows a non-mean-field behaviour, typical of glasses in finite
dimension, while the critical point of replica symmetry instability predicted by the
belief propagation algorithm seems to correspond to a delocalization of such soft
modes.





Sommario

Questa tesi si concentra sul modello XY, il più semplice modello con spin vettoriali,
usato per descrivere diversi sistemi fisici, dai random laser ai superconduttori, dal
problema della sincronizzazione ai superfluidi. Viene studiato per diverse sorgenti
di disordine quenched: accoppiamenti random, campi random, o entrambi. Il mo-
dello XY viene risolto su grafi di Bethe grazie all’algoritmo di belief propagation e
al metodo della cavità. Si trova che la versione discreta del modello XY, il cosid-
detto clock model a Q stati, fornisce un’approssimazione affidabile ed efficiente
del modello continuo con un errore che va a zero esponenzialmente in Q, fornendo
così un notevole guadagno nelle simulazioni numeriche. La soluzione di bassa
temperatura riserva risultati interessanti e inaspettati, essendo di gran lunga più
instabile verso la rottura di simmetria delle repliche rispetto a quanto accade nei
modelli discreti. Inoltre, persino il modello XY ferromagnetico in campo random
mostra una fase con rottura di simmetria delle repliche, a differenza di quanto
accade nell’analogo modello fully connected e nel modello di Ising ferromagnetico
in campo random su grafi diluiti, ad ulteriore conferma di una maggiore vetrosità
del modello XY diluito. Poi, vengono caratterizzate le instabilità del modello XY
spin glass in campo magnetico esterno, trovando così diverse linee critiche a se-
conda delle simmetrie del campo esterno. Infine, vengono studiate le strutture
inerenti del panorama energetico del modello XY spin glass in campo random,
sfruttando la capacità dell’algoritmo di belief propagation a temperatura nulla di
raggiungere esattamente il ground state del sistema. La densità dei modi a più
bassa energia nella matrice Hessiana mostra un comportamento non di campo
medio, tipico dei sistemi vetrosi in dimensione finita, mentre il punto critico della
rottura di simmetria delle repliche dato dall’algoritmo di belief propagation sembra
corrispondere ad una delocalizzazione di tali modi soffici.
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Introduction

Starting from their very first introduction [Edw75] — more than forty years ago —
spin glasses have now become ubiquitous, being paradigmatic of all those systems
where some source of disorder introduces a frustration, namely the impossibility
of fully satisfying all the clauses. Then, more broadly, spin glass phenomenology
has been recovered every time there is a consistent heterogeneity that can not be
effectively described by “ordered” statistical mechanics.

Furthermore, in addition to this, the contextually developed tools — namely
the replica method [Par79a, Par80a] and the cavity method [Méz01, Méz03a] —
turned out to be so powerful that they are now applied in an overwhelming
quantity of fields apparently unrelated to spin glasses, from combinatorial op-
timization [Méz85a, Méz02, Krz07] to neural networks [Hop82, Ami85, Ami89,
Mon95b], from supercooled liquids and glass forming [Kir87, Kir89, Cav09, Göt09,
Par10, Ber11] to immunology [Par90, Agl12], from inference [Mac03, Mor11, Dec11,
Zde16] to learning [Eng01], from finance [Bou03] to random interfaces [Méz91],
from epidemic spreading [Alt14, Mor15b] to game theory [Cha00, Dal12], from
photonics [Leu09, Con11] to random matrices [Küh08, Rog09], from collective
behaviour [Bal08, Bia14] to computer science [Nis01, Méz09].

A predominant role in the statistical mechanics has been always played by one
of the most simple model one could define, the Ising model [Isi25]. Despite the
minimal choice for each variable of the system — on/off, up/down, 0/1 — it has
become the archetypal of any system in which the interaction and the imitation
between “neighbours” has a key importance in the explanation of the relevant
features of the system itself [Hua88, Par88].

Of course, the prototype of a spin glass system could not have been other than
the disordered version of the Ising model [She75, Kir78], whose exact solution has
required a few years to be developed [Méz87b] but more than twenty years to be
rigorously proven [Gue02, Tal03].

Though being effective in a huge number of cases, however, the discrete nature
of the Ising model does not allow to model those systems where small fluctuations
and smooth changes of configurations have to be taken into account. In this sense,
the usage of soft spins like the Ginzburg-Landau ones [Par88] turns out to be
helpful.

Moreover, many other physical systems do not show any such strong anisotropy
to justify the use of z-aligned spins like the Ising and Ginzburg-Landau ones. The
generalization of uniaxial spins to vector spins defined in an m-dimensional inner
space is the necessary — and immediate — step forward.

The continuous nature of vector spins allows a plethora of new physical phe-
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nomena to occur, from spin waves to the creation of vortexes. Indeed, continuous
symmetries can be broken in a number of different ways, corresponding in turn
to different instabilities, different properties at the critical point and — most re-
markably — different phase transitions. Maybe the most famous among them is
the Berezinskiı̆ - Kosterlitz - Thouless one [Ber71, Ber72, Kos72, Kos73] involving
the XY model in two-dimensional regular lattices.

It is just the XY model — the simplest vector spin model, with m = 2 spin
components — that has acquired a remarkable importance in many fields of statis-
tical physics, due to its capability of correctly reproducing the features of many
physical systems, from granular superconductors [Joh85, Hus90] to superfluid
Helium [Min87, Bré89], from synchronization problems [Kur75, Ace05, Ska05,
Ban16] to random lasers [Ant15, Ant16a, Ant16b, Mar15], just for citing a few.

Due to the aforementioned physical applications, most of the works about
the XY model refer to the finite dimensional topology. However, when inserting
some defects in the system, e. g. by diluting the lattice, long-range order provided
by Berezinskiı̆ - Kosterlitz - Thouless vortexes is no longer possible, continuous
symmetries are broken and some kind of arrangement with respect to the local
topology takes place. In this way, the resulting physical picture can be better
described through the mean-field framework provided by sparse random graphs.

This kind of mean-field approach is by far more “physical” than the one pro-
vided by the fully connected topology, since the key concepts of heterogeneity and
distance find here a natural interpretation, getting closer to the finite dimensional
case. Moreover, an effective approach to solve systems defined on sparse graphs
is provided by the cavity method and the related belief propagation technique,
developed in the context of inference networks [Pea88, Jen07].

Notwithstanding the importance of continuous-variable models in the physics
of disordered systems, there are very few results about them on sparse random
graphs, even despite the flourishing literature about discrete models on the same
topology. This scarcity is strictly related to the difficulty to handle continuous
variables both analytically, due to more cumbersome computations with respect to
the case of discrete variables, and numerically, due to very demanding simulations
and to the problem of efficiently discretizing such variables.

A further motivation that recently become to boost the interest in continuous-
variable models is the very deep difference in the nature of continuous-variable
models with respect to discrete-variable models, especially at the critical point.
Indeed, the possibility of having low-energy excitations opens the doors to soft
long-range correlations even in the zero-temperature limit, with a whole different
phenomenology with respect to discrete models. The most direct way to appreciate
these strong differences is to look at the (free) energy landscape in the space of con-
figurations of the degrees of freedom of a system, which provides several precious
information about its equilibrium properties and even beyond the equilibrium.
Indeed, the characterization of the energy landscape [Has00, Deb01, Cha14, Bai16,
Jin17] is considerably capturing the researchers’ attention in maybe one of the
most appealing though challenging problem of the nowadays physics: the glass
transition in structural glasses [Leu08, Cav09, Ber11, Wol12, Cha17a].

Given all these reasons, it would be a great achievement to fully understand
the physics of a simple disordered model with continuous variable, among which
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the aforementioned XY model plays a predominant role. Hence, this thesis is
devoted to shed light on the comprehension of the properties of the disordered
XY model, focusing on a sparse random topology so to get more insights on the
finite dimensional case and to get rid of some unphysical, misleading predictions
coming from the mean field approach of fully connected graphs.

The topics dealt with in this thesis are organized according to a “logic” se-
quence, starting from simpler cases up to the most cumbersome situations. Actually,
it turns out to be also the same order how they have been developed during the
Ph. D. program, with the first topics being propaedeutic for the following ones.
There is a total number of five parts, including some preliminary material and the
conclusive remarks and perspectives about the thesis results.

Part I is meant to provide a general introduction to the field of disordered
systems and to the related tools typically exploited in it. Our aim is two-fold:
on one hand to make comfortable those readers not very well experienced in
spin glasses, and on the other hand to remind main features and results about
vector spin glasses on fully connected graphs. In more detail, in Chapter 1 we
introduce the reader to the fascinating world of statistical mechanics, recalling
the fundamental goal of finding the Boltzmann measure of a generic statistical
system, describing its thermodynamic properties at equilibrium. Apart from some
particular cases, in most of times it is a hard problem and some further assumptions
or simplifications have to be taken into account. We start from the most common
approach, the “naïve” mean field, showing that if on one hand it is enlightening
about the physics of the model studied, on the other hand the results are often
misleading with respect to what actually happens in the “real world”. Hence, we
move to a more refined approach, getting closer to the topology of real systems by
means of sparse random graphs and the belief propagation approach, which can be
effectively exploited on them. In Chapter 2 then we actually introduce spin glasses,
a special class of disordered systems in which the quenched disorder is introduced
directly in the Hamiltonian “from the outside” through random couplings, random
fields or random topologies. In particular, for historical reasons the fully connected
topology with Gaussian distributed couplings is analyzed. Even though far from
actual magnetic alloys — for which they were introduced — they constitute the
basis above which all the replica theory has been built, starting from the seminal
works of Sherrington and Kirkpatrick to the outstanding exact solution provided
by Parisi. We briefly review these results — focusing in particular on vector spin
glasses — in order to set the starting point for the analysis of the sparse topology.

First original results, appeared in Ref. [Lup17b], are discussed in Part II, where
we actually introduce the XY model. The main goal of this part is to characterize
the spin glass version of this model on sparse random graphs in absence of
any external field. In Chapter 3 we exploit the belief propagation approach to
analytically solve it. Then, in order to describe the low-temperature region, we
also introduce the corresponding numeric algorithms. Similar algorithms are
used throughout the thesis, so in this sense this chapter is indeed preparatory
for what follows. The typical phases of the temperature versus ferromagnetic
bias phase diagram are recognized, together with a peculiar glassy behaviour
distinguishing vector spin glasses from scalar ones in the low-temperature limit.
Given the need for an efficient discretization of continuous variables in numeric
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simulations, in Chapter 4 we analyze the discretized version of the XY model,
the so-called Q-state clock model, focusing on the effects of such discretization. By
looking at the phase diagram, a fast convergence of the critical lines is found to
occur for a rather small number Q of states of the clock model. The same happens
for physical observables, that show an exponential convergence in Q. Finally,
also the universality class is examined through a replica symmetry broken ansatz,
again expliciting its dependence on Q. This chapter provides also the chance to
highlight the key difference between discrete and continuous disordered models,
in particular from the algorithmic point of view.

In Part III we insert a magnetic field, so to analyze the response of the XY model
in presence of external perturbations. Being the XY spins modelized as m = 2-
component vectors, also the external field is characterized as a (site-dependent)
two-dimensional vector as well. Chapter 5 is meant to reverse the point of view
with respect to previous chapters, with the quenched disorder provided via a
suitable random field, while interactions between spins are purely ferromagnetic.
The resulting model, better known as the random field XY model, is hence analyzed
via the previously developed belief propagation algorithms. A particular attention
is devoted to the search of a replica symmetric unstable phase, whose presence can
not be excluded by analytic arguments as it instead occurs for the random field
Ising model. Again, as a combined effect of the sparsity of the underlying topology
and of the presence of continuous degrees of freedom, a strong glassy behaviour
is found to take place in the region of very low temperatures. Corresponding
reference, at the stage of a working paper, is [Lup17d]. In Chapter 6 we finally
join the two previous scenari, facing the spin glass XY model in a field. According to
the direction of the magnetic field — uniform over the whole system or randomly
chosen for each site — different phase transitions occur, corresponding in turn
to the breaking of different symmetries. So de Almeida - Thouless and Gabay -
Toulouse instability lines known from the fully connected case can be recovered
also in the sparse case. However, due to the heterogeneity allowed by the topology
used, a deeper characterization of the spin symmetries can be performed by looking
at perturbations around the belief propagation fixed point. Finally, intermediate
distributions of the field direction are analyzed, so to study the crossover between
the two types of phase transitions. All the results of this Chapter can be found in
Ref. [Lup17c].

Once having fully characterized the behaviour of the disordered XY model with
and without an external magnetic field, in Part IV we focus on a specific situation,
the zero-temperature limit of the spin glass XY model in a random field. Our main
aim is to regard it as a simple, exactly solvable disordered model in which low-
energy excitations can take place, focusing in particular on the features of its energy
landscape when approaching the critical point. Hence, in Chapter 7 we exactly
compute the ground state of several instances of such system when lowering the
strength of the external field via the zero-temperature belief propagation algorithm.
Then, we explore the energy landscape via the Hessian matrix of the energy
function, looking at first at its spectral density. Indeed, the rugged, disorder-
dependent nature of the energy landscape is believed to be strongly related to the
occurrence of an anomalous excess of low-frequency modes in the spectral density
— known as the boson peak [Mal86, Bel16] — in turn related to peculiar features of
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structural glasses [Gri03, Xu07]. Moreover, we try to relate the occurrence of replica
symmetry breaking for a low enough value of the field strength with some kind of
delocalization in the lowest eigenvectors of the Hessian, likely corresponding to
flat extended directions in the energy landscape. These results are also exposed
into the working paper [Lup17a].

Before starting with the first chapter of this thesis, the author claims that
all the results presented in this thesis are original, if not otherwise contextually
stated. In this latter case, suitable bibliographic references are provided, as well
as when comparing new results with those already obtained by other authors. So
all the references listed in this thesis come from a careful bibliographic research.
However, it may occur to the reader to notice that a particular result has already
been obtained in a different work the author was not aware of, or that some
representative reference is missing. In that unpleasant occurrence — as well as in
case of any misprint or other kind of error — the reader is kindly asked to inform
the author about it, so that it will be fixed in a possible future version of the thesis.





Part I

Preliminaries





Chapter 1

Statistical mechanics and the
mean field

We start this Chapter providing a very brief introduction to statistical mechanics
and its tools, showing its connection with the thermodynamics and applying it to
the study of a paradigmatic model for magnetic systems, the Ising model. Then, we
show how the Boltzmann law of statistical mechanics at equilibrium can be derived
as a variational principle, so allowing the possibility of a mean field description of
the system. A first, naïve mean field approach is described, corresponding to a
fully connected topology, namely weak and long-range interactions. Consequently,
starting from the Bethe approximation, a more refined approach is presented, the
belief propagation one. In this way it is possible to get closer to the physics of real,
finite-dimensional systems, where short-range interactions typically take place.
Finally, we review some key features of sparse random graphs, on which the belief
propagation approach is shown to be correct.

1.1 Statistical mechanics and thermodynamics

The foundation of statistical mechanics grounds on the attempt to describe a
perfect gas of particles of mass m in thermal equilibrium at temperature T. Each
particle has its own position ri and momentum pi, whileH[{pi}] = ∑i p2

i /2m is the
Hamiltonian describing the whole system. Given the set of initial conditions, the
trajectories of each particle can be obtained by integrating the Hamilton equations:

ṙi =
∂H
∂pi

, ṗi = −
∂H
∂ri

(1.1)

where derivatives on the left hand sides are meant as total derivatives with respect
to the time t. Actually, even gases with very low densities are made up of a huge
number of particles, hence direct integration of Hamilton equations is unfeasible.
A probabilistic approach is so needed.

Keeping in mind the Liouville theorem and the fact that in a perfect gas the
unique interactions between particles are provided by pairwise collisions, the
Boltzmann equation for the single-particle probability distribution ρ(r, p, t) can be
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easily obtained [Hua88]. A stationary solution of this equation is nothing but the
well known Maxwell - Boltzmann distribution of single-particle momentum:

ρ(∞)(p) =
n

(2πmkBT)3/2 e−p2/2mkBT (1.2)

with n = N/V being the density of the gas, and kB the Boltzmann constant.
This result turns out to be by far more general than how it could appear. Indeed,

the exponential just contains the single-particle Hamiltonian, exp {−βHi}, so even
when the ideal gas hypothesis is relaxed by taking into account a generic pairwise
interaction V(ri − rj) between the particles, then the equilibrium probability dis-
tribution can still be written in this form. The unique difference is that now the
whole Hamiltonian is no longer factorizable into single-particle contributions, due
to the pairwise interactions between the gas particles, and hence also the whole
probability distribution can not factorize any longer as in (1.2):

Peq({ri, pi}) ≡
e−βH[{ri ,pi}]

Z (1.3)

with the partition function Z = Tr{ri ,pi} e−βH[{ri ,pi}] enforcing the correct normaliza-
tion of Peq as a probability distribution. This is nothing but the canonical ensemble
description of equilibrium statistical mechanics, also known as the Boltzmann law.
Its derivation can also be performed starting from the microcanonical ensemble
and the ergodic hypothesis, as for example shown in [Hua88].

More generally, the Boltzmann law is so powerful that it represents a standard
tool for providing the equilibrium properties of every Hamiltonian system with
N � 1 generic degrees of freedom {xi}

Peq({xi}) ≡
e−βH[{xi}]

Z (1.4)

irrespective of their nature: they could be positions and momenta of gas particles,
vibrational and rotational degrees of freedom of molecules, magnetic spins of a
regular lattice of atoms, and so on.

The equilibrium description provided in the canonical ensemble by Boltzmann
distribution is directly related with the thermodynamics of the system. Indeed,
from the knowledge of the partition function Z we can define the Helmholtz free
energy F:

F ≡ − 1
β

lnZ (1.5)

which is completely equivalent to the one defined in the thermodynamics:

F ≡ U − TS (1.6)

The demonstration is straightforward, once assumed that β is nothing but the
inverse absolute temperature T of thermodynamics

β =
1

kBT
(1.7)
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with Boltzmann constant kB set equal to 1 from now on, and recognizing that
the macroscopic energy U and the macroscopic entropy S can be obtained by
averaging over all the possible configurations {xi} according to their Boltzmann
weight Peq({xi}):

U = 〈H〉 , S = 〈− ln P〉 (1.8)

with 〈·〉 also known as thermal average:

〈O({xi})〉 ≡ Tr
{xi}

Peq({xi})O({xi}) (1.9)

Being λ an external parameter whose variation implies an energy change in the
system, we have that:

d (−βF) =
∂ lnZ

∂β
dβ +

∂ lnZ
∂λ

dλ

= − 〈H〉 dβ− β 〈∂H
∂λ
〉 dλ

= −U dβ− β δL

(1.10)

since the average value of the derivative of H with respect to λ gives the infinitesi-
mal work δL applied on the system.

In turn, work is linked to the energy and to heat exchanges through the first
principle of thermodynamics:

δQ ≡ T dS = dU − δL (1.11)

from which:
β δL = β dU − dS (1.12)

Substituting back into (1.10) we get:

d (−βF) = −U dβ− β dU + dS = d (−βU + S) (1.13)

so recovering the thermodynamic definition of the Helmholtz free energy (1.6).
Then, usual thermodynamic functions can be obtained from the derivatives

of F instead of computing them directly from Peq:

U =
∂(βF)

∂β
, S = − ∂F

∂T
(1.14)

and so on for the other physical observables as the average position and momentum
of particles, the average magnetization of spins, etc.

1.2 The Ising model

If one of the earliest tasks of statistical mechanics has been the description of a gas
of particles, here we describe another milestone of this theory, concerning magnetic
interactions.

Even though the exact description of the interaction between electrons and nu-
clei at the microscopic level — which is at the very basis of magnetic phenomena —
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requires a quantum mechanical treatment, a classical description is still possible
by focusing on few interesting degrees of freedom, such as the magnetic moments
σi’s generated by the motion of electrons around atoms or molecules inside the
medium, also known as spins.

They can be described as m-dimensional unit vectors, whose orientation is
randomized by thermal excitation. Moreover, they are subjected to the aligning
effects of the external field H — if any — and of their mutual interaction. All
these features can be embedded into a statistical mechanics model, whose basic
Hamiltonian reads:

H[{σi}] = −∑
i 6=j

Jij σi · σj −∑
i

H · σi (1.15)

where exchange couplings Jij’s take into account the mutual interaction in each
couple (σi, σj) of magnetic moments.

In most of materials, the interaction between close spins is such that the
exchange energy lowers when they align, so that their interaction is said to be
ferromagnetic. This is obtained by setting all couplings equal to positive values,
Jij > 0. Moreover, the strength of the magnetic interaction depends on the distance
between the two atomic (or molecular) sites and rapidly decreases with it. Hence,
the interactions are typically restricted to those couples of spins that are nearest
neighbours on the considered topology, e. g. a d-dimensional hypercubic lattice G.
In this way one gets Jij = J when the couple i, j is an edge of G — and it will be
referred to as (i, j) — and Jij = 0 elsewhere.

Finally, a further simplification occurs when the spins are projected onto a
global direction, e. g. the z axis, so that the resulting degrees of freedom are scalar
spins, σi = ±1. From the classical point of view, such projection can be justified by
some strong anisotropy present in the system, while it automatically comes out
when moving to the quantum mechanical description of the spin angular moment.
The corresponding model is universally known as the Ising model:

H[{σi}] = −J ∑
(i,j)

σi σj − H ∑
i

σi (1.16)

Invented by Lenz in 1920 [Len20], who gave it to his student Ising as a topic
for his doctoral thesis [Isi25], it has become one of the most studied theoretical
models in statistical mechanics. Indeed, once written its equilibrium probability
distribution

Peq({σi}) =
1
Z ∏

(i,j)
e βJσi σj ∏

i
e βHσi (1.17)

and then computed Z and F, all the key features of typical ferromagnets can be
caught, despite its apparent simplicity: the increasing alignment to the external
field H when lowering the temperature, or when H = 0 the presence of a ferro-
magnetic ordering at low temperatures and the absence of any ordering at high
temperatures, with a second-order phase transition separating the two regimes.
Moreover, it has become the paradigm of all those systems in which some “degrees
of freedom” interact in an imitative way, while “thermal excitations” from the
outside act against this ordering.
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The d-dimensional hypercubic lattice is the most interesting topology on which
solve the Ising model, due to the close connection with typical geometries of
solid state physics. Even though the behaviour sketched above can be checked
numerically quite easily also in this case, its analytic solution represents one of
the most challenging task. Indeed, for the d = 1 case the solution can be obtained
quite easily via the transfer matrix approach [Hua88, Par88] and already Ising
himself showed that no phase transitions occur in this case. Instead, the solution
for the d = 2 case requires a quite sophisticated and involving computation,
firstly performed by Onsager in 1944 [Ons44], who showed that a phase transition
actually takes place at a certain critical temperature Tc = 2/ ln (1 +

√
2). Finally,

the d > 3 case still lacks of an analytic solution, even though the presence of a
phase transition is certain and the values of the corresponding critical exponents
have been analytically and numerically computed with a remarkable precision.

1.3 Variational approaches on the Gibbs free energy

The Ising model is an archetypal of the way of proceeding in statistical mechanics.
Indeed, starting from a quite involving problem — such as the description of
magnetic interactions between electrons and nuclei — one has to identify the
relevant degrees of freedom {xi} and write an effective Hamiltonian H[{xi}] that
catches all the key features of the original model. Then, the partition function Z has
to be computed and from it the Helmholtz free energy F. Finally, the derivatives
of F give the other interesting equilibrium physical observables.

However, though appearing quite straightforward, in most cases the bottleneck
of this procedure is represented by the computation of partition function Z . Indeed,
when the equilibrium probability distribution Peq does not factorize into single-
particle contributions, the trace has to be performed over all the possible states —
discrete or even continuous — of each single degree of freedom, so implying an
overwhelming computational effort.

This is for example the main difficulty in the search of the analytic solution for
the Ising model on d > 3-dimensional hypercubic lattices. Even worse, it occurs
when some kind of heterogeneity is present in the model, as it will be throughout
this dissertation. So in most cases of interest a “brute force” computation of Z is
unfeasible, compelling one to search for some approximation.

The kind of approximation to be used can be suggested from those cases
in which the computation of Z is easy. Indeed, as already stated before, the
probability distribution of the whole system factorizes when degrees of freedom
are actually independent. In this way, the computation can be accomplished by
tracing over the states of a single degree of freedom. In those cases when degrees
of freedom are no longer actually independent, it could still make some sense to
consider some kind of factorization over the whole set of degrees of freedom. For
example, when interactions are short-range, then it could be reasonable to consider
as independent those variables being spacially well separated.

The usual trick exploited in these cases is to try to “simplify” the actual
equilibrium probability distribution Peq by involving only some small subset S of
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variables at each time:

Peq({xi}) → P0({xi}) ∼∏
S

PS ({x′i}x′i∈S ) (1.18)

instead of involving all the degrees of freedom at the same time. In this way, there
is some chance to make feasible the computation of the partition function Z .

Before going on in analyzing this kind of approximation, let us try to under-
stand its meaning. Indeed, let us suppose to use a generic probability distribu-
tion P0 instead of the Boltzmann one (1.4). In order to deal with well defined
probability distributions, it has to hold:

P0 � 0 , Tr P0 = 1 (1.19)

where the trace is meant to run again over all the degrees of freedom. Notwith-
standing P0 being a generic probability distribution and not the actual equilibrium
one, we can still define a functional free energy having exactly the same structure
of the Helmholtz one in (1.6). This is known as Gibbs free energy:

G[P0] ≡ Tr (P0H)− 1
β

Tr (−P0 ln P0) (1.20)

so that the first term reproduces the energy U0 averaged over P0 while the second
term reproduces the entropy S0 of P0 itself.

Gibbs free energy in (1.20) can be seen as a variational construction that pro-
vides the Boltzmann probability distribution Peq as the one that yields its global
minimum. In this spirit, let us compute the first-order variation of G with respect
to P0, still enforcing the normalization constraint Tr (P0 + δP0) = 1 through a
suitable Lagrange multiplier λ:

δG[P0; λ] = Tr
[(
H+

1
β

ln P0 +
1
β
+ λ

)
δP0

]
(1.21)

So the stationary condition δG = 0 provides the explicit expression of the extremal
point P∗0 :

P∗0 =
e−βH

e 1+βλ
(1.22)

where λ can be found by imposing the normalization constraint Tr P0 = 1, from
which in the end the identification of this extremal point with the Boltzmann
probability distribution:

P∗0 = Peq =
e−βH

Tr e−βH (1.23)

Furthermore, a second-order variation of G provides its convexity, so that the
previous extremal point is actually found to be a global minimum:

δ2G[P∗0 ] = Tr
(δP0)

2

βP0

∣∣∣∣
P∗0

> 0 (1.24)
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In the end, substituting back (1.23) into G, we can finally confirm that the
global minimum of the Gibbs free energy provides the Helmholtz free energy F:

G[Peq] = F (1.25)

The importance of this variational construction relies on the fact that a generic
error δP in evaluating the equilibrium distribution of the system implies an
error of the same order of magnitude in physical observables, when they are
computed directly from P. Instead, when minimizing a suitable Gibbs free energy,
then an error δP in the equilibrium distribution causes an error O[(δP)2] in
physical observables when computed as derivatives of G, so obtaining a valuable
enhancement. This is the fundamental principle at the basis of every approximation
made on the equilibrium probability distribution of the system.

1.4 The naïve mean field

So the most common simplification of the actual equilibrium probability distribu-
tion Peq is to somehow factorize it. In particular, given that the simplest case is
when degrees of freedom are independent, then the roughest approximation is
to consider all degrees of freedom as actually independent from each other even
when they are not, so completely factorizing the probability distribution of the
whole system:

Peq({xi}) → PMF({xi}) = ∏
i

ηi(xi) (1.26)

with the normalization constraint Trxi ηi(xi) = 1. This factorization is typically
referred to as the Mean Field (MF) one.

Notice that ηi(xi) just represents the probability distribution of the degree of
freedom xi in this approximation, and in this sense it is also called the belief of
the variable xi. So in general it can be quite different from the actual marginal
probability distribution Pi(xi):

Pi(xi) ≡ Tr
{xj}j 6=i

Peq({xi}) (1.27)

For this reason, we use a different notation when referring to the former or to the
latter.

Let us consider the following Hamiltonian

H[{xi}] = −∑
(i,j)

Jij(xi, xj)−∑
i

hi(xi) (1.28)

where Jij(xi, xj) represents the pairwise interaction between xi and xj, while hi(xi)
refers to the local bias given by the external field on xi. By using the mean-field
factorization (1.26), Gibbs free energy (1.20) becomes:

G[{ηi}] =−∑
(i,j)

Tr
xi ,xj

[
Jij(xi, xj)ηi(xi)ηj(xj)

]
−∑

i
Tr
xi

[
hi(xi)ηi(xi)

]

+
1
β ∑

i
Tr
xi

[
ηi(xi) ln ηi(xi)

] (1.29)
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in which beliefs ηi’s appear as variational parameters. Indeed, when minimizing G
with respect to each one of them, one gets their equilibrium expressions according
to the factorized probability distribution PMF:

δG
δηi

= 0 ∀i (1.30)

In order to provide an explicit example of how this mean-field approximation
works, let us specialize to the case of the Ising model presented in Section 1.2,
where each variable xi takes on only the two values σi = ±1:

H[{σi}] = −∑
(i,j)

Jij σiσj − H ∑
i

σi (1.31)

So ηi(σi) is a discrete probability distribution over two states σi = ±1 and hence it
is more suitably described by a unique parameter mi

mi ≡ 〈σi〉MF = ηi(σi = +1)− ηi(σi = −1) (1.32)

which represents the local magnetization of spin σi, while ηi(σi = +1) + ηi(σi =
−1) = 1 due to normalization.

In terms of mi’s, Gibbs free energy becomes:

G[{mi}] =−∑
(i,j)

Jijmimj − H ∑
i

mi

+
1
β ∑

i

[
1 + mi

2
ln
(

1 + mi

2

)
+

1−mi

2
ln
(

1−mi

2

)] (1.33)

so that, when minimizing with respect to the set of local magnetizations, we get
the well known mean-field equation:

mi = tanh

[
β

(
∑
j∈∂i

Jijmj + H

)]
(1.34)

If the underlying graph G is a d-dimensional hypercubic lattice and all the
interactions are purely ferromagnetic (Jij ≡ J > 0 for each edge) with no external
field acting on the system (H = 0), then we get the mean-field equation of the
d-dimensional ferromagnetic Ising model:

m = tanh (2dβJm) (1.35)

which yields the paramagnetic solution m = 0 for any value of inverse tempera-
ture β, and also a magnetized solution m 6= 0 for β > βc ≡ 1/2dJ. Indeed, such βc
is found to be the inverse critical temperature of a second-order phase transition,
in correspondence of which the paramagnetic solution becomes unstable as a
consequence of the breaking of the inversion symmetry σi → −σi.

The prediction of a phase transition turns out to be correct when d > 2, as stated
in Section 1.2, even though this does not mean that the equilibrium probability
distribution Peq is actually given by (1.26). Indeed, other physical quantities like
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the specific heat Cv ≡ ∂U/∂T and the magnetic susceptibility χ ≡ ∂m/∂H are
predicted to be divergent for d < 4, while they actually do not.

Eventually, it can be shown that all the qualitative predictions of this mean-field
description are correct for d > 4, namely d = 4 is the upper critical dimension
du

c of this model. However, it becomes exact only in the d → ∞ limit, i. e. in the
fully connected topology. Indeed, in this limit the mean-field Ising model is better
known as the Curie - Weiss (CW) model, with interactions that are long-range but
weak enough to have a total energy that scales as the size N:

H[{σi}] = −
J

2N ∑
i,j

σi σj − H ∑
i

σi (1.36)

with the explicit O(1/N) scaling of the exchange coupling in front of the sum over
each couple of spins.

The reliability of mean-field approximation given in (1.26) so depends on the
details of the system under study. In particular, from the analysis of the previous
example it should be clear that the larger the fluctuations, the less reliable the
mean-field approximation. Ultimately, this is due to the fact that we are neglecting
any type of correlations, even the pairwise ones:

〈σiσj〉MF = 〈σi〉MF 〈σj〉MF (1.37)

and this turns out to be a too rough approximation in most cases, especially when
each degree of freedom interacts with very few nearest neighbours.

1.5 The Bethe - Peierls approximation

The logical consequence of the previous analysis is that most of times one-point
beliefs ηi(xi)’s are not enough. Indeed, each site is affected at least by the pres-
ence of its nearest neighbours, hence also the corresponding two-point beliefs
ηij(xi, xj)’s should be taken into account, as firstly suggested by Bethe [Bet35] and
Peierls [Pei36]. This results in the so called Bethe - Peierls (BP) approximation, ac-
cording to which the factorized probability distribution (1.26) now becomes [Yed00,
Yed01]:

PBP({xi}) = ∏
(i,j)

ηij(xi, xj)

ηi(xi)ηj(xj)
∏

i
ηi(xi) = ∏

(i,j)
ηij(xi, xj)∏

i
η1−di

i (xi) (1.38)

where di is the degree of node i in the graph G, namely the number of nearest-
neighbour variables of xi. Normalization constraints have to be taken into account:

Tr
xi

ηi(xi) = 1 , Tr
xi ,xj

ηij(xi, xj) = 1 (1.39)

along with the marginalization conditions:

Tr
xj

ηij(xi, xj) = ηi(xi) , Tr
xi

ηij(xi, xj) = ηj(xj) (1.40)
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If we consider again the generic Hamiltonian (1.28), factorized probability
distribution (1.38) gives the following expressions for the energy:

U =−∑
(i,j)

Tr
xi ,xj

{
ηij(xi, xj)

[
Jij(xi, xj) + hi(xi) + hj(xj)

]}

−∑
i
(1− di)Tr

xi

[
ηi(xi)hi(xi)

] (1.41)

and the entropy:

S =−∑
(i,j)

Tr
xi ,xj

[
ηij(xi, xj) ln ηij(xi, xj)

]

−∑
i
(1− di)Tr

xi

[
ηi(xi) ln ηi(xi)

] (1.42)

Putting the two contributions together, we get the expression for the Gibbs free
energy as a functional of one-node and two-node beliefs:

G[{ηi, ηij}] =−∑
(i,j)

Tr
xi ,xj

{
ηij(xi, xj)

[
Jij(xi, xj) + hi(xi) + hj(xj)−

1
β

ln ηij(xi, xj)
]}

−∑
i
(1− di)Tr

xi

{
ηi(xi)

[
hi(xi)−

1
β

ln ηi(xi)
]}

(1.43)

At this point, we want to minimize this expression with respect to variational
parameters {ηi} and {ηij}, by also taking into account their normalizations as
well as marginalization conditions. This can be achieved in the usual Lagrangian
formalism:

L[{ηi, ηij}; {γi, γij, λi→j, λj→i}] ≡ G[{ηi, ηij}] + ∑
i

γi

[
1− Tr

xi
ηi(xi)

]

+ ∑
(i,j)

γij

[
1− Tr

xi ,xj
ηij(xi, xj)

]
+ ∑

(i,j)
Tr
xj

{
λj→i(xj)

[
ηj(xj)− Tr

xi
ηij(xi, xj)

]}

+ ∑
(i,j)

Tr
xi

{
λi→j(xi)

[
ηi(xi)− Tr

xj
ηij(xi, xj)

]}
(1.44)

with γi’s, γij’s, λi→j(xi)’s and λj→i(xj)’s being the corresponding Lagrange multi-
pliers.

So let us perform functional derivatives with respect to one-node beliefs and
put them equal to zero, obtaining:

ηi(xi) =
exp

{
β
[

hi(xi) +
1

di−1 ∑j∈∂i λi→j(xi)
]}

exp
{

1 + β γi
di−1

}

≡ 1
Zi

exp

{
β

[
hi(xi) +

1
di − 1 ∑

j∈∂i
λi→j(xi)

]} (1.45)
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where we also enforced the normalization of beliefs:

Zi ≡ exp
{

1 + β
γi

di − 1

}
= Tr

xi
exp

{
β

[
hi(xi) +

1
di − 1 ∑

j∈∂i
λi→j(xi)

]}
(1.46)

The same has to be done for two-node beliefs:

ηij(xi, xj) =
exp

{
β
[

Jij(xi, xj) + hi(xi) + hj(xj) + λj→i(xj) + λi→j(xi)
]}

exp
{

1− βγij
}

≡ 1
Zij

exp
{

β
[

Jij(xi, xj) + hi(xi) + hj(xj) + λj→i(xj) + λi→j(xi)
]}

(1.47)

where:

Zij ≡ exp
{

1− βγij
}

= Tr
xi ,xj

exp
{

β
[

Jij(xi, xj) + hi(xi) + hj(xj) + λj→i(xj) + λi→j(xi)
]} (1.48)

At this point, we are left with the marginalization constraints, which provide a
set of self-consistency equations for the Lagrange multipliers λi→j’s. So let us plug
expressions (1.45) and (1.47) into marginalization condition ηi(xi) = Trxj ηij(xi, xj):

1
Zi

exp

{
β

[
hi(xi) +

1
di − 1 ∑

j∈∂i
λi→j(xi)

]}

= Tr
xj

{
1
Zij

exp
{

β
[

Jij(xi, xj) + hi(xi) + hj(xj) + λj→i(xj) + λi→j(xi)
]}}

(1.49)

from which, after some manipulations:

λi→j(xi) =
1

di − 2 ∑
k∈∂i\j

λi→k(xi)−
1
β

di − 1
di − 2

ln
Zi

Zij

− 1
β

di − 1
di − 2

ln Tr
xj

{
exp

{
β
[

Jij(xi, xj) + hj(xj) + λj→i(xj)
]}}

(1.50)

So expressions (1.45) and (1.47), where Lagrange multipliers λi→j’s satisfy
self-consistency equations (1.50), provide the one-node and two-nodes beliefs that
actually minimize the Gibbs free energy (1.43) in the Bethe - Peierls approximation.
It is clear from these expressions that, apart from interactions J’s and fields h’s
which are usually known a priori, the most relevant correlations between variables
xi’s are hidden inside Lagrange multipliers λi→j’s. Hence, they should also possess
some physical interpretation. However, self-consistency equations (1.50) can not
be solved efficiently as they are, but they have to be rewritten in a smarter way.
A hint on how to do it has been provided by a completely different field.
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1.6 Belief Propagation

Suppose we have a set of events {i}, with each one of them having several
realizations labeled by the states of the variable xi. The degree of belief we have about
each realization of the i-th event can be described by the probability distribution
bi(xi), which can be also referred to as the belief about xi.

Such belief must depend on the realizations of the other events in a direct
causal relation with it and furthermore on the evidences about it that can be
provided from the outside. For each event i we can identify the set ∂i of events
that are in a direct cause-and-effect relation with it, drawing directed edges from the
“cause” nodes to the “effect” nodes. The resulting network is a Bayesian network,
where in general the directed edges are also associated with a weight depending
on both the realization xi of the cause and the output xj of the effect. Indeed, along
each directed edge i→ j it flows a message Mi→j(xj), representing the belief about
the effect xj starting from the cause xi, independently from other events that can
affect xj. Also external evidences can be represented in such network, as external
biases φi(xi) acting on each node.

These networks can be generalized to Markov networks, where the cause-and-
effect relation is substituted by a more generic dependency ψij(xi, xj), namely the
corresponding edge is no longer directed. The reason of the ‘Markov’ name is
straightforward: the probability of a certain realization of event i conditionally
depends only on the outcomes of events j ∈ ∂i in direct connection with it, and on
no other event. Indeed, once fixed the outcomes {xj}j∈∂i of the events which are
nearest neighbours of i, then bi(xi) is independent from all the other events in the
network

P(xi|{xj}j 6=i) = P(xi|{xj}j∈∂i) (1.51)

just as it happens in Markov chains.
It is clear that Markov networks actually constitute a simple though effective

model to represent probabilistic knowledge about a set of interrelated events, while
Bayesian networks can be seen as the paradigm of inference reasoning [Pea88,
Mac03, Jen07, Wai08]. Notice that in both cases the update of beliefs and evi-
dences should propagate through the network via local operations, just due to the
Markovianity of the networks. A quantitative description of this updating process
has been firstly provided by Pearl [Pea88] and goes under the name of Belief
Propagation (BP).

The key observation is that, due to the conditional independence (1.51), the
belief about xi can be computed as a product of the messages Mk→i’s coming from
“cause” events and of the external evidence φi:

bi(xi) ∝ φi(xi) ∏
k∈∂i

Mk→i(xi) (1.52)

Moreover, also two-point beliefs bij(xi, xj) for directly interrelated events can be
computed following the same strategy. Indeed, they depend on all the messages
Mk→i’s and Ml→j’s entering in both the nodes (included the ones flowing through
the inbetween edge), on their external evidences φi and φj and eventually on the
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weight ψij characterizing their cause-and-effect relation:

bij(xi, xj) ∝ ψij(xi, xj)φi(xi)φj(xj) ∏
k∈∂i

Mk→i(xi) ∏
l∈∂j

Ml→j(xj) (1.53)

Since one-point and two-point beliefs are probability distributions as well, the
following marginality condition has to be fulfilled:

bi(xi) = Tr
xj

bij(xi, xj) (1.54)

So when plugging expressions (1.52) and (1.53) in it, we get the following self-
consistency equation for the messages:

Mi→j(xi) ∝ Tr
xi

[
ψij(xi, xj)φi(xi) ∏

k∈∂i\j
Mk→i(xi)

]
(1.55)

This set of relations provides quantitative rules for the spreading of knowledge
about the probability distribution of each event during the inference reasoning, so
looking at it on a “dynamical” setting. Starting from the earliest causes, beliefs
flow through directed edges and reach all the nodes, updating the corresponding
set of probabilities for the outcomes. This propagation mechanism has a two-fold
advantage. First of all, it actually allows a local update for the belief of each node,
just due to the Markovianity of the networks. This implies a linear growth of
computational resources and hence an exponential speedup in the computation of
equilibrium beliefs. Secondly, each update of beliefs is quite transparent and can
be given a meaningful interpretation, as we just saw.

At this point, we can relate the self-consistency equations (1.50) for Lagrange
multipliers λi→j’s of the Bethe - Peierls variational approach with the (1.55) ones for
messages Mi→j’s of the BP approach. Indeed, once identified the edge weight ψij
with the exchange interaction and the external evidence with the external field

ψij(xi, xj)↔ exp
{

βJij(xi, xj)
}

, φi(xi)↔ exp {βhi(xi)} (1.56)

then the correspondence is completed by setting

λi→j(xj) ≡
1
β

ln ∏
k∈∂i\j

Mk→i(xi) (1.57)

Consequently, self-consistency equations (1.50) become:

Mi→j(xj) =
Zj

Zij
Tr
xi

{
exp

{
βJij(xi, xj) + βhi(xi)

}
∏

k∈∂i\j
Mk→i(xi)

}
(1.58)

Finally, a more useful expression is obtained when referring to the messages
outgoing from each node:

ηi→j(xi) ≡ exp
{

βhi(xi)
}

∏
k∈∂i\j

Mk→i(xi) (1.59)
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i

k1

k2

k3

j

ηk1→i (xk1 )

η k 2→
i(

x k 2
)

ηk3→i(xk3 )

η
i→

j (x
i )

hi(xi)

Figure 1.1. Graphical representation of the pairwise BP equations. The message ηi→j(xi)
going out from site i toward site j only depends on the set of messages {ηk→i(xk)}
going out from sites {k ∈ ∂i \ j} toward site i, plus the external evidence hi about xi,
here represented as a square node.

from which:

ηi→j(xi) =
1
Zi→j

exp
{

βhi(xi)
}

∏
k∈∂i\j

Tr
xk

[
exp

{
βJik(xi, xk)

}
ηk→i(xk)

]
(1.60)

with Zi→j enforcing the normalization constraint Trxi ηi→j(xi) = 1:

Zi→j = Tr
xi

{
exp

{
βhi(xi)

}
∏

k∈∂i\j
Tr
xk

[
exp

{
βJik(xi, xk)

}
ηk→i(xk)

]}
(1.61)

This set of equations — known as pairwise BP equations — can be efficiently
solved, since involving only local operations: the message ηi→j(xi) going out from
site i toward site j only depends on the set of messages {ηk→i(xk)} going out
from sites {k ∈ ∂i \ j} toward site i, plus the external evidence hi about xi, as also
effectively represented in Figure 1.1. Moreover, these messages have a precise
physical meaning: ηi→j(xi) is the probability distribution of variable xi when its
dependence on xj has been neglected, namely when the corresponding edge has
been removed from the system.

Finally, by means of self-consistency equations (1.60), one-point (1.45) and
two-point (1.47) beliefs read:

ηi(xi) =
1
Zi

exp
{

βhi(xi)
}

∏
k∈∂i

Tr
xk

[
exp

{
βJik(xi, xk)

}
ηk→i(xk)

]
(1.62a)

ηij(xi, xj) =
1
Zij

exp
{

βJij(xi, xj)
}

ηi→j(xi)ηj→i(xj) (1.62b)
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where the explicit expressions of the normalization constants are given by:

Zi = Tr
xi

{
exp

{
βhi(xi)

}
∏
k∈∂i

Tr
xk

[
exp

{
βJik(xi, xk)

}
ηk→i(xk)

]}
(1.63a)

Zij = Tr
xi ,xj

{
exp

{
βJij(xi, xj)

}
ηi→j(xi)ηj→i(xj)

}
(1.63b)

in turn related to the normalization constant of the BP messages ηi→j’s as:

Zij =
Zi

Zi→j
=
Zj

Zj→i
(1.64)

Finally, the Gibbs free energy (1.43) in the Bethe - Peierls approximation can be
evaluated in the extremal point provided by BP self-consistency equations (1.60),
obtaining the so-called Bethe free energy:

FBP = − 1
β

(
∑

i
lnZi −∑

(i,j)
lnZij

)
(1.65)

whose physical interpretation is again quite straightforward: the total free energy
is made up of local contributions, respectively corresponding to each node and
each edge appearing in the graph. The same holds for the internal energy U,
whose expression can be easily derived via the derivative of βFBP with respect to β:

U = −∑
i

1
Zi

Tr
xi

{
hi(xi) exp

{
βhi(xi)

}
∏
k∈∂i

Tr
xk

[
exp

{
βJik(xi, xk)

}
ηk→i(xk)

]}

−∑
(i,j)

1
Zij

Tr
xi ,xj

[
Jij(xi, xj) exp

{
βJij(xi, xj)

}
ηi→j(xi)ηj→i(xj)

]

(1.66)

and which in turn corresponds to the sum of the local contributions to the total
energy respectively from the external field hi on each node — say ui — and from
the interaction Jij on each edge — say uij.

Hence the advantage of the BP approach is clear: it allows the computation
of physical observables with a computational effort that grows linearly in the
size N of the system, by summing over node and edge contributions just as seen
before for the free energy and the internal energy. It is a clear enhancement with
respect to their “brute-force” computation in the canonical ensemble via the exact
equilibrium probability distribution Peq, whose computational complexity grows
exponentially in the size N of the system.

As usual, we can now wonder when the Bethe - Peierls approximation actually
provides reliable results. We surely expect it to be more accurate with respect to
the naïve mean field, but it is anyway a mean-field approach — having discarded
correlation functions with more than two variables — and hence it has some limits
of applicability. This question will be addressed in Section 1.8.
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1.7 Factor graph formalism

In physical systems involving a huge number of variables {xi}, it turns out
that each of them interacts only with a finite number of other variables at each
time, and this number is usually not extensive, i. e. it remains finite even in the
thermodynamic limit. This is due to the fact that most of physical interactions are
very local: e. g. collisions between particles, magnetic interactions between dipoles,
Lennard-Jones-like interactions between molecules, and so on.

A direct consequence of this is that the whole set of interactions can be factorized
in a non trivial way, recognizing that each interaction only involves a finite subset
of variables. At the same time, each variable takes part only in a small number of
interactions among all those taking place in the system. This factorized structure
can be suitably represented in the factor graph formalism [Jor99, Ksc01, Méz09].

In this formalism, the joint probability distribution P({xi}) can be decomposed
in the product of each “elementary” interaction

P({xi}) =
1
Z

M

∏
a=1

ψa(x∂a) (1.67)

with M representing the total number of interactions. x∂a is just a shorthand
notation for {xi}i∈∂a, namely for the subset of variables involved in the a-th
interaction. Compatibility function ψa is a nonnegative function describing the
interaction between variables x∂a and it can be of two types: i) it can involve just a
variable xi at each time, so providing an external bias or evidence for such variable,
as an external field would do:

ψa(xi) → φi(xi) = exp {βhi(xi)} (1.68)

or ii) it can involve more than one variable at each time, so representing a proper
interaction in the statistical mechanics sense:

ψa(x∂a) = exp {βJa(x∂a)} (1.69)

with Ja containing the explicit expression of the many-body interaction between
variables x∂a. Hence a suitable many-body Hamiltonian — still quite generic —
can be written down:

H[{xi}] = −∑
a

Ja(x∂a)−∑
i

hi(xi) (1.70)

such that the joint probability distribution P({xi}) can be actually written as
in (1.67). Finally, in the case of pairwise interactions, it holds x∂a = (xi, xj) and
hence we can recover the pairwise formalism exploited so far:

P({xi}) =
1
Z ∏

(i,j)
ψij(xi, xj)∏

i
φi(xi) (1.71)

in turn corresponding to the pairwise-interaction Hamiltonian (1.28).
Factor graph formalism allows to translate nearly every statistical mechanics

model for which factorization (1.67) holds into a graphical model, namely a bipartite
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Figure 1.2. Graphical model associated with the Ising model on a d = 2-dimensional
hypercubic lattice. Gray circles represent Ising variables, black squares represent their
pairwise interaction and finally striped squares represent the external field acting on
each variable.

graph with undirected edges joining two main kinds of nodes: the N variable nodes,
each associated with a variable xi and typically represented by a circle, and the M
check nodes or function nodes, each associated with an interaction Ja and represented
by a square. Also the external field can be represented as a function node, even
though involving only a site each time; for this reason, we still represent it by a
square, though with a different filling pattern. For example, in Figure 1.2 there
is the graphical model associated with the Ising model on a d = 2-dimensional
hypercubic lattice.

The BP formalism developed in Section 1.6 can be easily generalized also to
bipartite graphs, which actually become necessary when dealing with many-body
interactions. The key point is that in the factor graph case there are two types of
“messages” flowing through edges: the check-to-variable message η̂a→i(xi), which is
meant to leave function node a and enter site i, and the variable-to-check message
ηi→a(xi), which flows away from site i toward the a-th function node. BP self-
consistency equations (1.60) can be suddenly generalized [Yed05, Méz09]; referring
to Figure 1.3, we have:





ηi→a(xi) =
1
Zi→a

exp
{

βhi(xi)
}

∏
b∈∂i\a

η̂b→i(xi)

η̂a→j(xj) =
1
Ẑa→j

Tr
x∂a\j

[
exp

{
βJa(x∂a)

}
∏

k∈∂a\j
ηk→a(xk)

] (1.72)

with a, b, c, . . . labeling check nodes and i, j, k, . . . labeling variable nodes. So ∂i \ a
refers to the check nodes directly linked to variable node i but a, while ∂a \ j stands
for the set of variables that take part into the a-th interaction but j. Normalization
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Figure 1.3. Graphical representation of the BP equations (1.72) in the factor graph case. Left
panel: the outgoing message ηi→a(xi) from site i toward function node a depends on
the set of incoming messages {η̂b→i(xi)} from function nodes {b ∈ ∂i \ a} toward site i,
plus the external evidence hi about xi. Right panel: the incoming message η̂a→i(xi) from
function node a to site i only depends on the set of outgoing messages {ηk→a(xk)}
from sites {k ∈ ∂a \ i} toward function node a.

constants finally read:

Zi→a ≡ Tr
xi

[
exp

{
βhi(xi)

}
∏

b∈∂i\a
η̂b→i(xi)

]
(1.73a)

Ẑa→j ≡ Tr
xj

{
Tr

x∂a\j

[
exp

{
βJa(x∂a)

}
∏

k∈∂a\j
ηk→a(xk)

]}
(1.73b)

Once noticed that the local contributions to the Bethe free energy (1.65) in the
pairwise case come from the two objects present in the graphical model — namely
the variable nodes and the edges between them —, then it is easy to generalize its
expression to the factor graph formalism, where the basic objects are three: the
variable nodes, the check nodes and the edges joining them. Hence, considering
the three types of local contributions, it holds [Méz09]:

FBP = − 1
β

(
∑

i
lnZi + ∑

a
lnZa − ∑

(i,a)
lnZia

)
(1.74)

where:

Zi = Tr
xi

[
exp

{
βhi(xi)

}
∏
a∈∂i

η̂a→i(xi)

]
(1.75a)

Za = Tr
x∂a

[
exp

{
βJa(x∂a)

}
∏
k∈∂a

ηk→a(xk)

]
(1.75b)

Zia = Tr
xi

[
ηi→a(xi) η̂a→i(xi)

]
(1.75c)
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Of course, this expression can be rigorously recovered when generalizing the Gibbs
free energy (1.43) in the Bethe - Peierls approximation to the case of many-body
interactions and then minimizing it with respect to the new Lagrange multipliers,
which are in turn related to the messages ηi→a’s and η̂a→i’s of the factor graph
formalism [Yed05].

Finally, also the internal energy U can be written in terms of the two types of
messages, so generalizing the pairwise expression (1.66):

U = −∑
i

1
Zi

Tr
xi

[
hi(xi) exp

{
βhi(xi)

}
∏
a∈∂i

η̂a→i(xi)

]

−∑
a

1
Za

Tr
x∂a

[
Ja(x∂a) exp

{
βJa(x∂a)

}
∏
k∈∂a

ηk→a(xk)

] (1.76)

while keeping the straightforward physical interpretation of sum of the local
contributions from the field and the proper many-body interactions.

1.8 Sparse random graphs and applicability of Belief Prop-
agation

Factorization (1.67), which defines a factor graph representation, has actually a
highly nontrivial consequence. Indeed, every time it holds, then any two variables
xi and xj separated by a set S of other variables xS ≡ {xk}k∈S — namely there
is no path joining xi and xj without involving also some variable in S — are
conditionally independent:

P(xi, xj|xS ) = P(xi|xS )P(xj|xS ) (1.77)

This property is nothing but the Markovianity anticipated in Section 1.6, indeed it
goes under the name of global Markov property.

At this point, it is clear that the Markovianity is necessary for the Bethe - Peierls
approximation to be meaningful, as already seen. However, it is not enough:
the key ingredient that allows to compute one-point and two-point beliefs in an
efficient way is the factorization (1.57), that is not harmless at all. Indeed, it requires
that the nearest-neighbour variables {xk} of xi are conditionally independent only
with respect to xi itself

P({xk}k∈∂i|xi) = ∏
k∈∂i

P(xk|xi) (1.78)

namely along G there is a unique path joining them and it necessarily passes
through the site i. So if such site is removed from the graph, then they actually
become independent.

This property is stronger than the global Markov property implied by fac-
torization (1.67), as for example it can seen by looking at the graphical model
in Figure 1.2: once removed a certain site i, its nearest-neighbour variables do
not become independent, due to the presence of very short loops joining them.
This observation actually translates into the following rigorous statement: the



22 1. Statistical mechanics and the mean field

Bethe - Peierls approximation is exact on treelike graphs, with BP fixed point in one-
to-one correspondence with the stationary points of Bethe free energy (1.43) [Yed00,
Yed05]. Indeed, treelike graphs have no loops and hence there is always a unique
path joining any two variables, so that condition (1.78) is always verified. However,
if correlations decay “fast enough” with the distance, the previous factorization
would be nearly exact also in presence of large loops, namely on the so-called
locally treelike graphs.

An important class of graphs of this kind is that of sparse random graphs [Jan00,
Bol01]. These graphs are such that the total number M of interactions scales linearly
with the number N of variables, so that the ratio α ≡ M/N approaches a finite
value in the thermodynamic limit (N → ∞). Moreover, the randomness is given by
the fact that each edge between any two nodes is drawn with a fixed probability
p = O(1/N), independently from other edges. In this way, each node has a finite
average number C of neighbours, from which also their sparsity property.

A distinctive feature of sparse random graphs is represented by their degree
profile, namely by the probability distribution of the degree di of their variable
nodes. If it has been fixed to be equal to C for all the sites

Pd(di) = δ(di − C) (1.79)

then the resulting ensemble of graphs is the Random Regular Graph (RRG) one.
Instead, if the probability p of drawing each edge is set equal to C/(N − 1), then
the degree turns out to be distributed according to a Poisson distribution of first
moment C

Pd(di) = Cdi
e−C

di!
(1.80)

and the corresponding ensemble is the Erdős - Rényi Graph (ERG) one [Erd59].
The two properties of these classes of graphs, the sparsity and the random-

ness, jointly provide the local treelike structure necessary for the Bethe - Peierls
approximation to work. Indeed, the factorization (1.78) is not strictly true on sparse
random graphs, but it is violated by a term ε that contains the correlations between
{xk}k∈∂i variables along paths that do not contain the site i, namely along the loops
that eventually join them at finite N:

P({xk}k∈∂i|xi) = ∏
k∈∂i

P(xk|xi) + ε i({xk}k∈∂i|xi) (1.81)

In order to quantify such error, let us evaluate the loop typical size. Since these
graphs are locally treelike, the average number of sites N(r) at distance r from the
center of the graph grows as Cr. However, when N(r) becomes comparable with
the size N, loops start to appear. So the typical size ` of the loops can be estimated
as

N(r) ∼ N ⇒ r ∼ ln N
ln C

⇒ ` ∼ ln N
ln C

(1.82)

so that in the thermodynamic limit they can actually be neglected. This will allow
us to actually exploit the BP approach on large enough sparse random graphs.

Notice, however, that a further assumption is needed, namely that the correla-
tions must decay fast enough with the distance. This is certainly true when there is
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a single pure state, with correlations decaying exponentially with the distance. But
when the Gibbs measure breaks into more pure states, then clustering property
does not hold any longer and hence correlations may not decay fast enough to
neglect the correction term ε in (1.81), even in presence of very large graphs. This
is a crucial point when dealing with disordered systems, as we will see throughout
this thesis.

Finally, one last comment about the BP method. The removal of a site from
graph G — together with its incoming edges — so to make its nearest-neighbour
variables uncorrelated can be effectively depicted as the creation of a “cavity” in
the original graph. This operation — or equivalently the addition of further nodes
and links — is at the basis of the cavity method, introduced in Ref. [Méz87a] and
then refined and revised in Refs. [Méz01, Méz03a]. According to this method, the
total free energy F can be computed as the sum of the local terms coming from the
elementary operations of link and site additions, and again this strategy provides
exact results on (at least locally) treelike graphs. Such method is indeed completely
equivalent to the BP approach, once noticed that the free energy shifts occurring
at the addition of nodes and links are strictly related to the BP normalization
constants Zi and Zij. For this reason, the BP probability distributions {ηi→j} are
often referred to as cavity messages, as well as their counterparts in the factor graph
formalism.





Chapter 2

Spin glasses: the replica approach

This Chapter is meant to provide a brief recap of the results obtained for spin
glasses on fully connected graphs — namely within the naïve mean-field frame-
work —, with a particular focus on the features of the different phase diagrams.
Essential references are hence represented by [Bin86, Méz87b, Fis91, Nis01]. The
starting point is represented by the experimental evidences that boosted the theo-
retical research on quenched disordered systems. Then, we move to the disordered
version of the Ising model, reviewing its mean-field solution via the replica method.
Finally, we face also the vector case, highligthing the similarities and the novelties
with respect to the scalar case. Even though the results in this Chapter are already
known in the literature, so that the experienced reader could safely skip the first
two Sections, we highly recommend to read the Section about vector models, since
we display several results that will be referred to throughout the thesis and that
unfortunately seem not to be well recognized as for the ubiquitous Ising case.

2.1 A new kind of magnetism

In Chapter 1 we introduced the finite dimensional Ising model and its mean-
field version, the CW model, showing how they reproduce quite well some key
features of ordered ferromagnets. The attempts to solve them basically rely on two
fundamental properties: the invariance under translation and the equivalence of
all the sites. Unfortunately, in several real cases they are not verified because some
kind of heterogeneity occurs, due e. g. to vacancies in the arrangement of atoms or
to replacements with atoms of another species. This particular kind of disorder is
named quenched, in order to stress the fact that it is fixed and does not enter in the
Hamiltonian as a further degree of freedom, namely it does not change in the time.

There are two key features that identify these peculiar magnets with respect to
ordered ones:

• frustration, namely the competition between the interactions of the various
spins such that there does not exist a configuration of the spins that satisfies
all the interactions;

• randomness in the exchange couplings between spins, so to mix both ferro-
magnetic and antiferromagnetic interactions.
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From the historical point of view, the first widely studied examples of quenched
disorder in condensed matter have been the diluted solutions of transition metal
impurities in a substrate of noble metals, such as manganese (Mn) on gold (Au),
on silver (Ag) or — more often — on copper (Cu) [Owe56, dNob59, Zim60]. It
is referring to these magnetic alloys that the terms random magnets and later spin
glasses1 have been introduced.

In these alloys, frustration and randomness are provided by the d-shell electrons
of transition metals that polarize the s-shell conduction electrons of noble host
metals. Indeed, the induced polarization has a characteristic oscillatory behaviour
with the distance from the impurity [Ash76], so that also the resulting effective
interaction between magnetic moments of impurities can be both positive or
negative depending on their mutual distance.

The mechanism of the s− d interaction was firstly proposed by Zener in 1951
[Zen51a, Zen51b, Zen51c], though not taking into account antiferromagnetic effects.
The oscillatory interaction was instead already known from studies on nuclear
magnetism by Ruderman and Kittel [Rud54]. So slightly later it was applied to the
s− d coupling in diluted magnetic alloys by Kasuya [Kas56] and Yosida [Yos57],
leading to the famous Ruderman - Kittel - Kasuya - Yosida (RKKY) interaction:

Jxy ∼
cos(2kF · r)

r3 (2.1)

with r being the distance between x and y, while kF being the Fermi wave vector.
So due to the random location of impurities, both strength and sign of exchange
couplings are randomly distributed, providing the two key ingredients for a ran-
dom magnet. Indeed, the first theoretical work on spin glasses actually considered
RKKY interactions [Kle63].

The peculiar difference between ordinary ferromagnets and these random
magnets, or spin glasses, lies in the features of the low-temperature phase. In-
deed, in the latter case it is characterized by a set of “frozen” local spontaneous
magnetizations giving a vanishing global magnetization, while in the former case
the ferromagnetic long-range order is highlighted by the nonzero value of the
global magnetization. As a direct consequence of the random orientation of local
magnetizations, magnetic susceptibility in the low-temperature phase has a lower
value with respect to its extrapolation from the high temperature phase.

Moreover, the two regimes are separated by a pronounced cusp at a well
defined temperature, as also measured in several experiments on diluted magnetic
alloys [Can71, Can72, Myd77], so suggesting the presence of a second-order phase
transition. The location of this phase transition is also experimentally found out
to depend on the frequency ω of the applied magnetic field [Hüs83], so that the
“true” critical temperature is the static one, obtained in the ω → 0 limit.

This crucial dependence on the protocol through which the external field is
applied is a signature of the presence of many metastable states, or valleys — i. e.
stable spin configurations — roughly equivalent from the energetic point of view
but separated by energy barriers of different heights. This picture is analogous
to what happens in Ising ferromagnets, where below the critical point there are

1It appeared for the first time in a paper [And70] by Anderson in 1970.
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two stable states — the one with positive magnetization and the one with negative
magnetization — separated by an energy barrier that is exponentially large in the
system size. However, in this case the number of these stable states is huge, with
each one of them characterized by a certain set of local magnetizations {mi}.

Other peculiar features of the so-called spin glass phase, directly related to
the rugged landscape of valleys and barriers sketched above, are the dramatic
slowdown of the dynamics, remanence and memory effects, rejuvenation, chaos in
temperature.

Finally, as for ordinary ferromagnets spin correlations extend to the whole
system at the critical point, so making the ferromagnetic susceptibility χF

χF ≡
β

N ∑
i,j
〈σiσj〉c (2.2)

diverge, also for spin glasses there is a suitable susceptibility that diverges at the
critical point, the spin glass one:

χSG ≡
β2

N ∑
i,j

(
〈σiσj〉c

)2
(2.3)

where it is the square of spin correlations that extends over the whole system, while
due to the randomness of exchange couplings the spin correlations themselves
decay quite fast.

If from one hand the presence of a diverging correlation length suggests
to study the spin glass transition within the framework of second-order phase
transitions, on the other hand the large number of metastable states and the other
peculiar features of the low-temperature phase need for more refined and involved
approaches, which we will briefly summarize in what follows.

2.2 The Ising spin glass model

As the archetypal of ferromagnets is represented by the Ising model, the same has
happened for spin glasses. So we start our review about fully connected models of
spin glass from the Ising case.

2.2.1 The Edwards - Anderson model

In 1975 Edwards and Anderson introduced a simple though effective spin glass
version of the ferromagnetic Ising model on a d-dimensional hypercubic lattice G
— with Hamiltonian (1.16) —, that has been actually named as the Edwards -
Anderson (EA) model after them:

HJ [{σi}] = −∑
(i,j)

Jij σiσj (2.4)

with the subscript ‘J’ indicating the particular set of couplings Jij’s identically and
independently distributed according to a Gaussian distribution, so to mimic the
randomness of the RKKY distribution:

PJ(J) ∼ Gauss(J0, J2) (2.5)
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The set of couplings Jij’s for a lattice G represents a sample, i. e. a fixed configuration
of the disorder2.

Also the corresponding partition function has to depend on the set of couplings,
as well as the free energy density:

f J = −
1

βN
lnZJ = −

1
βN

ln
[
∑
{σi}

e−βHJ [{σi}]
]

(2.6)

Being an extensive physical observable, it is meaningful to look at its average value
over the disorder distribution:

f ≡ f J =
∫

dJ PJ(J) f J (2.7)

with · labeling the average over the disorder, namely over the samples. However,
standard arguments of statistical mechanics claim that in the thermodynamic limit
all the different realizations of the disorder yield the same value for the free energy
density:

f 2
J −

(
f J

)2
= O

(
1
N

)
(2.8)

namely f is said to be self averaging. This property, possessed by several other
physical observables, has a quite straightforward interpretation: indeed the larger
the sample, the weaker the dependence on the realization of the quenched disorder.

However, not all physical observables are self averaging, but some of them
must depend on the realization of the disorder. Indeed, the crucial idea of Edwards
and Anderson is that — on a given sample — there exists an ensemble of local
preferred directions for each spin such that, below the critical temperature Tc, the
spin relaxes toward one of them. However, from the macroscopic point of view, the
arrangement of such directions is completely random and it also changes according
to different initial conditions. In other words, when decreasing the temperature,
the system chooses a valley — depending on the initial condition — and then
relaxes toward its bottom.

For the previous reason, the order parameter of this transition can not be the
global magnetization as for ordinary ferromagnets, being zero both in the high-
as well as in the low-temperature region. Instead, they define an overlap — later
named after them — between the direction of each spin at some reference time t0
and the direction of the same spin at later times:

qEA ≡ lim
N→∞

lim
t→∞

1
N ∑

i
〈σi(t0) σi(t0 + t)〉t (2.9)

where 〈·〉t is just the time average:

〈O(t)〉t ≡
1
t

∫ t

0
dt′O(t′) (2.10)

2In the following we will also refer to the samples as instances of the problem. Moreover, we
will see that the randomness can also involve the topology and/or the external field, so in general
“sample” and “instance” refer to the whole realization of the quenched disorder.
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So if the system remains trapped in a certain valley at T < Tc, then the resulting
overlap qEA must differ from zero, while the restoration of the ergodicity — namely
the possibility of exploring all the valleys — would yield a vanishing overlap, as
it actually happens above the critical point. Notice that the order of the two
limits, N → ∞ and t → ∞, is crucial. If N is finite, then in the t → ∞ limit the
system has actually the possibility to explore all the valleys and hence it does not
remain trapped into a certain valley: the resulting overlap qEA must hence be zero.
Conversely, if the infinite-time limit is performed before than the infinite-size one,
the system actually gets trapped, so providing a non vanishing overlap qEA.

Two main difficulties regard the solution of the EA model, and in particular the
computation of the average free energy density f . Firstly, as for the ferromagnetic
Ising model, an analytic computation of f is not straightforward to obtain in the
generic d-dimensional hypercubic case.

The second, and most important, issue regards the average over the disorder.
Indeed, the quenched average over the disorder mentioned above

f = − 1
βN

lnZJ (2.11)

is not feasible, due to the non linearity of the logarithm. Conversely, if the average
over the disorder is performed directly on the partition function Z and no longer
on its logarithm, then the computation is by far simpler [Méz87b, Fis91], leading
to the definition of the annealed free energy density:

fann ≡ −
1

βN
lnZJ (2.12)

The physical interpretation of the two kinds of averages is well explained by
the two terms borrowed by metallurgy and used to label them. Indeed, ‘annealing’
means performing a very slow cooling of the sample during its preparation, so that
the disorder degrees of freedom are allowed to change on the same time scale of
spins. Hence, they actually enter in the Hamiltonian as further degrees of freedom
and it is meaningful to average the partition function on both spin and disorder
degrees of freedom at the same time. On the other side, ‘quenching’ suggests
a very rapid cooling of the sample, meaning that spins have to arrange toward
their best configuration provided the frozen disorder realization. In this case, the
disorder average has to be performed only on extensive physical observables, such
as free energy density.

Even though the EA model contains quenched disorder and hence f has to be
computed as in (2.11), the other crucial idea of Edwards and Anderson consists in
the computation of the quenched average of f J via an analytic continuation on the
annealed average of the free energy density of n uncoupled replicas of the initial
system:

Zn ≡ (ZJ)n = ∑
{σ(1)

i }
∑
{σ(2)

i }
· · · ∑
{σ(n)

i }
e−β ∑n

a=1HJ [{σ(a)
i }] (2.13)

so that:
f ≡ f0 = lim

n→0
fn , fn ≡ −

1
βNn

lnZn (2.14)
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This is nothing but the replica method, based on the elementary identity:

lnZ = lim
n→0

Zn − 1
n

(2.15)

which in turn comes from the expansion Zn ' 1 + n lnZ for n close to zero.
As long as n is integer, the annealed average of the partition function can be

computed quite easily, being the n replicas uncoupled. So in the end the replica
trick provides a way to actually compute the quenched free energy density:

f = − lim
N→∞

lim
n→0

1
βN

(ZJ)n − 1
n

(2.16)

2.2.2 The Sherrington - Kirkpatrick model

A first successful application of the replica method developed by Edwards and
Anderson has been performed by Sherrington and Kirkpatrick in the mean-
field fully connected version of the EA model: the Sherrington - Kirkpatrick (SK)
model [She75, Kir78]

HJ [{σi}] = −
1
2 ∑

i 6=j
Jij σiσj (2.17)

with Jij’s drawn from a Gaussian distribution of mean J0/N and variance J2/N,
where J0 and J2 are both of order one.

The first step of the replica method consists in the average over the disorder,
which yields a surprising result:

(ZJ)n = ∑
{σ(1)

i }
∑
{σ(2)

i }
· · · ∑
{σ(n)

i }
exp

{
−β

n

∑
a=1
HJ [{σ(a)

i }]
}

= ∑
{σ(1)

i }
∑
{σ(2)

i }
· · · ∑
{σ(n)

i }
exp

{
∑
i 6=j

[
βJ0

2N ∑
a

σ
(a)
i σ

(a)
j +

β2 J2

4N ∑
a,b

σ
(a)
i σ

(b)
i σ

(a)
j σ

(b)
j

]}

(2.18)

namely the n replicas of the original system have become coupled via a 4-spin
interaction, while disorder has disappeared from the system.

After some manipulations with the sums over the site and the replica indexes,
these multi-spin interactions can be then linearized via the Hubbard - Stratonovich
method, so inserting the auxiliary variable ma for terms with a single replica index

exp

{
βJ0

2N

(
∑

i
σ
(a)
i

)2
}

=

√
βN
2π

∫
dma exp

{
−βN

2
m2

a + β
√

J0 ma ∑
i

σ
(a)
i

}
(2.19)

and the auxiliary variable qab for terms with two replica indexes

exp

{
β2 J2

4N

(
∑

i
σ
(a)
i σ

(b)
i

)2
}

=

√
β2N

π

∫
dqab exp

{
−β2Nq2

ab + β2 J qab ∑
i

σ
(a)
i σ

(b)
i

}

(2.20)
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So ma is a n-dimensional vector, while qab is a n× n symmetric matrix, with the
diagonal entries qaa’s referring to subleading terms in N with respect to the others
and hence set equal to zero.

After some further manipulations, all the leading terms in N and n can be put
into an effective action S

Zn =
∫

∏
a
(dma)∏

a,b
(dqab) exp

{
−NS

[
{ma}, {qab}

]}
(2.21)

so that in the thermodynamic limit it is possible to obtain — via a saddle-point
evaluation — the expression of the replicated free energy density fn averaged over
the disorder:

fn =
1

βn
min

{ma},{qab}
S
[
{ma}, {qab}

]
(2.22)

from which in turn the quenched free energy density can be obtained:

f = lim
n→0

fn (2.23)

At this point, in order to go further with the evaluation of the saddle-point
values for ma’s and qab’s, Sherrington and Kirkpatrick made the crucial assumption
of the symmetry between replicas, which seemed to be quite reasonable. Indeed,
the action S is symmetric under the permutation of the n replicas. The Replica
Symmetry (RS) ansatz so yields:

ma = m ∀ a , qab = q(1− δab) ∀ a, b (2.24)

greatly simplifying the saddle-point equations, who finally read:

m =
∫

dz
e−z2/2
√

2π
tanh

[
β(Jz
√

q + J0m)
]

(2.25a)

q =
∫

dz
e−z2/2
√

2π
tanh2 [β(Jz

√
q + J0m)

]
(2.25b)

The physical interpretation of m and q so naturally comes out. Indeed, the
former turns out to be related to the average magnetization of each replica of the
system, related to the ferromagnetic bias J0 of couplings, while the latter represents
the correlations between spins from different replicas, related to the variance J2 of
the couplings:

m = 〈σi〉 , q = 〈σi〉2 (2.26)

So a phase with both m and q vanishing is paramagnetic, while when both them are
different from zero there is a ferromagnetic ordering. Finally, when q is different
from zero while m is equal to zero, a spin glass phase with a breaking of ergodicity
is taking place, following the idea by Edwards and Anderson.

The critical lines between these three different phases have been then com-
puted by Sherrington and Kirkpatrick from the solutions of self-consistency equa-
tions (2.25), as shown in the J0 vs T phase diagram of Figure 2.1. Paramagnetic
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Figure 2.1. Phase diagram of the SK model with the RS assumption. Temperatures T on
the vertical axis are rescaled by J, as well as J0 values on the horizontal axis. Reprinted
from [She75].

solution becomes unstable in correspondence of the largest temperature between
J0 and J, Tc = max {J0, J}, while the critical line between the two different ordered
states is reentrant toward the ferromagnetic phase, going from J0 = J, T = J to
J0 =

√
π/2 J, T = 0.

Unfortunately, Sherrington and Kirkpatrick found some issues in the low-
temperature region. In particular, the entropy density was negative at low enough
temperatures

lim
T→0

s(T) = − 1
2π

(2.27)

clearly providing an unphysical result for a discrete model as the SK one. Even if
it was initially blamed the interchange between the N → ∞ limit and the n → 0
limit, quite suddenly it became clear that the issue was actually rooted in the RS
assumption.

2.2.3 The breaking of replica symmetry

Indeed, the saddle point condition

∂S
∂qab

= 0 ∀ a, b (2.28)

is not on its own a guarantee of the stability of the extremal point {q∗ab}. Moreover,
given that qab matrix is symmetric and has zero entries on the diagonal, the number
of its independent variable is n(n− 1)/2 and hence when performing the analytic
continuation toward n = 0, such number becomes negative below n = 1. Direct
consequences of this are, for example, the change of minima into maxima and the
appearance of negative determinants [Méz87b].
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In order to check the stability of the extremal points coming from (2.28), the
standard study on the second derivatives of S has to be performed out, so defining
its Hessian matrix H in the space of replicas:

Hab,cd ≡
∂2S

∂qab ∂qcd

∣∣∣∣∣
{q∗ab}

(2.29)

In this way, the stability of the stationary point {q∗ab} is ensured when H is positive
definite.

The stability of the RS solution q∗ab = q has been finally checked by de Almeida
and Thouless in 1978 [dAlm78b], who realized that among the three distinct
eigenvalues of H for n > 1, one of them — named the replicon [Bra78] — actually
becomes negative for T < Tc and J0 = 0 when n→ 0:

λ1 = 1− β2
∫

dz
e−z2/2
√

2π

[
1− tanh2 (βJz

√
q)
]2

(2.30)

So the RS ansatz is definitely wrong in the spin glass phase, hence a different
solution must be considered, which takes into account the breaking of the symmetry
between replicas, so leading to the Replica Symmetry Breaking (RSB) scenario.

An analogous instability has been found by de Almeida and Thouless in the
case of an external homogeneous field H. Indeed, if on one hand there are no
phase transitions in this case within the RS ansatz — there always being a globally
magnetized phase — on the other hand also in this case the replicon λ1 becomes
negative on a well defined line in the T vs H plane, identified by the condition

(
1
βJ

)2

=
∫

dz
e−z2/2
√

2π
sech4 [β(Jz

√
q + H)

]
(2.31)

and named de Almeida - Thouless (dAT) line, with the RS values of m and q given
by

m =
∫

dz
e−z2/2
√

2π
tanh

[
β(Jz
√

q + H)
]

(2.32a)

q =
∫

dz
e−z2/2
√

2π
tanh2 [β(Jz

√
q + H)

]
(2.32b)

It can be observed in the T vs H plane of the phase diagram in Figure 2.2.
It is worth highlighting two key features of the dAT line, since we will recall

them in the course of the thesis. Firstly, a power series expansion for small fields
yields: (

H
J

)2

' 4
3

(
Tc − T

Tc

)3

(2.33)

from which the 3/2 value of the dAT line critical exponent in the SK model.
Secondly, a power series expansion for large fields gives:

1
βJ
' 4

3
√

2π
exp

{
−H2

2J2

}
(2.34)
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Figure 2.2. Phase diagram of the SK model when taking into account RS instability. Values
of T, H and J0 are again meant to be rescaled by J. Line (1) corresponds to the RS
instability in presence of a field H, while lines (2) and (5) refer to the case with J0 6= 0.
So line (3), separating paramagnetic from ferromagnetic phase, entirely lies in the RS
stable region. Vertical line (4) is where global magnetization m actually vanishes,
according to the Toulouse argument. Reprinted from [Tou80].

showing that for any value of the field H, there is always a small enough tempera-
ture such that the breaking of replica symmetry occurs.

Finally, an analogous RS instability line also appears when a ferromagnetic bias
J0 is present, instead of the external field H. Indeed, for J0 < J it corresponds to
the second-order critical line between the paramagnetic and the spin glass phase.
Then, for J0 > J the RS instability line replaces the transition line between the
ferromagnetic and the spin glass phase computed by Sherrington and Kirkpatrick,
since occurring at higher critical temperatures, given by:

(
1
βJ

)2

=
∫

dz
e−z2/2
√

2π
sech4 [β(Jz

√
q + J0m)

]
(2.35)

The exponent of this line close to the multicritical point J0 = J, T = J can be
computed by looking at the Toulouse argument [Tou80, Fis91] for the equivalence
between the H = 0, J0 6= 0 case and the H 6= 0, J0 = 0 case. Indeed, keeping in
mind the correspondence between the effective field J0m of the former case and the
actual field H of the latter case, and moreover recalling the mean-field prediction
of the growing of the global magnetization below the critical temperature, m ∝
(Tc − T)1/2, the dAT line decreases as a square root for J0 & J:

(
J0 − J

J

)
∝
(

Tc − T
Tc

)2

(2.36)

Instead, on the other end of the dAT line, it turns out that in fact there is no
endpoint on the T = 0 axis, since for any value of J0 there always exists a critical
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temperature such that λ1 becomes negative:

1
βJ
' 4

3
√

2π
exp

{
− J2

0
2J2

}
(2.37)

Notice that this scaling has exactly the same expression of (2.34), again due to the
correspondence H ↔ J0m and to the fact that m → 1 when T → 0. Indeed, they
actually belong to the same dAT hypersurface in the T vs H vs J0 space, below
which the RS ansatz is definitely unstable [Tou80].

Another striking difference between the T vs J0 phase diagram depicted by
Sherrington and Kirkpatrick in the RS ansatz and the one obtained by de Almeida
and Thouless taking into account RS instability is the presence of a new phase
lying between the ferromagnetic one and the spin glass one. Indeed, for J0 > J
the global magnetization m is correctly given by the RS expression (2.25a) until
reaching the dAT line, hence it is still different from zero when crossing it. So there
should be a further line where m actually goes to zero, but such line can not be
represented by the reentrant one found by Sherrington and Kirkpatrick in the RS
approach. Instead, it has been predicted by Toulouse to be located at J0 = J for any
T < Tc, according to an argument regarding the zero-field susceptibility χ [Tou80].
So the region of RS instability actually splits into two different phases: the proper
spin glass one with m = 0 and a mixed one with m 6= 0 but still RS unstable. The
correct phase diagram of the SK model, taking into account the breaking of replica
symmetry, is eventually reported in Figure 2.2.

Even though it was established that the RS assumption is incorrect in the
low-temperature region, it was not yet clear how to break such symmetry. An
attempt was made by Thouless, Anderson and Palmer [Tho77], who constructed
the mean-field theory of the SK model before averaging over the disorder and hence
with no need of introducing replicas. Indeed, starting from the Bethe formulation
of the cavity method [Bet35], they tried to extend the mean-field theory of ordered
ferromagnets to the case of spin glasses, finding the Thouless - Anderson - Palmer
(TAP) equation:

mi = tanh
[

βH + β ∑
j

Jijmj − β2mi(1− qEA)
]

(2.38)

that actually recalls the ferromagnetic one (1.34), apart from the Onsager reaction
term β2mi(1 − qEA) [Ons36, Bar73] that takes into account the feedback from
changes in mi itself. Unfortunately, the TAP approach has been proved to be
correct only where the RS solution is stable as well [Kir78, Ple82, Ple02].

The puzzle has been finally solved slightly later by Parisi in a series of papers,
finding the right direction along which the breaking of replica symmetry actually
takes place. Indeed, he firstly observed [Par79b] that the addition of a further
parameter in the matrix overlap qab improves the RS solution given by Sherrington
and Kirkpatrick, still providing a negative entropy in the T → 0 limit, even though
by far closer to zero. More precisely, the 1 - step Replica Symmetry Breaking (1RSB)
method consists in allowing the overlap between different replicas to take on two
different values, so that each replica has an overlap q1 with other m1 − 1 replicas,
while it has a smaller overlap q0 with the remaining n−m1 replicas. This ansatz
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can be concisely expressed by means of the probability distribution of the overlaps
in the replica space:

Pn(q) =
m1 − 1
n− 1

δ(q− q1) +
n−m1

n− 1
δ(q− q0) (2.39)

More visually, the 1RSB ansatz gives the following block representation for the
overlap matrix qab:

q =




0 q1 q1

q0q1 0 q1

q1 q1 0

0 q1 q1

q1 0 q1

q1 q1 0

q0

0 q1 q1

q1 0 q1

q1 q1 0




that is divided into m1/n×m1/n square blocks of linear size m1, such that diagonal
blocks have the larger overlap q1, with the diagonal entries qaa’s still set equal to
zero, while off-diagonal blocks have the smaller overlap q0.

In the n → 0 limit, the overlap probability distribution (2.39) remains well
defined if m1 belongs to the [0, 1] interval (so acquiring the meaning of a fraction of
replicas):

P(q) = (1−m1)δ(q− q1) + m1δ(q− q0) (2.40)

Its value is the one given by the saddle-point evaluation, ∂S/∂m1 = 0, together
with the saddle-point equations for q0 and q1, that in the isotropic case J0 = H = 0
read:

q0 =
∫
Dz0

{∫
Dz1

[
F (z0, z1)

]m1 tanh
[
βJ(z1

√
q1 − q0 + z0

√
q0)
]

∫
Dz1

[
F (z0, z1)

]m1

}2

(2.41a)

q1 =
∫
Dz0

∫
Dz1

[
F (z0, z1)

]m1 tanh2 [βJ(z1
√

q1 − q0 + z0
√

q0)
]

∫
Dz1

[
F (z0, z1)

]m1
(2.41b)

where Dz0,1 ≡ dz0,1 exp {−z2
0,1/2}/

√
2π is the Gaussian measure already encoun-

tered in the RS ansatz, while F (z0, z1) contains the usual contribution from Ising
spins:

F (z0, z1) ≡ exp
{
−β2q1

2

}
2 cosh

[
βJ(z1

√
q1 − q0 + z0

√
q0)
]

(2.42)

It is evident the similarity between these saddle-point equations and the RS
ones (2.25), with the further level of average over the Gaussian measure Dz1 and
the reweighing through the factor

[
F (z0, z1)

]m1 .
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The generalization to further steps of RSB followed quite suddenly [Par79a,
Par80b, Par80a]. Indeed, in the 2 - step Replica Symmetry Breaking (2RSB) ansatz
the diagonal blocks of linear size m1 are again divided into sub-blocks of linear
size m2, while off-diagonal blocks are left unchanged, so providing the following
block representation of the overlap matrix:

q =




0 q2 q1

q0
q2 0

q1
0 q2

q2 0

q0

0 q2 q1
q2 0

q1
0 q2

q2 0




with the corresponding overlap distribution in the n→ 0 limit:

P(q) = (1−m2)δ(q− q2) + (m2 −m1)δ(q− q1) + m1δ(q− q0) (2.43)

The k - step Replica Symmetry Breaking (kRSB) ansatz acts along the same way,
so producing an overlap matrix with a hierarchy of sub-blocks along the diagonal,
characterized by k + 1 different values of the replica overlap, while the overlap
distribution reads in the n→ 0 limit:

P(q) = (1−mk)δ(q− qk) + (mk −mk−1)δ(q− qk−1)

+ · · ·+ (m2 −m1)δ(q− q1) + m1δ(q− q0)
(2.44)

with 0 < m1 < m2 < · · · < mk−1 < mk < 1 so to have a properly defined
probability distribution.

Two key observations mainly suggest that the correct solution should be the
one obtained in the k → ∞ limit. First, the negative value acquired by both the
entropy density at zero temperature and the replicon λ1 get closer and closer to
zero when increasing the number k of RSB steps. Second, the increasing sequence
of overlap values {qi} can be arranged as a step-wise function

q(x) ≡ qi for mi < x < mi+1 (2.45)

that for large values of k gets closer to a smooth function [Par80b]. So Parisi
eventually sent k to infinity, moving to the full - step Replica Symmetry Breaking
(fRSB) ansatz [Par80a]. In this frame, the order parameter q(x) of spin glasses is
finally recognized to be a continuous function on the [0, 1] interval:

q(x) =





qm x < xm

qm < q(x) < qM xm < x < xM

qM x > xM

(2.46)

with qm and xm that are different from zero only in presence of an external field,
and that go to zero with H as H2/3. The explicit expression of q(x) can be obtained
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as usual from the stationarity condition δS [q]/δq(x) = 0, which now translates
into the Parisi nonlinear antiparabolic differential equation [Par80a] for f(q, y):

∂f
∂q

= − J2

2

[
∂2f
∂y2 + x(q)

(
∂f
∂y

)2
]

(2.47)

to be solved in the interval [qm, qM] with the boundary condition f(qM, y) =
ln (2 cosh βy), where x(q) is given by

x(q) =
∫ q

0
dq′P(q′) (2.48)

and where y is the local effective field

y = β
[

H + J0m + J
(
z0
√

q0 + z1
√

q1 − q0 + z2
√

q2 − q1 + . . .
)]

(2.49)

An equivalent description is given by the overlap distribution P(q). Indeed, in
the fRSB ansatz it has two Dirac delta functions respectively at q = qm and q = qM,
while on the inbetween values it is a smooth function P̃(q) with support in the
interval (qm, qM):

P(q) = xm δ(q− qm) + (1− xm − xM)P̃(q) + xM δ(q− qM) (2.50)

This translates into the following picture: with probability xm two replicas have
an overlap qm, with probability xM they have an overlap qM and finally with
probability 1− xm − xM they have an overlap intermediate between qm and qM.

2.2.4 The nature of the spin glass phase

A first confirmation of the correctness of the fRSB solution provided by Parisi is
given by the value of the entropy density at zero temperature. Indeed, if when
increasing the number k of RSB steps it gets closer and closer to zero, it turns out
to actually vanish in the k → ∞ limit, as expected for a discrete model at zero
temperature. Moreover, also the replicon λ1 ceases to be negative below Tc only in
such limit, so highlighting a peculiar feature of the fRSB solution of the SK model:
it is marginally stable [Dom83].

However, a formal proof of the correctness of the solution provided by Parisi
had to wait for a long time. Indeed, if on one hand the possibility of the interchange
of the two limits n→ 0 and the N → ∞ has been assured in 1979 [vHem79], some
other mathematical subtleties — e. g. the existence and the uniqueness of the
solution in the thermodynamic limit — had to wait two decades to be rigorously
proven [Gue02, Gue03, Tal03].

Once solved the SK model, the next step was to assign a physical interpretation
to replicas. This goal has been achieved slightly later by Parisi [Par83], who showed
that the probability distribution Prep(q) of the overlaps between replicas

Prep(q) ≡ lim
n→0

1
n(n− 1) ∑

a 6=b
δ(q− qab) , qab ≡

1
N ∑

i
σ
(a)
i σ

(b)
i (2.51)
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actually coincides with the probability distribution Pstates(q) of the overlaps be-
tween magnetizations in different states of the Gibbs measure

Pstates(q) ≡∑
α,β

PαPβ δ(q− qαβ) , qαβ ≡
1
N ∑

i
m(α)

i m(β)
i (2.52)

with Pα being the statistical weight of the pure state α coming from the decomposi-
tion of the Gibbs measure. So the replicas actually acquire a physical meaning: if
different replicas of the systems behave in the same way, i. e. they all have the same
mutual overlap q = qEA, then there is a unique pure state and hence no replica
symmetry breaking does occur. Instead, if the replicas differ from each other, q
is described by a broad probability distribution, replica symmetry breaking has
occurred and hence Gibbs measure has broken into several pure states. Keeping
this in mind, the fRSB probability distribution (2.50) can be also thought to refer to
the overlap qαβ between couples of states α and β, rather than between couples of
replicas a and b.

At this point, it is clear that the hierarchical structure of replica overlaps has
to reflect on the topological structure of the states. Indeed, states are found to
be arranged according to their mutual overlap in a ultrametric structure [Méz84,
Méz85b, Ram86]. So given any three states α, β and γ, it turns out to hold for their
mutual distances in the overlap space that

dαβ 6 max
{

dαγ, dβγ

}
(2.53)

instead of the usual (weaker) triangular inequality dαβ 6 dαγ + dβγ. In terms of
overlaps, the ultrametric property can also be written as

qαβ > min
{

qαγ, qβγ

}
(2.54)

More pictorially, the three states can be thought as located at the vertices of a
triangle that is either equilateral or isosceles, with the sides measured in terms of
mutual overlap.

Other striking features of the spin glass phase can be interpreted in terms of
the breaking of the Gibbs measure in a large number of metastable states. Indeed,
the space of spin configurations can be imagined as a rugged landscape with a
huge number of valleys — i. e. the minima — separated by high mountains — i. e.
the free energy barriers separating different stable configurations. The number
of such minima turns out to be exponentially large in the size N [Bra80, Dom80,
You81]. Moreover, also the height of the free energy barriers diverge with some
power of N, so that the time spent by the system in a certain valley is exponentially
large in N as well, resulting in an extremely slow dynamics [Mac82, Mac83]. In
the thermodynamic limit the ergodicity eventually breaks and the system remains
trapped in a given metastable state.

A first consequence of this is the lack of self averaging [You84], already men-
tioned at the beginning of this Section. In this picture, non self-averaging observ-
ables are just the ones that contain intervalley correlations, which change according
to the different realizations of the disorder. So when ergodicity breaks, the system
is no longer able to visit all the configurations and a strong dependence on the



40 2. Spin glasses: the replica approach

sample occurs. On the other hand, self-averaging quantities — e. g. the free energy
and the global magnetization — are just computed by means of single valley
contributions, hence they turn out to be self averaging.

2.3 Vector spin glasses

The choice of Ising spins for the SK model mainly rests on the simplification
induced by dealing with scalar spins instead of vector spins, namely with discrete
instead of continuous degrees of freedom. However, several physical situations do
not show any such particular anisotropy that justifies the projection of magnetic
moments on the z axis.

Moreover, from experiments performed on spin glass materials with different
degrees of anysotropy [Ber04], it is known that some peculiar features of the
spin glass phase — e. g. memory effects, aging, rejuvenation, and so on — are
continuously reduced when decreasing the spin anysotropy. On the other hand, no
clear evidence about the aforementioned signatures of the complex and hierarchical
organization of the spin glass long-range order has been found in numerical
simulations on Ising spins [Pic01, Mai05]. So it is crucial to take into account the
vectorial nature of spins in the previous theoretical description.

The natural generalization is hence to allow spins σi’s to rotate in a m-
dimensional space, with their norm σi = ∑m

µ=1 σ2
i,µ fixed to m. In this way, we will

be able to compare more easily the resulting phase diagrams with the Ising ones,
since the corresponding critical temperatures will be m-independent.

2.3.1 The isotropic case

Let us start the analysis from the isotropic case, namely J0 = H = 0. The SK
Hamiltonian (2.17) preserves its formal structure when moving to the vector case

HJ [{σi}] = −
1
2 ∑

i 6=j
Jij σi · σj (2.55)

so that the model can be again solved via the replica method. Obviously, the
overlap qab between two replicas now becomes an m×m tensor

qab,µν ≡
1
N ∑

i
σ
(a)
i,µ σ

(b)
i,ν (2.56)

with µ, ν = 1, . . . , m labeling spatial components. However, being in the isotropic
case, it reduces to a multiple of the identity

qab,µν = qabδµν (2.57)

due to the invariance of the model under rotations of the spins.
The RS ansatz qab = q(1− δab) — firstly exploited by Sherrington and Kirk-

patrick themselves for the XY model [Kir78] and later generalized by de Almeida
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et al. for the generic-m case [dAlm78a] — leads to a self-consistency equation for q
that is formally equivalent to the one (2.25b) of the Ising case3

q =
2 (2−m)/2

Γ(m/2)

∫ ∞

0
dz zm−1 e−z2/2

[
Im/2(βJz

√
mq)

I(m−2)/2(βJz
√

mq)

]2

(2.58)

where Γ(·) is the usual gamma function and Im(·) is the modified Bessel function
of the first kind of order m [Abr64]. Special cases are the m = 1 one

I1/2(x)
I−1/2(x)

= tanh x (2.59)

so that it is actually possible to recover (2.25b), and the m = 3 one

I3/2(x)
I1/2(x)

= coth x− 1
x

(2.60)

that gives back the well known Langevin function.
For any finite value of m, Equation (2.58) admits the paramagnetic solution

q = 0 in the high-temperature region and the spin glass solution q > 0 in the
low-temperature region, separated by a second-order phase transition at Tc = J.
However, exactly as it happens for Ising spins, the RS solution is unstable in the
low-temperature region [dAlm78a], since in the n→ 0 limit there are nine distinct
eigenvalues of the Hessian H and some of them are negative below Tc. So again
a RSB ansatz has to be used, following the same steps of the Parisi solution in the
Ising case. Consequently, peculiar features of the fRSB ansatz — e. g. lack of self
averaging, marginal stability, ultrametricity, and so on — will occur as well.

A peculiar case is instead represented by the m → ∞ limit, that is found to
be RS stable [dAlm78a], with

q =

{
0 T > Tc

1− T/Tc T < Tc
(2.61)

Indeed, it can be mapped into the spin glass spherical model — where scalar spins
satisfy the global constraint ∑i σ2

i = N —, which has been shown to be RS stable
as well [Kos76]. However, it still represents an interesting model, since some
analytical computations can be performed in the m→ ∞ limit on different graph
topologies [Asp04, Bey12, Jav16]. Moreover, an appealing question regards the way
the physics of the low-temperature phase changes when increasing the number of
spin components, so focusing on the case of large but finite values of m [Bai15b,
Ric16].

2.3.2 The anisotropic case

If the behaviour of isotropic vector spin glasses is quite similar to the Ising case,
important differences arise when considering some source of anisotropy in the

3Notice that in this Equation m represents the number of spin components and not the magneti-
zation.
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model. Indeed, due to the fact that there is more than one possible direction for
each spin, different phase transitions can in principle take place, involving different
spin degrees of freedom.

The simplest case of anisotropy is represented by the insertion of a uniform
field, say along the direction µ = 1:

HJ [{σi}] = −
1
2 ∑

i 6=j
Jij σi · σj − H ∑

i
σi,1 (2.62)

The presence of the uniform field breaks the invariance under rotation, leading to
two different kinds of overlaps, the longitudinal one and the transverse one:

qab,µν =





q‖ ≡
1
N ∑

i
σ
(a)
i,1 σ

(b)
i,1

q⊥ ≡
1
N ∑

i
σ
(a)
i,µ σ

(b)
i,µ , µ = 2, . . . , m

(2.63)

For any value of the field strength H and of the temperature T, direction µ = 1 is
marked by both a non vanishing magnetization and a non vanishing overlap:

m‖ 6= 0 , q‖ 6= 0 (2.64)

while the transverse direction with respect to the field does never show a global
magnetization different from zero, m⊥ = 0.

The transverse overlap, instead, may or may not vanish according to if a
freezing of the transverse degrees of freedom does occur or it does not. Indeed, as
firstly studied by Gabay and Toulouse [Gab81], it vanishes in the region of large H
and T, but it becomes different from zero on a well defined critical line in the H vs
T plane, whose expansion close to the zero-field axis — computed4 in Refs. [Cra82,
Gab82] — reads as (

H
J

)2

' 4(m + 2)2

m2 + 4m + 2

(
Tc − T

Tc

)
(2.65)

so yielding a 1/2 critical exponent, different from the 3/2 one of the dAT line. This
new critical line has been then named as the Gabay - Toulouse (GT) one and it is
represented by the full curve in Figure 2.3.

According to first computations of Gabay and Toulouse [Gab81], the GT line
does not imply any RSB, but just an ordering in the transverse degrees of free-
dom. Instead, the RS solution becomes unstable at lower critical temperatures,
corresponding to the dAT line

(
H
J

)2

' 4
m + 2

(
Tc − T

Tc

)3

(2.66)

with exactly the same features of the RS instability line (2.33) of the m = 1 case,
included the coefficient of the expansion.

In fact, a careful stability analysis of the RS solution [Cra82] subsequently
showed that RSB already occurs on the GT line and involves both longitudinal

4In Ref. [Gab81] this expansion reads differently, due to an algebraic error.
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Figure 2.3. Phase diagram H vs T of the m-component spin glass in a homogeneous
external field. Full curve refers to the GT line (2.65) and identifies the ordering of
transverse components, while dashed curve refers to the dAT line (2.66) and it is
related to the ordering of longitudinal degrees of freedom. Reprinted from [Bin86].

and transverse degrees of freedom at the same time. Hence, the fRSB solution
has been applied [Gab82] as a generalization of the Ising case, showing that the
longitudinal overlap q‖(x) depends only “weakly” on the Parisi parameter x in
the region slightly below the GT line. Instead, a “strong” RSB suddenly affects the
transverse overlap q⊥(x) as soon as the GT line is crossed.

Moreover, since the field does not couple to the transverse spin components
and since the small-x expansion of q⊥(x) just below the GT line recalls that of q(x)
in the (m− 1)-dimensional isotropic case, it can be claimed that the RSB occurring
on the GT line for a m-dimensional anisotropic vector spin glass is exactly of
the same kind of the one occurring for a (m − 1)-dimensional isotropic vector
spin glass [Moo82, Gab82]. So the presence of the field just rescales the critical
temperature at which the RS instability occurs. Furthermore, due to this (m− 1)
dependence, in the m→ 1 limit — where there are no transverse spin components
— the GT line eventually disappears, as expected to be.

Since the RSB does already occur on the GT line, then the dAT line as a sharp
transition given by RS instability can not exist any longer. However, for values
of the field H scaling as in (2.66), it has been observed a change of regime in the
shape of the longitudinal overlap q‖(x), that acquires a relevant dependence on
the Parisi parameter x [Gab82]. So the picture is that the dAT line disappears as a
proper transition line, but leaves some traces of itself as a crossover between a weak
and a strong RSB along the direction of the field. Further evidences of this change
of regime have been provided also by Elderfield and Sherrington in a series of
works [Eld82b, Eld82a, Eld84].

Proofs for the scenario depicted above — namely the freezing of transverse
degrees of freedom for H ∼ (δTc)1/2 and the change of behaviour of longitudinal
degrees of freedom for H ∼ (δTc)3/2, with δTc ≡ (Tc − T) — have been also
provided by several experiments [Mon82, Lau82, Fog83, Cam83, Cam84], so further
proving the effectiveness and the validity of the fRSB scheme developed by Parisi.

A further interesting case of anisotropy in vector spin glasses is — in analogy
with the scalar model m = 1 — when a ferromagnetic bias J0 is present in the
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Figure 2.4. Phase diagram T vs J0 of the m component spin glass with a ferromagnetic
bias in coupling distribution. Reprinted from [Bin86].

coupling distribution. The Hamiltonian reads the same as (2.55), but again a
transverse overlap and a longitudinal overlap have to be distinguished, referring
to the direction along which the O(2) symmetry is spontaneously broken.

The high-temperature region is correctly described by the RS saddle-point
equations, with a second-order phase transition toward a spin glass phase at Tc = J
for J0 < J and toward a ferromagnetic phase at Tc = J0 for J0 > J, just as in the
Ising case. Then, the RS instability line again coincides with the horizontal line
T = Tc for J0 < J and with a line lower than the T = J0 for J0 > J. Finally, Toulouse
argument [Tou80] also applies here, so providing a vertical critical line at J0 = J
separating the magnetized from the unmagnetized RSB regions.

The unique differences, even though not negligible, regard the mixed phase
and the line separating it from the RS ferromagnetic phase. Indeed, Gabay and
Toulouse [Gab81] found that the RS instability line for J0 & J does not go as a
square root as in the m = 1 case, but it goes as [Dub87, Fis91]

(
Tc − T

Tc

)
' 2

m2 + 4m + 2
4(m + 2)2

(
J0 − J

J

)2

(2.67)

with a coefficient5 that is just the same one of the GT line (2.65) in the H vs T
plane, apart from a factor 2. The reason for such change in the exponent must be
searched in the vector nature of the model. Indeed, along this line there is again a
freezing in the transverse degrees of freedom, with q⊥ becoming different from
zero and also depending on the Parisi parameter x. That is why also this line
is commonly referred to as GT. Moreover, at the same time also the overlap q‖
acquires a dependence on x, though weak as for the GT line in a homogeneous
field, so coupling together the longitudinal and the transverse components. This
results in an anomalous growth of the spontaneous magnetization very close to
the multicritical point, namely m ∝ (Tc − T) instead of m ∝ (Tc − T)1/2, in turn
causing the change of the exponent from 1/2 to 2 for the GT line [Dub87].

Then, when further lowering the temperature, also in this case there can be
detected a crossover between a weak and a strong RSB for the longitudinal degrees

5Again the coefficient of the expansion provided by Gabay and Toulouse [Gab81] is different
from the one reported here, due to an algebraic error.
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of freedom — initially claimed to be a sharp phase transition by Gabay and
Toulouse [Gab81] — in correspondence of a vestige of the dAT line

(
Tc − T

Tc

)2

' m + 2
3

(
J0 − J

J

)
(2.68)

whose exponent is the same of the dAT line of the m = 1 case (2.36) close to the
multicritical point.

We conclude noting that there seems to be a general fact that the dAT line of
the scalar m = 1 case — both for H 6= 0 and for J0 6= 0 — survives in the vector
case just as a crossover, though retaining the same exponent, while the sharp phase
transition from RS to RSB moves at higher temperatures, due to the freezing of the
transverse degrees of freedom.
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Chapter 3

The XY model in absence of a field

In this Chapter we finally introduce the simplest spin model with continuous
variables, namely the XY model. We analyze its behaviour according to different
degrees of the quenched disorder, provided via suitable probability distribu-
tions for the exchange couplings. For the moment, the presence of an external
field is not taken into account. The use of sparse random graphs allows us to
exploit the BP techniques introduced in Chapter 1, both analytically (in the high-
temperature regime and slightly below the critical point) and numerically (in the
deep low-temperature phase, as well as in the zero-temperature limit). Finally,
the temperature versus disorder phase diagrams are obtained, according to the
different probability distributions of the quenched disorder.

3.1 The model

As we saw in Chapter 2, the Hamiltonian of a vector spin model has formally the
same structure of the Ising case, namely

H[{σi}] = −∑
(i,j)

Jijσi · σj (3.1)

having restricted the interactions only to nearest-neighbour spins and having
excluded the presence of any external field. Since we are interesting in the XY
model, spins are represented by unit vectors with m = 2 components:

σi =
(
σi,x , σi,y

)
(3.2)

subjected to the normalization constraint

‖σi‖ = ∑
µ=x,y

σ2
i,µ = 1 (3.3)

Hence, each spin can be efficiently represented via a unique real-valued parameter,
e. g. the angle θ it forms counterclockwise with the x axis:

σi = eiθi , θi ∈ [0, 2π) (3.4)
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With this notation, Hamiltonian (3.1) becomes for the XY model:

H[{θi}] = −∑
(i,j)

Jij cos (θi − θj) (3.5)

For the moment we do not make any assumption on the coupling distribu-
tion PJ , neither on the degree distribution Pd of the underlying graph G; the
unique assumption regards its sparsity, so that we are allowed to exploit the BP
approach.

The importance of the XY model, as already remarked in the Introduction,
rests on the fact that it is the simplest spin model with continuous variables, so
that analytic computations are the least involved possible and numerical simu-
lations are the least demanding possible, though preserving all the features that
distinguish vector models from scalar ones, as lengthy discussed in Chapter 2.
Moreover, it is just the two-dimensional arrangement of the spins that allows
the XY model to correctly reproduce a plethora of physical phenomena, ranging
e. g. from granular superconductors [Joh85, Hus90] to superfluid Helium [Min87,
Bré89], from synchronization problems [Kur75, Ace05, Ska05, Ban16] to random
lasers [Ant15, Ant16a, Ant16b, Mar15].

3.2 The BP equations

In Chapter 1 we presented the BP approach as an efficient tool for solving models
on sparse topologies. The key object of this method — focusing on the pairwise
case — is the set of cavity messages {ηi→j(xi)}, that satisfies the self-consistency
BP equations (1.60).

In the case of the XY model, xi is nothing but θi, so that the cavity messages
become probability distributions defined over the [0, 2π) interval with periodic
boundary conditions. It is easy then to rewrite the BP equations (1.60) for the
XY model, as shown in Appendix A for both the factor graph formalism and the
pairwise case. For the Hamiltonian (3.5), where no external field is present and
interactions are just pairwise, they read:

ηi→j(θi) =
1
Zi→j

∏
k∈∂i\j

∫
dθk e βJik cos (θi−θk) ηk→i(θk) (3.6)

where normalization constant Zi→j is given by:

Zi→j =
∫

dθi ∏
k∈∂i\j

∫
dθk e βJik cos (θi−θk) ηk→i(θk) (3.7)

Notice that all the integrals over angular variables are meant to be over the [0, 2π)
interval, if not otherwise stated.

Once solved the set of BP equations (3.6) for the XY model, then it is possible
to compute the Bethe free energy f and all the other physical observables, as
explained in Chapter 1. However, let us first of all try to guess how the fixed-point
cavity messages {η∗i→j} should look like.
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3.2.1 Paramagnetic solution

Since we have no external field, then in the high-temperature regime it is reasonable
to have a symmetric paramagnetic phase in which all the directions on the xy
plane are exactly equivalent for each spin, as it happens for ordinary magnetic
models [Hua88, Par88]. In other words, the one-point marginals ηi(θi)’s should
acquire the following expression:

ηi(θi) =
1

2π
, ∀i (3.8)

The corresponding expression for the cavity messages is the uniform distribution
over θi’s as well:

ηi→j(θi) =
1

2π
, ∀i→ j (3.9)

Indeed, it can be easily checked that this set of cavity messages automatically
yields the paramagnetic solution (3.8) once plugged into (1.62a).

Also the expression for the Bethe free energy density in the paramagnetic phase
can be easily computed. Indeed, by recalling its general expression for pairwise
models, Eq. (1.65), and by plugging the paramagnetic solution (3.8) into it, we get
the following expressions for Zi and Zij:

Zi =
∫

dθi ∏
k∈∂i

∫
dθk e βJik cos (θi−θk)ηk→i(θk) = 2π ∏

k∈∂i
I0(βJik) (3.10a)

Zij =
∫

dθi dθj e βJij cos (θi−θj)ηi→j(θi)ηj→i(θj) = I0(βJij) (3.10b)

having recalled the definition of the modified Bessel functions of the first kind
[Abr64]:

In(x) ≡ 1
2π

∫ 2π

0
dθ e x cos θ cos (nθ) , n ∈ Z (3.11)

At this point, one should take into account both the topology of the underlying
graph G and the probability distribution of the random couplings Jij’s, and then
average over them1. We choose G to be a RRG of fixed connectivity C, namely
each site has exactly C nearest neighbours. Moreover, we let Jij’s be i. i. d. variables
drawn from the following bimodal probability distribution

PJ(Jij) = p δ(Jij − J) + (1− p) δ(Jij + J) (3.12)

with J > 0 and p ∈ [0.5, 1], so using also for the XY model one of the most
exploited coupling probability distributions for the Ising case. Being the parity of
Bessel function In(·) with respect to its argument the same of its order n, we can
finally obtain the disorder-averaged expression for the free energy density f of this
model for the paramagnetic solution:

f (β) = − 1
β

ln 2π − C
2β

ln I0(βJ) (3.13)

1As anticipated in Chapter 1, quenched disorder can be given not only by random couplings, but
also by the random topology of the underlying graph.
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given that the ratio α between edges and nodes on the C-RRG ensemble is exactly
equal to C/2.

Analogously, also the disorder-averaged internal energy density u can be evalu-
ated for the paramagnetic solution, recalling the generic pairwise expression (1.66)
of U. Since there is no external field, the unique contributions to the total in-
ternal energy are the {uij} ones coming from the pairwise interactions between
nearest-neighbour spins:

uij = −
Jij

Zij

∫
dθi dθj cos (θi − θj) e βJij cos (θi−θj)ηi→j(θi)ηj→i(θj) = −Jij

I1(βJij)

I0(βJij)
(3.14)

from which, averaging over the bimodal PJ and over the graph ensemble:

u(β) = − JC
2

I1(βJ)
I0(βJ)

(3.15)

Notice that in the high-temperature phase there is no dependence on the fraction p
of positive couplings in both f (β) and u(β), due to the fact that each site marginal
ηi(θi) is completely flat over the [0, 2π) interval. So there is no difference between
a purely ferromagnetic model and a disordered one in the paramagnetic region.

At this point, we notice that the paramagnetic solution (3.9) satisfies the self-
consistency BP equations (3.6) for any value of the inverse temperature β. However,
we remind that the usual picture for ordered magnetic systems with pairwise
interactions and no external field is that the paramagnetic solution becomes
unstable below a certain critical temperature Tc through a second-order phase transi-
tion [Par88]. Then, the low-temperature phase is characterized by a nonvanishing
order parameter — typically the global magnetization m — which grows con-
tinuously from zero below the critical point. Since we are now dealing with a
disordered ferromagnet instead of a pure one, its low-temperature solution should
in principle depend on the quantity of quenched disorder inserted in the system,
namely on the probability distribution PJ from which couplings Jij’s are drawn.

A hint about the low-temperature physics for the XY model on sparse random
graphs comes from the solution of vector spin glass models in the fully connected
case. Indeed, we saw in Section 2.3 that when there is a strong bias toward positive
couplings, then the nonvanishing local magnetizations mi’s are mostly coherent
and yield a “usual” ferromagnetic phase with a nonzero average magnetization m.
Instead, if positive and negative couplings are drawn with almost the same fre-
quency, then the nonvanishing local magnetizations mi’s incoherently sum to zero,
so producing a spin glass phase. In order to verify the validity of these claims
also in the sparse case, we need first of all to check the stability of the paramag-
netic solution, and then to inspect the resulting directions of instability. In this
sense, it should turn out to be useful to build a perturbative expansion around the
paramagnetic solution.

3.2.2 Expanding around the paramagnetic solution

The goal of a perturbative expansion around the paramagnetic solution (3.9) is
hence twofold: i) to estimate the critical temperature Tc where it becomes unstable,
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and ii) to detect the features of the low-temperature phase toward which the system
moves.

Since the cavity messages are 2π-periodic functions, then it is natural to expand
them around the paramagnetic solution in the Fourier basis of eigenfunctions:

ηi→j(θi) =
1

2π

[
1 +

∞

∑
l=1

a(i→j)
l cos (lθi) +

∞

∑
l=1

b(i→j)
l sin (lθi)

]
(3.16)

where the Fourier coefficients are given by:

a(i→j)
l = 2

∫
dθi ηi→j(θi) cos (lθi) (3.17a)

b(i→j)
l = 2

∫
dθi ηi→j(θi) sin (lθi) (3.17b)

The paramagnetic solution (3.9) obviously corresponds to all Fourier coefficients
being equal to zero, while a (locally) magnetized solution has at least some of
them which do not vanish. So the check of the stability of the paramagnetic
solution turns into the check of the stability of the null solution for all the Fourier
coefficients of the expansion (3.16).

In order to do this, let us plug the Fourier expansion (3.16) into the right hand
side of BP equations (3.6), obtaining:

ηi→j(θi) =
1
Zi→j

∏
k∈∂k\j

{
1

2π

∫
dθk e βJik cos (θi−θk)

×
[

1 +
∞

∑
l=1

a(k→i)
l cos (lθk) +

∞

∑
l=1

b(k→i)
l sin (lθk)

]} (3.18)

Integrals over θk’s can be evaluated by using again the modified Bessel functions
In(·)’s defined in (3.11), together with the related properties and identities [Abr64],
so getting:

ηi→j(θi) =
1
Zi→j

∏
k∈∂i\j

{
I0(βJik) +

∞

∑
l=1

Il(βJik)
[

a(k→i)
l cos (lθi) + b(k→i)

l sin (lθi)
]}

(3.19)
where also Zi→j has to be rewritten in terms of the modified Bessel functions:

Zi→j =
∫

dθi ∏
k∈∂i\j

{
I0(βJik) +

∞

∑
l=1

Il(βJik)
[

a(k→i)
l cos (lθi) + b(k→i)

l sin (lθi)
]}

(3.20)
At this point, we can plug this expansion back into relations (3.17) for the al’s

and the bl’s coefficients, obtaining a set of self-consistency equations for them:

a(i→j)
l =

2
Zi→j

∫
dθ cos (lθ) ∏

k∈∂i\j

{
I0(βJik)

+
∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]} (3.21a)
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b(i→j)
l =

2
Zi→j

∫
dθ sin (lθ) ∏

k∈∂i\j

{
I0(βJik)

+
∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]} (3.21b)

with Zi→j still given by (3.20). In this way we got another set of BP equations,
now in terms of the “cavity” Fourier coefficients rather than in terms of the cavity
messages.

Now it is possible to easily study the stability of the paramagnetic solution.
Indeed, let us focus on the equation for a(i→j)

l and let us truncate the Fourier
expansion in the right hand side at the linear term in each coefficient. For the
numerator we get:

2
∫

dθ cos (lθ) ∏
k∈∂i\j

{
I0(βJik) +

∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]}

= 2 ∏
k∈∂i\j

I0(βJik)
∫

dθ cos (lθ)

× ∏
k∈∂i\j

{
1 +

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]}

' 2 ∏
k∈∂i\j

I0(βJik)
∫

dθ cos (lθ)

×
{

1 + ∑
k∈∂i\j

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]}

= 2π ∏
k∈∂i\j

I0(βJik) ∑
k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l

(3.22)

while denominator can be evaluated in the same manner:
∫

dθ ∏
k∈∂i\j

{
I0(βJik) +

∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]}

= ∏
k∈∂i\j

I0(βJik)
∫

dθ ∏
k∈∂i\j

{
1 +

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]}

' ∏
k∈∂i\j

I0(βJik)
∫

dθ

{
1 + ∑

k∈∂i\j

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]}

= 2π ∏
k∈∂i\j

I0(βJik)

(3.23)

By following the same steps for the equation for b(i→j)
l , the linear expansion in

Fourier coefficients finally provides a set of recursive relations:

a(i→j)
l = ∑

k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l (3.24a)
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b(i→j)
l = ∑

k∈∂i\j

Il(βJik)

I0(βJik)
b(k→i)

l (3.24b)

It is just this set of linear equations that directly provides the stability condition
for the paramagnetic solution. Indeed, we already know that physical observables
have to be averaged over the coupling distribution and the graph ensemble. In
particular, if we focus on the first two moments of the distribution of al’s Fourier
coefficients (the same will hold for bl’s):

al ≡ EG,J

[
a(i→j)

l

]
, a2

l ≡ EG,J

[(
a(i→j)

l

)2
]

(3.25)

then from (3.24a) we get:

al = ∑
k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l ≡ A1(l) al (3.26a)

a2
l =


 ∑

k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l




2

≡ A2(l) a2
l (3.26b)

The paramagnetic solution, namely a(i→j)
l = 0 for each directed edge i→ j and for

each order l, is stable as long as it holds

A1,2(l) < 1 , ∀l (3.27)

where A1(l) and A2(l) obviously depend on the particular coupling distribution PJ
chosen, as well as on the ensemble of random graphs considered. Still referring to
the bimodal coupling distribution (3.12) and to the C-RRG ensemble, for the first
moment we get:

al = EG,J


 ∑

k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l




= (C− 1)EJ

[
Il(βJik)

I0(βJik)

]
al

(3.28)

Now, being the Bessel functions In(x) even or odd depending on their index n,
then the result of the average over the bimodal distribution has to depend on the
parity of l as well. So in the end the A1(l) factor reads:

A1(l) =





(C− 1)(2p− 1)
Il(βJ)
I0(βJ)

for l odd

(C− 1)
Il(βJ)
I0(βJ)

for l even
(3.29)

In order to have a stable paramagnetic phase, then A1(l) has to be smaller than one
for any order l. But first of all, let us analyze the behaviour of the modified Bessel
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functions. They are monotonically increasing with respect to their argument and
monotonically decreasing with respect to their order, so that once fixed C and p,
also the {A1(2l)} and the {A1(2l + 1)} successions are separately decreasing
with respect to their index l. So, depending on the value of p, when lowering the
temperature, the first coefficient that becomes equal to one is either A1(1) or A1(2).

At this point, we have to focus also on A2(l):

a2
l = EG,J

[(
∑

k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l

)2
]

= EG,J

[
∑

k1,k2∈∂i\j

Il(βJik1)Il(βJik2)

I0(βJik1)I0(βJik2)
a(k1→i)

l a(k2→i)
l

]

= EG,J

[
∑

k∈∂i\j

I2
l (βJik)

I2
0 (βJik)

(
a(k→i)

l

)2
+ ∑

k1,k2∈∂i\j
k1 6=k2

Il(βJik1)Il(βJik2)

I0(βJik1)I0(βJik2)
a(k1→i)

l a(k2→i)
l

]

= (C− 1)
I2
l (βJ)

I2
0 (βJ)

a2
l +





(C− 1)(C− 2)
[
(2p− 1)

Il(βJ)
I0(βJ)

al

]2

for l odd

(C− 1)(C− 2)
[

Il(βJ)
I0(βJ)

al

]2

for l even

(3.30)

Hence, A2(l) coefficient is given by:

A2(l) = (C− 1)
I2
l (βJ)

I2
0 (βJ)

(3.31)

and again the related succession {A2(l)} is monotonically decreasing with respect
to the index l. So in the end the stability condition for a vanishing second moment
of the distribution of Fourier coefficients al’s is given by A2(1).

Finally, we have to compare the three stability conditions given by the three
coefficients A1(1), A1(2) and A2(1):





A1(1) < 1 ⇒ (C− 1)(2p− 1)
I1(βJ)
I0(βJ)

< 1

A1(2) < 1 ⇒ (C− 1)
I2(βJ)
I0(βJ)

< 1

A2(1) < 1 ⇒ (C− 1)
I2
1 (βJ)

I2
0 (βJ)

< 1

(3.32)

It turns out from the properties of the modified Bessel functions that I2(βJ)/I0(βJ)
is strictly smaller than I2

1 (βJ)/I2
0 (βJ) for any positive value of their argument.

So eventually the stability of the paramagnetic solution is given by the first two
moments of the distribution of first-order Fourier coefficients a1’s: a nonzero mean
value a1 implies a ferromagnetic long-range ordering, with a global nonvanishing
magnetization m, while a zero mean value a1 together with a nonzero second



3.2 The BP equations 57

moment a2
1 signals a spin glass phase, with a set of incoherent local magnetiza-

tions mi’s giving a vanishing global magnetization m. In turn, the appearance of
either the ferromagnetic phase or the spin glass phase depends on the fraction p
of positive couplings, just as we saw in Chapter 2 for the fully connected case.
Indeed, the phase toward which the transition away from the paramagnetic phase
takes place when lowering the temperature is given by the lowest among the two
following critical inverse temperatures:

βc(p) ≡ min
{

βF(p), βSG
}

(3.33)

which are implicitly defined by the two marginality conditions given by A1(1) and
A2(1):

(C− 1)(2p− 1)
I1(βF J)
I0(βF J)

= 1 , (C− 1)
I2
1 (βSG J)

I2
0 (βSG J)

= 1 (3.34)

Notice that also in the sparse case βSG does not actually depend on p, while βF
does. In particular, by comparing the two left hand sides of the above equations,
we get the exact location of the multicritical point (pmc, Tmc) separating the two
regimes:

pmc =
1 + (C− 1)−1/2

2
, Tmc = 1/βSG (3.35)

Finally, these results can be straightforwardly generalized to the case of the ERG
ensemble with average degree C. Indeed, when averaging over the Poissonian
degree distribution (1.80), the two stability conditions for the paramagnetic solution
become:

C(2p− 1)
I1(βF J)
I0(βF J)

= 1 , C
I2
1 (βSG J)

I2
0 (βSG J)

= 1 (3.36)

which are exactly the same ones found in Refs. [Ska05, Coo05], where the m-
dimensional vector spin glass model is analyzed for a generic disorder distribution
through a functional expansion around the paramagnetic solution. Notice that
the replacement of C− 1 by C when passing from the RRG ensemble to the ERG
ensemble is recurrent in cavity calculations, due to the corresponding average
branching ratios 1/(C− 1) and 1/C, respectively.

3.2.3 Scaling of the Fourier coefficients below Tc

In the study of the stability of the paramagnetic solution, we discovered that at
T = Tc all the first-order Fourier coefficients a1’s become different from zero, since
the vanishing solution a1 = a2

1 = 0 becomes unstable. Furthermore, the same
would seem to happen for higher-order Fourier coefficients, but in correspondence
of lower critical temperatures, so that in the end they do not correspond to further
physical phase transitions.

Actually, this is true only if we truncate the right hand sides of BP self-
consistency equations (3.21) for the cavity coefficients just at the linear term
in each coefficient. Instead, if we go further retaining also nonlinear terms — as
lengthy shown in Appendix B —, it is clear that all higher-order coefficients become
different from zero as soon as first-order coefficients do, namely in correspondence
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of the critical temperature T = Tc(p) given by Eqs. (3.33) and (3.34). Indeed, from
the third-order expansion it turns out that nonlinear terms have the following
shape:

a(i→j)
l ∝ ∏

k∈∂i\j
a(k→i)

pk (3.37)

with {pk} positive integer indexes algebraically summing to l. In particular, if we
choose pk = 1 ∀k, then we easily realize that slightly below the critical point the
larger Fourier order l, the smaller coefficients al’s and bl’s:

a(i→j)
l ∝

(
a(i→j)

1

)l
(3.38)

This remark eventually allows us to find the scaling of the coefficients with the
distance from the critical point. Indeed, noticing that the largest nonlinear term
in the expansion of self-consistency equations for a1’s is cubic, then a square-root
behaviour has to arise. For p > pmc, namely for the transition from paramagnetic
to ferromagnetic phase, second moments are negligible with respect to first ones,
so we get:

a1 ' EG,J

[
∑

k∈∂i\j

I1(βJik)

I0(βJik)
a1 + Γ1a3

1 + Γ2a1a2

]

' (C− 1)(2p− 1)
I1(βJ)
I0(βJ)

a1 + Γ3a1
3

'
[
(C− 1)(2p− 1)

I1(βc J)
I0(βc J)

+ Γ4(β− βc)

]
a1 + Γ3a1

3

=
[
1 + Γ4(β− βc)

]
a1 + Γ3a1

3

(3.39)

from which:

a1 '
√
−Γ4

Γ3
(β− βc)

1/2 ∝ (Tc − T)1/2 (3.40)

Then, by exploiting (3.38), also the growth of the first moment of higher-order
Fourier coefficients can be predicted:

al ∝ (Tc − T)l/2 (3.41)

Following exactly the same steps for p < pmc — i. e. for the transition from
paramagnetic to spin glass phase, where only second moments have to be taken
into account — we get for the first-order coefficients:

a2
1 ∝ Tc − T (3.42)

and analogously for the higher-order ones:

a2
l ∝ (Tc − T)l (3.43)

At this point, by recalling their definition (3.17), it is also clear that a1 is directly
related to the global magnetization along the x axis, while b1 is linked to the
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global magnetization along the y axis, so allowing us to recover the well known
mean-field value of the critical exponent β

m ∝ (Tc − T)β , β =
1
2

(3.44)

in the ferromagnetic phase. Analogously, also the mean-field linear behaviour of
the average overlap q slightly below Tc can be recovered

q ≡ 1
N ∑

i
|mi|2 , q ∝ (Tc − T) (3.45)

for both the ferromagnetic and the spin glass phases.

3.3 The RS cavity method

So far, we have analytically obtained the critical lines in the T vs p phase diagram of
the XY model through an expansion around the paramagnetic solution. Our guess
was that, in absence of any field and slightly below the critical temperature Tc, the
Fourier decomposition (3.16) of cavity marginals would have allowed us to keep
only very few coefficients, and it is what we actually found, since scaling (3.38)
holds, together with (3.40) and (3.42). However, deeply in the low-temperature
phase, all Fourier coefficients become of order one and hence it is unfeasible to use
them to describe cavity distributions ηi→j’s. Hence, we have to move to a different
approach, which bases on the numerical solution of the BP equations (3.6): the cavity
method.

But first of all, we have to clarify a key point: how to numerically deal with
cavity messages ηi→j’s? Indeed, being continuous functions defined over the [0, 2π)
interval and hence belonging to an infinite-dimensional space, any projection onto
a finite-dimensional space would necessarily imply a loss of information. One of
the possible ways out is given by the naïvest — though effective — approach one
can figure out: discretize the [0, 2π) interval into a number Q of equal bins, each
one of which having size 2π/Q. This proxy of the XY model is well known in the
literature as the Q-state clock model [Nob86, Nob89, Ilk13, Ilk14]. Of course, in the
Q→ ∞ limit the XY model can be exactly recovered.

Such kind of discretization could seem very rough, because it would get rid of
the continuous nature of the model for any finite value of Q. However, it actually
works very well in most cases. Throughout this chapter we will use Q = 64 in
our numerical simulations, allowing both a reliable and efficient approximation of
the XY model. Then, in Chapter 4 we will discuss the physics of the Q-state clock
model when changing Q and in particular its convergence toward the XY model,
fully justifying the apparently small value of Q used in this Chapter.

3.3.1 Population Dynamics Algorithm

Let us now focus on the cavity method. We would like to numerically solve
the BP equations (3.6), e. g. by discretizing each cavity marginal ηi→j(θi) into a Q-
component array via the aforementioned clock model proxy. Then, starting from a
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certain initial condition, cavity marginals can be computed iteratively according to
the BP equations (3.6) until reaching the fixed point {η∗i→j}. Of course, it has to
depend on the particular realization of the underlying graph G and of the set of
exchange couplings {Jij}, and the same holds for any physical observable, e. g. f ,
u, and so on. If on one hand the sample-to-sample fluctuations in self-averaging
observables would be reduced by increasing as much as possible the size of the
graph, on the other hand performing the average over PG and PJ is still necessary
in order to obtain a meaningful disorder-averaged description of the model. This
implies the need of averaging over a large enough number of different instances of
the system.

However, as long as our task is to characterize the low-temperature region,
recognizing the different thermodynamic phases that take place and evaluating the
relevant physical observables, we can turn to a simpler and more effective approach:
the sampled density evolution technique or, as it is better known in statistical physics,
the Population Dynamics Algorithm (PDA). Firstly introduced in Ref. [Abo73]
and then perfectioned and revised in Refs. [Méz01, Méz03a], it bases on a very
effective idea: on each sample, the set of fixed-point cavity marginals {η∗i→j} can be
regarded as “random variables” whose realization in turn depends on that of the
quenched disorder; hence, provided the probability distributions from which the
disorder is drawn, it should be possible to compute the corresponding probability
distribution P∗η of the BP fixed-point cavity marginals over the space of positive
semi-definite functions.

At this point, the question of how to actually compute such probability distri-
bution P∗η can be easily addressed. Indeed, it can be seen as the fixed point of an
iterative process for an empirical distribution Pη , exactly in the same spirit of BP.
If we introduce the following shorthand notation for the BP equations (3.6)

ηi→j(θi) ≡ F
[
{ηk→i(θk)}, {Jik}

]
(3.46)

then the probability of a certain realization of the cavity message can be iteratively
computed as

Pη [ηi→j] = EG,J

∫ di−1

∏
k=1

(
Dηk→i Pη [ηk→i]

)
δ
[
ηi→j −F

[
{ηk→i}, {Jik}

]]
(3.47)

with the functional delta enforcing the validity of BP equations and with Dη being
the measure over the space of positive semi-definite functions. In this way, the
resulting fixed-point probability distribution is just the seeked P∗η [Méz09]. In
other words, within this method the BP equations (3.6) are meant to be solved via
a stochastic approach, automatically accomplishing the average over the quenched
disorder.

Of course, when numerically implementing this method, a further discretiza-
tion has to be taken into account. Indeed, the probability distribution Pη is
approximated through a population of N cavity messages ηi’s2. So after a (random)
initialization of the population at the time step t = 0, we can calculate it at the

2Notice that here the single index i refers to the i-th cavity marginal in the population and not
the one-point marginal for the i-th spin.
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Code 3.1 RS Population Dynamics Algorithm (T > 0)

1: for i = 1, . . . ,N do
2: Initialize η

(0)
i . We use a random initialization

3: end for
4: for t = 1, . . . , tmax do
5: for i = 1, . . . ,N do
6: Draw an integer di from the degree distribution Pd
7: Draw di − 1 integers {k} uniformly in the range [1,N ]
8: Draw di − 1 couplings {Jk} from the coupling distribution PJ

9: η
(t)
i ← F [{η

(t−1)
k }, {Jk}]

10: end for
11: end for
12: return {η(tmax)

i }

time step t + 1 by drawing the node degree di from Pd — being always equal
to C for the RRG ensemble, while changing for the ERG ensemble — and then
by picking at random di − 1 couplings from PJ and di − 1 cavity messages from
the population at the time step t. In the pseudocode 3.1 we list the key steps to
implement PDA by numerically solving Eq. (3.47).

Notice that the updates stop after tmax iterations, where tmax has to be large
enough to ensure the convergence toward P∗η . What it is typically done is hence
to compute at each time step some extensive physical observable — e. g. the free
energy density f — and then to look at its time series. When it reaches a stationary
regime, with fluctuations of order O(1/

√
N ) that can be hence interpreted as

proper statistical fluctuations, then it can be safely claimed that the convergence has
been reached. Also notice thatN should be chosen large enough to reduce as much
as possible the finite-size effects and hence to let P∗η reproduce the actual probability
distribution of the BP fixed-point cavity marginals in the thermodynamic limit
N → ∞.

The computation of f via the PDA follows the same idea of the “translation”
of BP equations (3.6) on a given instance into their distributional version (3.47).
Indeed, the disorder-averaged value of f can be obtained via a suitable average of
the node contribution fi and of the edge contribution fij over P∗η :

f = EG,J,η
[

fi
]
− αEG,J,η

[
fij
]

(3.48)

where α is the average number of edges per node — exactly equal to C/2 for the
C-RRG ensemble — and where fi and fij are given by

fi ≡ −
1
β

lnZi , fij ≡ −
1
β

lnZij (3.49)

The key steps of the corresponding numerical implementation are listed in the
pseudocode 3.2.

The computation of the other physical observables in the PDA can be performed
exactly in the same way as for f , generalizing their expression on a given instance of
the system into an averaged version over P∗η and over all the sources of randomness.



62 3. The XY model in absence of a field

Code 3.2 RS free energy density in the PDA

1: Reach the fixed point P∗η as in pseudocode 3.1
2: . Node contribution fi:
3: for i = 1, . . . ,N do
4: Draw an integer di from the degree distribution Pd
5: Draw di − 1 integers {k} uniformly in the range [1,N ]
6: Draw di − 1 couplings {Jk} from the coupling distribution PJ
7: Compute fi as in Eq. (3.49)
8: end for
9: fi ← (∑i fi)/N

10: . Edge contribution fij:
11: for i = 1, . . . ,N do
12: Draw an integer j uniformly in the range [1,N ] \ i
13: Draw a coupling J from the coupling distribution PJ
14: Compute fij as in Eq. (3.49)
15: end for
16: fij ← (∑i fij)/N
17: return f ← fi − α fij

The PDA is a widely exploited method, due to its very simple numerical
implementation and to the advantage of automatically yielding a disorder-averaged
description of the model. Moreover, it turns out to be very effective since it is found
to provide a fixed-point probability distribution P∗η almost irrespective of the initial
conditions, namely of the initialization of the N cavity messages in the population
at the time step t = 0 (from which our random initialization). However, the PDA
suffers the same limits of validity of the BP approach on a given instance. Indeed,
in Eq. (3.47) it is clear that the incoming messages ηk→i’s are taken as independent
from each other, exactly in the same spirit of the Bethe - Peierls approximation on
a given instance of the problem. As anticipated in Section 1.8, the latter ceases
to converge to a fixed point {η∗i→j} when the Gibbs measure breaks into several
pure states, and this surely occurs in the low-temperature phases characterized by
the RSB.

A formal proof of the conditions under which the RS BP approach provides
correct results does not exists yet. However, the requirement of a unique pure
state in the Gibbs measure seems to be too strict, since it often turns out to work
properly even when the Gibbs measure is just extremal3 rather than unique [Krz07].
Indeed, in such case the unique relevant solution in the thermodynamic limit is
just the RS one.

Fortunately, being a stochastic approach, the PDA still provides a fixed point P∗η
even in the RSB region, though it has to be considered just as a RS proxy of the
exact RSB solution. In this way, we will be able to get much precious information
about the low-temperature physics of the model under investigation. Moreover,
we will see in Chapter 4 that it is also possible to take into account the breaking

3Roughly speaking, the extremality of the Gibbs measure means that the behaviour of a spin in
the bulk of the system depends only on a set of boundary conditions with null measure.
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of replica symmetry within the PDA, obtaining an algorithm that is equivalent
to the 1RSB ansatz of the fully connected case [Méz01, Méz03a]. Unfortunately,
the fRSB stage for the BP approach — or equivalently for the cavity method — has
not been developed yet [Par17], due to the extreme richness and heterogeneity
provided by the sparse topology with respect to the fully connected case.

3.3.2 Numerical analysis of the Fourier expansion

The first task we can accomplish by using PDA is to verify the scaling of first
and second moments of the Fourier coefficients slightly below the critical tem-
perature Tc, Eqs. (3.41) and (3.43). In order to do it, we randomly initialize a
population of N = 105 cavity messages and then we let them evolve according to
the PDA until reaching the fixed-point probability distribution P∗η ; then, we com-
pute the corresponding probability distributions of the Fourier coefficients of order
l = 1, 2, 3. Their first and second moments are reported in Figure 3.1, respectively
corresponding to the paramagnetic - ferromagnetic transition (p = 0.95, upper
panel) and to the paramagnetic - spin glass transition (p = 0.5, lower panel). For
small values of the reduced temperature τ ≡ (Tc − T)/Tc, the mean-field scaling

al ∝ τ l/2 , a2
l ∝ τ l

is nicely confirmed, while when getting deep into the low-temperature region
this scaling starts to be violated, due to the growth of nonlinear terms in the
self-consistency equation for each coefficient.

3.3.3 Exploring the low-temperature region

As anticipated at the beginning of Section 3.2.2, one of the chased goals of the
Fourier expansion around the paramagnetic solution was to get some insights
about the ordering of spins in the low-temperature region. In this sense, we
obtained strong evidences of the presence of either a ferromagnetic phase or a
spin glass phase depending on the ferromagnetic bias of the coupling probability
distribution PJ . So far, there seems to occur nothing new with respect to the fully
connected predictions of Section 2.3. Moreover, these results are in agreement
with other works about disordered vector models defined on sparse random
graphs [Ska05, Coo05].

Indeed, for a fraction p of ferromagnetic couplings larger than the value pmc
given in (3.35), a global magnetization is found to appear:

m =
1
N ∑

i
mi (3.50)

where each mi is directly related to first-order Fourier coefficients a1’s and b1’s,
while m is linked to their average value. Moreover, we also succeeded in recovering
the mean-field value β = 1/2 of the critical exponent of the norm m of the global
magnetization versus the reduced temperature below the critical point

m ∝ τ1/2 (3.51)
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Figure 3.1. Scaling of the first moments of the cavity Fourier coefficients a’s slightly below
the critical temperature Tc, measured via the PDA with a population of N = 105 cavity
marginals on the C = 3 RRG ensemble. In the upper panel, we use p = 0.95 so to focus
on the paramagnetic - ferromagnetic transition, plotting the first moment. In the lower
panel, we use p = 0.5 so to focus on the paramagnetic - spin glass transition, plotting the
second moment. The analytic predictions, Eqs. (3.41) and (3.43) respectively, are well
reproduced in a wide range of values for the reduced temperature τ ≡ (Tc − T)/Tc, as
shown by the straight line of slope m superimposed on each dataset. The corresponding
statistical errors are smaller than the symbol size.

which hence becomes different with a square-root-like behaviour and eventually
approaches the unity in the zero-temperature limit (with, however, a behaviour
that is no longer square-root-like).

On the other side, when p is smaller than pmc, the disorder exhibits in an
incoherent arrangement of spin directions, in turn resulting in a vanishing global
magnetization. However, most of local magnetizations mi’s continue to be largely
different from zero, so that in the spin glass phase the order parameter to look at
in the RS approximation is the square magnetization or overlap q:

q =
1
N ∑

i
|mi|2 (3.52)

The growth of q with the distance from the critical point has already been predicted,
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Table 3.1. Order parameters that allow us to identify paramagnetic, ferromagnetic, mixed
and spin glass phases in the RS ansatz.

Phase m q λBP

Paramagnetic = 0 = 0 < 0
Ferromagnetic > 0 > 0 < 0

Mixed > 0 > 0 > 0
Spin glass = 0 > 0 > 0

Eq. (3.45), since it is linked to the average value of the square of the first-order
Fourier coefficients a1’s and b1’s:

q ∝ τ (3.53)

Furthermore, from the triangular inequality of norms, it holds for any p that

m2 6 q

where the equality exactly holds only in the pure ferromagnetic case (p = 1).
Order parameters m and q are hence enough to identify and separate the

ferromagnetic phase from the “unbiased” (namely globally unmagnetized) spin
glass phase — and both them from the paramagnetic phase — at least in the RS
ansatz, as summarized in Table 3.1.

However, the presence of a nonvanishing global magnetization is not on its
own a guarantee of a RS ferromagnetic phase. Indeed, we already saw in Chapter 2
that in the fully connected case — for both scalar and vector spins — a mixed phase
lies inbetween the ferromagnetic and the unbiased spin glass phases such that a
global magnetization m is still present, though the assumption of replica symmetry
is no longer valid. Evidences of the presence of a mixed phase also in the diluted
case have been alredy provided for the Ising model [Via85, Kab03, Cas05, Mat10]
as well as for vector models [Ska05], so it could be the same also for our model.

At this point, a further order parameter should be defined in order to distin-
guish the RS ferromagnetic phase from the RSB mixed phase, detecting the dAT
line — in analogy with the replica computation — that separates them. So let
us introduce a stability parameter λBP such that it is negative when the RS BP
algorithm converges to a stable fixed point, while it is positive when an instability
appears. In this way, the list of order parameters in the RS ansatz, Table 3.1, can be
completed. We postpone the operative definition of λBP to the next Subsection.

The critical line between the paramagnetic phase and low-temperature region
has already been evaluated analytically in Section 3.2.2, so here we just compute the
q(T) curve for a fixed value of p in order to check our numerical algorithm. E. g.,
when dealing with the RRG ensemble with connectivity C = 3, the phase transition
between the high- and the low-temperature regions locates at T/J ' 0.4859 for
the unbiased spin glass (p = 0.5), which is well confirmed by the linear fit over
q(T) dataset in the upper panel of Figure 3.2. Notice the usual finite-size effects
that smooth the nondifferentiable point corresponding to the exact location of the
phase transition.
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The order parameter m, instead, can be used to detect the critical line between
globally magnetized phase (that will be recongnized by looking at the λBP stability
parameter) and the unbiased spin glass phase in the RS approximation, which
otherwise can not be analytically evaluated in the sparse case. As expected for
these models, this line starts from the multicritical point (pmc, Tmc) and goes
down almost vertically to the zero-temperature axis, recalling — still as a RS
approximation — the Toulouse argument from the fully connected case [Tou80].
In the central panel of Figure 3.2 we again analyze the C = 3 RRG case for the
temperature value T/J = 0.2, finding the expected linear behaviour for m2 when
getting closer to the phase transition. Analogously, the whole transition line
between the globally magnetized phase and the unbiased spin glass phase can be
numerically computed.

3.3.4 Susceptibility Propagation

In order to actually distinguish the long-range order of the RS ferromagnetic phase
from the one of the RSB mixed phase, we introduced the order parameter λBP. If
the RS stability in the fully connected case can be studied by looking at the eigen-
values of the Hessian matrix in the replica space (Chapter 2 and Refs. [dAlm78b,
dAlm78a, dAlm80]), in the sparse case it is quite easier. Indeed, the stability
parameter λBP can be defined in several ways, which of course turn out to be
equivalent, as shown in Ref. [Zde09]. For example, since the breaking of replica
symmetry corresponds to the breaking of the Gibbs measure in a large number
of pure states, the related failure of the clustering property can be measured as a
dependence of the BP fixed point on the initial condition for the cavity messages
on a given instance of the model [Pag03, New03].

Instead, since we are interested in the stochastic approach of the PDA, we
can define a different stability parameter. Let us focus on the distributional fixed
point P∗η found through PDA. In the RS region it is surely stable, while in the RSB
region it is unstable, even though it can still be reached, at variance with the BP
approach on a given instance. So an analysis of the linear stability of the fixed
point P∗η would seem to be enough.

For each cavity message ηi→j, let us consider its perturbation δηi→j, which is
a function over the [0, 2π) interval as well. On a given instance of the model, it
has to evolve according to the linearized version of the BP equations (3.6), which
we explicitly compute in Appendix A and which we rewrite here in a shorthand
notation:

δηi→j = ∑
k∈∂i\j

∣∣∣∣
δF [{ηk→i}, {Jik}]

δηk→i

∣∣∣∣
η∗k→i

δηk→i

≡ F ′[{η∗k→i}, {δηk→i}, {Jik}]
(3.54)

Then, if we move to the PDA, the population of N cavity messages {ηi→j} becomes
a population of N couples (ηi→j, δηi→j). So after having reached the fixed point P∗η ,
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Figure 3.2. Detection of the critical lines between paramagnetic and ferromagnetic phases
(upper panel, p = 0.5), mixed and spin glass phases (central panel, T/J = 0.2),
ferromagnetic and mixed phases (lower panel, T/J = 0.2) through PDA and SuscProp,
with a population of N = 106 on the C = 3 RRG ensemble. In the first two plots error
bars are too small with respect to the symbol size for almost each data point, while in
the third case the larger error bars are due to a wide heterogeneity of perturbations
δη’s, resulting in larger fluctuations of λBP measurement.
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at each time step we implement the distributional version of (3.54):

P[(η∗i→j, δηi→j)] = EG,J

∫ di−1

∏
k=1

(
Dηk→i P[(η∗k→i, δηk→i)]

)

× δ
[
δηi→j −F ′[{η∗k→i}, {δηk→i}, {Jik}]

] (3.55)

in analogy with (3.47), where now we have a joint probability distribution of
fixed-point cavity marginals and the corresponding perturbations.

We can evaluate the L2 norm of each perturbation at each time step, summing
over the Q values of the corresponding clock model proxy

‖δη
(t)
i ‖

2
2 =

Q−1

∑
a=0
|δη

(t)
i (θi,a)|2 (3.56)

and then we can average over the population, in order to get the global norm of
the perturbations at the t-th time step. However, as an effect of the sparsity of
the underlying graph, there appears a strong heterogeneity in the population. A
striking consequence of this is that perturbations span several orders of magnitude.
So it turns out to be more robust and reliable to average the logarithm of the norms
rather than the norms themselves, so defining the following global norm:

‖δη(t)‖ ≡ 1
N ∑

i
ln ‖δη

(t)
i ‖

2
2 (3.57)

The corresponding growth rate at each time step can be then computed as the
difference with respect the previous time step:

λ
(t)
BP ≡ ‖δη(t)‖ − ‖δη(t−1)‖ (3.58)

and its time series asymptotically approaches the corresponding Lyapunov expo-
nent:

λBP ≡ lim
t→∞

1
t
‖δη(t)‖ (3.59)

This approach is known as Susceptibility Propagation (SuscProp) [Méz09], and the
key steps of its numerical implementation are shown in pseudocode 3.3.

At this point, a negative Lyapunov exponent λBP actually implies stability,
while a positive one signals an instability. Finally, the dAT line can be detected
through the marginality condition

λBP = 0

Still referring to the C = 3 RRG topology, in the lower panel of Figure 3.2 we can
see how λBP is almost linear close to the critical point, while changing the slope
when trespassing it, and hence a linear interpolation easily gives the estimation of
the critical point itself.

Being rigorous, the marginality condition λBP = 0 does not univocally implies
RS instability and so the occurrence of the dAT line; indeed, according to its
definition, λBP vanishes every time the fixed point P∗η becomes unstable along
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Code 3.3 Susceptibility Propagation in the PDA (T > 0)

1: Reach the fixed point P∗η as in pseudocode 3.1
2: for i = 1, . . . ,N do
3: Initialize δη

(0)
i . We use a random initialization

4: end for
5: for t = 1, . . . , tmax do
6: for i = 1, . . . ,N do
7: Draw an integer di from the degree distribution Pd
8: Draw di − 1 integers {k} uniformly in the range [1,N ]
9: Draw di − 1 couplings {Jk} from the coupling distribution PJ

10: η∗i ← F [{η∗k }, {Jk}] . Just a “refresh” of the population

11: δη
(t)
i ← F ′[{η∗k }, {δη

(t−1)
k }, {Jk}]

12: end for
13: Compute ‖δη(t)‖ as in (3.57)
14: λ

(t)
BP ← ‖δη(t)‖ − ‖δη(t−1)‖

15: end for
16: Average λ

(t)
BP over the tmax iterations . Pay attention to thermalization

17: return λBP

some direction, namely when the system undergoes a generic (second-order) phase
transition. However, if the “new” fixed point is RS stable as well, then λBP would
again reach a negative value, provided the convergence to the new fixed point
has been actually attained. Instead, in presence of a RSB solution, the BP fixed
point would always be unstable, namely λBP > 0, since the RSB solutions are not
reachable within the RS ansatz.

In this way, the whole dAT line can be finally detected. It corresponds to the
critical line between the paramagnetic and the spin glass phases as long as p < pmc,
while for p > pmc it is lower than the transition line between the paramagnetic and
the ferromagnetic phases — just as in the fully connected case — so allowing us to
properly identify the boundaries of the mixed phase.

3.4 The limit of zero temperature

The previous numerical techniques hold as long as the system stays at a finite
temperature, so that in principle each configuration of the system has a finite —
even if sometimes very small — probability to be realized. But when T goes to
zero, probability distributions acquire a singular behaviour, as well as compatibility
functions and evidences (see Chapter 1).

However, it is still possible to exploit the message-passing technique provided
by the BP approach, though in a different form. Indeed, by rewriting the cavity
probability distributions as large-deviation functions

ηi→j(θi) ≡ e βhi→j(θi) (3.60)

and then evaluating the integrals over the angular variables via the saddle-point
method with β → ∞, the zero-temperature BP equations can be obtained, as
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thoroughly explained in Appendix A:

hi→j(θi) ∼= ∑
k∈∂i\j

max
θk

[
hk→i(θk) + Jik cos (θi − θk)

]

≡ F0[{hk→i}, {Jik}]
(3.61)

where ∼= takes into account the additive constant for the normalization, so that the
cavity fields hi→j’s become negative semidefinite functions:

max
θi

hi→j(θi) = 0 (3.62)

The interesting physical observables as the free energy density f (that in the
T → 0 limit matches with the internal energy density u), the average magnetiza-
tion m, and so on, can be computed in the same spirit, namely by evaluating the
integrals over the angular variables via the saddle-point method in the β → ∞
limit. For example, node and edge contributions fi and fij to the free energy,
defined in Eq. (3.49), become:

fi = −max
θi

[
∑

k∈∂i
max

θk

[
hk→i(θk) + Jik cos (θi − θk)

]
]

(3.63a)

fij = −max
θi ,θj

[
hi→j(θi) + hj→i(θj) + Jij cos (θi − θj)

]
(3.63b)

Of course, also in the zero-temperature limit it is possible to solve the BP
equations via the PDA, focusing on the probability distribution Ph[hi→j] of the
cavity fields and then searching for its fixed point by implementing the following
distributional equation

Ph[hi→j] = EG,J

∫ di−1

∏
k=1

(
Dhk→i Ph[hk→i]

)
δ
[

hi→j −F0
[
{hk→i}, {Jik}

]]
(3.64)

as listed in the pseudocode 3.4.
The stability of the fixed point P∗h reached in this way can be then checked

in an analogous manner as we did in the finite-temperature case. Indeed, we
can either perturb each finite-temperature cavity message and then rewrite the
resulting perturbation as a large-deviation function, or directly perturb each zero-
temperature cavity field. Both computations are equivalent (see Appendix A) and
lead to the following zero-temperature linearized BP equations:

δhi→j(θi) ∼= ∑
k∈∂i\j

δhk→i(θ
∗
k (θi))

≡ F ′0
[
{h∗k→i}, {δhk→i}, {Jik}

] (3.65)

with θ∗k (θi) given by:

θ∗k (θi) = argmax
θk

[
hk→i(θk) + Jik cos (θi − θk)

]
(3.66)
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Code 3.4 RS Population Dynamics Algorithm (T = 0)

1: for i = 1, . . . ,N do
2: Initialize h(0)i . We use a random initialization
3: end for
4: for t = 1, . . . , tmax do
5: for i = 1, . . . ,N do
6: Draw an integer di from the degree distribution Pd
7: Draw di − 1 integers {k} uniformly in the range [1,N ]
8: Draw di − 1 couplings {Jk} from the coupling distribution PJ

9: h(t)i ← F0[{h(t−1)
k }, {Jk}]

10: end for
11: end for
12: return {h(tmax)

i }

So for each directed edge, the outgoing perturbation is equal to the sum of the
incoming perturbations respectively evaluated in the direction that maximizes the
incoming message. As a consequence of this, the zero-temperature perturbations
can be very singular. Moreover, notice that these perturbations are again defined
up to an additive constant, which actually possesses a meaningful physical inter-
pretation, as discussed in Appendix A: each properly normalized δhi→j crosses the
zero in correspondence of the maximum of the related cavity field hi→j, namely in
correspondence of its most probable value in the β→ ∞ limit

δhi→j(θ
∗
i ) = 0 , θ∗i ≡ argmax

θi

[
∑

k∈∂i\j

[
hk→i(θ

∗
k (θi)) + Jik cos (θ∗k (θi)− θk)

]]

(3.67)
In this way, the property of being negative semidefinite is preserved for the
perturbed cavity fields, provided perturbations are small enough.

Finally, we can write down the stochastic equation for the joint probability
distribution of the fixed-point cavity fields and of their perturbations:

P[(h∗i→j, δhi→j)] = EG,J

∫ di−1

∏
k=1

(
Dhk→i P[(h∗k→i, δhk→i)]

)

× δ
[
δhi→j −F ′0[{h∗k→i}, {δhk→i}, {Jik}]

] (3.68)

which can be solved by implementing SuscProp as outlined in the pseudocode 3.5.
However, in the zero-temperature limit some further precautions have to be taken
in the SuscProp algorithm with respect to the finite-temperature case, as we discuss
below.

Indeed, as long as angular variables are actually evaluated as continuous, the
correct behaviour of the XY model is reproduced even in the zero-temperature limit.
But we have to remember that in the whole low-temperature region the BP equa-
tions for the XY model have to be solved numerically by means of a Q-state clock
model with Q large enough, but still finite, and this is true also on the T = 0



72 3. The XY model in absence of a field

axis. This discretization does not qualitatively change the solution of the BP equa-
tions (3.6) at finite temperature, and the same holds for their linearized version,
as we will check in Chapter 4. Q-dependence still remains smooth enough in the
zero-temperature limit for what regards the BP equations (3.61). But what happens
for their linearized version (3.65)?

The main issue of the zero-temperature linearized BP equations is the evaluation
of angles θ∗k (θi)’s which maximize the right hand side of (3.61). Provided h’s are
still smooth functions when Q is large but finite, it is no longer true for δh’s. As
long as Q is finite, it could happen that for all the θi directions allowed by the clock
model, the argmax is given by the same value θ∗k , so that the resulting perturbation
δhi→j(θi) is a constant function. Then, when normalizing it through the suitable
additive constant, it becomes an identically vanishing function. In the end, this
results in a cascade of exactly null perturbations when iterating BP on both a given
instance or via the PDA.

In this way, the global norm of perturbations ‖δh(t)‖, computed as in the
finite-temperature case:

‖δh(t)‖ ≡ 1
N ∑

i
ln ‖δh(t)i ‖

2
2 (3.69)

becomes meaningless, since each ‖δh(t)i ‖ eventually collapses to zero. This is
exactly the mechanism that has been proved to hold at zero temperature for the
Ising model on Bethe lattice [Cas05, Mor14] and for several other discrete models,
such as the Potts model [Krz08] and the colouring problem [Zde07, Zde09]. We
will come back to this issue in Chapter 4, when we will show how to define λBP
also for discrete models and in particular for the Q-state clock model, taking into
account the ratio at which the fraction of nonvanishing perturbation shrinks to
zero with t.

The situation drastically changes when the system under analysis is described
by continuous variables. Due to the possibility of having infinitesimal perturbations
even in the zero-temperature limit, the fraction of nonvanishing perturbations
does not shrink any longer with t. This is due to the fact that any infinitesimal
shift in θi on the left hand side of (3.65) always causes an infinitesimal change in
the argmax θ∗k as well, and hence a nonconstant incoming perturbation δhk→i(θk)
typically does not turn into a vanishing outgoing perturbation δhi→j(θi).

At this point, the dramatic difference in the evolution of perturbations at zero
temperature between discrete and continuous models may suggest that the clock
model could not be able to correctly reproduce the physics of the XY model in
such limit for any finite number Q of states. Luckily, it is not the case. Indeed, the
correct computation of perturbations at zero temperature can still be performed
by using the Q-state clock model, with the caveat of evaluating the “continuous”
argmax θ∗k (θi) by interpolating around the “discrete” one θ̃∗k (θi) provided by
the clock model, and then evaluating the incoming perturbation δhk→i just in
correspondence of the actual value of the argmax. This trick is crucial in order to
match the zero-temperature limit of the data collected at finite temperature with
the data directly collected through the zero-temperature algorithm, as we will see
also in Chapter 5. The whole procedure is outlined in the pseudocode 3.5.
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Code 3.5 Susceptibility Propagation in the PDA (T = 0)

1: Reach the fixed point P∗h as in pseudocode 3.5
2: for i = 1, . . . ,N do
3: Initialize δh(0)i . We use a random initialization
4: end for
5: for t = 1, . . . , tmax do
6: for i = 1, . . . ,N do
7: Draw an integer di from the degree distribution Pd
8: Draw di − 1 integers {k} uniformly in the range [1,N ]
9: Draw di − 1 couplings {Jk} from the coupling distribution PJ

10: h∗i ← F0[{h∗k}, {Jk}] . Just a “refresh” of the population
11: Compute the discrete argmax θ̃∗k over the Q clock model states
12: Interpolate the continuous argmax θ∗k around θ̃∗k
13: Interpolate the actual value of δh(t−1)

k for θk = θ∗k
14: δh(t)i ← F ′0[{h∗k}, {δh(t−1)

k }, {Jk}]
15: end for
16: Compute ‖δh(t)‖ as in (3.69)
17: λ

(t)
BP ← ‖δh(t)‖ − ‖δh(t−1)‖

18: end for
19: Average λ

(t)
BP over the tmax iterations . Pay attention to thermalization

20: return λBP

An evidence in favour of the reasoning outlined above is given by the fact that —
without applying the previous trick — the fraction of nonvanishing perturbations
decays with a time rate which is smaller the larger Q, and hence it is reasonable
to claim that in the Q → ∞ limit it does not decay any longer. So we can finally
claim that, when dealing with continuous variable models, the stability of the RS
BP fixed point is ruled by the same mechanism seen at finite temperature, namely
by the growth of the norm of the perturbations. It is in the case of discrete models
that it changes, involving a fraction of identically vanishing perturbations that
grows up with t, as we mentioned above and as we will see more extensively
in Chapter 4.

So the BP fixed-point stability at T = 0 for the XY model can be checked
again by looking at a Lyapunov exponent λBP defined in perfect analogy with the
finite-temperature case:

λBP ≡ lim
t→∞

1
t
‖δh(t)‖ (3.70)

so that λBP < 0 refers to a stable BP fixed point and λBP > 0 to an unstable BP
fixed point. In this way, we will finally succeed in matching the extrapolation of
the dAT line toward the T = 0 axis with the location of such endpoint directly
computed in the zero-temperature framework.



74 3. The XY model in absence of a field

3.5 Phase diagram for the bimodal distribution

At this point, the complete phase diagram for the XY model on sparse random
graphs with a bimodal coupling distribution PJ can be drawn. In particular,
Figure 3.3 refers to the C = 3 RRG ensemble, with the following values for some
particular points on the critical lines:

pmc = 0.854(1) , Tmc/J = 0.486(1) , Tc(p = 1)/J = 0.863(1)
p∗ = 0.867(1) , pdAT = 1.000(1)

with the location of the multicritical point that remarkably agrees with the analyti-
cal prediction (3.35), as well as the critical temperature away from paramagnetic
phase in the pure ferromagnetic model, as predicted in Eq. (3.34). p∗, instead,
stands for the value on the zero-temperature axis where m goes to zero in the RS
ansatz, namely the endpoint of the dashed line in the phase diagram, marking
the transition between the mixed and the spin glass phases. Finally, pdAT is the
endpoint of the dAT line on the T = 0 axis.

The arrangement of the different thermodynamic phases in the T vs p plane
is compatible with the results obtained on the same topology for the Ising model
at zero temperature [Kab03, Cas05, Mat10] and in the fully connected case for
both Ising and vector spins (Chapter 2), included the presence of the mixed phase
inbetween the ferromagnetic and the spin glass phases.

However, an important difference with respect to the Ising case rises up:
the dAT line does not approach the T = 0 axis for a fraction pdAT of positive
couplings smaller than one, but it exactly reaches the right lower corner of the
phase diagram, corresponding to the zero-temperature ferromagnetic XY model.
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Figure 3.3. Phase diagram of the XY model on the C = 3 RRG ensemble with random
couplings Jij’s drawn from the bimodal disorder distribution PJ of Eq. (3.12).
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This is a very important feature, not yet known in the literature (to the best of
our knowledge), remarking a peculiar behaviour of vector models with respect
to scalar models: as soon as an infinitesimal quantity of disorder is introduced
in the model, the zero-temperature solution ceases to be RS stable and becomes
glassy. Indeed, a weak disorder may not be enough to force discrete variables to
align in different directions, while continuous variables can arrange more easily
to several different orientations, favouring the appearance of many states in the
Gibbs measure. This feature may provide a strong connection with the theory of
structural glasses and the glass transition [Par10, Ber11, Cha17a], and in Chapter 7
we will deeply study the zero-temperature energy landscape of the XY model in a
random field in order to better characterize this peculiar behaviour.

Finally, the main features of the phase diagram in Figure 3.3 are expected not
to change qualitatively when increasing the connectivity C — still for finite values
of C — or when moving to the ERG ensemble.

3.6 The gauge glass model

In the Ising case, the unique ways to insert disorder in the exchange couplings
are to change their sign, e. g. through the bimodal distribution used so far, or
to change their magnitude, e. g. by drawing it from a Gaussian distribution, as
typically done in the fully connected case. Instead, in the vector case, there is a
huge variety of ways to insert randomness in the exchange constants, involving
modification in magnitudes, phase shifts, or both.

So far, we just exploited the same coupling distribution used in the Ising case,
namely a complete flip of the coupling so to imply a purely antiferromagnetic
interaction. However, we could also leave the magnitude J unchanged and then
act on the direction of the interaction

− Jij σi · σj → −J σiU({ωij})σj (3.71)

through a suitable random rotation U in the spin space, characterized by the set of
angles {ωij}.

In particular, for the XY model the rotation matrix U reduces to a random
rotation in the xy plane, that can be identified through a single angle ωij ∈ [0, 2π).
Hence, the corresponding Hamiltonian reads:

H[{θ}] = −J ∑
(i,j)

cos (θi − θj −ωij) (3.72)

with ωij’s drawn from a suitable probability distribution Pω [Coo05]. Notice that
if we choose ωij ∈ {0, π}, the unbiased (p = 0.5) bimodal case can be recovered.

The model with Hamiltonian (3.72) is known as gauge glass, and it is typically
used to describe granular disordered type-II superconductors [Shi84, Joh85, Hus90],
with quenched random phase shifts ωij’s linked to the spacial distribution of the
external field.

In order to get complementary results with respect to the bimodal case —
which is very anisotropic — we could choose Pω as the flat distribution over the
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[0, 2π) interval, so allowing a completely isotropic choice of the couplings between
nearest-neighbour spins:

Pω(ωij) = Unif
(
[0, 2π)

)
(3.73)

However, in order to get even more general results, we choose a suitable probability
distribution that allows us to interpolate between the pure ferromagnet (ω = 0
for each link) and the unbiased spin glass (ω uniformly drawn from the flat
distribution for each link):

Pω(ωij) = (1− ∆) δ(ωij) + ∆ Unif
(
[0, 2π)

)
(3.74)

so that for ∆ = 0 we recover the former case and for ∆ = 1 we recover the latter
case. So ∆ ∈ [0, 1] plays the same role of ferromagnetic bias as p.

The BP equations for the gauge glass XY model can be easily written down,
referring to the ones for the bimodal case and substituting the interaction term:

ηi→j(θi) =
1
Zi→j

∏
k∈∂i\j

∫
dθk e βJ cos (θi−θk−ωik) ηk→i(θk) (3.75)

Analogously, at T = 0 we have:

hi→j(θi) ∼= ∑
k∈∂i\j

max
θk

[
hk→i(θk) + J cos (θi − θk −ωik)

]
(3.76)

The corresponding linearized versions are then straightforward to be obtained
(see Appendix A).

By exploiting again PDA and SuscProp, the BP equations (3.75) can be numeri-
cally solved — e. g. via the Q = 64-state clock model — and all the thermodynamic
phases of the T vs ∆ plane can be characterized, with the corresponding critical
lines between them depicted in Figure 3.4 for the C = 3 RRG ensemble. The
corresponding coordinates for some relevant points in the phase diagram are the
following:

∆mc = 0.294(1) , Tmc/J = 0.486(1) , Tc(∆ = 0)/J = 0.863(1)
∆∗ = 0.266(1) , ∆dAT = 0.000(1)

Notice that, if properly mapping the parameter ∆ of the gauge glass distribu-
tion (3.74) into the parameter p of the bimodal distribution (3.12)

p ↔ 1− ∆
2

(3.77)

then it is easy to see that the two corresponding phase diagrams exactly match —
apart from the dAT line between the ferromagnetic and the mixed phases — so
highlighting one of the most remarkable features of spin glass models: a universal
behaviour of the instability line of the paramagnetic solution and of the critical line
separating the unbiased spin glass phase from the mixed phase (here computed in
the RS ansatz, even though a RSB ansatz would be necessary).
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Figure 3.4. Phase diagram of the XY model on the C = 3 RRG ensemble with random
angular shifts ωij’s drawn from the gauge glass disorder distribution Pω of Eq. (3.74).

At variance, the dAT line is dramatically different between the two cases: the RS
ferromagnetic phase of the gauge glass seems to be more stable when lowering
the temperature with respect to the bimodal case when a comparable quantity of
disorder is inserted. Furthermore, the critical exponents of the two lines close to
the multicritical point are largely different.

The reason of this very different behaviour seems to be hidden in the type of
spin symmetry involved in the RS instability. Indeed, the strong anisotropy of the
bimodal case identifies a preferred direction with respect to which it is possible to
break the inversion symmetry of the transverse spin components. Instead, in the
gauge glass case, each interaction is shifted of an angle randomly distributed on
the unit circle and hence, due to the isotropy in the spin space, no transverse spin
symmetry can be globally broken. In fact, in the latter case it could be that the
longitudinal4 degrees of freedom undergo a freezing, bringing to the RS instability.

Some evidences in this sense come from the comparison with the behaviour of
the anisotropic fully connected vector model (Section 2.3), where the freezing of the
transverse degrees of freedom yields the GT line, (δTc) ∼ (δJ0)2. Then, if further
decreasing the temperature, the freezing of the longitudinal degrees of freedom
yields a crossover line — rather than a sharp phase transition — recognizable as
the dAT line of the scalar case, (δTc) ∼ (δJ0)1/2. Compatible exponents can be
found in the diluted case respectively for the gauge glass and the bimodal XY
model:

δTc(p) ' (p− pmc)
α , α ' 2 (3.78a)

δTc(∆) ' (∆mc − ∆)α , α ' 1
2

(3.78b)

4In absence of any global preferred direction, we refer to the local direction identified by the
effective field given by the neighbours.
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even though their precise evaluation is not easily feasible due to the very proximity
of the multicritical point.

Notice that, up to our knowledge, we are not aware of any other similar
result for the sparse case in the literature. A full characterization of this “double”
behaviour according to the presence (or not) of a global direction of anisotropy —
and the corresponding interpretation as transverse or longitudinal perturbations,
respectively — will be provided in Chapter 6, where the directional bias of the
couplings seen here will be substituted by the directional bias of the external field.



Chapter 4

Discretizing the XY model: the
clock model

The need for a discretization arises every time we want to set up a numerical simu-
lation involving continuous variables, e. g. the ubiquitous problem of numerically
solving an ordinary differential equation.

If in most cases the naïve strategy of dividing intervals in a very large number
of bins works quite well, however there can be some nonnegligible issues. What if
the features of the system are such that any finite number of intervals provides
wrong results? What if the required number of bins is so large to make practically
unfeasible numerical simulations? So the success of this approach generally
depends on the given problem and on the optimal values for the parameters used
(e. g. the number of the bins).

In our case, the problem of discretizing the [0, 2π) interval in order to provide
a numerical solution to the BP equations for the XY model arises a few funda-
mental questions: i) Does the solution qualitatively change when passing from
the continuous to the discrete model? ii) How does the error committed in the
discretization decay with the number of bins? iii) Is there any strong dependence
on the temperature and/or the quantity of disorder? iv) Does the universality class
change?

We will provide the answers to all these questions throughout this Chapter,
eventually justifying some statements claimed in Chapter 3 about the clock model
approximation.

4.1 From the XY model to the clock model

In Section 3.3 we already introduced the Q-state clock model, since we wanted
to numerically solve the BP equations for the XY model in the low-temperature
region. Let us recap its definition: the [0, 2π) interval is divided into Q equal bins
of elementary width 2π/Q. Consequently, each spin can align only along one of
these Q allowed directions, labeled by index a:

θ ∈ [0, 2π) ⇒ θa ∈
{

0,
1
Q

2π,
2
Q

2π, . . . ,
Q− 1

Q
2π

}
(4.1)
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Q = 2 case is nothing but the Ising model, and indeed we will exploit this peculiar
value in order to test our algorithms. Instead, the opposite limit Q→ ∞ allows us
to exactly recover the XY model.

As a consequence of this discretization, each integral over the [0, 2π) interval
becomes a sum over the Q states:

1
2π

∫ 2π

0
dθ f (θ) ⇒ 1

Q

Q−1

∑
a=0

f (θa) (4.2)

Notice that the “conversion” factor 2π/Q will appear throughout this Chapter,
since it allows to exactly recover the XY results in the Q→ ∞ limit.

The Hamiltonian (3.5) of the XY model remains formally unchanged when
passing to the Q-state clock model:

H[{θ}] = −∑
(i,j)

Jij cos (θi,a − θj,b) (4.3)

with the unique prescription that angles θ’s take on only the Q allowed values.
Consequently, also the BP equations read formally the same, apart from the
necessary substitution of the integrals with the sums. For example, at finite
temperature we get:

ηi→j(θi,a) =
1
Zi→j

∏
k∈∂i\j

Q−1

∑
bk=0

e βJik cos (θi,a−θk,bk
) ηk→i(θk,bk) (4.4)

with normalization constant Zi→j which is now given by:

Zi→j =
2π

Q

Q−1

∑
a=0

[
∏

k∈∂i\j

Q−1

∑
bk=0

e βJik cos (θi,a−θk,bk
) ηk→i(θk,bk)

]
(4.5)

Notice the presence of the 2π/Q factor in front of Z , which actually ensures a well
defined behaviour in the Q→ ∞ limit. We will further discuss this normalization
factor in the next Section.

4.2 RS solution of the BP equations in the bimodal case

Since the BP equations remained formally unchanged through the discretization,
we expect that also the features of their solution should remain qualitatively
unchanged, at least for large values of Q. In this Section we will actually prove
this statement.

However, before going on, a caveat about the parity of Q has been remarked.
Since we are going to use the bimodal distribution PJ , it implies that a certain link
must be fully satisfied in both cases of a ferromagnetic and an antiferromagnetic
coupling. If Jij is positive, then the perfect alignment between σi and σj always
ensures it. But when Jij is negative, hence σi and σj have to differ by π and this
is not possible if we are using an odd Q number of bins. For this reason, in this
Section we will use only even values for Q.
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4.2.1 Paramagnetic solution and expansion around it

Let us start from the analysis of the paramagnetic solution. In absence of any
external field, it is the uniform distribution over the Q allowed directions:

ηi→j(θi,a) =
1
Q

, ∀a , ∀i→ j (4.6)

and it obviously satisfies the BP equations (4.4) at any temperature. Notice that we
are using normalization of cavity marginals up to unity:

∑
a

ηi→j(θi,a) = 1 , ∀i→ j (4.7)

as it is usual for models with a finite number of states. Instead, if we want to
recover the XY limit, we have to use a different normalization:

∑
a

ηi→j(θi,a) =
Q
2π

, ∀i→ j (4.8)

so that e. g. paramagnetic solution reads 1/2π. Depending on what is our task,
we will use the former (say the ‘clock model’ or ‘discrete’ one) or the latter (say
the ‘XY’ or ‘continuous’ one) throughout this Chapter.

Free energy density and internal energy density in the paramagnetic phase
acquire analogous expressions with respect to the XY model ones, Eqs. (3.13)
and (3.15):

f (β) = − 1
β

ln 2π − C
2β

ln I(Q)
0 (βJ) , u(β) = − JC

2
I(Q)
1 (βJ)

I(Q)
0 (βJ)

(4.9)

where discrete modified Bessel functions of the first kind has been defined:

I(Q)
n (x) ≡ 1

Q

Q−1

∑
a=0

e x cos (2πa/Q) cos
(

n
2πa
Q

)
, n ∈ Z (4.10)

in perfect analogy with their continuous version defined in (3.11), which can be
recovered in the Q→ ∞ limit:

lim
Q→∞

I(Q)
n (x) = In(x) (4.11)

Consequently, it is easy to see that in the definition of free energy density, the
normalization just affects the entropy term: the clock model normalization (4.7)
ensures a positive definite entropy for all the temperatures and for any finite value
of Q, while the XY normalization (4.8) allows to exactly recover the XY entropy in
the Q→ ∞ limit even when the latter is negative.

We already know from the analysis performed on the XY model in Chapter 3
that the paramagnetic solution is expected to be stable only down to a certain
critical temperature Tc. So in analogy with analytical computations performed
for the XY model, the (discrete) periodicity of θ’s variables suggests to study the
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stability of paramagnetic solution (4.6) by using a Fourier expansion for cavity
marginals, which has now to be discrete as well:

ηi→j(θi,a) =
1
Q

Q−1

∑
b=0

c(i→j)
b e 2πiab/Q (4.12)

with Fourier coefficients c’s satisfying the following relation:

c(i→j)
b =

Q−1

∑
a=0

ηi→j(θi,a) e−2πiab/Q (4.13)

Following this definition, the zeroth-order coefficient represents the sum of
values taken by each cavity marginal on the Q directions:

c(i→j)
0 =

Q−1

∑
a=0

ηi→j(θi,a) (4.14)

namely it is directly related to the normalization of cavity messages. So if we
choose the discrete normalization (4.7), then we have:

c(i→j)
0 = 1

while if we choose the continuous normalization (4.8) we get:

c(i→j)
0 =

Q
2π

In what follows, we will use the continuous normalization, so to rewrite the Fourier
expansion (4.12) in a more useful shape:

ηi→j(θi,a) =
1

2π

[
1 +

2π

Q

Q−1

∑
b=1

c(i→j)
b e 2πiab/Q

]
(4.15)

A further remark regards the nature of these c’s coefficients. Indeed, since
we are using the exponential form instead of the cosine and sine form, they are
expected to be complex instead of real. However, due to periodicity of cavity
marginals over the [0, 2π) interval, it holds:

c(i→j)
l =

(
c(i→j)

Q−l

)∗

and, when using even values for Q as in this case, this implies that cQ/2 is real.
At this point, we can proceed exactly as done for the XY model, expanding

the right hand side of (4.4) as in (4.15) and then substituting it into the right hand
side of (4.13), so getting a set of self-consistency equations for the discrete Fourier
coefficients c’s:

c(i→j)
l =

1
Zi→j

Q−1

∑
a=0

e−2πial/Q ∏
k∈∂i\j

Q−1

∑
bk=0

c(k→i)
bk

I(Q)
bk

(βJik) e 2πiabk/Q (4.16)
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where also Zi→j has to be expanded in terms of c’s.
A perturbative expansion of the right hand side can be performed as for the

XY model, obtaining at the linear order in each coefficient:

c(i→j)
l = ∑

k∈∂i\j

I(Q)
l (βJik)

I(Q)
0 (βJik)

c(k→i)
l (4.17)

in perfect analogy with the result obtained for the XY model, Eq. (3.24). Then,
when averaging over the bimodal disorder distribution PJ and over the realization
of the C-RRG, from the first and the second moment of c’s coefficients we get
the marginality conditions between the paramagnetic and the low-temperature
solutions:

(C− 1)(2p− 1)
I(Q)
1

(
β
(Q)
F J

)

I(Q)
0

(
β
(Q)
F J

) = 1 , (C− 1)

[
I(Q)
1

(
β
(Q)
SG J

)

I(Q)
0

(
β
(Q)
SG J

)
]2

= 1 (4.18)

again formally equal to the ones for the XY model. The critical inverse temperature
away from the paramagnetic phase as a function of the fraction p of positive
couplings is finally given by:

β
(Q)
c (p) ≡ min

{
β
(Q)
F (p), β

(Q)
SG

}
(4.19)

Not so surprisingly, the features of the phase transition away from the para-
magnetic phase are the same found for the XY model, i. e. a transition toward a
ferromagnetic phase for values of p close to 1 and a transition toward a spin glass
phase for values of p close to 1/2. Furthermore, the expression of the correspond-
ing critical line is formally the same, and even the abscissa of multicritical point
coincides with the one found for the XY model, Eq. (3.35), since it does not depend
on Q:

pmc =
1 + (C− 1)−1/2

2
(4.20)

What actually changes when varying Q is the height of this critical line, which in
turn depends on the discretized Bessel functions I(Q)

n ’s. So in order to understand
how fast this line approaches the XY model one in the large-Q limit, we firstly
have to study the rate of convergence of the discretized Bessel functions toward
the continuous ones.

4.2.2 Convergence of the discretized Bessel functions

A first numerical study shows an exponential convergence of discretized Bessel
functions toward the continuous ones:

I(Q)
n (x)− In(x) ∼ A exp (−Q/Q∗) (4.21)

as shown in Figure 4.1, with a characteristic scale Q∗ increasing with the argu-
ment x of the Bessel functions — namely with the inverse temperature β in our
case:

Q∗(x = 2) ' 2.0
Q∗(x = 5) ' 2.5
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Figure 4.1. Convergence of the discretized Bessel functions I(Q)
n (x) toward their Q→ ∞

value. The convergence is exponential, apart from an initial transient, as it can be seen
from the linear behaviour of the logarithm of the difference I(Q)

n (x)− In(x) for two
different values of their argument x.

Since Bessel functions are explicitly contained in both physical observables and
marginality conditions, an exponential convergence of the discretized Bessel func-
tions toward their continuous limit would provide strong evidences in favour of
an exponential convergence in physical observables and in critical lines as well,
when considering the large-Q limit of the clock model toward the XY model.

Even though we have no fully analytic proof of this exponential convergence
for the Bessel functions, we can produce an argument which should convince the
reader that a power-law decay in Q can not take place whenever the integral of
a periodic function is approximated with a discrete sum of Q terms. Let us take
a 2π-periodic and infinitely differentiable function f (x) and let us focus on the
approximation of its integral over the [0, 2π) interval:

I( f ) ≡ 1
2π

∫ 2π

0
dx f (x) (4.22)
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with the following sum:

I(Q)( f ) ≡ 1
Q

Q−1

∑
a=0

f (2πa/Q) (4.23)

This sum can be rewritten as an integral of a stepwise function:

I(Q)( f ) =
1
Q

Q−1

∑
a=0

[
Q
2π

∫

Γa

dx f (2πa/Q)

]
=

1
2π

Q−1

∑
a=0

∫

Γa

dx f (2πa/Q) (4.24)

where Γa is the a-th subinterval of size 2π/Q centered around 2πa/Q in which
the [0, 2π) interval has been divided:

Γa ≡
[

2π

Q

(
a− 1

2

)
,

2π

Q

(
a +

1
2

))

Hence, the error ∆(Q) committed when approximating the integral with the
sum of Q terms reads:

∆(Q)( f ) =
1

2π

Q−1

∑
a=0

∫

Γa

dx
[

f (x)− f (2πa/Q)
]

(4.25)

When Q is large, a Taylor expansion of f (x) around the central point of each Γa
interval gives:

f (x) = f (2πa/Q) +
∞

∑
k=1

f (k)(2πa/Q)
(x− 2πa/Q)k

k!
(4.26)

where f (k) is the k-th derivative of f . Substituting this expansion into the right
hand side of (4.25) and then integrating, we get:

∆(Q)( f ) = ∑
k even

k>0

πk

Qk (k + 1)!
1
Q

Q−1

∑
a=0

f (k)(2πa/Q) (4.27)

At this point, also the internal sum over the k-th derivative of f can be substituted
by the corresponding integral in the Q→ ∞ limit, plus the correction term:

1
Q

Q−1

∑
a=0

f (k)(2πa/Q) =
1

2π

∫ 2π

0
dx f (k)(x) + ∆(Q)( f (k))

=
f (k−1)(2π)− f (k−1)(0)

2π
+ ∆(Q)( f (k))

= ∆(Q)( f (k))

(4.28)

due to the 2π-periodicity of f and of its derivatives. Going back to Eq. (4.27), we
finally have:

∆(Q)( f ) = ∑
k even

k>0

πk

Qk (k + 1)!
∆(Q)( f (k)) (4.29)
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so relating the error committed in the approximation of the integral of f with the
error in the approximation of the integral of its derivatives.

For a function f smooth enough — as exp (x cos θ) cos θ in modified Bessel
functions In’s — the error ∆(Q)( f (k)) on derivatives is expected to decay in the
same manner as the error ∆(Q)( f ) on function itself. Indeed, I1 is the derivative
of I0 and in Figure 4.1 it is quite clear that their errors decay both in the same way
with Q. Since a power-law decay

∆(Q)( f ) ∼ ∆(Q)( f (k)) ∼ Q−α

is not compatible with relation (4.29) for any value of α, then we can conclude that
these errors should decay faster than any power law.

As stated at the beginning of this reasoning, this is not a proof of a clear
exponential convergence, since for example it could be the case of a stretched-
exponential convergence. In fact, in Section 4.4 we will actually see an exponential
convergence of physical observables as long as T > 0, which then turns into a
stretched exponential convergence when T = 0.

4.2.3 Low- and zero-temperature solutions

Below the critical temperature signaling the paramagnetic instability, the clock
model BP equations (4.4) have to be solved numerically, as done for the XY model.

For finite temperatures, we can exploit exactly the same PDA outlined in the
pseudocode 3.1, now choosing any even value for Q (while we chose Q = 64
for the analysis of the XY model). Furthermore, also SuscProp can be used for
the detection of the dAT line just as explained in the pseudocode 3.3, since the
mechanism of the propagation of perturbations is the same: their global norm
grows or decreases according to the RS stability of the BP fixed point.

In the zero-temperature limit we have to be more careful, as anticipated in Sec-
tion 3.4. Indeed, full BP equations at zero temperature for the Q-state clock
model

hi→j(θi,a) ∼= ∑
k∈∂i\j

max
b

[
hk→i(θk,b) + Jik cos (θi,a − θk,b)

]
(4.30)

can be solved without any particular difference with respect to the continuous
case, showing a smooth convergence of the solution in the large-Q limit. Instead,
their linearized version:

δhi→j(θi,a) ∼= ∑
k∈∂i\j

δhk→i(θ
∗
k,b(θi,a)) (4.31a)

θ∗k,b(θi,a) = argmax
b

[
hk→i(θk,b) + Jik cos (θi,a − θk,b)

]
(4.31b)

has to be solved in a different manner. Indeed, the maximum in the right hand
side of (4.30) can take on different values if evaluated on the Q states of the clock
model or on the whole unit circle, and hence also the corresponding argmax of
Eq. (4.31b) has to change consequently. So, as already anticipated in Section 3.4, it
may happen that for all θi,a’s directions the argmax is given by the same angle θ∗k,b,
so yielding a constant incoming perturbation δhk→i in the right hand side of (4.31a).
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After normalization, it actually becomes null, and if this occurs simultaneously for
all the neighbours of i but j, then also the outgoing perturbation δhi→j is constant
and hence identically null as well.

This phenomenon is the more probable, the smaller Q, but anyway it has a finite
probability to occur as long as Q is finite. Indeed, it can be observed in any model
with discrete variables (Ising [Cas05, Mor14], Potts [Krz08], colouring [Zde07,
Zde09], and so on). So even if the initialiation of perturbations in the T = 0
SuscProp is such that none of them is null at t = 0, at each time step new
identically vanishing perturbations appear in the population and so, due to a
cascade effect, in the long-time limit all the perturbations become vanishing as
well.

Even though this could seem a serious issue for the evaluation of the RS stability
of the BP fixed point as outlined in Chapter 3, namely by looking at the global
growth rate of perturbations, in fact it is actually just the decrease of the fraction
of nonvanishing perturbations at each time step that provides a measurement
of the RS stability. Indeed, we can generalize the stochastic approach of PDA
and SuscProp from a generic sparse random graph to a chain, so that we can focus
on the survival probability of a nonvanishing perturbation propagating along such
chain (Figure 4.2 and Ref. [Mor14]). Let us refer to it as the Chain Susceptibility
Propagation (ChainSuscProp) approach.

First of all, it is more convenient to focus on the message that enters in each
node, namely the cavity bias u, and no longer on the message that leaves it, namely
the cavity field h. Remembering their definition within the factor graph formalism
(Section 1.7) and the corresponding BP equations for the XY model (Appendix A),
it is easy to rewrite the pairwise zero-temperature BP equations (4.30) for the u’s:

ui→j(θj,b) ∼= max
a

[
∑

k∈∂i\j
uk→i(θi,a) + Jij cos (θi,a − θj,b)

]
(4.32)

as well as their linearized version:

δui→j(θj,b) = ∑
k∈∂i\j

δuk→i(θ
∗
i,a(θj,b))− ∑

k∈∂i\j
δuk→i(θ

∗
j,b) (4.33)

where:

θ∗i,a(θj,b) ≡ argmax
a

[
∑

k∈∂i\j
uk→i(θi,a) + Jij cos (θi,a − θj,b)

]
(4.34a)

θ∗j,b ≡ argmax
b

[
∑

k∈∂i\j
uk→i(θ

∗
i,a(θj,b)) + Jij cos (θ∗i,a(θj,b)− θj,b)

]
(4.34b)

Notice also in this case the normalization of δu’s such that they vanish in corre-
spondence of the maximum of the related (negative semidefinite) cavity bias.

Once reached the fixed-point probability distribution P∗u — e. g. for a RRG
with connectivity C — by implementing the zero-temperature PDA, we can as
usual add some small perturbations δu’s. However, we can no longer let them
evolve directly on the graph, since all them will eventually become identically null.
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(w0, δw0) (w1, δw1) (w2, δw2) (w3, δw3) (w4, δw4)

u u u u u u u u

Figure 4.2. Sketch of the propagation of cavity perturbations along a chain at T = 0. After
each node i, the “new” cavity bias wi+1 takes the contribution from the “old” one wi
along the chain and from the di − 2 other biases u’s with identically null perturbations
from the outside of the chain, with di drawn from the degree distribution Pd. Instead,
the new perturbation δwi+1 is due uniquely to the old one δwi along the chain,
evaluated as in Eq. (4.33). The survival probability of these perturbations is directly
linked to the RS stability of the BP fixed point. Further details are provided in the
main text.

Rather, we would actually like to evaluate the rate at which they vanish. In order
to achieve such goal, the ChainSuscProp algorithm prescribes to let u’s propagate
along a chain rather than on a proper sparse graph. The population of the chain
cavity biases, being in principle different from the u’s propagating on the graph,
will be then referred to as w’s.

So at this point we have two sets of cavity biases: the u’s, propagating on the
graph and having identically vanishing perturbations, and the w’s, propagating on
the chain and endowed with nonvanishing perturbations. Notice that the latter
population can be initialized by directly sampling from P∗u. Then, at each time
step t, we pick at random an incoming cavity bias w with its perturbation δw and
di− 2 incoming cavity biases u’s from the “sides” of the chain — where di is drawn
from Pd as usual — and then we compute the outgoing couple (w, δw) as:

wi→j(θj,b) ∼= max
a

[
wk→i(θi,a) +

di−2

∑
k′=1

uk′→i(θi,a) + Jij cos (θi,a − θj,b)

]
(4.35a)

δwi→j(θj,b) ∼= δwk→i(θ
∗
i,a(θj,b)) (4.35b)

taking also into account the proper normalizations. At the same time, it is useful
to “refresh” the population of u’s satisfying the proper BP equations (4.32) on the
graph. Only if the outgoing δw is actually nonvanishing as well as the incoming
one, then we can store both the message and the perturbation in the population
of w’s; otherwise, we discard it. The procedure is also illustrated in Figure 4.2.

Finally, since we are interested in the survival probability of the {w} popu-
lation, we can compute the number N (t)

tr of tries needed to completely update
the population of N w’s at the t-th time step. In the long-time limit, then, the
probability P of generating a nonvanishing δw starting from another nonvanishing
δw can be computed as:

P ≡ lim
t→∞
P (t) , P (t) ≡ N

N (t)
tr

(4.36)

In order to come back from the chain to the graph, we multiply P by the inverse of
the branching ratio of the graph, actually estimating the rate r at which nonvanishing
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Code 4.1 Chain Susceptibility Propagation in the PDA (T = 0)

1: Reach the fixed point P∗u
2: for i = 1, . . . ,N do
3: Initialize w(0)

i . We sample from P∗u
4: Initialize δw(0)

i . We use a random initialization
5: end for
6: for t = 1, . . . , tmax do
7: for i = 1, . . . ,N do
8: u(t) ← F0[{u(t−1)

k }, J] . Just a “refresh” of the population

9: N (t)
tr = 0

10: repeat
11: Draw an integer di from the degree distribution Pd
12: Draw a w(t−1) from w’s population
13: Draw di − 2 {u(t−1)

k } from h’s population
14: Draw a J from the coupling distribution PJ

15: w̃(t) ← F0[w(t−1), {u(t−1)
k }, J] . Need to thermalize w’s

16: δw̃(t) ← F ′0[(w(t−1), δw(t−1)), {u(t−1)
k }, J]

17: if ‖δw̃(t)‖ > 0 then
18: Put (w̃(t), δw̃(t)) into w’s population
19: end if
20: N (t)

tr ← N
(t)
tr + 1

21: until ‖δw̃(t)‖ > 0
22: end for
23: P (t) ← N/N (t)

tr
24: Compute r(t) as in Eq. (4.37)
25: λ

(t)
BP ← ln r(t)

26: end for
27: Average λ

(t)
BP over the tmax iterations . Pay attention to thermalization

28: return λBP

perturbations survive on the graph:

r ≡
{
(C− 1)P for C-RRG
CP for C-ERG

(4.37)

Finally, given the (numerically verified) remark that the norm of each δw either
collapses to zero as shown above or stays quite constant, we can define the proper
zero-temperature stability parameter of the BP fixed point also for discrete models:

λBP ≡ ln r (4.38)

where the dAT line corresponds again to λBP = 0, as usual. In the pseudocode 4.1
we list the key steps of the ChainSuscProp algorithm.

At this point we can make a brief recap of the effects introduced by the
discretization. As long as T stays finite, no qualitative deviations with respect to
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the continuous model are introduced, so the same algorithms can be used and
we are also confident that the values of Q required for a reliable approximation
should not be too large. When T approaches zero, dependence on Q is still
smooth for what regards the cavity messages, but not their perturbations. The
basic mechanism of their growth is drastically different for the two models: in the
continuous one, they are all different from zero and it is their global norm that
shrinks if the fixed point is stable and grows up if unstable; instead, in the discrete
model there is an extensive fraction of identically null perturbations, and it is the
decay rate of the remaining fraction of nonvanishing perturbations that rules the
stability of the fixed point, while their global norm stays quite constant.

As a preliminar test of this algorithm, we set Q = 2 — namely the Ising
model — in order to recover the values of p on the T = 0 axis at which: i) global
magnetization m goes to zero, and ii) RSB occurs when coming from higher values
of p, i. e. the p∗ and pdAT values already defined for the XY model, respectively.
For both them, we find a high agreement with the corresponding values in the RS
ansatz already known from the literature [Cas05].

4.3 Phase diagrams of the clock model

At this point, for any even value of Q it is possible to solve the BP equations for
the clock model with bimodal couplings ±J and then find all the critical lines
between the different phases. From the literature and from Chapter 3, we expect
the presence of four phases: the paramagnetic one in the high-temperature region,
and the ferromagnetic, the mixed and the unbiased spin glass ones in the low-
temperature region. Indeed, we already know that they are present in the two
opposite limits Q = 2 and Q→ ∞, so it is reasonable to expect their presence also
for intermediate values of Q.

In Figure 4.3 we report the T vs p phase diagram for Q = 2, 4, 8, 16, 32. The
most striking feature is the very fast convergence in Q for most of critical lines,
since for Q = 8 they are already quite indistinguishable, with the arrangement of
the different phases that remains unchanged when increasing Q. This is a direct
consequence of the exponential convergence of the discretized Bessel function,
as seen in Section 4.2.2. Furthermore, as already pointed out in Chapter 3, the
abscissa pmc of the multicritical point actually turns out to be independent from Q.

The unique region where a stronger dependence of critical lines from Q is
visible is the one in the right lower corner, namely the region of low temperatures
and weak disorder. In particular, it is the dAT line that moves toward larger values
of p when increasing Q, recovering in the XY limit the value pdAT = 1 on the
T = 0 axis. The reason is as simple as profound: when the temperature is low
and the system is close to a pure ferromagnet, the perfect alignment of spins is
fundamental. So if Q is large enough, a slightly misalignment can be activated by a
small energy cost, proportional to the cosine of the elementary angle 2π/Q of the
clock model. The large number of resulting configurations corresponds to several
states appearing in the Gibbs measure, in turn favouring the breaking of replica
symmetry for smaller quantities of disorder. At variance, if Q is rather small,
for a low enough temperature no fluctuations are allowed and hence the system
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Figure 4.3. Phase diagram of the Q-state clock model on the C = 3 RRG ensemble with
couplings drawn from the bimodal disorder distribution PJ of Eq. (3.12), for several
values of Q. The value Q = 32 does no longer show appreciable differences with
respect to the XY limit.

arranges in a single configuration as in the case of a pure ferromagnet, even though
it is not. RSB is hence realized at larger quantities of disorder. So it is the value
of Q that activates some soft modes or does not — depending on the temperature
and on the quantity of disorder — radically changing the behaviour of the system.
We will come back to this point in Chapter 7, where we will deeply study the
zero-temperature physics of the spin glass XY model. So even in correspondence of
the same values of temperature T and ferromagnetic bias p, two values of Q rather
different can give rise to very different BP fixed points, even lying on opposite
sides of the dAT line.

An analogous behaviour regarding the motion in Q of critical lines can be
found by analyzing the Q-state clock model on a d = 3 cubic lattice by means
of the Migdal - Kadanoff approximated renormalization group [Ilk13]. Also in
this case the convergence of paramagnetic - ferromagnetic transition line is very
fast in Q, while a stronger dependence in Q is observed in the convergence of
ferromagnetic - spin glass transition line. Furthermore, this latter critical line
moves toward larger values of the ferromagnetic bias, again in analogy with our
results. However, unlike our case, the critical line between paramagnetic and spin
glass phases approaches the T = 0 axis in the Q → ∞, so making the spin glass
phase to disappear in such limit.

Furthermore, notice the change of concavity of the dAT line close to the
multicritical point when increasing Q, moving from the Ising-like mechanism
of RS instability to the vector one discussed at the end of Section 3.6 when in
presence of a strong directional anisotropy.

Another important feature, already known from the literature [Nob86], is the
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perfect superposition of the critical lines for Q = 2 and Q = 4 when in the latter
case the strength J of the couplings is properly rescaled by a factor 2, so doubling
the corresponding critical temperatures. Indeed, since nearest directions are
orthogonal in the Q = 4 clock model, it actually behaves as two independent Ising
models, with a halved effective coupling strength and a corresponding doubled
critical temperature.

Also the continuous gauge glass model, introduced in Chapter 3, can be
translated into the clock model version. Actually, it is just how we solved it
in Section 3.6, by setting Q = 64. For a generic value of Q, then, the Hamiltonian
remains formally the same:

H[{θ}] = −J ∑
(i,j)

cos (θi,a − θj,b −ωij) (4.39)

with the angular shifts ωij’s that have now to be chosen as integer multiples of the
elementary angle 2π/Q:

Pω(ωij) = (1− ∆) δ(ωij) +
∆
Q

Q−1

∑
a=0

δ
(

ωij −
2πa
Q

)
(4.40)

and no longer uniformly on the [0, 2π) interval. Notice that in this case also odd
values of Q can be used, since there always exists a suitable arrangement of angles
θi,a and θj,b that perfectly satisfies the interaction −J cos (θi,a − θj,b −ωij) for any
value of the angular shift.

The corresponding BP equations have exactly the same expression of the
continuous case, Eq. (3.75) at finite T and Eq. (3.76) at zero T, apart from the
substitution of integrals with sums at T > 0 and the evaluation of the max and the
argmax on the Q discrete directions at T = 0. Of course, the reasoning developed
about the spreading of perturbations at zero temperature holds also in this case.

The phase diagram in the temperature vs ferromagnetic bias plane is depicted
in Figure 4.4 for Q = 2, 3, 4, 8, 16, 32. Also in this case, the qualitative structure of
the phase diagram remains unchanged when increasing Q, with most of critical
lines converging very fast in Q, so that they are practically indistinguishable
when Q & 8. The slowest convergence is again exhibited by the dAT line in
the region of low temperatures and weak disorder, due to the same mechanism
holding in the bimodal case. However, as discussed in Section 3.6, the gauge glass
disorder distribution does not provide any strong directional anisotropy, implying
no changes in the concavity of the dAT line close to the multicritical point when
moving from very small to larger values of Q.

It is interesting to notice that in the Ising case the phase diagrams of the
two classes of disorder distributions — the bimodal coupling one and the gauge
glass — are perfectly mappable one into each other through the transformation
p↔ 1− ∆/2, as it can be checked by direct comparison. The mapping continues
to hold also for larger values of Q, if neglecting the dAT line, in agreement with
the analogous observation for the XY model. Finally, also in this case it can be
observed the superposition of Q = 2 and Q = 4 critical lines when properly
rescaling the coupling strength J.
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Figure 4.4. Phase diagram of the Q-state clock model on the C = 3 RRG ensemble with
random angular shifts ωij’s drawn from the gauge glass disorder distribution Pω of
Eq. (3.74), for several values of Q. The value Q = 32 does no longer show appreciable
differences with respect to the XY limit.

4.4 Convergence of physical observables

The above numerical evidences of a very fast convergence of the critical lines when
increasing Q, together with the heuristic argument about Bessel functions provided
in Section 4.2, strongly suggest an exponential convergence of the clock model
physical observables toward the XY model ones for large values of Q.

Main physical observable we focus on is the Bethe free energy density f (Q)(β),
computed by using the 2π/Q normalization for the cavity messages of the clock
model. Indeed, as already pointed out at the beginning of Section 4.2, this
choice correctly reproduces the XY behaviour in the Q → ∞ limit. Furthermore,
notice that in this Section we use a very large size of the population in the PDA,
namely N = 107, since we want to recognize the effects introduced through
the discretization for quite large values of Q, and it is not possible if statistical
fluctuations are too wide.

4.4.1 The finite-temperature regime

As a first step, let us focus on the expression of the free energy density derived
in Section 4.2 for the Q-state clock model in the paramagnetic phase:

f (Q)(β) = − 1
β

ln 2π − C
2β

ln I(Q)
0 (βJ) (4.41)

with I(Q)
0 (βJ) that exponentially converges to I0(βJ) when Q is large enough,

as numerically checked in Section 4.2.2. Hence, we can perform the following
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expansion:

f (Q)(β) = − 1
β

ln 2π − C
2β

ln I(Q)
0 (βJ)

' − 1
β

ln 2π − C
2β

ln
[
I0(βJ) + A exp (−Q/Q∗)

]

= − 1
β

ln 2π − C
2β

ln I0(βJ) + ln
[

1 +
A

I0(βJ)
exp (−Q/Q∗)

]

' f (β) +
A

I0(βJ)
exp (−Q/Q∗)

(4.42)

which yields an exponentially small difference between the free energy density
f (Q)(β) of the clock model and the one f (β) of the XY model when Q is large
enough (compared to the typical scale Q∗):

∆ f (Q)(β) ≡ f (Q)(β)− f (β) ∝ exp (−Q/Q∗) (4.43)

The convergence scale Q∗ depends on βJ and has been numerically evaluated
in Section 4.2 — when looking at the convergence of discretized Bessel functions —
for two representative values:

Q∗(βJ = 2) ' 2.0 , Q∗(βJ = 5) ' 2.5 (4.44)

respectively corresponding to a point very close to the paramagnetic to spin glass
transition in the XY model with unbiased bimodal couplings and to a point deeply
into the spin glass phase. For smaller values of βJ, then, convergence is even faster,
with smaller values of Q∗.

So we can conclude that the error committed when approximating the XY
model free energy density with the Q-state clock model one is exponentially small
in Q in the paramagnetic phase, with a scale of convergence Q∗ which can be
safely assumed to be at most of order one. Furthermore, the same behaviour is
expected to be observed in the paramagnetic phase of the gauge glass model, due
to the many analogies pointed out between the two classes of disorder in previous
Chapters.

At this point, let us move to the low-temperature region. Our guess is that,
given the very fast convergence of critical lines even for small temperatures and
the exponential convergence of f (Q) in the paramagnetic phase, also in the low-
temperature region the convergence of clock model physical observables is expo-
nentially fast in Q. So let us compute the Bethe free energy density f (Q)(β) for
some representative points in the unbiased spin glass, mixed and ferromagnetic
phases, showing its Q-dependence in the main plots of Figure 4.5.

After an initial transient involving very small values of Q, the convergence
is actually exponential toward the corresponding XY value for all the analyzed
points in the (p, T) plane. So we can perform a linear fit

ln ∆ f (Q)(β) = A−Q/Q∗ (4.45)

and hence accurately evaluate the convergence scale Q∗ for each (p, T) point (insets
of Figure 4.3), reporting the resulting values in Table 4.1. Each fit has an acceptable
χ2 per degree of freedom, as shown by the last column of the table.
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Figure 4.5. Convergence in Q of the Bethe free energy density f (Q) of the clock model
with bimodal couplings for different points in the phase diagram: a) unbiased spin
glass phase, b) mixed phase, c) ferromagnetic phase. Main plots show an exponential
convergence of f (Q) after an initial transient, while the insets show a linear behaviour
for the logarithm of the difference with the corresponding value for the XY model.
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Table 4.1. Values of the convergence scale Q∗ for some points in the three low-temperature
phases of the Q-state clock model with bimodal couplings. The last column reports
the values of the total χ2 over the total number of degrees of freedom for each fit.

Phase p T/J Q∗ χ2/do f

Spin glass 0.50 0.02 2.57(1) 0.20/5
Mixed 0.95 0.02 2.60(5) 0.19/3

Ferromagnetic 0.99 0.30 0.70(1) 0.12/2

Some important features come out from this analysis, performed also on several
other points of the low-temperature region. First of all, there occurs an increasing
of the convergence scale Q∗ when lowering the temperature, consistently with the
results found in the high-temperature region. Secondly, the characteristic scale of
convergence Q∗ remains quite unchanged when moving inside the RSB region at a
fixed temperature, as it usually happens for physical observables. Instead, when
disorder is weak enough to yield a RS ferromagnetic solution, the scale Q∗ slightly
increases: again, the effects of the discretization are found to be more evident
when getting closer to the point (p = 1, T = 0) of the phase diagram.

The quite small values of the convergence scale Q∗ found in the RSB region
suggest that disorder and frustration provide an enhancement in the convergence
of the discretized model toward the continuous one. This can be understood by
the following reasoning. If the system is a pure ferromagnet, then the smallest
misalignment in the discretized model implies a strong breaking in the symmetry
of the system and a corresponding large energy cost. Instead, if the system is
already misaligned and frustrated due to the presence of the quenched disorder,
then a further slight misalignment due to the discretization gives just a minor
effect, without any further strong breaking of symmetry or energy cost.

Notice that it was already known in the literature that pure ferromagnetic
models with continuous variables are badly approximated by the corresponding
discretized models in the low-temperature regime, since small fluctuations are
highly suppressed for any not large enough number of states of the discretized
model. E. g., this is the reason why the discretization of SU(2) and SU(3) sym-
metries in the lattice gauge theory works quite badly in the low-temperature or
strong-coupling regime [Reb80, Pet80, Gro82].

Analogous results are shown in Figure 4.6 for the gauge glass disorder distri-
bution, again considering a point (∆, T) for each low-temperature phase. In this
case the exponential convergence is even more clear, due to the fact that also odd
values of Q can be used. Using the same exponential shape for ∆ f (Q)(β) as before,
we can fit the data and estimate the convergence scale Q∗ corresponding to each
point, then reporting them in Table 4.2.

The resulting values are highly compatible with the ones found for the bimodal
disorder distribution, highlighting a sort of universality also in the convergence
features. In particular, the dataset for the bimodal disorder distribution at p = 0.5
and T/J = 0.02 can be perfectly superimposed on the dataset with Q even for the
gauge glass disorder distribution at ∆ = 1 and T/J = 0.02. This is not surprising,
since both cases refer to the same temperature and to a completely symmetric
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Figure 4.6. Convergence in Q of the Bethe free energy density f (Q) of the clock model
in the gauge glass case for different points in the phase diagram: a) unbiased spin
glass phase, b) mixed phase, c) ferromagnetic phase. Main plots show an exponential
convergence of f (Q) after an initial transient, while the insets show a linear behaviour
for the logarithm of the difference with the corresponding value for the XY model.
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Table 4.2. Values of the convergence scale Q∗ for some points in the three low-temperature
phases of the Q-state clock model with the gauge glass disorder. The last column
reports the values of the total χ2 over the total number of degrees of freedom for each
fit.

Phase ∆ T/J Q∗ χ2/do f

Spin glass 1.00 0.02 2.55(1) 0.48/12
Mixed 0.20 0.02 2.66(5) 1.35/13

Ferromagnetic 0.10 0.20 0.83(1) 0.43/4

choice of the disorder, and this is enough to observe this universality.
So we can conclude that at any finite temperature and for any quantity of

disorder introduced in the system, the Q-state clock model provides an efficient
and reliable approximation of the XY model, with an error in the evaluation of
physical observables that is exponentially small in Q. Furthermore, the presence of
the disorder strongly enhances such convergence, giving a convergence scale Q∗

of order one down to the very low-temperature region. These results fully justify
a posteriori the value Q = 64 adopted when numerically studying the XY model
in Chapter 3 via the Q-state clock model.

Remarkably, the convergence features seem also to be independent from the
full shape of the probability distribution of the quenched disorder, recovering the
sort of universality already seen for the arrangement of the different phases and
the inbetween critical lines.

4.4.2 The zero-temperature regime

The picture described so far could in principle dramatically change when moving
to the T = 0 axis. Indeed, any finite value of Q implies a finite energy cost for the
smallest possible fluctuation around the ground state configuration, and it is only
in the Q→ ∞ limit that this energy cost goes to zero, so corresponding to a soft
mode.

In particular, as also pointed out for the finite-temperature regime, there
are two main mechanisms that can excite the system from the perfectly aligned
ground state, so making the difference between the discretized and the continuous
model less evident: thermic fluctuations induced by a finite temperature T, and
misalignment induced by the quenched disorder. Indeed, it is their combined
action that provides the exponential convergence seen above. But when T goes
to zero, it is only the disorder that can excite the system with respect to the fully
ordered ground state configuration of the pure ferromagnet.

So it reasonable to expect a fast convergence of physical observables even
at zero temperature, provided there is a large enough quantity of disorder to
“unfreeze” the system. This “minimum” quantity of disorder is likely related
to location of the endpoint pdAT of the dAT on the T = 0 axis: since it moves
towards p = 1 when increasing Q, then for large quantities of disorder the required
“threshold” is quite small, while for a very weak disorder it is required a quite
large number of states Q to activate the zero-temperature soft modes of the system.
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Figure 4.7. Convergence in Q of the Bethe free energy density f (Q) of the clock model with
bimodal couplings at T = 0 for different points in the phase diagram: a) unbiased spin
glass phase, b) mixed phase. Main plots show a stretched-exponential convergence
of f (Q) after an initial transient, while the insets show a nonlinear behaviour for the
logarithm of the difference with the corresponding value for the XY model, compatible
with a b = 0.5 exponent.

We study again the convergence of the Bethe free energy density f (Q) — which
actually reduces to the energy density u(Q) for β → ∞ — when increasing Q,
focusing on two significative points on the T = 0 axis, respectively in the unbiased
spin glass phase and in the mixed phase. The two datasets are then reported
in Figure 4.7.

Since the decay of f (Q) toward its limiting value seems still to be close to an
exponential, we try to fit the data with a stretched exponential:

ln ∆ f (Q)(β = ∞) = A− (Q/Q∗)b (4.46)

finding that this functional form actually reproduces very well the data, apart from
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Table 4.3. Values of the convergence scale Q∗ for some points in the two zero-temperature
phases of the Q-state clock model with bimodal couplings. The last column reports
the values of the total χ2 over the total number of degrees of freedom for each fit.

Phase p Q∗ χ2/do f

Spin glass 0.50 0.67(1) 6.4/9
Mixed 0.95 0.79(1) 2.4/9

the initial transient, with a b exponent compatible with 1/2. Hence, in order to
avoid the overfitting, we fix b = 0.5 and then we fit over A and Q∗ parameters, as
in the T > 0 case. The corresponding values for the convergence scale are listed
in Table 4.3. The acceptable χ2 values reported in the last column of the table
strengthens our confidence in the 1/2 value for the b exponent of the stretched
exponential. Unfortunately, we have no analytic arguments to explain the physical
meaning of b = 1/2 in the zero-temperature limit. It could be just related to the
entropic contributions that vanish in such limit, so causing a slight slowdown in
the convergence with respect to the finite-temperature case.

Again, when looking at the convergence for further points on the T = 0 axis,
there seems to be independence from the quantity of disorder, as long as it is
enough to break the replica symmetry. However, when p goes to one, the system
becomes a pure ferromagnet and the convergence at zero temperature dramatically
slows down. Indeed, it is the worst case for what regards the discretization of
a continuous model, as already pointed out before. In this case, the scale Q∗ is
believed to diverge, so modifying the decay of f (Q)(β = ∞) from an exponential
to a power law.

However, the (p = 1, T = 0) point is the least interesting for us and hence
we can safely claim that everywhere in the phase diagram, both at finite and
zero temperature, the physical observables of the XY model can be reliably and
efficiently computed through a Q-state clock model with moderate values of Q,
committing an error which is exponentially small in Q itself. Since the numerical
effort for solving BP equations scales as Q2 for pairwise interactions — and as Qk

for k-spin interactions —, the proof of an exponential convergence represents a
remarkable result, since the use of smaller values of Q yields a strong speedup in
numerical simulations.

Finally, no qualitative changes are found to occur when moving to the gauge
glass clock model, just as in the finite-temperature regime. In Figure 4.8 we report
the decay in Q of the Bethe free energy density for two points in the unbiased
spin glass phase and in the mixed phase, respectively, finding the values of Q∗

listed in Table 4.4. Notice that the perfect superposition of the data at p = 0.5 for
the bimodal XY model and those at ∆ = 1.0 for the gauge glass XY model — for
even values of Q — still survives in the zero-temperature limit, as it can be seen
by comparing the upper panels of Figure 4.7 and Figure 4.8, respectively. Finally,
also in this case the b exponent has been reliably set equal to 1/2, with acceptable
values of the resulting χ2.
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Figure 4.8. Convergence in Q of the Bethe free energy density f (Q) of the clock model in the
gauge glass case at T = 0 for different points in the phase diagram: a) unbiased spin
glass phase, b) mixed phase. Main plots show a stretched-exponential convergence
of f (Q) after an initial transient, while the insets show a nonlinear behaviour for the
logarithm of the difference with the corresponding value for the XY model, compatible
with a b = 0.5 exponent.

Table 4.4. Values of the convergence scale Q∗ for some points in the two zero-temperature
phases of the Q-state clock model with the gauge glass disorder. The last column
reports the values of the total χ2 over the total number of degrees of freedom for each
fit.

Phase ∆ Q∗ χ2/do f

Spin glass 1.00 0.67(1) 12.5/19
Mixed 0.20 0.68(1) 12.8/19
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4.5 Beyond the RS solution

So far, we have provided several evidences of a very fast convergence of the Q-state
clock model toward the XY model, by firstly looking at the convergence of the
discretized Bessel functions, then at the convergence of critical lines in the phase
diagrams and finally at the convergence of physical observables in both cases of
finite temperatures and zero temperature.

However, all the computations have been performed out in the RS ansatz, that
we know to be incorrect once trespassed the dAT line, and specifically in the
unbiased spin glass phase and in the mixed phase. Even though the RS ansatz
typically provides a rather good approximation of the exact RSB solution, in
particular for what regards the evaluation of self-averaging physical observables, at
this point we wonder if the results about the convergence are robust when getting
closer to the exact solution. Actually, this question is connected to another one,
which is even more fundamental: how does the universality class of the Q-state
clock model change when increasing Q?

A hint about the answer to this question comes from the results on the fully
connected topology. In particular, in the second half of the eighties Nobre and
Sherrington focused just on the Q-state clock model with small values of Q,
showing that for Q > 5 the clock model belongs to the same universality class of
the XY model [Nob86]. Furthermore, they also showed that the absence of the Z2
inversion symmetry for odd values of Q — when considering Gaussian distributed
couplings — becomes irrelevant for Q > 5 [Nob89], adding a further evidence for
their previous statement.

If on one hand the exact solution on the fully connected topology requires
a fRSB ansatz for all the values of Q different from 3 [Nob86, Nob89], on the other
hand it is not known what happens on the sparse topology. Indeed, even for the
Ising model it has not been proved yet if the exact solution actually requires a fRSB
scheme or e. g. just a kRSB scheme with a finite number k of RSB steps, even
though it is generally believed that a fRSB ansatz is required in the diluted case
as well [Par17]. So we guess that also for the Q-state clock model the transition is
continuous — hence involving a smooth Parisi order parameter q(x) — for all the
values of Q but 3. This expectation relies on the following clues:

i) Q = 2 corresponds to the well known Ising model, whose exact solution is
believed to be fRSB as well on diluted graphs;

ii) Q = 4 is a “double Ising”, as already pointed out in this Chapter, and hence
also in this case the transition should be continuous;

iii) Q = 3 is a particular case, since it corresponds to a 3-state Potts model
or to a 3-colouring problem, both which having no thermodynamic phase
transitions on the C = 3 RRG ensemble, but only a dynamic phase transition
well described in the 1RSB ansatz [Krz04, Zde07];

iv) for Q > 5 the RS overlap q always becomes different from zero in a con-
tinuous way below the critical temperature away from the paramagnetic
phase.
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Notice, instead, that the Q-state Potts model on sparse graphs always shows a dis-
continuous transition, well described by the 1RSB ansatz and stable under further
steps of RSB. This is not in contrast with our guess, since Q-Potts interactions —
as well as Q-colouring ones — are not ferromagnetic and hence nothing particular
is expected to happen in the Q→ ∞ limit, while in our case such limit allows to
recover a well known model, endowed with a specific ordering of the states that
results in the continuous O(2) symmetry.

The development of a fRSB algorithm for the solution on diluted graphs
is highly nontrivial, due to the spatial heterogeneity, and hence it is yet to
come [Par17]. Nonetheless, the change from the RS frame to the 1RSB one is
a strong qualitative improvement in the search of the exact solution, since we
would be able to keep track of some RSB effects as e. g. the appearance of many
states in the Gibbs measure, and hence further steps of RSB are believed not to
add nothing in this sense. Moreover, the evaluation of the 1RSB parameters when
increasing Q would provide substantial information about the universality class of
the Q-state clock model — that again could be exactly studied only in the fRSB
ansatz —, which is our ultimate goal within this Section.

4.5.1 The 1RSB picture

The failure of the RS ansatz occurs when factorization (1.78) is no longer valid, due
to the breaking of the Gibbs measure in a large number of states, in each one of
which the exact solution is still RS stable. However, each of these states produces
a different free energy shift when nodes and links are added to the graph by
following the prescriptions of the RS cavity method [Méz01], and hence a weighed
average over the states is needed.

This observation is at the basis of the 1RSB cavity method, derived by Mézard
and Parisi [Méz01, Méz03a]. We redirect the reader to Refs. [Zam08, Méz09], in
addition to the original papers by Mézard and Parisi, for an exhaustive description
of the 1RSB cavity method for solving disordered models on diluted graphs, while
in the following we just provide a sketch of the key concepts.

As usual in statistical mechanics, entropy counts the number of configurations
in which the system can stay. In the field of disordered systems, when counting the
states instead of the configurations, the corresponding entropy Σ assumes a key
role, being known as configurational entropy for structural glasses and complexity for
spin glasses (to which we will refer). Its definition is straightforward:

Ω( f ) ≡ e NΣβ( f ) (4.47)

once given the number of states Ω( f ) as a function of the free energy density f .
Since exp (−βN fα) is the Gibbs weight of the α-th state — apart from a multiplica-
tive constant —, it is then possible to rewrite the total partition function of the
system by summing over all the possible states:

Zβ ≡∑
α

e−βN fα '
∫

d f Ω( f ) e−βN f =
∫

d f e N[Σβ( f )−β f ] (4.48)

finally evaluating the integral through the saddle-point method in the large-
N limit. However, this computation relies on the previous knowledge of the
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complexity Σβ, which is actually not possible. In order to overcome this issue,
Monasson introduced the replicated partition function Zβ(m) [Mon95a]:

Zβ(m) ≡∑
α

e−βmN fα '
∫

d f e N[Σβ( f )−βm f ] (4.49)

with m integer. Then, if m is analytically continuated over real values and in
particular below the unity — in analogy with the m1 parameter of the 1RSB ansatz
seen in Chapter 2 — we can redefine it as x, so that x ∈ [0, 1] provides a well
behaved probability distribution for the Gibbs measure over the states. Then, a
replicated free energy density φβ(x) can be defined:

φβ(x) ≡ − 1
βxN

lnZβ(x) (4.50)

in perfect analogy with the definition of fβ inside each state.
At this point, the saddle point can be evaluated as before:

Zβ(x) ' e N[Σβ( f ∗)−βx f ∗] (4.51)

with f ∗ = f ∗β (x) being the maximizer of the exponent, depending on both β and x:

∂

∂ f
[
Σβ( f )− βx f

]∣∣∣∣
f ∗
= 0 (4.52)

Now, just thanks to the presence of x, the complexity Σβ( f ) can be recognized as
the Legendre transform of the replicated free energy density φβ(x):

φβ(x) = f ∗β (x)− 1
βx

Σβ( f ∗) (4.53)

Consequently, in this way we are able to actually compute f ∗β (x):

f ∗β (x) =
∂

∂x
(
xφβ(x)

)

= φβ(x)− x
∂

∂x
φβ(x)

(4.54)

and Σβ(x):

Σβ(x) = Σβ( f ∗β (x))

= βx2 ∂

∂x
φβ(x)

= βx
[

f ∗β (x)− φβ(x)
]

(4.55)

both which being functions of β and x. Finally, Σβ( f ) can be obtained by fixing β
and then parametrically plotting Σβ(x) versus f ∗β (x) for x ∈ [0, 1].

Thermodynamic observables can be then recovered by setting x = 1 if the corre-
sponding complexity is nonnegative, namely Σβ(x = 1) > 0, so that corresponding
states are not subdominant in the thermodynamic limit. Instead, if Σβ(x = 1) < 0,
the partition function is dominated by the largest value of x — say x∗ — that
makes Σβ(x) vanish:

x∗ ≡ max
{

x |Σβ(x) = 0
}

(4.56)

which is also known as the 1RSB Parisi parameter.
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4.5.2 The 1RSB BP equations

The computation of the replicated free energy density φβ — and from it the other
relevant observables — can be performed after having generalized the RS BP
equations to the 1RSB ones and then solved them.

The starting point is that the Gibbs measure breaks into many states {α}, each
having a weight wα ∝ exp (−βN fα). So, for each directed edge i→ j of the original
graph, we have no longer a single cavity marginal ηi→j, but a set of them, {η(α)

i→j},
one for each state. In other words, the α-th state is completely characterized by the
set {η(α)

i→j} with the lower index running over all the directed edges of the graph.
Since in each state the RS BP equations are still valid, the corresponding fixed
point can be then easily computed. Actually, each state just corresponds to one of
the (many) BP fixed points attainable in the RS ansatz when RSB occurs.

However, also the reweigh should be taken into account. To employ it, further
check nodes are added to each variable node and to each edge of the original graph,
whose function is just that of inserting the suitable reweigh factor (exactly as a
usual compatibility function in a factor graph). The resulting modified graph is
still sparse and is known as the auxiliary model [Méz09], on which the BP approach
can be exploited as well. The unique difference is that the corresponding cavity
messages are no longer the ηi→j’s, but their probability distributions Pi→j[η

(α)
i→j]’s

over the states.
The resulting BP self-consistency equations for the Pi→j’s are nothing but the

1RSB BP equations for the ηi→j’s:

Pi→j[η
(α)
i→j] = F̃

[
{Pk→i[η

(αk)
k→i ]}, {Jik}, x

]

≡
∫ di−1

∏
k=1

(
Dη

(αk)
k→i Pk→i[η

(αk)
k→i ]

)
δ
[
η
(α)
i→j −F [{η

(αk)
k→i}, {Jik}]

]

×
(
Zi→j[{η(αk)

k→i}]
)x

(4.57)

where Zi→j is the normalization constant that comes from the computation of

the cavity message η
(α)
i→j via the RS BP equations. In this way we are actually

implementing the reweigh by exp (−βxN fα), since Zi→j is directly related to the
corresponding free energy shift ∆ fi→j:

Zi→j = exp (−βN∆ fi→j) (4.58)

On a given instance of the problem, it is enough to solve Eqs. (4.57), where the
probability distribution Pi→j[η

(α)
i→j] for each directed edge i→ j can be numerically

evaluated via a population ofM cavity messages {η(α)
i→j}, withM eventually going

to infinity. So we can drop the state labels and introduce the following shorthand
notation for the 1RSB BP equations on a given instance of the model:

Pi→j[ηi→j] ≡ Eα

[
δ
[
ηi→j −F [{ηk→i}, {Jik}]

](
Zi→j[{ηk→i}]

)x
]

(4.59)
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with Eα highlighting the average over the states through the (explicitly written)
measure wα.

The corresponding fixed point, say P∗i→j, allows to compute the replicated free
energy density φβ on the auxiliary model in the same spirit of the RS one on the
original graph:

φβ(x) = ∑
i

φi(x)−∑
(i,j)

φij(x) (4.60)

with the replicated node and edge contributions that are a reweighed version of
their RS counterparts:

φi(x) ≡ − 1
βx

ln Eα

[
Z x

i
]

(4.61a)

φij(x) ≡ − 1
βx

ln Eα

[
Z x

ij
]

(4.61b)

An exhaustive discussion about the 1RSB BP equations on a given instance can
be found in Ref. [Méz09]. Instead, here we are more interested in the disorder-
averaged description, namely we would like to generalize the RS PDA to the 1RSB
ansatz. This task can be easily accomplished by considering also the probability dis-
tributions Pi→j’s as random variables, distributed according to a suitable P [Pi→j].
In other words, P [Pi→j] in the 1RSB PDA plays exactly the same role of P[ηi→j] in
the RS PDA. It is the probability distribution P[ηi→j] over the states that was absent
in the RS ansatz and that has been induced in the 1RSB ansatz by the breaking
of the Gibbs measure into several states. Then, when numerically implementing
this algorithm, P [P] can be substituted by a population of N elements P’s — in
turn being populations ofM cavity messages each — that satisfy the following
stochastic equation:

P [Pi→j] = EG,J

∫ di−1

∏
k=1

(
DPk→i P [Pk→i]

)
δ
[
Pi→j − F̃ [{Pk→i}, {Jik}, x]

]
(4.62)

At this point, it is clear that a two-level hierarchy of populations comes out in
the 1RSB PDA: i) an “inner” population ofM cavity messages ηi→j, describing the
probability distribution P[η] over the states for a given directed edge; ii) an “outer”
population of N elements Pi→j, describing the probability distribution P [P] over
the random realization of the disorder (i. e. the graph, the couplings, the field — if
any —, and so on).

These two levels of populations actually reflect the two-level hierarchy of
the 1RSB solution and correspond to two different averages to be performed in
this approach: a first average Eα over the states, which corresponds to the average
over P[η]

Eα ↔ Eη (4.63)

and a second average EG,J over the disorder, which corresponds to the average
over P [P]

EG,J ↔ EP (4.64)



4.5 Beyond the RS solution 107

Code 4.2 1RSB Population Dynamics Algorithm (T > 0)

1: for i = 1, . . . ,N do . The “outer” population
2: for α = 1, . . . ,M do . The “inner” population
3: Initialize η

(α)
i (t = 0) . We use a random initialization

4: end for
5: end for
6: for t = 1, . . . , tmax do
7: for i = 1, . . . ,N do
8: Draw an integer di from the degree distribution Pd
9: Draw di − 1 integers {k} uniformly in the range [1,N ]

10: Draw di − 1 couplings {Jk} from the coupling distribution PJ
11: for α = 1, . . . , rM do
12: Draw di − 1 integers {αk} uniformly in the range [1,M]

13: η
(α)
i (temp)← F [{η(αk)

k (t− 1)}, {Jk}]
14: wα ←

(
Zk[{η(αk)

k (t− 1)}, {Jk}]
)x

. Needed for the reweigh
15: end for
16: Reweigh the i-th inner population according to {wα}:
17: {η(α)

i (t)}α=1,...,M ← {η(α)
i (temp)}α=1,...,rM

18: end for
19: end for
20: return {η(α)

i (tmax)}

with the Parisi parameter x playing the role of modifying the weight of each state
— namely of reweighing them — in order to get access to the complexity Σβ and
eventually to its equilibrium value x∗.

The numerical implementation of the 1RSB PDA is sketched in the pseu-
docode 4.2. After having randomly initialized the population of N subpopulations
ofM cavity messages each, each subpopulation Pi is iteratively updated by choos-
ing di − 1 “neighbour” subpopulations {Pk} and di − 1 couplings {Jk}. The new
cavity message η is then computed via the RS BP equations by picking at random
an incoming message from each of the di − 1 previously chosen subpopulations.
Notice, indeed, that the “incoming” Pk’s and the related Jk’s are chosen just once
for each subpopulation Pi (and each time step t), since they refer to a well defined
node of the auxiliary model.

We do not compute exactlyM new cavity messages for each subpopulation,
but rM with r > 1. This redundancy is crucial for the reweigh according to the
Gibbs weight of the states, whose numerical implementation is outlined in the
pseudocode 4.3, and to avoid “twins” in the updated subpopulation. Each of the
(temporary) rM cavity marginals η

(α)
i just computed has a weight wα equal to its

normalization constant Zi→j to the power x:

wα =
(
Zk[{η(αk)

k (t− 1)}, {Jk}]
)x (4.65)

Hence, in order to reweigh them, we normalize the weights, pα ≡ wα/ ∑rM
α′=1 wα′ ,

and then we chooseM cavity messages out of them proportionally to pα, e. g. by
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Code 4.3 Reweigh in the 1RSB Population Dynamics Algorithm (T > 0)

1: for α = 1, . . . , rM do
2: pα ≡ wα/ ∑rM

α′=1 wα′ . Just a normalization of the weights
3: end for
4: for α = 1, . . . ,M do
5: Draw an integer s in the range [1, rM] according to probabilities {ps}
6: η

(α)
i (t)← η

(s)
i (temp)

7: end for
8: return {η(α)

i (t)}α=1,...,M

uniformly sampling from the cumulative distribution of the weights. These M
cavity messages finally update the i-th population at the time step t.

In order to have a proper reweighing, r should go to infinity together withM
and N . However, we dinamically choose r according to the statistical significance
of the cavity messages computed up to that point, and the typical values of r
chosen in this way are in the range [2, 5].

Once reached the fixed point P∗[P∗] over both the levels of population, physical
observables can be computed eventually computed, following the same stochastic
approach of the RS PDA. For example, the replicated free energy density φβ can
be evaluated via the double average over the populations, giving for the C-RRG
ensemble:

φβ(x) = − 1
βx

EP

[
ln Eη [Z x

i ]
]
+

C
2βx

EP

[
ln Eη [Z x

ij]
]

(4.66)

Then, also the free energy density can be evaluated, recalling Eq. (4.54):

fβ(x) = − 1
β

EP

[
Eη [Z x

i lnZi]

Eη [Z x
i ]

]
+

C
2β

EP

[
Eη [Z x

ij lnZij]

Eη [Z x
ij]

]
(4.67)

whose equilibrium value is given by setting x = x∗. Finally, when knowing φβ(x)
and fβ(x), the whole curve of the complexity Σβ(x) for x ∈ [0, 1] can be obtained,
Eq. (4.55):

Σβ(x) = βx
[

fβ(x)− φβ(x)
]

(4.68)

Furthermore, the two-level hierarchy of populations yields two different values
of the overlap q. Indeed, we have an inner overlap q1, related to the similarity of
local magnetizations inside each state:

q1 = EP

[
Eη [Z x

i (m
2
i,x + m2

i,y)]

Eη [Z x
i ]

]
(4.69)

and an outer overlap q0, describing the similarity of magnetizations between
different states:

q0 = EP

[(
Eη [Z x

i mi,x]

Eη [Z x
i ]

)2
]
+ EP

[(
Eη [Z x

i mi,y]

Eη [Z x
i ]

)2]
(4.70)
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From their definition, it is easy to show that q1 is always equal to or larger than
q0. In particular, the equality holds only if the 1RSB algorithm gives back the RS
solution, namely no RSB has occurred. Notice that the two overlaps q1 and q0 are
analogous to those defined within the 1RSB ansatz for fully connected models
(Chapter 2 and Refs. [Par79a, Par80b]). We will use them to approximate the true
order parameter q(x) — which is supposed to be continuos, so requiring a fRSB
ansatz, not yet developed for sparse models — in the 1RSB scheme.

Before going on with the study of the Q-state clock model within the 1RSB
framework, we firstly check our numerical implementation of the 1RSB PDA, by
solving the spin glass Ising model (namely we set Q = 2) with unbiased bimodal
couplings Jij = ±1 on the C = 6 RRG ensemble. The corresponding results are
then compared with the ones provided in Ref. [Méz01], finding a remarkable
agreement.

4.5.3 1RSB solution of the Q-state clock model

The 1RSB ansatz has been widely exploited so far on diluted models, from p-spin
models [Méz03b] to random k-SAT problems [Mon04], from random colouring
problems [Krz04, Zde07] to Potts models [Krz08], just for citing a few. In these
models — at least in a certain range for their parameters — the 1RSB solution turns
out to be stable toward further steps of RSB, namely it is not just an approximation
of a fRSB solution, but actually the exact one.

This typically occurs when dealing with many-body interactions — e. g. p-spin
models or k-SAT problems — or when discrete spins take on more than two values
— as it occurs for Potts models and colouring problems. In particular, it is the case
for a many-body version of the model we are studying, namely the Q-state clock
model with 4-spin interactions [Mar16], whose dynamical transition can be studied
by taking x∗ = 1 for the 1RSB Parisi parameter, so highly simplifying the related
BP equations [Méz09]. At variance, the choice x = 0 avoids the reweigh, making
1RSB BP equations reduce to the RS ones.

The main goal we want to reach through the study of the 1RSB solution is the
check of the universality class of the Q-state clock model when varying Q. In the
fully connected case, it is enough an expansion of the Parisi order parameter q(x)
close to the critical point, i. e. at at the reduced temperature τ ≡ (Tc − T)/Tc � 1,
where it is well approximated by a linear function q(x) = ax for x < bτ and a
constant function q(x) = abτ for x > bτ. The universality class is then identified
by these two numbers a and b. Nobre and Sherrington used exactly this approach
to show that for Q > 5 the universality class of the clock model is the same of the
XY model [Nob86].

Unfortunately, for sparse models with a continuous transition, it is not feasible
to expand the Parisi function very close to the critical point, because in this case
the replicated free energy φβ(x) has a too mild dependence on x:

φβ(x)− φβ(0) ∝ τ , τ � 1 (4.71)

and hence a numerical estimation of φβ(x) would be too noisy when very close to
the critical point. For this reason, we choose τ = 1/2, so computing the replicated
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free energy density, the free energy density, the complexity and the two overlaps
in the middle of the spin glass phase.

We focus on values of Q from 2 to 8, apart from the special case Q = 3, that we
already know to be characterized by a dynamic phase transition instead of a static
one, hence being 1RSB stable. Since 1RSB PDA requires a storage of N ×M cavity
marginals — each one of which contains Q values — the optimal values for N and
M have to be chosen carefully. We observe that, if using the reweigh procedure
previously exposed, the complexity Σβ(x) suffers larger finite size effects in N
than inM, so we opt for an unbalanced choice:

N = 262 144 , M = 512 (4.72)

However, different algorithms for the reweigh would in general yield different
finite-size effects in N and M [Méz01], so the necessity of taking N � M is
not a general feature. Then, the reweighing factor r is dynamically chosen in the
range [2, 10] in order to avoid “twins” in the populations and hence reduce their
statistical significance.

Resulting complexities Σβ(x) for β = 2βc are plotted in Figure 4.9 for all the
values of Q analyzed. The x and y ranges are the same for each panel, so to allow
a direct comparison between the different values of Q. Large errors are due to the
fact that we are measuring a very small complexity, being of order 10−4. Together
with Σβ(x), in each panel we also report the quadratic function used for estimating
the value of the Parisi parameter x∗ where complexity vanishes. The value of x∗

corresponding to each choice of Q is reported in Table 4.5.
In the same table we also report the values of the two overlaps q0 and q1 at

x = x∗, while the entire curves q0(x) and q1(x) are plotted in Figure 4.10. In this
case error bars given by statistical fluctuations are by far smaller than the symbol
size, and hence the uncertainties reported in Table 4.5 are completely due to the
error in the location of x∗. We notice that both overlaps for Q = 2 and Q = 4
coincide, due to the fact that the 4-state clock model is nothing but a “double”
Ising, as already explained above. More remarkably, also the data for Q = 7 and
Q = 8 already coincide, suggesting a very strong convergence of the clock model
toward the XY model also in the 1RSB ansatz, after a short transient for Q = 5 and
Q = 6.

A direct comparison with the corresponding fully connected results can be
done only for Q = 2, namely the SK model. At the reduced temperature τ = 1/2,

Table 4.5. 1RSB parameters of the Q-state clock model with unbiased bimodal couplings
(p = 1/2) at the reduced temperature τ = 1/2 on the C = 3 RRG ensemble.

Q x∗ q0 q1

2 0.45(1) 0.497(4) 0.748(1)
4 0.47(2) 0.506(9) 0.750(2)
5 0.48(1) 0.427(5) 0.700(1)
6 0.51(3) 0.499(9) 0.685(3)
7 0.47(2) 0.447(8) 0.666(2)
8 0.46(2) 0.449(7) 0.664(2)
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Figure 4.9. Plot of the complexity Σβ(x) for the Q-state clock model with unbiased bimodal
couplings (p = 1/2) at the reduced temperature τ = 1/2 on the C = 3 RRG ensemble.
Plot ranges are the same for all panels, allowing the comparison between the different
values of Q. Green dashed lines correspond to the fitting quadratic curve used for the
estimation of the Parisi parameter x∗ such that Σβ(x∗) = 0.

the 1RSB solution returns the following parameters [Par80b]:

x∗ ' 0.28 , q0(x∗) ' 0.213 , q1(x∗) ' 0.619

which are rather different from the ones listed in Table 4.5. So the 1RSB solution in
the sparse case is quite far from the one in the fully connected case. Nonetheless,
similarly to what has been observed on the fully connected topology by Nobre and
Sherrington [Nob86], also in the sparse case the 1RSB parameters vary little for
Q > 5, being compatible with Q-independent values within the error bars. Only
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clock model with unbiased bimodal couplings (p = 1/2) at the reduced temperature
τ = 1/2 on the C = 3 RRG ensemble. Please notice the different ranges on the y axis.
Error bars are always smaller than the symbol size.

the Q = 6 case shows a peculiar trend, maybe due to some reminiscence of the
Q = 3 case.

So we can finally conclude that the very fast convergence of the Q-state clock
model toward the XY model is actually preserved even deeply in the RSB region
when taking into account the breaking into many states, providing the same values
for the 1RSB parameters x∗, q0 and q1 and hence presumably the same universality
class of the XY model already from Q = 8 — willing to have a precautionary
attitude.

Similar results have been also obtained in finite dimension, where the Q-state
clock model on a d = 3 cubic lattice has been studied by means of the Migdal -
Kadanoff renormalization group approximation [Ilk14]: Q = 2 and Q = 4 have the
same critical exponents, Q = 3 has a peculiar behaviour and finally Q > 5 behaves
like the XY model, providing the same critical exponents.



Part III

The XY model in a field





Chapter 5

The random field XY model

At this point, it is clear that the behaviour of vector spin glasses is very different
from the one of scalar spin glasses, especially the Ising ones. This difference is
particularly evident in the very low-temperature and weak-disorder region, where
the possibility for continuous models to exhibit small fluctuations and hence to
easily adapt along several directions is not present for discrete models. As a direct
consequence of this, we found that smaller quantities of disorder are enough to
break the replica symmetry with respect to the scalar case, and the smaller T, the
closer such threshold to the pure ferromagnet. In this sense, continuous models
are more glassy than discrete models.

In this Chapter, we change the point of view used so far, inserting the quenched
disorder no longer via the couplings, but via an external field that randomly
varies from site to site. The resulting model, namely the random field XY model,
is again studied on diluted graphs via the BP approach, then computing the
transition line in the field versus temperature plane between the disordered high-
temperature phase and the long-range ordered low-temperature phase. Even
though the analogous model with scalar spins, i. e. the random field Ising model,
has been proved to always provide a RS stable solution via a rigorous analytic
argument, the same does not forbid — at least in principle — continuous-variable
models to exhibit RSB solutions. To this aim, the low-temperature – low-field
regime for the random field XY model is carefully analyzed, eventually finding
remarkable results about the critical properties of this model, especially in the very
low-temperature limit.

5.1 From random couplings to random fields

In order to better characterize the critical properties of continuous models in
presence of quenched disorder, we change the point of view used so far. Indeed,
in previous chapters the quenched disorder has been introduced by acting on
the interaction between nearest-neighbour variables, focusing in particular on the
bimodal distribution PJ and on the gauge glass distribution Pω.

Now, we use a ferromagnetic exchange coupling J > 0 for each edge of the
underlying graph and then we insert a random quenched external field acting
on each site. In this way, we can refer to our model as the random field XY model,
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described by the following Hamiltonian:

H[{θ}] = −J ∑
(i,j)

cos (θi − θj)−∑
i

Hi cos (θi − φi) (5.1)

with Hi and φi labeling respectively the field strength and the field direction on
each site:

Hi = Hi eiφi , φi ∈ [0, 2π) (5.2)

In order to fully exploit the continuous symmetry possessed by the XY model,
the field should not possess a unique orientation φi = φ for all the sites, with
the strength Hi e. g. Gaussian distributed. Indeed, this choice would imply a
too strong anisotropy, making the XY model behaviour too close to the Ising one.
Instead, it is the direction of the field that has to be randomly chosen for each site.
Then, once the field direction is random, its strength can be taken constant without
significantly changing the physics, since gauge invariance holds [Nis01]. In this
way, the more pronounced glassy behaviour of vector spin glasses with respect to
scalar ones should be the most evident possible.

The need of a field which must possess a direction randomly changing from
site to site in order to recover some peculiar features of the continuous symmetry
— while random magnitude is not essential in this sense — has been firstly pointed
out by Sharma and Young [Sha10], referring to fully connected vector spin glasses
in a field. We will deeply investigate the analogous scenario for the XY model on
diluted graphs in Chapter 6, taking into account different probability distributions
for the field direction.

So we eventually set the field strength to be equal to H for all sites, obtaining
the following Hamiltonian for the random field XY model:

H[{θ}] = −J ∑
(i,j)

cos (θi − θj)− H ∑
i

cos (θi − φi) (5.3)

with φi’s randomly drawn from the uniform probability distribution over the unit
circle:

Pφ(φi) =
1

2π
, φi ∈ [0, 2π) (5.4)

in order to make the most random possible the field arrangement on the system.
As usual, we can now write down the corresponding BP equations and then

solve them, so characterizing the behaviour of this model on sparse random graphs.
However, before going on along this direction, let us briefly remind some key
results on the random field Ising model, so to later make a comparison with our
model.

5.2 A brief overview of the random field Ising model

The Random Field Ising Model (RFIM) maybe represents the simplest way to
introduce some disorder in a purely ferromagnetic system, so to simulate the
presence of impurities within an ordered substrate. Initially introduced by Larkin
in order to model the pinning of vortices in superconductors [Lar70], then it
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has been exploited in several and apparently unrelated fields, such as diluted
antiferromagnets in a homogeneous external field [Fis79], binary liquids in porous
media [dGen84, Vin06], strongly correlated electronic systems [Éfr75, Kir94, Dag05],
hysteresis and avalanches [Set93], opinion dynamics and social interactions [Gal97,
Mic05], just listing a few applications.

Unfortunately, despite its simplicity, a full understanding of its static and
dynamical properties is still lacking. In finite dimension, e. g., a few points have
been finally clarified only after a long debate. Among them, the existence of
a long-range order for d > 2 [Imr75, Bri87], and the settlement of its upper
critical dimension du

c to 6, as firstly claimed by the famous dimensional reduction
argument [Par79c].

However, for a long time it has not been clear if below d = 6 — and in particular
in the d = 3 case — a spin glass phase occurs inbetween the paramagnetic and
the ferromagnetic phases. Large m-expansion [Méz90, Méz92, Méz94] as well as
perturbative [Dom95, Bré98] and nonperturbative [Par92] field theory approaches
seem to validate the presence of this RSB phase, while no evidences of it have been
found in numerical simulations [New96, Mid02, Par99]. Moreover, no hints come
from the fully connected case — where spin glass phase does not occur [Sch77] —
as well as from the sparse case — where some works claim its existence [Sha86,
Bru86, dAlm87, Pas02], other do not [Tho86a, Tho86b, Has05] and further ones
just remain inconclusive [Ble98, Now01], though providing some bounds for its
location.

A full point has been finally set only quite recently by Krzakala, Ricci-Tersenghi
and Zdeborová [Krz10], which showed that the spin glass susceptibility χSG

χSG ≡
β2

N ∑
i,j

(
〈σiσj〉c

)2
(5.5)

is always upper bounded by the ferromagnetic susceptibility χF

χF ≡
β

N ∑
i,j
〈σiσj〉c (5.6)

for any topology, any dimension of the lattice and any arrangement of the external
field. This automatically implies that at thermal equilibrium no spin glass phase can
actually take place in the RFIM out of those points where χF itself diverges. Slightly
later, this result has been extended also to the Ginzburg-Landau model [Krz11].

The key point of their argument is the demonstration of the positive semidefi-
niteness of the two-point connected correlation functions for scalar spins:

〈σiσj〉c ≡ 〈σiσj〉 − 〈σi〉 〈σj〉 > 0 (5.7)

provided all the couplings are nonnegative, where 〈·〉 refers as usual to the thermal
average. This is nothing but a special case of the well known Fortuin, Kasteleyn
and Ginibre inequality [For71].

Unfortunately, the previous argument is valid only for scalar spins, so that
nothing can be inferred about the RS stability in vector spins models, which could
at variance exploit transverse fluctuations to yield negative connected correlation
functions even in presence of positive couplings.
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5.3 Back to the XY model

Let us now come back to the random field XY model, finally analyzing its properties
on sparse random graphs. To this aim, we can as usual exploit the BP algorithm in
the RS ansatz, whose self-consistency equations on a given instance read:

ηi→j(θi) =
1
Zi→j

e βH cos (θi−φi) ∏
k∈∂i\j

∫
dθk e βJ cos (θi−θk) ηk→i(θk) (5.8)

while the disorder-averaged description can be again attained via the RS PDA.
Two extremal behaviours for the solutions of these equations can be suddenly

analyzed. Indeed, in the high-field limit, each marginal is aligned along the
direction of the local field Hi, since the messages from the neighbours become
quite negligible. Instead, in the high-temperature limit, each marginal is nearly
flat, since thermal fluctuations overcome the ordering effect due to both the local
field and the couplings with the neighbours. These two extremal cases, as well
as the intermediate ones, belong to the high-H – high-T region that is said to be
paramagnetic.

5.3.1 The paramagnetic phase

Unfortunately, it is clear that the paramagnetic solution is not the uniform one over
the unit circle — unless we are exactly on the H = 0 axis — and hence it is not
possible to exploit a Fourier expansion as we did in Chapter 3 in order to detect
the instability line of this solution. So the BP equations (5.8) have to be solved
numerically also in this region.

The numerical tools to accomplish this task have been largely described in Chap-
ter 3. In particular, the PDA allows us to find the BP fixed-point probability
distribution P∗η over the cavity messages, while via the SuscProp algorithm we can
check its stability. Again, during numerical simulations, the [0, 2π) interval has to
be discretized; by exploiting the results obtained in Chapter 4, we can efficiently
approximate the XY model via a Q = 64-state clock model, committing a negligible
error.

The resulting instability line for the paramagnetic solution is reported in Fig-
ure 5.1 for the C = 3 RRG case. The following values are the two corresponding
endpoints, respectively on the zero-temperature axis and on the zero-field axis:

Tc(H = 0)/J = 0.863(1) , Hc(T = 0)/J = 1.058(2)

where the value given here for the zero-field critical temperature is in agreement
with its analytic expression for a pure ferromagnet, (C− 1)I1(βc J)/I0(βc J) = 1,
found in Chapter 3. In addition, a quite unexpected singularity point (which we
refer to as ‘nd’, namely ‘nondifferentiability’) for such instability line has been
found close to the zero-temperature axis, with exact location:

Tnd/J = 0.026(2) , Hnd/J = 0.880(1)

It could be the signature of a bifurcation of the critical line: a multicritical point
may hence be present, with further critical lines departing from it. So the picture
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Figure 5.1. Instability line of the paramagnetic solution in the random field XY model,
computed on the C = 3 RRG ensemble. A nondifferentiability (nd) point can be clearly
seen close to the T = 0 axis, which may represent a multicritical point with further
instability lines departing from it.

of the low-T – low-H region could not be so plain as it happens for the RFIM,
where the only ferromagnetic phase takes place at the equilibrium [Krz10].

In Figure 5.2 we then report several site marginals ηi(θi)’s computed by sam-
pling C = 3 cavity marginals from the fixed-point probability distribution P∗η
— together with the corresponding perturbations — for some points along the
critical line computed above. It is evident the growing polarization of marginals
around the local direction of the field when moving toward the T = 0 axis —
and hence toward larger values of H —, while they broaden when increasing the
temperature and lowering the field strength. This is a quite general feature, that
can be observed e. g. along the RS instability line of the spin glass Ising model
in a uniform field [Par14], where however a unique parameter ui — instead of a
probability distribution ηi(θi) — is enough to describe each site marginal.

It is also interesting to notice that when the temperature is low enough, most of
perturbations are well localized around the peaks of the corresponding marginals,
linearly crossing the zero axis almost in correspondence of such peaks. This is a
signature of perturbations that are transverse with respect to the local external field,
since they would just shift the peaks of the marginals almost without modifying
their shape. At variance, a longitudinal perturbation would fatten or shrink the
peak without shifting it, and hence it should exhibit a quadratic shape in corre-
spondence of the peak of the related marginal — as actually occurring e. g. for
the light-orange one at T/J = 0.1. In the low-temperature limit, indeed, purely
transverse or longitudinal perturbations are the most energetically favourable ones
— depending on the local effective field — and hence they can be easily observed in
the joint probability distribution P∗[(η, δη)]. Instead, when temperature increases,
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Figure 5.2. Several full site marginals (left panels) and the corresponding perturbations
(right panels) for some points along the critical line between the paramagnetic phase
and the low-T – low-H region for the random field XY model on the C = 3 RRG
ensemble.
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perturbations become quite extended over the [0, 2π) interval, with no direct rela-
tion between the peaks of the related marginals and the points where they — or
their first derivatives — vanish, hence providing no direct interpretation as purely
transverse or longitudinal perturbations.

The transverse and longitudinal behaviour of perturbations will be lengthy
discussed in Chapter 6, where the spin glass XY model in an external field will
be analyzed. Notice that the low-temperature transverse perturbations mentioned
above are not coherent with each other, due to the presence of the randomly
oriented external field, so no global transverse symmetry is going to be broken
when trespassing the critical line of Figure 5.1. At variance, for the spin glass XY
model in a homogeneous external field, a breaking of the global transverse symmetry
with respect to field direction will take place, at the same time implying a breaking
of the replica symmetry.

5.3.2 The low-temperature – low-field region

The possible nontriviality of the low-T – low-H region is also suggested by a second
observation, already grasped in Section 5.2. Indeed, if the RFIM has nonnegative
connected correlation functions, 〈σiσj〉c > 0, it is no longer true for the random
field XY model. This claim can be easily understood considering the following
situation, also sketched in Figure 5.3. Suppose we have a spin σi oriented along
the direction marked by a θi slightly larger than π/2. Then, let its neighbour σj
be oriented along the direction given by a θj slightly smaller than 3π/2. This is
an equilibrium configuration for σi and σj for suitable values of the field intensity
H/J and the temperature T/J and for a suitable orientation of the two fields Hi
and Hj. Then, if we perturb the orientation of the first spin by a small angle δθi < 0,
then the positive coupling Jij makes the second spin rotate as well by a small angle
δθj < 0. However, the corresponding spin fluctuations δσi and δσj are oriented
almost the opposite, so eventually producing a negative connected correlation
between the two spins:

〈σi · σj〉c ≡ 〈δσi · δσj〉 < 0 (5.9)

This is a direct consequence of the continuous nature of vector spins, that are
allowed not only to flip along a certain direction, but more easily to rotate by a

σi

δσi

σj

δσj

Jij > 0

Figure 5.3. Sketch of a configuration of two nearest-neighbour spins that yields a negative
connected correlation between them. Indeed, a tiny clockwise rotation of σi produces
a corresponding tiny clockwise rotation of σj, provided the coupling Jij between them
is positive. The corresponding spin fluctuations are then almost oppositely oriented,
yielding a negative scalar product between them.
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Figure 5.4. Instability parameter λBP as a function of the field strength H for several values
of the temperature T in the random field XY model on the C = 3 RRG ensemble. The
presence of a RSB phase in a small range of field values centered on H ' 0.9 for very
low values of T can be clearly detected.

generic angle. Indeed, the generic connected correlation function actually becomes
a m×m matrix for m-component vector models:

〈σi,µσj,ν〉c ≡ 〈δσi,µδσj,ν〉 , µ, ν = 1, . . . , m (5.10)

with the m corresponding eigenvalues that can be both positive or negative as well.
This observation implies that the argument of Ref. [Krz10] is no longer valid for
vector spins. Hence, the presence of a spin glass phase can not be ruled out for the
random field XY model.

So let us now solve the BP equations in the low-T – low-H region, keeping in
mind the two evidences found before: a candidate multicritical point (Tnd, Hnd)
and the possible presence of a spin glass phase, likely for T 6 Tnd.

From Chapter 3 we already expect a pure ferromagnetic phase on the H = 0
axis for T < Tc(H = 0), and the same should hold in the low-temperature region
where H � T. This is confirmed by the analysis of the BP fixed point P∗[η]
reached via the PDA, which shows a global magnetization m substantially larger
than zero.

Instead, when H becomes much larger than T, it is not obvious if the ferromag-
netic phase is still stable, though it is so for the RFIM. In particular, we have to
be very careful in the region close to the T = 0 axis suggested by the location of
the nondifferentiability point found before. So we fix the temperature T < Tnd
and study the stability parameter λBP via an annealing protocol in H via SuscProp,
obtaining the curves λBP(H) in Figure 5.4 for several values of T. It is clear that
for very low values of T there is a whole range of values of H for which the RS BP
fixed point is unstable, strongly suggesting the presence of a RSB phase. However,
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this spin glass phase is very tiny, and shrinks to zero as soon as the temperature
becomes larger than Tnd.

The evaluation of the curves λBP(H) in the very low-temperature limit, even-
tually down to the T = 0 axis, is a good opportunity to further check the zero-
temperature SuscProp algorithms developed in Chapter 3 for the XY model and
in Chapter 4 for the Q-state clock model. Indeed, when comparing the evolu-
tion of perturbations in the two cases, we already highlighted as the underlying
mechanism is different, according to the continuous or discrete nature of spin
variables. It is worth reminding it here: in the former case, no perturbation is
identically equal to zero, while it is the global norm ‖δh‖ that grows up or shrinks
according to the stability of the RS fixed point P∗[h]; in the latter case, at variance,
perturbations divide in two well defined groups, the identically vanishing ones
and the ones different from zero, with the global norm of the latter that stays
approximately constant under BP iterations, while it is their fraction that decays
— or not — according to the RS stability. Finally, in order to mimic the evolution
of perturbations of the zero-temperature XY model via its discrete approximation
— the Q-state clock model —, we realized that the way out was to evaluate the
real-valued maximizers in the zero-temperature BP equations by interpolating
among the discrete directions allowed by the Q-state clock model.

The zero-temperature curve λBP(H) in Figure 5.4 has been computed just in
this way, and it perfectly matches with the extrapolation over the finite-temperature
curves in the T → 0 limit. Conversely, if we had evaluated the maximizers just
over the discrete set of directions, the corresponding curve λBP(H) at T = 0 would
not have matched with the previous extrapolation, wrongly providing a much
larger region of RS instability for our model.

At this point, we can actually recognize the nondifferentiability point (Tnd, Hnd)
found before as a multicritical point, where the second instability line departing
from it separates the RSB spin glass phase from the RS ferromagnetic phase. The
resulting phase diagram, restricted to the nontrivial region around the multicritical
point, is finally depicted in Figure 5.5. The two critical values of the field strength
on the zero-temperature axis are given for a C = 3 RRG by:

H(−)
c (T = 0)/J = 0.80(1) , H(+)

c (T = 0)/J = 1.058(2)

On the right side, the λBP(H) curves linearly cross the zero axis — as it typically
occurs when coming from the paramagnetic fixed point — so resulting in a precise
evaluation of H(+)

c (T = 0). At variance, on the left side, they slowly approach the
zero axis rather than crossing it, implying a more noisy evaluation of H(−)

c (T = 0).
This behaviour is due to the marginal stability of the RS ferromagnetic phase —
which will be discussed in a while — hence implying a critical slowing down
in the thermalization toward the BP fixed point during the annealing protocol
in the field strength H. The smooth behaviour of the λBP(H) curves close to the
critical point is indeed due to a not perfect thermalization in that region. Finally,
H(−)

c (T = 0) can be evaluated via a linear extrapolation over the data points in the
region H > H(−)

c (T = 0), discarding those points mostly affected by the proximity
to the critical point.
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Figure 5.5. Complete phase diagram of the random field XY model close to the zero-
temperature axis. A nontrivial structure in the low-T – low-H region is present, with a
RS ferromagnetic phase (F), an unbiased RSB spin glass phase (SG) and a magnetized
RSB mixed phase (M). All numerical values refer to the C = 3 RRG ensemble.

The presence of a spin glass phase in the random field XY model with ferro-
magnetic couplings was rather unexpected, maybe due to an improper extension
of the argument developed for the RFIM also to this model. However, we showed
that the continuous nature of vector spins allows the appearance of negative effective
couplings between the spin fluctuations around their equilibrium configuration, so
making incorrect the claim χF > χSG. On the other hand, in previous Chapters we
already realized that the XY model is more glassy than the Ising model for very
low temperatures, just due to the continuous nature of the vector spins, and now
we provide a further evidence of this strongly different behaviour.

Quite remarkably, the curve of the global magnetization m(H) at a fixed
temperature T 6 Tnd goes to zero exactly at the center of the spin glass phase,
namely in correspondence of the maximum instability of the BP fixed point. So in
principle the tiny spin glass phase occurring for the random field XY model should
be split in an unbiased spin glass phase, with m = 0, and a mixed phase, with
m > 0, exactly as done for the spin glass XY model and the spin glass clock model
in absence of a field. However, also in this case the line dividing these two RSB
phases is just an approximation, since in order to compute it we are using the RS
ansatz though in presence of the RSB: that is why this line is dashed in the phase
diagram of Figure 5.5.

Another important feature of the random field XY model is the aforementioned
marginality of the whole ferromagnetic phase, as shown by λBP ' 0 (to the best
of our numerical evidences) in Figure 5.4 at very low temperatures and for low
values of the field strength H. It could be interpreted as a signature of the survival
of the O(2) symmetry possessed by the XY model even in presence of the random
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Figure 5.6. Global magnetization of the random field XY model in the deep ferromagnetic
phase (T/J = 0.3, H/J = 0.5) during BP iterations in the PDA over the C = 3 RRG
ensemble. The fixed point is reached after few tens of iterations, hence the modulus m
reaches its stationary value and stays constant within statistical fluctuations. Instead,
due to the marginality of the XY model in this phase, the direction of the global
magnetization continues to change even at large times.

field. Indeed, when H is larger than zero, one would expect the breaking of
such symmetry; instead, it does not happen here, since the field direction is
randomly distributed on each site and hence the coupling between the global
magnetization m and the field is weak. This implies that, during BP iterations in
the PDA, the global magnetization m can rigidly rotate in the xy plane, as shown
in Figure 5.6, just due to the marginality highlighted above. As a further evidence,
the marginally stable ferromagnetic phase suddenly becomes strictly stable as soon
as too small values of Q are used, so actually suppressing the soft modes provided
by the O(2) symmetry.

A conclusive remark will finally suggest further investigations. Indeed, we
found a RSB region for the random field XY model on the RRG ensemble, and the
same would likely yield for the other classes of sparse random graphs, as well as
if taking into account other vector models with m > 3 spin components (provided
m is still finite). At variance, in the fully connected limit, any ferromagnetic model
— neither with Ising spins nor with m-dimensional vector spins — would not yield
a RSB solution, even if in presence of a random field. That is due to the fact that
the 4-spin interaction σ

(a)
i σ

(a)
j σ

(b)
i σ

(b)
j — which then couples different replicas via

the overlap qab — just comes out when averaging over the Gaussian distribution
of the exchange couplings, while the average over the Gaussian distribution of
the fields just provides a pairwise interaction σ

(a)
i σ

(b)
i — eventually leading to the

single-replica term ma, with no coupling between different replicas. It is hence clear
that the RSB occurring in our model is a direct consequence of the combined action
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of both the continuous nature of vector spins and the sparsity of the underlying
network. It would be interesting, then, to study how the RSB region shrinks
and eventually disappears when increasing enough the (average) connectivity C,
approaching the fully connected limit. In addition, the enhancement of RSB by the
joint action of continuous variables and sparse networks could suggest interesting
connections with some features of real glasses, as it will be further analyzed
in Chapter 7.



Chapter 6

The spin glass XY model in a field

As we saw in the previous Chapters, when moving from Ising spins to vector
spins, the resulting behaviour of the system can dramatically change, due to the
basic observation that in the latter case the system has more degrees of freedom
that can be excited, and in particular small fluctuations are allowed at very low
temperatures. Hence, even in presence of a very weak disorder, vector spins can
adapt more easily to several different directions, enhancing the instability toward
the RSB. The main consequence of this is a more pronounced glassiness of vector
spin glasses with respect to discrete spin glasses, as seen at the end of Chapter 3.

The scenario becomes richer when an external field is switched on, as seen
in Chapter 5 for the random field XY model with ferromagnetic couplings. The
difference with respect to the scalar case is even more striking, since we detected
a RSB phase in a tiny region of the field versus temperature plane, despite its
absence in the corresponding Ising model.

Here we perform a further step forward, considering the presence of both spin
glass couplings and an external field. The picture is now supposed to be even
more cumbersome, due to the fact that different types of continuous symmetries
can be broken, depending on the distribution of the external field, as already seen
in the fully connected case (Chapter 2).

In the vector case, indeed, randomness can involve the field strength, its
direction, or both them. We hence analyze two different kinds of external field,
homogeneous or randomly varying in direction from site to site, analytically
computing the resulting critical lines in the field versus temperature plane. Then,
we also provide a physical interpretation of such instabilities in terms of transverse
and longitudinal perturbations with respect to the local direction of the field.
Finally, we study the crossover between the two regimes when changing the degree
of randomness in the direction of the external field.

6.1 Instabilities in the fully connected case

The behaviour of vector spin glass models in a field has already been well char-
acterized in the fully connected case via the replica method. Indeed, as we saw
in Section 2.3, according to the distribution of the external field, different instabili-
ties can be detected: the Gabay - Toulouse (GT) one in presence of a homogeneous
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field and the de Almeida - Thouless (dAT) one in presence of a random field.
Here we briefly recap their features, referring to Section 2.3 — and to the original
references therein — for a more detailed discussion.

6.1.1 A homogeneous field

De Almeida and Thouless [dAlm78b] have been the first to study the effect of the
presence of an external field on a spin glass, focusing on the Ising case (m = 1).
They found that the RS solution is unstable in the low-temperature region not
only when no field is present, but even for any value of the external field, given
the temperature is low enough. In this way, the corresponding critical line of RS
instability can be detected in the (T, H) plane, which has been later named de
Almeida - Thouless (dAT) line.

The RS instability also occurs in the vector spin glass case, but the first proof
has been given in absence of a field [dAlm80, dAlm78a]. It is the works by Gabay
and Toulouse that faced this problem [Tou81, Gab81], finding that the presence
of a uniform field identifies a global direction with respect to which identify a
transverse and a longitudinal order parameter. Coming from the high-H – high-T
region, namely from the paramagnetic phase, the first instability occurs when
the transverse overlap q⊥ becomes different from zero, implying a breaking of
the inversion symmetry for the transverse components of the spins. This line has
been named Gabay - Toulouse (GT) after them. Its small-field expansion yields a
characteristic square-root behaviour:

HGT ∝ τ1/2 (6.1)

with τ ≡ (Tc − T), where Tc is the zero-field critical temperature between the
paramagnetic and the spin glass phase. Then, by further lowering T and/or H
in the RS ansatz, a second critical line can be met, where it is the longitudinal
overlap q‖ that acquires a nontrivial probability distribution. This line was initially
associated with the dAT line found in the Ising case, since also in the vector case
it was claimed to correspond to the onset of the RS instability, even showing the
same exponent for the small-field expansion:

HdAT ∝ τ3/2 (6.2)

In fact, further computations [Cra82, Gab82] showed that in the fRSB ansatz
this second line is just a crossover between a “weak” and a “strong” RSB in the
longitudinal overlap q‖, namely in its dependence on the Parisi parameter x, while
the RSB already occurs in correspondence of the GT line via a “strong” dependence
in x of q⊥.

6.1.2 A random field

The picture dramatically changes when considering a random field. Indeed,
already in the Ising case, the field strength can be independently chosen from site
to site, so considering a further source of quenched disorder inside the system. In
particular, the sign of the field is not crucial at all when couplings are both positive
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and negative, since it can be removed through a gauge transformation [Nis01].
Instead, its modulus determines the position of the instability line in the field –
temperature plane, namely the dAT line. According to the probability distribution
PH from which we draw the moduli, the dAT line moves, changing the exponent
in its small-field expansion. If a homogeneous field yields a 3/2 exponent, as well
as a Gaussian distributed field with zero mean and H2 variance [dAlm78b], when
Hi is chosen proportionally to the i-th eigenvector component corresponding to the
largest eigenvalue of the interaction matrix, then the dAT exponent increases up
to 9/2, so strongly suppressing the dAT line though without removing it [Bra82].

However, even if the value of the critical exponent changes, the nature of the RS
instability along the dAT line does not change. Indeed, randomness in the sign
or in the magnitude of the field affects only the longitudinal order parameter —
referring to the unique direction, e. g. the z axis, identified by the spins as well as
by the field — while no transverse degrees of freedom are present, whose freezing
would eventually lead to the GT critical line.

The situation remarkably changes when moving from the scalar to the vector
case, since the randomness can also involve the direction of the external field,
so enriching the picture of the possible instabilities. Indeed, if a homogeneous
field allows the breaking of the transverse symmetry, causing the GT instability,
for a randomly oriented field there is no longer a strong directional anisotropy,
so presumably causing the disappearance of the GT line. In such case, RSB
would eventually occur on the line previously corresponding to the crossover
in q‖, namely the dAT line, whose presence as a sharp transition could hence be
recovered also in the vector case.

This crucial observation has been pointed out for the first time by Sharma
and Young in 2010, still referring to the fully connected topology [Sha10]. They
explicitly recovered the small-field expansion of the dAT line performed by Gabay
and Toulouse [Gab81]1:

(
H
J

)2

' 4
m + 2

(
Tc − T

Tc

)3

(6.3)

by using a vector field whose components Hi,µ are independently Gaussian dis-
tributed. Notwithstanding the same scaling, the two results are fundamentally
different. The dAT line found by Sharma and Young by using a random field
actually corresponds to the onset of the RSB instability, but no change in spin
symmetry occurs on it. Instead, the candidate for the dAT line found by Gabay
and Toulouse by using the homogeneous field was rather a crossover in q‖, as
discussed above. So Ref. [Sha10] is the first one to recognize the need for a field
which is random in direction rather than in magnitude when looking for the dAT
line of a vector spin glass. Notice, moreover, that it has exactly the same exponent
and the same features of the dAT line in the Ising case.

Another important remark regards the zero-temperature limit. When m 6 2,
the dAT line diverges, while for m > 2 it actually touches the T = 0 axis at a finite
value of the critical field [Sha10], so getting closer to the finite dimensional case.

1Notice that here the normalization |σi|2 = m have been used. By using the unitary norm — as
we do — one gets a rescaling of both J and H, so that the zero-field transition occurs at Tc = J/m.
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6.2 The RS solution in the diluted case

Let us now move back to the diluted case. The basic Hamiltonian of the XY model
on a sparse random graph with spin glass couplings Jij’s and with an external
field Hi acting on each site reads:

H[{θ}] = −∑
(i,j)

Jij cos (θi − θj)−∑
i

Hi cos (θi − φi) (6.4)

Then, in Section 6.1 we saw that the randomness of the field for vector spin
models has to necessarily involve its direction in order to highlight the peculiarities
with respect to the scalar case, while the randomness in magnitude is not essential
in this sense. So we fix the strength of the field to H for each site, without any loss
of generality, letting the field randomness be entirely provided by the probability
distribution Pφ(φi) of the field direction φi on each site. The Hamiltonian (6.4) so
becomes:

H[{θ}] = −∑
(i,j)

Jij cos (θi − θj)− H ∑
i

cos (θi − φi) (6.5)

with the quenched couplings Jij’s distributed according to a certain PJ , e. g. the
unbiased bimodal one:

PJ(Jij) =
1
2

δ(Jij − J) +
1
2

δ(Jij + J) (6.6)

Let us rewrite here the pairwise BP equations for the XY model in presence of
an external field:

ηi→j(θi) =
1
Zi→j

e βH cos (θi−φi) ∏
k∈∂i\j

∫
dθk e βJik cos (θi−θk) ηk→i(θk) (6.7)

In the high-H – high-T region, these equations admit a paramagnetic solution,
which is however no longer given by the uniform distribution over the [0, 2π)
interval. Indeed, it depends on the direction of the local effective field given by
the external field Hi acting on site i and by the contributions coming from the
neighbours ∂i of i, exactly as seen in Chapter 5 for the random field XY model.
This does not allow us to exploit the analytic approach of an expansion around the
paramagnetic solution, as done in Chapter 3, so we have to rely only on numerical
tools.

BP equations (6.7) are hence solved via the PDA, passing to the following
distributional equation:

Pη [ηi→j] = EG,J,φ

∫ di−1

∏
k=1
Dηk→i Pη [ηk→i] δ

[
ηi→j −F [{ηk→i}, {Jik}, φi]

]
(6.8)

Notice that, as in the previous Chapters, we are actually solving these equations
via a Q-state clock model with Q = 64 states.

Since we are dealing with vector spins and hence there are several directions in
the phase space along which instabilities can evolve, the location of the instability
line of the paramagnetic solution could strongly depend on the probability distri-
bution Pφ from which field directions φi’s are drawn, as it actually occurs in the
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fully connected case. So let us firstly discuss the most efficient and reliable way to
detect the RS instability, then analyzing the features of the corresponding critical
line according to different distributions of the field direction.

6.2.1 The detection of instability lines

The stability of the BP fixed point P∗[η] can be as usual analyzed via the SuscProp
algorithm (Chapter 3), where each cavity marginal ηi→j(θi) is accompanied by a
small perturbation δηi→j(θi), which evolves according to the linearized version of
the BP equations (6.7):

δηi→j = ∑
k∈∂i\j

∣∣∣∣∣
δF [{ηk→i}, {Jik}, φi]

δηk→i

∣∣∣∣∣
η∗k→i

δηk→i (6.9)

In the PDA approach, then, we store a population of N couples (ηi, δηi) of cavity
marginals and related perturbations — with index i just referring to the population
element — and let them evolve according to the full and the linearized BP equations,
respectively. Then, we evaluate the growth rate λBP of the global norm of the
perturbations, Eq. (3.59), that we rewrite here for the reader’s convenience:

λBP ≡ lim
t→∞

1
tN

N
∑
i=1

ln ‖δη
(t)
i ‖ (6.10)

so that λBP < 0 eventually refers to a RS stable fixed point and λBP > 0 otherwise.
In Chapter 3 we exploited the SuscProp algorithm just to detect the RS instabil-

ity line between the ferromagnetic and the mixed phases, while the one between
the paramagnetic and the unbiased spin glass phases had already been computed
analytically. Unfortunately, here we have to numerically evaluate it, since no
perturbative expansion around the paramagnetic solution is available.

Due to the strong heterogeneity of perturbations, whose norms span several
orders of magnitude, the measurement of λBP have to be carefully performed.
Moreover, when approaching the critical point, the slowing down in the thermal-
ization affects λBP more than other physical observables, resulting in a difficult
determination of the critical point. So here we expose a way out of it. Let us
firstly consider the zero-field case. In order to compute the critical temperature Tc,
avoiding the critical slowing close to Tc, we can solve the BP equations at a certain
temperature using as initial condition the fixed point previously reached at a
nearby temperature. According to the decreasing or the increasing of the tempera-
ture during this protocol, we will refer to it as cooling or heating. In this way, since
the fixed point P∗[η] should not be so different for two close enough temperatures,
the critical slowing down is typically largely reduced.

Unfortunately, this approach has some disadvantages. In particular, since the
previously reached fixed point is used as initial condition for the next round of the
protocol, it may happen that the system remains stuck into a particular fixed point
even when it has already become unstable, so providing the wrong solution at that
temperature. This issue is very relevant when the “starting” fixed point is endowed
with particular symmetries, e. g. the paramagnetic solution in absence of a field or
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Figure 6.1. Stability parameter λBP(T) at zero field for the spin glass XY model on a
C = 3 RRG. The two colours respectively correspond to the two protocols, ‘cooling’
and ‘heating’, used to reach more rapidly the correct BP fixed point. The analytical
value of the zero-field critical temperature Tc is represented by the black dot.

in presence of a homogeneous field. The former case corresponds to Figure 6.1,
where the metastability of the paramagnetic solution can be well observed on
the λBP(T) curve obtained during a cooling protocol with the parameter ∆ = 0
(which will be defined in a while). In order to avoid such metastabilities, the trick
is hence to perturb the previous fixed point by a tiny amount before using it as
initial condition of the new step of the protocol. In particular, the ηi→j’s can be
perturbed component-wise by adding a random number ∆|z| with z ∼ Gauss(0, 1)
and ∆� 1.

The resulting λBP(T) curves, for both the protocols and for several values
of the perturbation parameter ∆, are reported in Figure 6.1, together with the
exact location of the zero-field critical temperature Tc, analytically computed
in Chapter 3:

(C− 1)
[

I1(βc J)
I0(βc J)

]2

= 1 (6.11)

Notice that for each temperature, we waited t = 150 time steps for the thermaliza-
tion and then we averaged λBP over the next t = 150 time steps.

First of all, we note that the metastability of the paramagnetic solution below the
critical point — due to the use of the cooling protocol — is strongly reduced when
increasing ∆, just as we guessed. Then, it is rather clear that the cooling protocol is
the best way to evaluate the position of the critical point — whatever the value of ∆,
provided it is small —, via a linear extrapolation from the λBP < 0 data points. On
the contrary, the heating protocol is quite useless for this purpose, mainly due to
two issues: i) a very slow power-law growth of the stability parameter λBP below
the critical point, that induces a large statistical error on the estimate of Tc, and



6.2 The RS solution in the diluted case 133

-0.03

-0.02

-0.01

0

0.01

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

H = 0

-8

-7

-6

-5
-4 -3.5 -3 -2.5

λ
BP

T/J

ln
λ

BP

ln τ

Figure 6.2. Stability parameter λBP(T) at zero field for the spin glass XY model on a
C = 3 RRG. All the data points have been collected in the stationary regime via
the cooling protocol at ∆ = 10−2, with the analytic prediction of λBP(T) for the
paramagnetic solution represented in the main plot by the green full line. In the inset,
instead, we evaluate the α exponent of the power-law behaviour λBP ∝ τα below the
critical point, obtaining α = 1.6(1).

ii) systematic errors given by a very slow convergence of the population toward
the paramagnetic fixed point when T is close to Tc and whatever the value of ∆,
so yielding a value of λBP smaller than expected. In summary, if on one hand a
random perturbation is useful for leaving the trivial fixed point, it becomes useless
when trying to reach it again from a nontrivial fixed point.

From now on we can safely exploit the cooling protocol with e. g. ∆ = 10−2,
reporting in Figure 6.2 the corresponding data for λBP in the stationary regime
(hence some not thermalized points are missing, though being irrelevant for the
determination of Tc). For T > Tc they are in agreement with the analytic prediction
of λBP(T) for the paramagnetic solution, namely the logarithm of the left hand
side of Eq. (6.11). Instead for T < Tc they follow the aforementioned power law,
with an exponent that has been computed in the inset of Figure 6.2:

λBP ∝ τα , α = 1.6(1) (6.12)

6.2.2 The case of a homogeneous field

In order to check if a GT-like instability is present also in the sparse case, we
choose a homogeneous field over the whole system, namely

Pφ(φi) = δ(φi − φ) (6.13)

with φ = 0 without any loss of generality, and then we solve the BP equations (6.7)
via the PDA. Also in this case it turns out to be useful to exploit the cooling protocol
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for several values of the connectivity C. The inset shows evidences for the typical
small-field behaviour Hc ∝ τ1/2 of the GT instability line.

(we set ∆ = 10−2), since the paramagnetic solution still suffers from metastability,
as it can be appreciated in Figure 6.3, where the resulting curve λBP(T) is plotted
for several values of the field strength H. The data slightly below the critical points
are clearly not thermalized within the tmax = 300 iterations we chose, but anyway
they do not enter into the computation of the critical temperature when varying H.
Both panels — and mainly the right one — clearly show how the main effect of
the increasing of the intensity H of the uniform field is that of shifting leftward
the entire curve λBP(T), so that the same instability parameter is attained at lower
temperatures for larger values of H.

We see in Figure 6.3 that the critical temperature as a function of H can be again
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Table 6.1. The zero-field critical temperature Tc for the spin glass XY model with (equally
distributed) bimodal couplings Jij = ±J on a RRG for different values of the connec-
tivity C. If choosing J = 1/

√
C− 1, Tc approaches the fully connected value 1/2 in

the large-C limit.

C Tc/J Tc

3 0.4859 0.3436
4 0.7012 0.4048
6 0.9977 0.4462
8 1.2234 0.4624
12 1.5805 0.4765
16 1.8704 0.4829
20 2.1211 0.4866

computed via a linear fit over the T > Tc region, so obtaining the entire curve of RS
instability of the paramagnetic solution on a C = 3 RRG. It is reported in purple
in Figure 6.4, together with the analogous curves Hc(T) for several other values
of the connectivity C of the RRG. In order to make the instability curves in the
(T, H) plane to collapse onto each other in the large-C limit, so to recover the fully
connected behaviour, we have to properly rescale the strength J of the couplings.
Indeed, from Table 6.1 we can see how the zero-field critical temperature Tc/J
diverges with C; then, if setting J = 1/

√
C− 1, Tc eventually approaches the fully

connected prediction Tc = 1/m = 1/2 in the C → ∞ limit.
All the instability curves Hc(T) seem to have the same small-field behaviour,

compatible with the GT scaling HGT ∝ τ1/2. Indeed, in the inset of Figure 6.4 we
plotted the same curves in the (T, H2) plane: a clear linear behaviour in τ can
be seen in the region of very small fields, namely the ones where the small-field
expansion HGT ∝ τ1/2 actually holds. Then, such scaling is soon lost for larger
values of H, since the Hc(T) curves change their concavity.

Finally, being λBP larger than zero in the whole region below the critical line
Hc(T) for all the analyzed values of C, we can confirm the occurrence of the RSB
once trespassed the GT line also in the diluted case.

6.2.3 The case of a randomly oriented field

Once accomplished the first task, namely the check of the occurrence of a GT-
like instability also in the diluted case and the correspondent breaking of replica
symmetry, we now want to study the onset of the dAT instability in our model.
To this aim, we exploit the suggestion of Ref. [Sha10], considering the case of a
randomly oriented field, with each direction φi uniformly drawn from the [0, 2π)
interval:

Pφ(φi) = Unif
(
[0, 2π)

)
(6.14)

As discussed in Section 6.1, due to the randomness in the direction of the field,
the global order parameters q‖ and q⊥ can not be any longer defined, due to the
absence of the directional anisotropy earlier provided by the uniform field. In fact,



136 6. The spin glass XY model in a field

-0.12

-0.09

-0.06

-0.03

0

0.03

0.06

0.25 0.3 0.35 0.4 0.45 0.5 0.55

Random field

H/J = 0
H/J = 0.02
H/J = 0.04
H/J = 0.06

H/J = 0.08
H/J = 0.10
H/J = 0.15
H/J = 0.20

λ
BP

T/J
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singularity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5

Random field
C = 3
C = 4
C = 6
C = 8

C = 12
C = 16
C = 20

0

0.05

0.1

0.15

0.2

0.25 0.3 0.35 0.4 0.45 0.5H

T

H
2/

3

T

Figure 6.6. Critical lines Hc(T) in a randomly oriented field for the spin glass XY model
on a C-RRG for several values of the connectivity C. The inset shows evidences for the
typical small-field behaviour Hc ∝ τ3/2 of the dAT instability line.

longitudinal and transverse instabilities could be eventually defined only locally,
as we will see in Section 6.3.

As in the case of a uniform field, we solve the BP equations (6.7) via the PDA,
by exploiting the cooling protocol with ∆ = 10−2. The stability parameter λBP(T)
for several intensities H of the field is reported in Figure 6.5.

First of all, we notice that the previous instability line has actually vanished,
namely no trace of a GT-like transition has left. Then, contrarily to the uniform-
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field case, the λBP(T) curve mainly shifts downward when increasing H, at the
same time smoothing away the zero-field singularity. Indeed, remarkable changes
occur in the stability parameter λBP even for very small values of the external
field H — while it was not so for the uniform-field case —, as it can be seen by
comparing Figure 6.5 with the left panel of Figure 6.3.

The computation of the whole instability curve Hc(T) in the (T, H) plane
proceeds as before, with the result for the C = 3 RRG represented by the purple
curve in Figure 6.6. Again, a direct comparison between the Hc(T) curves for
several values of C is provided, with the fully connected limit easily recognizable
from the remarkable superposition of the instability curves for the largest values
of C analyzed. The dAT-like behaviour Hc ∝ τ3/2 can be eventually appreciated
for all of them, with the inset showing a linear behaviour for a rather wide range
of field values, when plotting the Hc(T) curves in the (T, H2/3) plane. Indeed, at
variance with respect to the previous case, they do not change their concavity at
higher values of H.

6.3 Different ways of breaking the replica symmetry

At this point, it is clear that several features of the GT and the dAT lines in the
fully connected case can be recovered also in the diluted case: first of all, their
occurrence according to the distribution of the direction of the external field; their
critical exponents for the small-field expansion; the corresponding breaking of
replica symmetry when trespassing them. However, the well known unphysical
prediction of diverging critical fields in the zero-temperature limit is lost when
moving from the fully connected to the diluted topology, as we would have
expected. In particular, for a C = 3 RRG we get the following values for the
endpoints of the two lines:

HGT/J = 1.06(1) , HdAT/J = 4.82(1) (6.15)

that can be evaluated by extrapolating the finite-temperature data or directly at zero
temperature by exploiting the suitable algorithm defined in the previous Chapters.
Finally, the direct comparison between the two full curves can be appreciated
in Figure 6.7.

At this point, we are interested in understanding the physical meaning of these
two kinds of instabilities, both leading to the RSB. From the analysis in the fully
connected case, we already know that the GT line corresponds to a breaking of the
inversion symmetry for the spins in the transverse direction with respect to the
external field, with a corresponding freezing of the transverse degrees of freedom.
Instead, the dAT line does not involve any breaking in the spin symmetry, due
to the presence of the randomly oriented field, but is linked to the freezing of
longitudinal degrees of freedom.

In the sparse case, the heterogeneity naturally coming out provides us a
precious tool to better characterize such instabilities. Indeed, once reached the
BP fixed point, we can perform a local analysis, looking for each spin at the
direction along which the most probable fluctuation may take place, then relating
it to the local external field. This task can be accomplished by looking at the
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Figure 6.7. Comparison of the GT and dAT critical lines for the spin glass XY model with
unbiased bimodal couplings on a C = 3 RRG.

site marginals ηi(θi)’s and their perturbations δηi(θi)’s, relying on the following
observation:

• on the GT line, the freezing of the transverse degrees of freedom should imply
that perturbations δηi’s are preferably perpendicular to the local field Hi;

• on the dAT line, the freezing of the longitudinal degrees of freedom should
show itself as a longitudinal arrangement of perturbations δηi’s with respect
to the local field Hi.

So, once reached the fixed point for the joint “cavity” population {(η, δη)}, the
joint population of site marginals and related perturbations can be computed; then,
for each element of such population, the following two local vectors can be defined:

mi ≡
∫

dθi ηi(θi)
(
cos θi, sin θi

)
(6.16a)

δmi ≡
∫

dθi δηi(θi)
(
cos θi, sin θi

)
(6.16b)

They respectively correspond to the average magnetization of the i-th site, i. e.
the direction along which the spin most probably aligns, and the perturbed
magnetization of the i-th site, i. e. the direction of the most probable fluctuation.

At this point, the mutual orientation of δmi and Hi on each site should clarify
the kind of perturbation to the BP fixed point. It can be quantified by the cosine of
the inbetween angle:

cos ϑi ≡
δmi · Hi

‖δmi‖‖Hi‖
=

δmi · Hi

δmi H
(6.17)

so that a transverse perturbation would yield a value of cos ϑi close to zero, while
a longitudinal perturbation would show a strong bias toward the ±1 values.
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magnetization δmi and the external field Hi on each site, for several points on the dAT
and on the GT lines. The respective longitudinal and transverse behaviour is made
evident by the location of the peaks of the probability distribution in the two cases.
Here T and H values refer to the choice J = 1.

We compute the probability distribution of cos ϑi for several points along the GT
and the dAT lines for a C = 3 RRG, showing the results in Figure 6.8. As expected,
on the dAT line a clear bias toward the ±1 values is shown, while on the GT line
the 0 value is by far the most preferred, so confirming the interpretation of the
two critical lines as instabilities in the longitudinal direction or in the transverse
direction, respectively, referred to the local direction of the external field.

Notice that the longitudinal behaviour of perturbations along the dAT line
does not show up at the same manner on all the sites. Indeed, since H is not so
large along such line, also transverse perturbations are allowed, even though with
a smaller probability: their energy cost is surely larger than that of a longitudinal
perturbation, but not enough to dramatically suppress them. It is for this reason
that there is apparently no dependence on the specific point of the dAT line in the
left panel of Figure 6.8. At variance, along the GT line, H reaches rather larger
values: hence the transverse behaviour of perturbations is by far more pronounced
with respect to the longitudinal one, being further enhanced when increasing H.

The dependence on the specific point along the two critical lines can be more
effectively studied when also taking into account the local effective field. It can
be done by looking at the joint probability distribution of (mi, cos ϑi) for the
same points of Figure 6.8 along the two lines, reported in Figure 6.9. Again,
the longitudinal and transverse behaviours are highlighted by a preference for
cos ϑi = ±1 and cos ϑi = 0, respectively. Then, a sharp narrowing of the peaks
is observed when lowering the temperature, together with a shift toward larger
values of mi. Indeed, when the temperature is large and hence the local effective
field is weak (mi ' 0), the energetic cost of the two kinds of perturbations is rather
comparable, resulting in broad peaks. So on the GT line a transverse perturbation
could also show a longitudinal component by paying a relatively small energetic
cost, and an analogous reasoning holds on the dAT line. Instead, when lowering
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Figure 6.9. Joint probability distribution of mi and cos ϑi for the same points along the
two critical lines in Figure 6.8. The longitudinal behaviour of the dAT line and the
transverse behaviour of the GT line are again very sharp, together with a narrowing of
the peaks and their shift toward the mi = 1 region when lowering T. Here T and H
values refer to the choice J = 1.
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the temperature, the local effective field becomes rather strong, the site marginals
highly polarize (mi → 1) and hence the likely perturbations — e. g. the transverse
ones on the GT line — become more and more energetically favourable with
respect to the unlikely ones.

6.4 Intermediate behaviours

Once studied the behaviour of the spin glass XY model in a field with constant
intensity Hi = H and the local direction φi that can be the same for the all the sites
(φi = φ) or randomly drawn from the flat distribution over the [0, 2π) interval,
one may wonder what happens if considering intermediate cases of randomness,
namely a Pφ probability distribution which is neither a delta function nor a
constant. Our goal is to check if a crossover occurs in the shape of the resulting
critical line, or if one of two behaviours is the dominant one in a more general case.

To this aim, we choose two representative classes of interpolating probability
distributions. It is convenient to directly define them on the Q-state clock model
rather than on the XY model, since that is the way we actually solve the BP
equations. So let first of all denote as S the set of the directions allowed by the
clock model:

S ≡ κ
2π

Q
(6.18)

with κ integer belonging to the range 0 6 κ < Q.
The first class of interpolating probability distributions is the one that, for the

XY model, uniformly samples in a subset of the unit circle; hence, for the Q-state
clock model it reads:

P[κi = n] =
1

Q′
Q′−1

∑
a=0

δn,a , Q′ integer ∈ {1, . . . , Q} (6.19)

The second class, instead, let us to sample φi from the whole unit circle via a linear
combination of the two extremal probability distributions seen in Section 6.2; in
more detail, for the Q-state clock model it reads:

P[κi = n] =
w
Q

Q−1

∑
a=0

δn,a + (1− w)δn,0 , w real-valued ∈ [0, 1] (6.20)

The two extremal cases of a uniform field (giving the GT line) and a randomly
oriented field with a flat measure over the [0, 2π) interval (giving the dAT line)
can be easily recovered by a suitable choice of the extremal values for the two
parameters Q′ and w. Then, by varying them in the allowed ranges, we can insert a
different degree of directional bias, so studying the crossover between the GT-like
regime and the dAT-like regime.

In Figure 6.10 we analyze the behaviour of the first class of interpolating
distributions on a C = 3 RRG for several values of the parameter Q′. It is quite
clear that even the smallest nontrivial choice for Q′, namely Q′ = 2, causes a
dramatic change in the instability line with respect to the GT case Q′ = 1. So the
loss of a perfect alignment of the local directions of the field implies a considerable
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Figure 6.10. Critical lines Hc(T) for the spin glass XY model on a C-RRG with field
directions φi = 2πκi/Q with κi uniformly drawn from the set {0, . . . , Q′ − 1}. The GT
line can be recovered with Q′ = 1, while Q′ = Q = 64 gives back the dAT line. As
soon as Q′ > 1, the data suggest a dAT-like critical behaviour. In the right panel, the
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Figure 6.11. Critical lines Hc(T) for the spin glass XY model on a C-RRG with
field directions φi = 2πκi/Q with κi randomly drawn according to P[κi = n] =

w/Q ∑Q−1
a=0 δn,a + (1− w)δn,0. The GT line can be recovered with w = 0, while w = 1

gives back the dAT line. As soon as w > 0, the data suggest a dAT-like critical
behaviour. In the right panel, the dashed lines have slope 1/2 and 3/2, respectively.

change in the critical properties of the model. In particular, a careful study on the
small-field expansion is performed in the right panel of Figure 6.10: as soon as
Q′ changes from 1 to larger values, the exponent seems to suddenly change from
the GT value 1/2 to the dAT value 3/2. So, to the best of our numerical evidences,
this class of intermediate distributions for the local directions of the field yields an
abrupt change in the critical exponent, rather than a smooth crossover in it.

An analogous situation is found to occur for the second class of distributions.
Moreover, here the real-valued parameter w can be tuned even more finely, allowing
to perturb in a very tiny way the uniform-field case. In Figure 6.11 we report the
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resulting critical lines on a C = 3 RRG for several values of w. In the left panel
we can again appreciate a dramatic change in the instability line as soon as the
uniform-field case is perturbed: the value w = 0.01 already shows a dAT-like
behaviour instead of the GT-like one, confirmed by the small-field analysis reported
in the right panel. So it seems that — to the best of our numerical evidences —
the GT-like behaviour is lost as soon as w becomes strictly larger than zero.

The resulting picture is hence that even a very tiny perturbation of O(10−2)
in the perfect alignment of the local directions of the field — no matter how it is
specifically implemented — makes the critical behaviour to change from GT-like to
dAT-like, with the latter hence being much more generic and robust with respect
to the former, which at variance seems to be yielded only in the case of a perfect
alignment of both the couplings (remember the discussion at the end of Chapter 3)
and the fields.





Part IV

The energy landscape





Chapter 7

The zero-temperature spin glass
XY model in a field

In Chapter 6 we saw how the probability distribution of the external field has
important consequences on the features of the system: the instability line of the
paramagnetic solution moves, the kind of instability changes, different perturba-
tions take place, the critical exponents change too, and so on.

This difference becomes more and more striking when lowering the temperature
and eventually reaching the T = 0 axis, as we saw in Figure 6.9. In this limit, some
spin configurations become more and more energetically favourable than others,
and the same occurs for the typical perturbations to such solutions.

The most common picture exploited to represent this flourishing of states, due
to the breaking of the replica symmetry, is the so-called free energy landscape or
simply energy landscape, since in the T → 0 limit the two observables do coincide.
The space of spin configurations is so depicted as an ensemble of valleys — or
minima, namely the states — separated by high (free) energy barriers — eventually
diverging in the thermodynamic limit —, among which the system wanders during
its relaxation toward the equilibrium. The deeper a valley, the most energetic
favourable it is [Par83].

If in ordered systems the energy landscape is typically rather trivial, with just
very few minima, in disordered systems it acquires a very rugged aspect, with a
large number of metastable configurations almost equivalent from the energetic
point of view. Due to this, the relaxation toward the equilibrium configuration
is rather slow, and the system can sooner or later get stuck in one of the (many)
metastable minima.

The structure of the energy landscape provides very useful insights on the
physics of the system. E. g., when the solution is found to be fRSB, the corre-
sponding energy landscape exhibits a hierarchy of minima organized in a fractal
arrangement [Cha14]. Moreover, several physical phenomena can be explained
referring to the structure of the correspoding energy landscape. For example,
avalanches in the Ising model bring the system to a different local minimum
through the flip of a large number of spins, corresponding to the overcome of the
inbetween energy barrier. This is linked to the so-called marginal stability of the
Ising model [Mül15].
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At variance, models with continuous spins can also exhibit small fluctuations
around the energy local minima, implying a whole different set of physical phe-
nomena. Indeed, phonon excitations and the phenomenon of the boson peak in
structural glasses [Wya05, Cha16, Ler16, Cha17a] can be theoretically interpreted
by means of low-energy excitations in vector spin glasses [Bai15a]. Even more
interestingly, the fRSB low-T – low-H phase found for vector spin glasses in a
field (as we saw for the XY model in Chapter 6) is conjectured [Sha16] to be of
the same type of the Gardner phase [Gar85] predicted for high-dimensional hard
spheres [Cha17a].

In this Chapter we try to provide a self-consistent description of the energy
landscape of the spin glass XY model in a random field, starting from the analysis
of the Hessian matrix of the Bethe free energy in the T → 0 limit. The ultimate
task is to find a connection between the features of the energy landscape studied
via the Hessian matrix and the results provided by the BP algorithm, in particular
at the critical point HdAT. Computations are performed on given instances of
the model, due to the need of preserving all the long-range correlations, that at
variance would be lost via the PDA. Interesting properties regarding the spectral
density of the Hessian matrix arise, that strongly suggest a connection with the
vibrational spectrum of real glasses. Hence, this model can be taken as a simple,
exactly solvable model for reproducing the soft vibrational modes of glasses.

7.1 The Hessian matrix

Let us consider again the spin glass XY model with unbiased bimodal couplings
Jij = ±J and an external field with constant intensity H and random local direc-
tions φi’s drawn from the flat distribution over the [0, 2π) interval:

H[{θ}] = −∑
(i,j)

Jij cos (θi − θj)− H ∑
i

cos (θi − φi) (7.1)

defined on a RRG of connectivity C = 3 and size N. As usual, such topology will
allow us to solve the model by means of the BP algorithm.

The energy landscape of this model can be characterized by looking at the
Hessian matrix H — namely the matrix of the second derivatives — of the total
Bethe free energy F with respect to angles θi’s in the zero-temperature limit:

Hij ≡
∂2F

∂θi ∂θj

∣∣∣∣∣
T=0,{θ∗i }

=
∂2H

∂θi ∂θj

∣∣∣∣∣
{θ∗i }

(7.2)

computed on the configuration {θ∗i } of the minimum where the system has relaxed
(hopefully the true ground state), and keeping in mind that in the T → 0 limit
the free energy reduces to the internal energy, i. e. to the Hamiltonian H. More
explicitly:

Hij =





∑
k∈∂i

Jik cos(θ∗i − θ∗k ) + H cos(θ∗i − φi) i = j

− Jij cos(θ∗i − θ∗j ) (i, j) edge of G
0 otherwise

(7.3)
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From this definition, it is quite clear that H is a sparse N × N matrix, with exactly
C nonvanishing offdiagonal entries per row and per column. More in general, for
a m-dimensional vector spin glass it is a (m− 1)N × (m− 1)N matrix, due to the
constraint over the norm of each spin. E. g., for Heisenberg spins (m = 3) the linear
size of H is 2N. Notice that the description of XY spins in terms of θ’s angles
automatically takes into account the small fluctuations around the minimum in
the transverse direction with respect to the spin orientation, while for m > 2-
component spins — where a description in terms of polar coordinates is not easily
attainable — the local transverse direction has to be explicitely computed each
time [Bai16].

The physical meaning of H is well known: its eigenvalues {λi} give the
energetic cost of excitations in the energy landscape, and hence they rule the
stability of the configuration {θ∗i }, while the corresponding eigenvectors {|λi〉}
describe the directions along which such excitations extend. However, since
some properties are well defined only in the thermodynamic limit, in which H

becomes an infinite matrix, it is more useful to deal with the eigenvalue spectral
density ρ(λ):

ρ(λ) ≡ lim
N→∞

1
N

N

∑
i=1

δ(λ− λi) (7.4)

As usual in statistical mechanics, a positive definite Hessian matrix implies
the stability of the state in which the system is; in turn, this corresponds to
the presence of a gap in the spectral density, namely any fluctuation around the
minimum has a finite energetic cost, and hence exactly at zero temperature it
does not occur. Instead, the closure of the gap in the Hessian matrix usually
corresponds to a second-order phase transition: the previously stable minimum
becomes now unstable and the system moves toward a new minimum, that is
stable and characterized by a lower free energy [Hua88, Par88].

However, this is not the case of spin glasses. In particular, the stability of
the RS solution is not given by the Hessian of the free energy in the space of
“real” configurations — i. e. in the space of spin configurations — but in the
space of replica, as briefly shown in Chapter 2. The closure of the gap in this case
corresponds to the well known RSB [dAlm78b, Par80a]. Unfortunately, so far it is
not yet clear if the two Hessians are related, and in particular if an instability in
one of them does correspond to an instability also in the other one. We will try to
answer this question in the following of this Chapter.

7.1.1 How to compute the Hessian

In order to analyze the Hessian matrix H, the first task is to compute it. Indeed, it
is a nontrivial operation and a careful discussion has to be done. So far, we have
exploited the PDA in order to get an average over the ensemble of random graphs
and over the disorder distribution of couplings and fields, so actually solving the
distributional version of the BP equations at zero temperature:

Ph[hi→j] = EG,J,φ

∫ di−1

∏
k=1
Dhk→i Ph[hk→i] δ

[
hi→j −F0[{hk→i}, {Jik}, φi]

]
(7.5)



150 7. The zero-temperature spin glass XY model in a field

The main advantage of this approach is the possibility of computing physical
observables by summing local terms, and hence by picking at random the cavity
fields h’s directly from the fixed-point probability distribution P∗h. This turns out to
be directly related to the extensive nature of observables like the free energy and the
internal energy, so that on (large enough) treelike topologies they can be actually
computed as a sum of local terms and hence no long-range correlations enter in
their computation (as long as the validity of the BP assumptions is ensured).

However, objects like the Hessian contain long-range correlations even on very
large sparse random graphs, that can not be reproduced through the previous
approach. Indeed, the likely presence of extended eigenvectors of H is intimately
related to such long-correlations, and the diagonalization of H can be performed
only through nonlocal operations, as e. g. the computation of the determinant.

The unique way to recover the aforementioned long-range correlations is to
actually provide a given instance of the sample, namely a given sparse random
graph with a quenched set of couplings {Jij} and field directions {φi}, and then
solve the zero-temperature BP equations on it (easily obtained by generalizing the
zero-field case, as shown in Appendix A):

hi→j(θi) ∼= H cos (θi − φi) + ∑
k∈∂i\j

max
θk

[
hk→i(θk) + Jik cos (θi − θk)

]
(7.6)

The resulting fixed-point {h∗i→j} then yields — at least in principle, as we will
discuss later — the ground state {θ∗i }. We will refer to this approach as the Given
Sample Algorithm (GSA), whose key steps are listed in the pseudocode 7.1. Finally,
we can evaluate the Hessian matrix (7.3) on it, so that in this way it actually
contains the relevant features of the energy landscape for a given instance of the
model close to its ground state.

7.1.2 Reaching the ground state on a given sample

Unfortunately, at variance with respect to the PDA — which actually solves the
distributional version (7.5) of the BP equations — it may happen that the GSA not
only does not reach the true ground state, but even it may not reach any fixed
point of the BP equations at all, keeping wandering forever. This is a very common
problem of BP approaches on given instances of a problem, strictly related to the
presence of an enormous number of states — i. e. BP fixed points for T < Tc —,
that in turn makes very hard to find the actual ground state.

In order to help the convergence, a trick typically exploited in these cases is the
insertion of a damping γ in the BP equations, so to actually perform just a fraction
of a BP iteration at each time step of the algorithm:

h(t)i→j(θi) ← (1− γ) h(t)i→j(θi) + γ h(t−1)
i→j (θi) (7.7)

The value of γ is typically chosen according to the “difficulty” of reaching the
convergence, e. g. according to the gradient around the fixed point: larger values
correspond to smaller BP steps, so increasing the possibility of actually reaching
the fixed point. On the other hand, larger values of γ of course imply a slower
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Code 7.1 RS Given Sample Algorithm (T = 0)

1: Fix an accuracy ∆GSA
2: Generate the sparse random graph G
3: for i = 1, . . . , N do
4: Draw a field direction φi from the probability distribution Pφ

5: end for
6: for i = 1, . . . , N do
7: for j ∈ ∂i, j > i do
8: Draw a coupling Jij from the probability distribution PJ
9: end for

10: end for
11: for i = 1, . . . , N do
12: for j ∈ ∂i do
13: Initialize h(0)i→j . We use a random initialization
14: end for
15: end for
16: for t = 1, . . . , tmax do
17: for i = 1, . . . , N do
18: for j ∈ ∂i do
19: h(t)i→j ← F0[{h(t−1)

k→i }, {Jik}, φi] . Use a damping γ if necessary
20: end for
21: end for
22: ∆(t) ← maxi→j‖h(t)i→j − h(t−1)

i→j ‖
23: end for
24: if ∆(tmax) < ∆GSA then
25: return {h(tmax)

i→j }
26: else
27: stop: no convergence within accuracy ∆GSA
28: end if

algorithm. In all the GSA simulations of this Chapter we use γ = 0.1, which in our
case represents a good compromise between efficiency and reliability.

Moreover, due to the continuous nature of XY spins, the space of configurations
is continuous as well and hence infinitesimal displacements are always well defined.
In particular, due to the presence of the random field, any degeneration of the
minima is broken and hence wherever the system is, a gradient descent would
allow us to reach the bottom of one of the nearest valleys with probability one.
According to this observation, when we realize that the GSA has performed enough
steps without reaching the convergence within the assigned accuracy ∆GSA, we can
stop it and try to reach one of the nearest minima, in order to obtain a properly
positive definite Hessian matrix.

Before explaining how to implement this further trick, let us focus on a detail
that so far has remained hidden in this Chapter. Every time we perform a numerical
simulation on the XY model, we are actually using a Q-state clock model with a
reasonably large Q value. In particular, since Chapter 3 we used Q = 64, then
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justifying this choice in Chapter 4. Hence, the discretization of the XY model via
the Q-state clock model does not show any negative effects in the PDA.

When using the GSA, however, discretization becomes crucial. The system is
moving in a well defined (quenched) energy landscape, following a N-dimensional
grid of lattice spacing a = 2π/Q. Any minimum of the “true” landscape is with
probability one out of the nodes of the grid for any finite value of Q, and hence
the GSA never stops in an actual minimum of the XY model energy landscape.
The consequence of this is straightforward: even if the actual fixed point of the
XY model landscape were a minimum, the Hessian matrix computed through
such {θ∗i } given by the Q-state clock model could not be positive definite, so
providing negative eigenvalues.

In this case, the prescription is to stop in the lowest configuration {θ∗i } reached
via the GSA at t = tmax — whether the algorithm has reached the convergence
or not — and then forget about the Q-state clock model. Each discrete angle θ∗i
is then associated with the corresponding magnetization vector mi on the unit
circle (remembering that T = 0 and that degeneracies have been removed by the
randomly oriented field):

σi = mi ≡
(
cos θ∗i , sin θ∗i

)
(7.8)

Finally, we implement the Greedy Coordinate Descent (GCD), namely a zero-
temperature dynamics which aligns each spin to the effective local field, also
known as the Gauss-Seidel procedure:

σ
(t)
i
∼= Hi + ∑

k∈∂i
Jikσ

(t−1)
k (7.9)

enforcing again the unit normalization for each spin at the end of each time step.
It is described in more detail in the pseudocode 7.2. This allows the system to
actually reach the bottom of the valley where the GSA stopped and hence obtain a
positive definite Hessian matrix. Notice that this procedure always reaches a stable
minimum, provided tmax is large enough to stay within the given accuracy ∆GCD
and the degeneracies have been removed by the presence of the randomly oriented
field.

At this point, we can go back to the issue illustrated above. When the GSA does
not converge within a reasonable time, we can stop the algorithm at t = tmax, move
from the angle θ∗i — namely the best approximation of the ground state provided
by the GSA — to the magnetization vector σi for each site and then exploit the
zero-temperature dynamics given by the GCD, reaching the bottom of the closest
valley in the energy landscape. This allows us to obtain a meaningful Hessian
matrix to analyze even in those cases in which a RS solution of the BP equations is
very hard to find — or even impossible. The careful reader could, however, object
that these particular instances introduce some bias in our analysis. We will show
in the following that this is not the case; on the other hand, their inclusion will
actually enlarge the statistics in the region of hard convergence for the GSA.

Once explained how to compute H, we can finally do it by choosing Q = 64
for the clock model in the GSA and then by implementing the zero-temperature
dynamics through the GCD. We study several instances of the system for different
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Code 7.2 Greedy Coordinate Descent

1: Fix an accuracy ∆GCD

2: Take the final configuration {h(tmax)
i→j } of GSA . Or random, if necessary

3: for i = 1, . . . , N do
4: Compute the site marginal h(tmax)

i
5: Compute the most probable direction θ∗i over the allowed Q ones
6: σ

(0)
i ← (cos θ∗i , sin θ∗i )

7: end for
8: for t = 1, . . . , tmax do
9: for i = 1, . . . , N do

10: σ
(t)
i ← Hi + ∑k∈∂i Jikσ

(t−1)
k

11: σ
(t)
i ← σ

(t)
i /‖σ(t)

i ‖
12: end for
13: ∆(t) ← maxi‖σ(t)

i − σ
(t−1)
i ‖

14: end for
15: if ∆(tmax) < ∆GCD then
16: Compute the real-valued {θ∗i } from σ

(tmax)
i

17: return {θ∗i }
18: else
19: stop: no convergence within accuracy ∆GCD, increase tmax
20: end if

sizes of the graph — N = 103, 104, 105 and 106 — starting from high values of
the field intensity H/J and then performing an annealing in it. In Table 7.1 we
report some statistics about these simulations, including the values of H taken
into account, the number of samples Ns analyzed for each size N, the number of
samples N ∗s on which the GSA actually converged within tmax = 500 iterations, the
corresponding average number t∗GSA of time steps spent by the GSA, the average
number t∗GCD of time steps spent by the GCD (also taking into account the samples
where the GSA did not converge within the tmax iterations). The convergence
thresholds chosen for the two algorithms are respectively ∆GSA = 10−10 and
∆GCD = 10−6. Finally, notice that the value tmax = 500 for the GSA has been
chosen as a good compromise between the efficiency of the algorithm and the need
of actually reaching the true ground state for all the sizes considered.

A few points can be highlighted by looking at Table 7.1. First of all, the number
of samples N ∗s on which the GSA converged when lowering the field strength H
gives a “measure” of the RS stability of the BP fixed point. Indeed, if for N = 103

its decrease with H is rather smooth, when increasing the size N a quite sharp
threshold appears, in correspondence of a value of H slightly larger than the actual
value HdAT, that can be evaluated via the PDA as in Chapter 6:

HdAT/J = 1.059(2) (7.10)

and that can be recovered here when sending tmax → ∞.
Secondly, the average convergence time t∗GSA increases when approaching

the dAT point — as expected for second-order phase transitions —, ideally diverg-
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Table 7.1. Statistics about the GSA and the GCD on Ns samples for several sizes N
and field strengths H/J. N ∗s is the number of samples on which the GSA actually
reached convergence with an accuracy ∆GSA = 10−10 within tmax = 500 iterations.
t∗GSA is the average number of the GSA iterations performed on the samples where it
actually converged within tmax, while t∗GCD is the average number of the GCD iterations
performed on all the samples to reach the accuracy ∆GCD = 10−6.

N = 103 N = 104 N = 105 N = 106

(Ns = 400) (Ns = 200) (Ns = 100) (Ns = 50)

H/J N ∗s t∗GSA t∗GCD N ∗s t∗GSA t∗GCD N ∗s t∗GSA t∗GCD N ∗s t∗GSA t∗GCD

50.0 400 18 5 200 21 5 100 24 5 50 27 5
25.0 400 21 5 200 25 6 100 29 6 50 33 6
10.0 400 26 7 200 31 8 100 38 8 50 43 8
9.00 400 26 8 200 31 8 100 37 8 50 43 9
8.00 400 26 8 200 33 9 100 39 9 50 45 9
7.00 400 28 9 200 35 10 100 42 10 50 48 11
6.00 400 31 10 200 38 12 100 45 13 50 52 14
5.00 400 33 14 200 41 18 100 49 23 50 60 29
4.00 400 38 27 200 48 60 100 60 132 50 73 341
3.00 400 49 46 200 66 103 100 89 212 50 111 600
2.50 399 62 61 200 87 156 100 118 350 50 150 899
2.00 389 87 96 199 131 234 99 182 565 50 251 1443
1.80 369 104 126 192 151 291 99 224 785 49 324 1681
1.60 336 120 124 186 198 305 94 303 768 26 417 1610
1.50 310 128 133 181 223 308 72 340 641 16 444 1959
1.40 272 139 125 148 247 327 56 385 753 2 459 1772
1.30 252 146 135 121 282 318 27 415 833 0 / 1884
1.25 215 151 149 105 287 348 16 422 921 0 / 1808
1.20 194 158 144 83 315 330 7 471 780 0 / 1635
1.15 171 162 159 72 328 348 0 / 716 0 / 1882
1.10 148 165 148 50 318 310 3 455 711 0 / 1803
1.05 127 162 160 29 354 335 0 / 758 0 / 1702
1.00 108 177 151 20 353 309 0 / 771 0 / 1819
0.90 75 195 151 9 367 293 0 / 750 0 / 1590
0.80 52 233 130 4 388 244 0 / 680 0 / 1215
0.70 28 214 129 2 352 221 0 / 459 0 / 1093
0.60 16 262 144 0 / 230 0 / 485 0 / 1056
0.50 7 205 176 0 / 223 0 / 519 0 / 1031
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Figure 7.1. Average over the samples for the percentage energy difference ∆E ≡ (E−
E′)/E′ between the local minimum at energy E reached via the combined algorithm
GSA plus GCD and the one at energy E′ reached just by using GCD. The two algorithms
are supposed to start from the same initial condition for a given sample. It is quite clear
how BP-based approaches can go deeper in the energy landscape when in presence
of RSB — end even slightly above the dAT point — with respect to relaxation-based
ones, so providing “better” inherent structures.

ing in the tmax → ∞ limit. On the other hand, t∗GSA also increases with the size N
at the same value of H/J.

Thirdly, also the average time t∗GCD spent by the GCD increases with N at the
same H — as expected — and, more interestingly, when approaching the dAT
point at the same size N. This slowing down of the algorithm is a signature of a
flatter energy landscape around the minima, namely of a larger fraction of very
small eigenvalues of the Hessian. This claim will be confirmed in the next Section,
when actually computing the spectral density ρ(λ) of H.

7.1.3 Quality of the inherent structures reached

At this point, we may wonder whether the local minimum reached through the GSA
plus the GCD is actually the ground state {θ∗i } of the energy landscape of the
analyzed sample, or otherwise how “far” it is from it. In other words, we would
like to evaluate the “quality” of the inherent structures [Cav09, Bai15a, Bai15b]
reached via this approach.

A quantitative answer can be provided by comparing the energy E of the
minimum reached via the combined algorithm introduced above with the energy
E′ of the minimum reached via the only use of the GCD, given the same set of
initial conditions for both algorithms. In Figure 7.1 we report the corresponding
energy difference ∆E ≡ (E− E′)/E′, averaged over the Ns samples for each size N,
for different values of the field intensity H/J. If for large values of H the two
algorithms relax to the same minimum, which is actually unique and hence the
sought ground state, when getting closer to the critical point they provide different
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results. In particular, the GCD is just a pure-relaxation algorithm and hence it can
not overcome the barriers appearing in the energy landscape when close to the
dAT point. At variance, the GSA can do it, with the subsequent use of the GCD
that just ensures the proper optimization over the real-valued θi’s. On average,
the purely relaxation approach just stops at some metastable minimum with an
energy that is about 1% higher than that of the actual ground state, that at variance
is believed to be actually reached by BP. Moreover, below HdAT, the difference is
even more striking, since the very rugged nature of the energy landscape in such
regime: despite neither of the two algorithms reach the true ground state, GSA
can go deeper in the energy landscape by nearly a 2%− 3% with respect to the
only GCD, referring to the range of H/J values in Figure 7.1.

This is an important finding, since in numerical simulations on finite-dimension
lattices one typically exploits relaxation algorithms based on the GCD, as e. g. done
in Ref. [Bai15a] with Heisenberg spins for d = 3. Despite being by far faster
than BP-based algorithms, they most of times get stuck into metastable minima
when the energy landscape is rugged, so that the resulting low-temperature
statistical properties actually refer to them rather than to the true ground state. At
variance, on sparse random graphs BP allows to exactly reach the global minimum
of the energy almost everywhere in the RS region, then still providing appreciable
results when in presence of rugged landscapes due to the occurrence of RSB.

Finally, still looking at the energy E of the minimum {θ∗i } reached via the GSA
plus the GCD, we can check whether there are substantial differences between the
samples on which the GSA has converged within the tmax allowed iterations and
the other ones. It turns out that the energy distribution is actually the same, hence
it is reasonable to claim that no biases are introduced if considering also the latter
samples in the forthcoming analysis.

7.2 Considerations about the spectral density

Before actually computing the spectral density of the Hessian matrix, let us make
some considerations about what we should expect about it.

7.2.1 The fully connected case

First of all, we can consider the fully connected version of our model. In absence
of an external field, the Hessian H is a dense symmetric matrix with O(1/

√
N)

entries, since each coupling Jij is Gaussian distributed with zero mean and variance
1/N. In the N → ∞ limit, hence, the central limit theorem holds, namely the entries
become actually independent Gaussian-distributed random variables, leading to
the famous Wigner semicircle law [Wig58, Edw76, Meh04]

ρ(λ) =
1

2π

√
4− λ2 , λ ∈ [−2, 2] (7.11)

The presence of a field of intensity H in the system just shifts rightward the spectral
density (7.11) of a quantity O(H). Hence, if it is large enough, a gap opens in the
spectral density ρ(λ), providing a strictly positive lower band edge λ̃.
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The Wigner semicircle law is very common, since the Gaussian ensemble of
random matrices turns out to correctly describe the statistical properties of a large
number of physical phenomena. We redirect the reader to Refs. [Bee97, Meh04,
For10, Ake11] for reviews and further details.

Here, we are particularly interested in its square-root behaviour close to the
lower band edge, that holds whether or not a gap is present:

ρ(λ) ∼
(
λ− λ̃

)1/2 , λ & λ̃ (7.12)

This square-root behaviour makes the spin glass susceptibility χSG be finite only if
λ̃ > 0, namely if the Hessian matrix H is positive definite. This typically occurs
if the field intensity H is large enough. However, if e. g. H decreases down to a
certain value HdAT, then the gap closes, nonintegrable soft modes appear in the
spectral density and χSG eventually diverges, signaling the breaking of replica
symmetry.

This is the typical picture for the onset of RSB in fully connected models [Bra79,
Cug93, Cav98, Ple02, Sha16], and the square-root behaviour close to the lower
band edge seems to be even more general, also occurring for other fully connected
models where ρ(λ) is no longer given by the (shifted) Wigner semicircle law [Fra15].

7.2.2 A large-field expansion in the sparse case

If in the large-N limit the Hessian H exhibits the Wigner semicircular spectral
density, it is reasonable to not expect a similar behaviour in the sparse case. Indeed,
each row (as well as each column) of H has just O(1) nonnull elements, and the
correlations between the entries are quite strong. Instead of the Wigner law (7.11),
the spectral density of the Hessian matrix when G is a C-RRG with C = O(1)
should rather resemble in some way the spectral density of the corresponding
adjacency matrix A

Aij =

{
1 (i, j) edge of G
0 otherwise

(7.13)

namely the Kesten-McKay law [Kes59, McK81]:

ρ(λ) =
C
√

4(C− 1)− λ2

2π(C2 − λ2)
, λ ∈ [−2

√
C− 1, 2

√
C− 1] (7.14)

or equivalently, if rescaling the entries of A by
√

C− 1

ρ(λ) =
1

2π

√
4− λ2 ·

(
C

C− 1
− λ2 1

C

)−1

, λ ∈ [−2, 2] (7.15)

so to recover the Wigner law (7.11) in the large-C limit.
However, the Hessian matrix H is not the adjacency matrix A. Firstly, its

diagonal entries are different from zero, depending on both the local external
field Hi and the couplings Jij’s with the nearest neighbours; hence, for large enough
values of H, the spectral density (7.14) should at least be shifted rightward, and
also a well pronounced peak should appear at λ ' H. Secondly, offdiagonal entries
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are no longer all equal to 1, but they depend on the relative angles (θ∗i − θ∗j )’s; this
should imply a further modification of the spectral density (7.15), most likely on
its tails, due to the strong correlations between nearest-neighbour variables.

The different behaviour in the spectral density of sparse random matrices with
respect to their fully connected limit is a well known issue in the literature [Rod88,
Bra88, Dor03, Küh08, Rog08]. In particular, for what regards the spectral density
of the Hessian matrix H, in Ref. [Bai15a] the m = 3 version of our model is studied
on a d = 3 cubic lattice. From such numerical study some relevant features come
out, that could be recovered also in the random diluted case. Firstly, a gap in the
spectral density is observed for very large values of H, while at a certain value
H = Hgap it closes; however, such closure does not correspond to a breaking of the
replica symmetry. Secondly, the density of the soft modes in the gapless region
does not follow any longer the square-root behaviour ρ(λ) ∼ λα, α = 1/2, rather
the data are compatible with the value α = 3/2. Indeed, no divergence of χSG is
implied.

The advantage of working on sparse random graphs rather than in finite
dimension is that we can also approach the HdAT value and then even explore
the RSB region — whose existence is at variance still debated in finite dimension
even for the Ising case [Cha17b] — though still using the RS ansatz. Moreover,
we saw that the GSA can go deeper in the energy landscape with respect to
relaxational MonteCarlo approaches — that have been used in Ref. [Bai15a] —,
actually reaching the true ground state for almost all the samples down to the dAT
critical point.

Moreover, exploiting again the sparsity of the graph, it is possible to suddenly
get a reliable approximation of the spectral density of H in the large-H region.
Indeed, given the Hamiltonian H of Eq. (7.1), the ground state {θ∗i } is given by the
extremal condition:

∂H
∂θi

= 0 ∀i ⇒ ∑
k∈∂i

Jik sin (θ∗i − θ∗k ) + H sin (θ∗i − φi) = 0 ∀i (7.16)

that can be perturbatively solved via an expansion in J/H. The resulting approxi-
mated expression of the ground state is then plugged into the Hessian (7.3), which
is then diagonalized to get ρ(λ).

At the zeroth order of the expansion, we have that it is the field direction φi
that rules the direction of the i-th spin, while its neighbours ∂i are completely
neglected:

θ∗i = φi (7.17)

At the next order, then, we have a first correction due to the presence of the
neighbours:

θ∗i = φi + δθ
(1)
i (7.18)

with δθ
(1)
i ’s that have to satisfy the stationary condition (7.16), so giving:

δθ
(1)
i = − ∑

k∈∂i

Jik

H
sin (φi − φk) (7.19)
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Figure 7.2. Sorted eigenvalues of the Hessian H of the spin glass XY model in a random
field for a given sample of size N = 103. The underlying topology is as usual a RRG
of connectivity C = 3. The ground state {θ∗i } has been evaluated via the large-field
expansion at different perturbative orders in J/H. Left panel refers to H/J = 25, right
panel to H/J = 5.

Finally, at the second order, we write:

θ∗i = φi + δθ
(1)
i + δθ

(2)
i (7.20)

and again from stationary condition (7.16) we obtain:

δθ
(2)
i = − ∑

k∈∂i

Jik

H
cos (φi − φk)

(
δθ

(1)
i − δθ

(1)
k

)
(7.21)

In order to check the reliability of this approximation, let us focus on a given
sample of size N = 103. For each perturbative order in the approximation of
the ground state, we evaluate the Hessian and then we compute its eigenvalues,
finally reporting them in Figure 7.2 for the field strengths H/J = 25 (left panel)
and H/J = 5 (right panel). It is evident that for very large values of H the
corrections given by the next-to-leading orders are quite negligible, due to the
strong aligning effect given by the external field. Instead, when lowering H, the
effect of neighbours in the evaluation of the true ground state becomes relevant
and hence the first order provides a substantial correction with respect to the
zeroth order.

If further lowering H, a nonnegligible fraction of eigenvalues becomes negative,
signaling a no longer positive (semi)definite approximated Hessian matrix. Indeed,
in such regime, J/H is of order 1 and hence the large-field expansion just fails,
providing a completely wrong estimation of the actual ground state. Hence, we
should rely again on the GSA in such regime.

In Section 7.3, then, we will compare (see Figure 7.4) the spectral density ρ(λ)
computed via the previous large-field expansion — averaged over different samples
— and the one given by alternative and more reliable approaches, for several values
of H/J. In this way, we will actually realize where and how the approach of
large-field expansion fails.
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7.2.3 An analytic argument for the density of soft modes

Let us now consider a different point of view, in order to analyze the region in
which the previous approach fails.

When dealing with systems possessing continuous symmetries, two main
kinds of low-energy excitations can be identified: Goldstone modes, related to the
breaking of the continuous symmetry itself, and non-Goldstone modes, which are
not produced by the breaking of the continuous symmetry.

Acoustic phonons and spin waves in ordered media belong to the first category
and they can be easily described in terms of wave-like equations of motion. This
still holds when a weak disorder is introduced in the system, once coarse-grained
the system over a scale larger than the typical wavelength. This implies that
low-frequency excitations — namely low-energy ones — are the least affected by
the presence of disorder.

But when the presence of Goldstone modes is ruled out — as it happens in
our case, due to the presence of the random field — the possible presence of
low-energy modes must originate from a different mechanism. Indeed, it is the
disorder itself that can produce soft modes in the system, since the ground state
strongly depends on the disorder configuration.

In order to justify this claim, let us follow the argument of Refs. [Ili87, Par94,
Gur03], considering a one-dimensional picture of the energy landscape, say U(x),
which is supposed to be “smooth enough”:

U(x) =
∞

∑
n=1

an
xn

n!
(7.22)

and where U(0) = 0 for simplicity. The concept of quenched disorder translates
into the randomness of an’s coefficients, so that U(x) can be thought as a random
potential. Then, let x0 be a minimum of U(x), which for the moment is not required
to be the global one. The previous expansion can be hence centered around x0,
keeping the terms up to the fourth order:

U(x0) ' U(x0) +
b2

2
(x− x0)

2 +
b3

6
(x− x0)

3 +
b4

24
(x− x0)

4 (7.23)

so to take into account the possibility of having other minima different from the
one in x0. The curvature of the minimum in x0 is given by the b2 coefficient, so
that fluctuations around it have a frequency ω ∼

√
b2.

For small curvatures b2 — the ones we are interested in, since we are looking
for soft modes — it can be shown that P(b2) ∝ b2, once provided that the coeffi-
cients an’s — and hence also bn’s — are drawn from a smooth distribution with no
zeros and no divergences. So the density of states g(ω) goes as:

g(ω) ∼ ωδ , δ = 3 (7.24)

At this point, we add the requirement that x0 is not only a local minimum, but
also the global one. This additional condition can be ensured by bounding the
term involving the third derivative of U(x):

|b3| <
√

3b2b4 (7.25)
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and in turn it further suppresses the probability distribution of small curvatures,
P(b2) ∝ b3/2

2 , from which in the end:

g(ω) ∼ ωδ , δ = 4 (7.26)

Finally moving from the density of states g(ω) to the spectral density ρ(λ):

g(ω) ∼ ωδ λ=ω2

−−−−→ ρ(λ) ∼ λα , α =
δ− 1

2
(7.27)

we get the prediction of the power-law exponent α for the density of soft modes in
presence of a disorder-dependent ground state:

ρ(λ) ∼ λα , α =
3
2

(7.28)

so providing an analytic argument for the numerical evidence of Ref. [Bai15a].
A few points could be raised against this argument, as already pointed out

by Gurarie and Chalker [Gur03]. Firstly, when the system is characterized by a
very slow relaxation or even by a breaking of the ergodicity, then it is not usually
expected to reach the actual ground state, but just to stop in a quite deep local
minimum. However, the previous result regards the presence of other deeper
minima in the very surroundings of x0, that is typically ruled out by the fast regime
of the relaxation. Indeed, close minima are separated by energy barriers that are not
likely to be high, so that the system rapidly relaxes toward the deepest minimum
in the surroundings. Secondly, what happens when considering more than one
dimension, or when moving to sparse random topologies? This argument is quite
general and it is expected to hold even in these cases, provided the corresponding
localization length of these soft excitations is finite. On the other side, exactly
in the infinite-dimension limit it fails, so allowing the recovery of the Wigner
distribution (7.11).

As a sudden check of this argument, let us compute the probability distribution
of the curvature λ around the global minimum of N random quartic potentials.
The corresponding cumulative function C(λ) computed for N = 106 — zoomed in
the region of the left tail — is reported in Figure 7.3, together with the straight line
that better fits the data in the log-log scale. We find a good agreement with the
theoretical prediction:

α + 1 = 2.47(1) (7.29)

7.3 The spectral density of the Hessian

At this point, we can finally diagonalize the Hessian matrices computed so far and
extract their spectral density and their eigenvectors, so to characterize the energy
landscape.

However, since we are dealing with quite large matrices, we will use different
methods in order to compute ρ(λ). Then, we will check the reliability of the
different approaches by comparing the results for the Hessian matrices of linear
size N = 103, namely the smallest ones we computed.
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Figure 7.3. Cumulative function C(λ) of the curvature λ around the global minimum x0
of N = 106 random quartic polynomials. The straight line fits the data with a slope
α + 1 = 2.47(1).

7.3.1 Direct diagonalization

The usual algorithms for direct diagonalization of a N × N matrix require a
computational time which scales as N3. Indeed, they manipulate the matrix
irrespective of their structure, and hence there is no difference whether they are
dense or sparse. This approach works efficiently only for the smallest sizes we use,
namely N = 103 and N = 104, while the direct diagonalization of larger matrices
is practically unfeasible.

For N = 103 and N = 104 we can still do it through Mathematica™ in a short
time (∼ 0.1 s for N = 103 and ∼ 100 s for N = 104), and the resulting spectral
density for N = 103 averaged over Ns = 400 samples from the C = 3 RRG
ensemble is reported through blue curves in Figure 7.4 for several values of the
field strength H/J.

As expected, for large values of H the mean value of the spectral density ρ(λ)
is centered around H itself, with a width of the spectrum of order 4JC. This is due
to the quasi-diagonal nature of H for large values of H, since the C offdiagonal
elements per row are of order J � H and hence quite negligible. Of course, a
wide gap separates the spectrum from the λ = 0 axis, since even the weakest
fluctuation requires a large energy cost. In this regime, the large-field expansion
up to the second order in J/H (green curves in the figure) works quite well, being
quite indistinguishable from the actual spectral density computed via the direct
diagonalization.

When lowering the field strength, then, the gap diminishes and seems to close
between H/J = 5 and H/J = 4. In order to exactly compute the value Hgap at
which it actually happens, we should previously compute the spectral density for
larger sizes, so to take into account finite-size effects in the closure of the gap. This
task will be accomplished through more efficient approaches.

Notice also that in correspondence of these values of the field strength H, the
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Figure 7.4. Spectral density ρ(λ) of the Hessian matrix for several values of the field
intensity H, averaged over Ns = 400 samples of size N = 103. Blue curves refer to
direct diagonalization of the Hessian matrices, red curves are obtained through the
resolvent approach, green curves have been computed via the second-order large-field
expansion. Notice that the latter approach fails for small values of H, providing
completely wrong spectral densities having support also on negative values of λ.
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large-field expansion begins to fail, since J/H is no longer a reliable parameter for
a perturbative expansion. The inexact location of the ground state for small values
of H so implies a Hessian that is no longer positive definite, hence the spectral
density computed in this way acquires a support also on negative values of λ.

7.3.2 Arnoldi method

So far, we have not really exploited the structured nature of the Hessian matrix. In
fact, if we take it into account, the spectral density ρ(λ) can be computed more
easily. One of the most used algorithms to diagonalize sparse matrices is the
Arnoldi one [Arn51, Leh98, Sor08], which relies on the repeated multiplication of
a basis of m� N vectors by the matrix. In the long-time limit, the ratios between
the old and the new norm of the vectors give the m largest eigenvalues, while the
directions along which they align represent the corresponding eigenvectors.

If we perform the following tranformation:

H→H′ ≡ λmaxI−H (7.30)

where λmax is the largest eigenvalue of H and I is the N × N identity matrix, then
the Arnoldi algorithm run on H′ actually provides the m smallest eigenvalues
of H, which are the ones we need for the study of the gap closure.

In this way we compute the m = 50 smallest eigenvalues of H for all the
samples listed in Table 7.1, in a time growing with N2 instead of N3. Notice that,
due to the nature of Arnoldi algorithm, in order to compute the m eigenvalues
within a reasonable accuracy, a basis of M� m vectors has actually to be used. In
our case we found that M = 3m = 150 is enough to recover the m = 50 smallest
eigenvalues computed before by direct diagonalization.

However, even though being very efficient when just dealing with the smallest
eigenvalues of H, the Arnoldi method becomes quite useless when dealing with
the bulk of the spectral density. So let us move to a further approach, which helps
us in this case.

7.3.3 The resolvent

The Hessian matrix H of each sample can be seen as a single realization of an
ensemble of random matrices with well specified features. In this case, they are
sparse and associated to a treelike structure, in particular the C = 3 RRG one. So,
usual random matrix techniques can be exploited also in this case [Meh04, Ake11].

Among all the properties associated with random matrices, the most important
one for us is the fact that they possess a well defined average spectral density ρ(λ),
and hence the spectral density of each realization is just the average one plus the
noise due to statistical fluctuations.

The average spectral density ρ(λ) can be computed introducing the Green
function R(λ) associated to the matrix H, which is mostly known as the resolvent
of H:

R(λ) ≡ 1
λI−H

(7.31)

So it is a matrix of linear size N as well.
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It is clear that when N is of order 105 or 106, as for the largest samples we
analyzed, the direct computation of R(λ) by inverting the matrix λI −H is
unfeasible. So it has to be computed in a different way.

The first computation ofR(λ) has been performed in the same spirit of the PDA
for solving BP equations [Abo73], and actually it is just when the PDA has been
introduced and exploited for the first time. Each diagonal element Rii can be
computed iteratively by following the Schur complement formula, namely by
removing the i-th row and column from H, so obtaining:

Rii(λ) =

[
λ−Hii − ∑

j,k 6=i
HijR(i)

jk (λ)Hki

]−1

(7.32)

whereR(i) is the resolvent of the matrix H without its i-th row and column [Abo73,
Ciz94, Cil05, Mor15a]. Offdiagonal elements can be computed similarly.

The removal of the i-th row and column from the Hessian H sounds like the
actual removal of site i from the graph, and indeed it is so. Hence, in the sparse
treelike case, it means that the original matrix H is divided into independent
submatrices, corresponding to the subtrees into which the original graph G is
splitted by the removal of site i. So the above recurrency relation directly brings
to a set of cavity relations for the resolvent R, where a cavity resolvent R̃ can be
defined in perfect analogy with the BP cavity marginals [Abo73, Bir10, Bog13]:

R̃i→j(λ) ≡
[

λ−Hii − ∑
k∈∂i\j

H2
ikR̃k→i(λ)

]−1

(7.33)

where also the symmetric nature of H has been exploited. Once reached the fixed
point R̃∗ of these self-consistency equations, then the proper resolvent can be
obtained:

Rii(λ) ≡ Ri(λ) =

[
λ−Hii − ∑

k∈∂i
H2

ikR̃∗k→i(λ)

]−1

(7.34)

These equations can in principle be solved by using the PDA as for the
proper BP equations [Abo73]. However, as already pointed out at the begin-
ning of this Chapter, the Hessian matrix H contains long-range correlations that
can not be taken into account if using the PDA instead of the GSA. Consequently,
also in this case we have to compute the resolvent R on a given instance — namely
for a given Hessian matrix H — by following steps analogous to the GSA (see
pseudocode 7.1), then compute the spectral density ρ(λ) as it will be explained in
a while and only at the end average over the Ns samples.

There exist two types of solution for the recursive equations (7.34). In the
first case, all the eigenvalues λ’s live on the real axis and it is so throughout the
computation. Consequently, the cavity resolvent R̃ is real at each time step and
in the end also R is real as well. In the second case, if a small positive imaginary
part ε is added to λ’s when initializing the algorithm, then also the cavity resolvent
acquires an imaginary part and the same happens to R. In the end, the limit ε→ 0
has to be performed. At this point, two scenarios are possible. In the first one,
in the ε → 0 limit the imaginary part of R goes to zero as well, so that the first
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kind of solution is actually recovered. In the second one, instead, the imaginary
part of R does not vanish in the ε→ 0 limit, and so the corresponding solution is
qualitatively different from that of the first type.

These two kinds of solution have a well precise physical meaning, as firstly
pointed out in Ref. [Abo73]: a real resolvent corresponds to a set of localized
eigenvectors for the matrix H, while a nonvanishing imaginary part of the resolvent
is related to the presence of extended eigenvectors. Indeed, the stability of the
completely real solution of (7.34) can be exploited in order to detect the localization
threshold [Abo73].

At this point, the spectral density ρ(λ) can be finally computed, according to
which one of the two cases above occurs. In the localized regime, it turns out that
the resolvent develops a singularity when λ approaches one of the eigenvalues
λi’s of matrix H. So the spectral density has to be proportional to the probability
distribution of the inverse of the resolvent going to zero:

ρ(λ) ∝ lim
R−1

i (λ)→0
P[R−1

i (λ)] = lim
Ri(λ)→∞

R2
i (λ)P[Ri(λ)] (7.35)

having performed a suitable coordinate transformation. More details about the
localized case for sparse treelike matrices can be found in Ref. [Bog13].

When eigenvectors are extended, instead, the computation of the spectral
density is quite simpler. Indeed, it is given by the imaginary part of the resolvent
trace [Bré78, Mor15a]:

lim
ε→0

Tr
[
R(λ + iε)

]
= lim

ε→0

N

∑
i=1

1
λ + iε− λi

= N lim
ε→0

∫
dλ′

ρ(λ′)
λ + iε− λ′

= N

[
−
∫

dλ′
ρ(λ′)
λ− λ′

− iπρ(λ)

]
(7.36)

where in the first step we introduced the spectral density as defined in (7.4), while
in the second step we performed the integration around the singularity in the
complex plane. So it finally reads:

ρ(λ) = − 1
πN

lim
ε→0
=
[
Tr
[
R(λ + iε)

]]
(7.37)

still referring to a given realization of the matrix H. Then, the usual average over
the disorder realization has to be performed.

From the direct diagonalization of the Ns Hessian matrices of size N = 103,
we already know that — quite surprisingly — eigenvectors are not “properly”
localized for any value of the external field strength H (we will discuss this
in Section 7.5). So we have to exploit the second strategy, moving on the complex
plane. In order to numerically implement it, we define the real and the imaginary
parts of the cavity resolvent as:

<[R̃i→j(λ)] ≡ Ãi→j(λ) , =[R̃i→j(λ)] ≡ B̃i→j(λ) (7.38)
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and then we separate the two contributions, rewriting the cavity equations (7.33)
for the resolvent as:

Ãi→j(λ) =
λ−Hii −∑k∈∂i\j H2

ikÃk→i(λ)
[
λ−Hii −∑k∈∂i\j H2

ikÃk→i(λ)
]2

+
[
ε−∑k∈∂i\j H2

ikB̃k→i(λ)
]2

(7.39a)

B̃i→j(λ) = −
ε−∑k∈∂i\j H2

ikB̃k→i(λ)
[
λ−Hii −∑k∈∂i\j H2

ikÃk→i(λ)
]2

+
[
ε−∑k∈∂i\j H2

ikB̃k→i(λ)
]2

(7.39b)
Analogously, also the proper resolvent R can be split into a real and an imaginary
part, respectively A and B, computed starting from cavity resolvent Ã and B̃:

Ai(λ) =
λ−Hii −∑k∈∂i H2

ikÃk→i(λ)[
λ−Hii −∑k∈∂i H2

ikÃk→i(λ)
]2

+
[
ε−∑k∈∂i H2

ikB̃k→i(λ)
]2 (7.40a)

Bi(λ) = −
ε−∑k∈∂i H2

ikB̃k→i(λ)[
λ−Hii −∑k∈∂i H2

ikÃk→i(λ)
]2

+
[
ε−∑k∈∂i H2

ikB̃k→i(λ)
]2 (7.40b)

Now, ε acts as a regularizer in the denominator ofR and R̃, preventing overflows
to occur during numerical implementations. However, its presence has the well
known effect of broadening the peaks corresponding to each eigenvalue in the
spectral density. Since eigenvalues become closer and closer when increasing the
linear size N, then ε has to scale with some inverse power of N in order to obtain
a well defined behaviour in the thermodynamic limit. Indeed, the two limits ε→ 0
and N → ∞ are not independent.

In order to find the optimal scaling, we first of all remember that eigenvalues
of a random matrix typically repel each other [Meh04], and hence they are closer
in the bulk of the spectral density — where their typical spacing is of order 1/N
— and farther in the tails. This implies that the broadening of the peaks is more
evident in the tails, and hence the scaling of ε with N has to refer in particular to
these regions.

It is reasonable to assume a power-law growth of the spectrum in the left edge,
as it can be observed in Figure 7.4 and from the arguments in Section 7.2:

ρ(λ) ∼ (λ− λ̃)α , λ & λ̃ (7.41)

where the lower band edge λ̃ is 0 when the spectrum is gapless, while in the
gapped region it is of order H − 2JC. The α exponent will be actually computed
in Section 7.4 by looking at the smallest eigenvalues of H obtained via the Arnoldi
method. For the moment, relying on the argument by Gurarie and Chalker [Gur03]
exposed in Section 7.2, we set it to 3/2.

Since there are exactly N eigenvalues in the spectrum, then the integral of
the spectral density between λ̃ and the smallest eigenvalue λmin has to be of
order 1/N: ∫ λmin

λ̃
dλ ρ(λ) ∼ 1

N
(7.42)
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Hence, by assuming the above power-law growth, we get:

1
α + 1

(
λmin − λ̃

)α+1 ∼ 1
N

(7.43)

from which we get the expression for the typical spacing ∆λ of eigenvalues in the
tails of the spectral density as a function of N:

∆λ ≡ λmin − λ̃ ∼
(

1
N

) 1
α+1

(7.44)

Hence, ε has to scale with the same inverse power of N:

ε ∼
(

1
N

) 1
α+1

(7.45)

i. e. ε ∼ N−2/5, if α is actually equal to 3/2. Notice, then, that ∆λ is by far
smaller in the bulk of the spectrum, so that such scaling of ε can be safely used to
reconstruct the whole spectral density ρ(λ).

In this way, the resolvent technique allows the computation of the spectral
density of H with an algorithm which scales only linearly with N, so providing a
huge enhancement with respect to direct diagonalization algorithms. However, we
should check how reliable is the spectral density obtained in this way with respect
to the “true” one computed by direct diagonalization. Red curves in Figure 7.4
refer to ρ(λ) computed as in (7.37) for N = 103 and then averaged over the
Ns = 400 samples. The two spectral densities are perfectly superimposed almost
everywhere and for all the values of H analyzed, so confirming the reliability of
the computation through the resolvent. The main disagreement occurs in the tails
of the spectrum, and the reason of this is directly related to the presence of the
regularizer ε in the cavity equations for the resolvent, which makes the tails fatter.
As a consequence, the peaks of the spectral density are slightly lower, due to the
normalization constraint.

Fortunately, the overestimation of the tails of the spectral density is a well
known finite-size effect and indeed it vanishes when considering larger and larger
sizes N, as shown in Figure 7.5. So, in conclusion, the resolvent approach turns
out to be the most efficient and reliable method for computing the whole spectral
density for Hessian matrices of the largest sample we analyzed. However, we would
like to stress once more that the spectral density computed via the imaginary part
of the resolvent just takes into account the eigenvalues corresponding to extended
eigenvectors, while the localized contributions to the spectral density should be
computed apart, as previously explained, via the real part of the resolvent.

7.4 The gapless region

Now we can finally compute the value Hgap of the field strength at which the lower
band edge λ̃ approaches zero. This task can be accomplished in three steps. In
the first one, we average the smallest eigenvalue λmin for each value of the field
strength H and of the size N over the Ns samples. Then, we actually estimate the
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position of the lower band edge in the thermodynamic limit through a linear fit over
λmin(H; N) vs N−1/(α+1), so exploiting the result obtained above for the typical size
of statistical fluctuations of λmin. Third, a further linear fit over λmin(H; N = ∞)
vs H finally gives the sought value Hgap, as shown in Figure 7.6. Notice that we
are still using the value α = 3/2 provided by the argument in Section 7.2. We will
check its actual value for the XY model in a while.

So for the C = 3 RRG ensemble we have:

Hgap/J = 4.76(5) (7.46)

The rather large error in this estimation is systematic and it is due to the infinite-
size extrapolation we performed. Indeed, close to Hgap, anomalous finite-size
corrections on λmin could dominate instead of the above scaling N−1/(α+1).

Remarkably, the gap in the spectral density closes in correspondence of a value
Hgap of the field strength by far larger than the critical value HdAT for the RS
stability:

HdAT/J = 1.059(2) (7.47)

This means that there is a whole range of H/J values on the T = 0 axis in which
the energy landscape exhibits flat directions, just as found in Ref. [Bai15a].

Actually, the occurrence of soft modes in a disordered system with a disorder-
dependent ground state — though without implying the RSB — is an evidence
of the validity of the argument in Section 7.2 also for the present case under
investigation.

In this range of fields between Hgap and HdAT, the shape of the spectrum
changes through two main phenomena, clearly visible in Figure 7.4: i) the whole
spectrum gets closer to the λ = 0 axis, and ii) the central peak due to the con-
tribution of diagonal elements Hii’s lowers and moves toward the left, so that
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instead of a single peak now we have two peaks separated by a dip, similarly
to the Kesten-McKay spectrum (7.14) of the adjacency matrix of a RRG [Kes59,
McK81]. Note that it is also in this range that the large-field expansion fails — as
already said before — due to the flattening of the energy landscape and hence to
the appearance of soft modes, that can not be taken into account by that expansion.

Our interest particularly focuses on the region very close to the λ = 0 axis,
where quasi-zero eigenvalues accumulate. Indeed, it is this region that provides
the exponent α of the power-law scaling of the spectral density in the gapless
regime:

ρ(λ) ∼ λα , λ & 0 (7.48)

which in turn is related to several important features of the model: among them,
the divergence of the spin glass susceptibility χSG. The numerical computation
of α will be performed through different though equivalent approaches.

7.4.1 Left tail of the spectrum

First of all, let us analyze the distribution of the smallest eigenvalues of the Hessian
matrices computed by means of the Arnoldi method.

Indeed, the α exponent of the power-law growth of λi’s in the left tail of the
spectrum can be computed by looking at their arrangement with respect to the
rescaled rank i/N, as shown in the upper panel of Figure 7.7. In the log-log
scale, the averaged eigenvalues λi’s vs the rescaled rank i/N arrange in a straight
line of slope 1/(α + 1). Notice, however, that this scaling does not hold for the
very first eigenvalues — due to their larger dependence on finite size — and
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line, of slope 1/(α + 1) = 2/5 (i. e. α = 3/2), is just a guide for the eye.

furthermore when too close to the bulk, where the power-law trend changes due
to the proximity of the first peak of the spectral density.

So a linear fit over the averaged m = 50 smallest eigenvalues — just discarding
the very first of them — actually provides an estimation of α at H = 2.5:

1
1 + α

= 0.39(1) ⇒ α = 1.56(7) (7.49)

which is compatible with the 3/2 value obtained through the analytic argument
provided in Section 7.2, as well as with finite-dimension numerical evidences of
Ref. [Bai15a].

Furthermore, this value does not change — compatibly with the size of the
error bars — for all the values of the field strength between Hgap — namely where
the gap actually closes — and HdAT — i. e. where the RS ansatz fails — as shown
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in the lower panel of Figure 7.7 for the size N = 106. It is just the coefficient of λ3/2

that changes when lowering the field, so making the whole spectrum getting closer
to the λ = 0 axis (as seen in Figure 7.4).

So we proved the validity of the quite general argument by Gurarie and
Chalker [Gur03] also for the spin glass XY model in a field on sparse random
graphs, so paving the way to a different interpretation of the RSB mechanism with
respect to the fully connected case.

7.4.2 Distribution of the smallest eigenvalue

From random matrix theory it is well known that the smallest eigenvalue of a
gapless positive semi-definite matrix is not actually zero1 for finite values of N,
since it scales with an inverse power of N itself [Meh04]. Furthermore, in the
previous Section we already computed this scaling in the case of a generic lower
band edge λ̃, which in this case turns out to be zero. So we automatically get the
scaling of λmin with N:

λmin ∼
(

1
N

) 1
α+1

(7.50)

that is indeed what we used above in order to compute α from the left tail of the
spectral density.

More interestingly, random matrix theory also provides a description of the
sample-to-sample statistics of λmin [Meh04, Ake11]. Indeed, eigenvalues of Hessian
matrices H’s are lower bounded by 0 in the gapless region and hence from the
Fisher-Tippett-Gnedenko theorem [Fis28, Gne43] the extreme value statistics of λmin
is found to follow the Weibull distribution:

PWeib(λ) =
α + 1

λ′

(
λ

λ′

)α

e−(λ/λ′)α+1
, λ > 0 (7.51)

where α is exactly the exponent of the spectral density close to the lower band
edge, while λ′ is the “characteristic scale” of λmin. Its cumulative distribution is
instead given by:

CWeib(λ) = 1− e−(λ/λ′)α+1
, λ > 0 (7.52)

In the upper panel of Figure 7.8 we plot the histogram of λmin collected over
the Ns samples of size N = 103, fitted by a Weibull distribution (7.51) of free
parameters α and λ′. The value obtained for α:

α = 1.7(2) (7.53)

is again compatible with the value α = 3/2. Notice that the large error in the
estimation of α is due to the binning used in the histogram, in turn due to the
relatively small number of samples analyzed (Ns = 400 for N = 103).

At this point we can safely set α equal to 3/2 and then fit the cumulative
distribution of λmin at H/J = 2.5 and N = 103 with the Weibull cumulative
distribution (7.52), obtaining the plot in the lower panel of Figure 7.8, with:

λ′ = 0.21(1) (7.54)
1The only eigenvalue that can be zero also for finite N is the “trivial” one due to the O(2)

rotational symmetry, which is now explicitly broken by the presence of the random field.
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Figure 7.8. Upper panel: Histogram of λmin of H from the Ns samples of size N = 103 at
H = 2.5. The green dashed line is the Weibull distribution (7.51) of free parameters α
and λ′ that best fits the data, giving α = 1.7(2). Lower panel: Cumulative distribution
of λmin as in the upper panel. The green dashed line is the Weibull cumulative
distribution (7.52) with α fixed to 3/2 and λ′ to be fitted over the data, giving λ′ =
0.21(1).

7.5 Eigenvectors of the Hessian and delocalization

At this point, the picture begins to be clearer. The energy landscape is endowed
with few strictly stable minima (or even just one minimum) for large field inten-
sities, H > Hgap; in other words, the spectral density ρ(λ) of the Hessian matrix
is gapped. Then, below this value, it develops soft modes, distributed as λ3/2 or
equivalently as ω4, predicted by analytic arguments and then confirmed by strong
numerical evidences. There is a quite large range of H values, from Hgap down
to HdAT, where the energy landscape exhibits such flat regions but no RSB occurs.
Coherently, no divergence in the spin glass susceptibility χSG is detected, due to
the α = 3/2 exponent in the lower band edge of the spectral density that persists in
the whole gapless region. Finally, at H = HdAT, the RS solution becomes unstable,
signaled by the divergence in the average convergence time of the GSA. Still χSG
remains finite.
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It is clear that the RSB occurring at HdAT is not ruled by the same mechanism
of fully connected models, since soft modes are here integrable over the system
(α is equal to 3/2 and not to 1/2), in turn making the spin glass susceptibility χSG
not diverge. On the other hand, in fully connected models the RSB is related to the
appearance of extended soft modes, while here they could be localized at Hgap and
then become extended only at HdAT, via some kind of delocalization transition. So in
order to throw more light into this problem, trying to understand how the features
of the Hessian at H = HdAT are linked to the RSB, let us look at the eigenvectors
associated with these soft modes.

Before going on, let us notice that when two (or more) eigenvalues of a matrix
are too close, then the Arnoldi method is not so effective in correctly distinguishing
the corresponding eigenvectors. Indeed, they form a nearly degenerate subspace,
and hence the number of time steps required for correctly distinguishing them
is exponentially large in the spacing of the two eigenvalues. This implies that
different algorithms could provide different eigenvectors corresponding to the
same eigenvalue. However, we are actually interested in the statistical properties
of all the soft modes of the Hessian, so we will see that this degeneration is not a
problem in this case.

On finite-dimension lattices, the typical quantity signaling the localization of a
generic vector v is the Inverse Participation Ratio (IPR), so defined:

Υ ≡ ∑N
i=1 v4

i(
∑N

i=1 v2
i

)2 (7.55)

where — when normalizing the variance of v to unity, ∑N
i=1 v2

i = 1 — a completely
localized vector corresponds to a unitary IPR:

v0 = 1 , vi = 0 ∀i 6= 0 ⇒ Υ = 1 (7.56)

while a completely delocalized vector has an IPR equal to 1/N:

vi =
1√
N
∀i ⇒ Υ =

1
N

(7.57)

at the end going to zero in the thermodynamic limit. So in general the IPR
measures the fraction of components of v that are “substantially” different from
zero.

In our case, the simplest idea is to look at the IPR of |λ〉min, which should be
the ideal candidate for the supposed delocalization transition. In the upper panel
of Figure 7.9 we report Υmin — namely the IPR of |λ〉min averaged over the Ns
samples — for each size N when varying the field strength H.

For very large values of H, λmin is by far larger than zero, and the corresponding
value of Υmin is around 0.3 − 0.4. Then, when getting closer to Hgap, λmin goes
to zero and |λ〉min becomes slightly more localized, with Υmin around 0.4 − 0.5.
Finally, when lowering the field strength below H/J ' 2, we observe a sort of
delocalization of |λ〉min. Notice that in this region finite-size effects are quite
evident, in particular below HdAT. The reason is that for N = 103 the size of typical
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Figure 7.9. Upper panel: The IPR Υ of |λ〉min for each field strength H and graph size N,
averaged over the Ns samples. Lower panel: Again the IPR Υ for each H and N, but
now averaged on the first 10 eigenvectors of H.

loops is very small and hence the delocalization of |λ〉min is given by the short
loops rather than by an actual extended correlation on the treelike topology. Of
course, this effect becomes negligible when increasing N, so that the IPR does no
longer take into account loop effects. Indeed, from the analysis on the dataset
at N = 106 it is evident that the delocalization of the softest mode |λ〉min does
not actually involve the whole system, as we would have expected for a proper
delocalization transition with Υmin → 0 when H → HdAT.

However, as stated before, the smallest eigenvalues of the Hessian matrix H

are nearly degenerate — in particular in the gapless region and at least for the
larger sizes — and hence we should consider not only the “softest” eigenvector
|λ〉min, but the whole subspace spanned by the first soft eigenvectors. So in the
lower plot of Figure 7.9 we plotted the sampled-averaged IPR computed on the set
of eigenvectors {|λ〉i}i=1,...,10 corresponding to the 10 smallest eigenvalues — for
the same fields and sizes of the upper plot — finally labeling it as Υ10:

Υ10 ≡
1

10Ns

Ns

∑
s=1

9

∑
i=0

Υ(s)
i (7.58)
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with the superscript s being the sample index and the subscript i the eigenvector
index.

For the largest sizes analyzed, this just results in an increased statistics, since the
first eigenvectors are believed to have just the same statistical properties of |λ〉min.
So Υ10(H) has the same qualitative trend of Υmin(H) in the upper panel. Instead,
when N = 103, 10 eigenvectors are too many with respect to the total number of
degrees of freedom. Hence, some of them begin to behave as if they were in the
bulk of the spectral density, being more extended and hence having a smaller IPR.
This results in a curve Υ10(H) which is lower than Υmin(H).

The statistical equivalence between the first 10 eigenvectors and the very first
one — at least for N & 104 — can be better appreciated in Figure 7.10, where
we plotted the histogram over the samples of Υmin and of Υ10 ≡ {Υi}i=0,...,9
for some representative values of the field intensity H and for the four sizes N
analyzed. Indeed, solid lines (computed on the first 10 eigenvectors) just appear as
a smoother version of the dashed ones (computed on just the first one), evidence
of an increased statistics in the former with respect to the latter, without any
remarkable difference in their probability distribution.

Furthermore, Figure 7.10 provides even more important information. Indeed,
the heterogeneity provided by the sparse topology reflects on the broad probability
distribution of Υ over the samples: the IPR of the very first eigenvectors is broadly
distributed into the allowed range [0, 1], so that its average value Υ is not enough
representative of the entire probability distribution. Moreover, we can also verify
that the apparent delocalization of the softest modes for H → HdAT at the smaller
sizes is just a finite-size effect: the histogram of Υ at N = 106 remains indeed well
centered on finite values, without any accumulation on the zero.

The not complete delocalization of |λ〉min at HdAT — as well as of the others
eigenvectors spanning the degenerate soft subspace — can be better appreciated
in Figure 7.11, where we just focus on a single sample of size N = 106. If we label
as 〈ei|λ〉min the i-th component of |λ〉min, then we can sort them according to their
absolute value, obtaining the result in the upper panel of Figure 7.11. The clear
power-law decay is due to the treelike topology of the graph, which makes the
number of neighbours N(r) at distance r grow as a power of r itself; e. g. for a RRG
we have

N(r) = C(C− 1)r−1 , r > 1 (7.59)

That is just why the usual definition of localization of a vector in a finite-dimension
lattice is here unsuitable, making almost useless the IPR parameter Υ.

On the other hand, we can recover the usual exponential decay of correlations
out of the critical point when taking into account such power-law growth in the
number of neighbours. If we consider the largest component (in absolute value) of
|λ〉min as the “origin” of the soft mode, then it is reasonable to consider the C next
components (still sorted according to their absolute value) as referred to the sites
of G at distance r = 1, then the next C(C− 1) components as referred to the sites
at distance r = 2, and so on. In the end, we can group into blocks of size N(r) —
and then sum — the sorted components of |λ〉min believed to refer to the sites at
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critical behaviour arise at H = HdAT from its behaviour.

distance r from the origin of the softest mode, respectively,

ψ(r) ≡
Ntot(r)

∑
i=Ntot(r−1)+1

|〈ei|λ〉min| (7.60)

where Ntot(r) ≡ ∑r
r′=0 N(r′) it the total number of sites at distance r′ up to r. In

this way we obtain a kind of “integrated correlation function” ψ(r), that should
now decay exponentially with the distance r. It is actually the case, as it can be
seen in the lower panel of Figure 7.11. Unfortunately, in the same panel we also
see that the decay rate of ψ(r) does not go to zero when approaching HdAT. The
same occurs for the other eigenvectors belonging to the degenerate soft subspace
of H. This seems hence to rule out the hypothesis of a complete delocalization of
a single soft mode as the cause of the RSB.
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At this point, let us go back to the initial task of this Section. We would like
to connect the RSB with some features of the Hessian, and hence we focused on
the delocalization of soft modes. Unfortunately, the standard IPR analysis seems
not to provide useful hints in this sense. Indeed, it is true that there is a partial
delocalization of the soft modes when approaching HdAT from above, but Υ(H)
does not extrapolate to zero at such point. On the other hand, we also showed that
the standard IPR analysis is not so useful when dealing with treelike topologies,
due to the power-law growth of the number of neighbours with the distance on the
graph. Notwithstanding then taking it into account, no complete delocalization
can be found as well in correspondence of the critical point HdAT.

The fact that soft modes do not completely delocalize should not surprise too
much the reader. Indeed, as pointed out at the beginning of this Chapter, the
occurrence of soft modes is directly linked to the strong disorder dependence of
the ground state, namely to the well known picture of a rugged energy landscape.
So if on one hand the scenario connected to the RSB does not seem to be any
longer the one in which just one soft mode completely delocalizes, on the other
hand we could suppose an opposite mechanism: namely, there could be a large
number of rather localized soft modes, and it could be their “cooperation” that
makes the RS ansatz fail at H = HdAT.

In order to validate this second scenario, we suggest to adopt a different
approach. On a given sample, we first reach the BP fixed point via the GSA.
Then, we randomly perturb this fixed point, creating a “twin population” of cavity
messages. By running again the GSA on the second population, we can detect in
which region of the graph it converge the most slowly to the previously reached
fixed point. Such region should hence be the one related with the smallest λmin,
while the corresponding eigenvector |λ〉min should be given by some kind of
“difference” between the first fixed point population and the second population
still evolving toward the fixed point.

We started this analysis just right now, already obtaining some positive feed-
back. However it is too early to claim something in this sense and hence we
postpone the presentation of these results to future works.
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Conclusions and outlooks

The main aim that pushed us to face this topic was to provide a well established
framework for the analysis of vector spin models on disordered systems, both on
the analytical and the numerical point of view. It is surprising how on one hand
several physical phenomena can be interpreted and explained by means of a vector
spin model, while on the other hand very few general results have been carried
out so far on them.

This difference becomes even more striking when moving from the universally
known mean-field approach provided by fully connected graphs to the less known
— but more useful and rich of insights on the finite dimensional case — mean-field
approach on sparse random graphs. For this reason, we focused on the simplest
vector spin model, the XY model, defining it on the sparse topology of random
graphs.

In Part I we provided a general introduction to the field of disordered systems
and to the tools typically exploited for solving them, namely the belief propagation
and the cavity method. A particular attention has been devoted to the motivations
that lead us to the use of sparse random graphs rather than fully connected graphs,
so to get a description closer to what actually happens on finite dimensional
lattices. Then, a brief review over spin glasses has been inserted, in order to
make comfortable even those readers not very well experienced in this field. In
particular, some key results about fully connected vector spin glasses have been
here recapped, so to allow a comparison with the analogous results on the sparse
topology obtained in the central part of the thesis.

In Part II we mainly focused on the study of the XY model in absence of any
external field, in order to provide a well established framework for its analysis on
sparse random graphs. All the related results can be also found in Ref. [Lup17b].
Indeed, in most of the works about the XY model, only the two expectation values
(mx, my) of each spin are taken into account, or equivalently the direction θ in
the xy plane. Instead, we tried to convince the reader that the XY model can
be fully understood only if the whole probability distribution of θ is considered,
instead of just its mean value. If for the Ising model the two approaches are exactly
equivalent, for vector spin models they are not, due to their continuous nature. So
moving from m = 1 to m > 1 spin components actually implies a passage from
a finite dimensional to an infinite dimensional problem, but unfortunately this
seems not to be a well recognized issue.

If on one hand this makes analytical computations more involving and numer-
ical simulations more requiring, on the other hand we showed that an efficient
and reliable numerical proxy for the XY model is given by the Q-state clock model,



184 Conclusions and outlooks

which actually projects the problem from the infinite dimensional space to a Q di-
mensional space. We proved that the error committed in the evaluation of physical
observables decays exponentially fast in Q, so providing a considerable speedup.
Moreover, also the universality class of the clock model becomes the same one
of the XY model at very small values of Q, so further validating the use of the
clock model with rather small values of Q — e. g. Q = 32 or Q = 64 — when
studying the XY model. Unfortunately, the generalization to the m > 2 case seems
not to be so straightforward, due to the difficulty of discretizing the resulting polar
coordinates.

We want to stress two main consequences of the results coming from this
analysis. First, it is just the presence of the quenched disorder that enhances the
convergence, in a certain sense unfreezing the discrete degrees of freedom of the
clock model toward the XY model ones. Indeed, we saw that the most ordered the
system — due to both mostly ferromagnetic couplings and low temperatures — the
slowest the convergence. Second, spin glass XY model is by far more glassy than
the Ising model, mainly due to the continuous nature of its spins. In particular, we
showed that at zero temperature an infinitesimal quantity of disorder is enough
the break the symmetry between replicas, at variance with the Ising case. This
could lead to a better explanation of some glassy features experimentally observed,
such as memory and rejuvenation, which are indeed reduced by the presence of
strong anisotropies.

Once established the methods for the analysis of the XY model on sparse
random graphs, in Part III we moved to the more cumbersome case of the XY
model in a field. Indeed, some of the analytical tools exploited before can not be
used now, so that most of the results come from numerical — but still exact —
approaches.

The analysis started by reversing the point of view adopted in Part II: the
quenched disorder is introduced via an external field randomly oriented on each
site, while all interactions are ferromagnetic. Also in this case the XY model
surprisingly showed a more pronounced glassiness with respect to the Ising model
in a random field. Indeed, in the latter case there is an analytical argument that
prevents the occurrence of the replica symmetry breaking, but it does not hold
for vector spin models. This “opportunity” is actually exploited by the random
field XY model, which indeed shows a tiny replica symmetry breaking region
in the very low-temperature region. These results can be found in the working
paper [Lup17d].

Then, we moved to the characterization of the behaviour of the spin glass XY
model in a field, in both cases of a homogeneous field and a randomly oriented field.
It is crucial the observation that what matters is the direction of the external field,
while its modulus is not relevant for the stability of the replica symmetric solution.
According to the distributions of the field direction previously enumerated, the
breaking of replica symmetry occurs in different ways: via the Gabay–Toulouse
(GT) transition when the field is uniform, or via the well known de Almeida–
Thouless (dAT) transition when the field direction is randomly distributed. We
also linked these two instabilities with the breaking of spin symmetries, identifying
them respectively with transverse and longitudinal perturbations of the replica
symmetric solution. Finally, the critical behaviour for intermediate distributions of
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the field direction has been studied, finding that as soon as the perfect alignment of
the external field on each site is perturbed, even by a tiny amount, then the resulting
critical line is no longer GT-like but dAT-like. Hence, dAT-like instabilities represent
the more generic and robust mechanism through which the replica symmetry
breaking occurs in a disordered system, with GT-like instabilities relegated to some
very peculiar situations. These results can be found in Ref. [Lup17c].

Finally, in Part IV we focused on the zero-temperature limit of the spin glass
XY model in a randomly oriented field, which allowed us to explore its energy
landscape. Indeed, the continuous nature of the XY spins permits to study the
harmonic fluctuations around the ground state via the standard analysis of the
corresponding Hessian matrix. Long-range correlations compelled us to study
single instances of the problem and then average over them, with a consistent
numerical effort.

We proved that the occurrence of soft modes in the energy landscape is not
directly related to the breaking of replica symmetry, but it is due to the disorder
dependent nature of the ground state. Direct consequence of this dependence
is the anomalous density of soft modes in the energy landscape, ρ(λ) ∼ λ3/2,
that differs from fully connected approaches (which at variance shows a 1/2
exponent) but matches with other numerical and experimental finite dimensional
evidences. Moreover, it is neither just the density of these soft modes that causes
the breaking of replica symmetry, nor their delocalization. More likely, it is
their combined effects that causes the replica symmetry breaking in the sparse
case: soft modes appear inside many but rather localized “valleys” in the energy
landscape, separated by low energetic barriers. So when perturbed enough from
the state toward which it relaxed, the system abandons a valley and moves toward
a different one. Even though we have not yet provided a firm proof of this scenario,
at the moment it seems to be the most likely one.

Similar studies have been performed out on vector spin glasses in finite di-
mension via MonteCarlo simulations, but in our case a crucial enhancement is
provided by the belief propagation algorithm. Indeed, it allows us to actually
reach the true ground state of the energy landscape almost everywhere above the
critical point, instead of getting stuck inside some metastable state. Moreover, once
reached the fixed point in the space of cavity messages and then perturbed it, the
resulting trajectory could provide important hints on the motion of the system
in the energy landscape, going beyond the harmonic approximation given by the
Hessian. This route is still under analysis, with already some positive results, but
it is too early to claim something definitive about it now. Further developments
will be provided in a future work [Lup17a].

Even though the analysis of the critical properties of the spin glass XY model
is not yet concluded, by means of this thesis we believe to have provided several
tiny but important results on the long way toward the full comprehension and
explanation of the behaviour of disordered systems with continuous variables.
Moreover, there are several analogies between low-energy excitations in vector
spin models and the ones in structural glasses, hence our analysis could also
provide some insights on the longstanding problem of the comprehension of the
glass transition. Indeed, we already showed that our analytically solvable model
represents a simple though effective tool to actually reproduce and study the
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density of states in glassformers. Further connections could finally be established
with all those fields in which low-energy modes in a rugged energy landscape
play a crucial role, e. g. inference, continuous satisfiability problems and machine
learning.
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Appendix A

The BP equations for the XY
model

The aim of this appendix is to make explicit all the manipulations performed on
the BP equations for the XY model, which have only been touched on in the main
text. First of all, we derive BP equations in the most generic case of factor graphs,
which usually turns out to be more useful in numerical simulations. Then, we
derive their linearized version, which is needed for the check of the linear stability
of BP fixed points. Of course, also the corresponding expressions in the pairwise
case are provided. Finally, we perform the zero-temperature limit on both the
full BP equations and their linearized version.

A.1 The BP equations at finite temperature

Let us write the most generic Hamiltonian for the m = 2 case, namely the XY
model, which we study throughout this thesis:

H[{θ}] = −∑
(i,j)

Jij σi Uij σj −∑
i

Hi · σi (A.1)

Notice that the strength and the sign of the interaction between each couple
of nearest-neighbour spins, σi and σj, is ruled by the corresponding coupling
constant Jij. Moreover, we also insert a matrix Uij that applies a random rotation
of an angle ωij to one of the two spins during the interaction. Even though being a
little bit redundant, this notation will allow us to easily recover the BP equations
for each specific shape of interaction.

Due to the normalization constraint, ‖σi‖ = 1, each spin can be described
by a single angle θi belonging to the [0, 2π) interval. So interactions acquire a
cosine-like shape, while field Hi can be decomposed into its modulus Hi and its
direction φi ∈ [0, 2π):

H[{θ}] = −∑
(i,j)

Jij cos (θi − θj −ωij)−∑
i

Hi cos (θi − φi) (A.2)

This is the basic Hamiltonian of the XY model that we use throughout the thesis,
each time removing or modifying some terms according to the specific model we
are going to study.
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A.1.1 The factor graph case

Once explicitly written H, it is easy to write the corresponding BP equations.
Even though we are dealing with pairwise interactions between spins, we firstly
focus on the BP equations written in the factor graph formalism, since it has some
advantages in numerical simulations. Then, we will rewrite them in a simpler
way by getting rid of η̂’s messages, so recovering the most used notation in the
pairwise case.

We start from the finite-temperature case. For the variable-to-check edge we
have: 




ηi→j(θi) =
1
Zi→j

e βHi cos (θi−φi) ∏
k∈∂i\j

η̂k→i(θi)

Zi→j =
∫

dθi e βHi cos (θi−φi) ∏
k∈∂i\j

η̂k→i(θi)
(A.3)

while for the check-to-variable edge we have:





η̂i→j(θj) =
1
Ẑi→j

∫
dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

Ẑi→j =
∫

dθj dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

(A.4)

Then, in order to study the stability of their solution — namely of the BP fixed
points — the typical approach is to perturb it and check if these perturbations
do or do not grow when iterating the BP equations. This is nothing but the well
known study of the linear stability of a fixed point. Being η’s and η̂’s continuous
functions as long as temperature is larger than zero, their perturbations have to be
continuous functions over the [0, 2π) interval as well:

{
ηi→j(θi) = η∗i→j(θi) → ηi→j(θi) = η∗i→j(θi) + δηi→j(θi)

η̂i→j(θj) = η̂∗i→j(θj) → η̂i→j(θj) = η̂∗i→j(θj) + δη̂i→j(θj)
(A.5)

We start from equations (A.3), involving variable-to-check edges. When adding
the small perturbations to cavity distributions in both sides of the equation —
making explicit also the normalization constant Zi→j — we get:

ηi→j(θi) + δηi→j(θi) =
e βHi cos (θi−φi) ∏k∈∂i\j

[
η̂k→i(θi) + δη̂k→i(θi)

]
∫

dθi e βHi cos (θi−φi) ∏k∈∂i\j
[
η̂k→i(θi) + δη̂k→i(θi)

] (A.6)

Numerator of the right hand side can be rewritten up to the first order as:

e βHi cos (θi−φi) ∏
k∈∂i\j

[
η̂k→i(θi) + δη̂k→i(θi)

]

' e βHi cos (θi−φi) ∏
k∈∂i\j

η̂k→i(θi)

+ e βHi cos (θi−φi) ∑
k∈∂i\j

δη̂k→i(θi) ∏
k′∈∂i\{j, k}

η̂k′→i(θi)

(A.7)
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This expansion can be used also in denominator, leading to:
∫

dθi e βHi cos (θi−φi) ∏
k∈∂i\j

[
η̂k→i(θi) + δη̂k→i(θi)

]

'
∫

dθi e βHi cos (θi−φi) ∏
k∈∂i\j

η̂k→i(θi)

+
∫

dθi e βHi cos (θi−φi) ∑
k∈∂i\j

δη̂k→i(θi) ∏
k′∈∂i\{j, k}

η̂k′→i(θi)

=
∫

dθi e βHi cos (θi−φi) ∏
k∈∂i\j

η̂k→i(θi)

×
[

1 +

∫
dθi e βHi cos (θi−φi) ∑k∈∂i\j δη̂k→i(θi)∏k′∈∂i\{j, k} η̂k′→i(θi)∫

dθi e βHi cos (θi−φi) ∏k∈∂i\j η̂k→i(θi)

]

≡ Zi→j

(
1 +

δZi→j

Zi→j

)

(A.8)

with δZi→j so defined:

δZi→j ≡
∫

dθi e βHi cos (θi−φi) ∑
k∈∂i\j

δη̂k→i(θi) ∏
k′∈∂i\{j, k}

η̂k′→i(θi) (A.9)

At this point, the entire fraction in the right hand side of (A.6) can be expanded up
to the first order in perturbations:

e βHi cos (θi−φi) ∏k∈∂i\j
[
η̂k→i(θi) + δη̂k→i(θi)

]
∫

dθi e βHi cos (θi−φi) ∏k∈∂i\j
[
η̂k→i(θi) + δη̂k→i(θi)

]

'
e βHi cos (θi−φi) ∏k∈∂i\j η̂k→i(θi)

Zi→j

+
e βHi cos (θi−φi) ∑k∈∂i\j δη̂k→i(θi)∏k′∈∂i\{j, k} η̂k′→i(θi)

Zi→j

−
e βHi cos (θi−φi) ∏k∈∂i\j η̂k→i(θi)

Zi→j

δZi→j

Zi→j

= ηi→j(θi) +
e βHi cos (θi−φi) ∑k∈∂i\j δη̂k→i(θi)∏k′∈∂i\{j, k} η̂k′→i(θi)

Zi→j

− ηi→j(θi)
δZi→j

Zi→j

(A.10)

Inserting it back into (A.6), in the end we get the set of self-consistency equations
for the perturbations of variable-to-check cavity distributions:

δηi→j(θi) =
1
Zi→j


e βHi cos (θi−φi) ∑

k∈∂i\j
δη̂k→i(θi) ∏

k′∈∂i\{j, k}
η̂k′→i(θi)− δZi→j ηi→j(θi)




(A.11)
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with the second term in the square brackets that automatically enforces the nor-
malization, namely perturbations must have a zero mean, as expected by definition
for a perturbation of a well normalized probability distribution.

We now move to equations (A.4), involving check-to-variable edges:




η̂i→j(θj) =
1
Ẑi→j

∫
dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

Ẑi→j =
∫

dθj dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

(A.12)

The addition of small perturbations to cavity distributions in both sides of the
equation yields:

η̂i→j(θj) + δη̂i→j(θj) =

∫
dθi e βJij cos (θi−θj−ωij)

[
ηi→j(θi) + δηi→j(θi)

]
∫

dθj dθi e βJij cos (θi−θj−ωij)
[
ηi→j(θi) + δηi→j(θi)

] (A.13)

Numerator can be expanded up to the first order as before:
∫

dθi e βJij cos (θi−θj−ωij)
[
ηi→j(θi) + δηi→j(θi)

]

=
∫

dθi e βJij cos (θi−θj−ωij) ηi→j(θi) +
∫

dθi e βJij cos (θi−θj−ωij) δηi→j(θi)
(A.14)

as well as denominator:
∫

dθj dθi e βJij cos (θi−θj−ωij)
[
ηi→j(θi) + δηi→j(θi)

]

=
∫

dθj dθi e βJij cos (θi−θj−ωij) ηi→j(θi) +
∫

dθj dθi e βJij cos (θi−θj−ωij) δηi→j(θi)

=
∫

dθj dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

[
1 +

∫
dθj dθi e βJij cos (θi−θj−ωij) δηi→j(θi)∫
dθj dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

]

≡ Ẑi→j

(
1 +

δẐi→j

Ẑi→j

)

(A.15)

with δẐi→j so defined:

δẐi→j ≡
∫

dθj dθi e βJij cos (θi−θj−ωij) δηi→j(θi) (A.16)

As before, the entire fraction in the right hand side of (A.13) can be then expanded:
∫

dθi e βJij cos (θi−θj−ωij)
[
ηi→j(θi) + δηi→j(θi)

]
∫

dθj dθi e βJij cos (θi−θj−ωij)
[
ηi→j(θi) + δηi→j(θi)

]

'
∫

dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

Ẑi→j
+

∫
dθi e βJij cos (θi−θj−ωij) δηi→j(θi)

Ẑi→j

−
∫

dθi e βJij cos (θi−θj−ωij) ηi→j(θi)

Ẑi→j

δẐi→j

Ẑi→j

= η̂i→j(θj) +

∫
dθi e βJij cos (θi−θj−ωij) δηi→j(θi)

Ẑi→j
− η̂i→j(θi)

δẐi→j

Ẑi→j

(A.17)
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Substituting it back into (A.13), also the self-consistency equations for δη̂’s can be
finally obtained:

δη̂i→j(θj) =
1
Ẑi→j

[∫
dθi e βJij cos (θi−θj−ωij) δηi→j(θi)− δẐi→j η̂i→j(θj)

]
(A.18)

A.1.2 The pairwise case

Though necessary when dealing with many-body interactions, the factor graph
formalism is not essential when each check node involves just two variables at
each time. Indeed, for the a-th interaction involving θi and θj variables, we e. g.
write η̂i→j(θj) instead of η̂a→j(θj). Now, we can get rid of η̂’s cavity messages and
so recover the pairwise BP equations that we actually use in the main text, which
at variance turn out to be more useful in analytic computations.

In order to do this, it is enough to discard the multiplicative normalization
given by Ẑi→j in (A.4) and then substitute the resulting expression for η̂’s in the
right hand side of (A.3), so obtaining:





ηi→j(θi) =
1
Zi→j

e βHi cos (θi−φi) ∏
k∈∂i\j

∫
dθk e βJik cos (θi−θk−ωik) ηk→i(θk)

Zi→j =
∫

dθi e βHi cos (θi−φi) ∏
k∈∂i\j

∫
dθk e βJik cos (θi−θk−ωik) ηk→i(θk)

(A.19)

Then, we have also to linearize these equations. Following exactly the same
steps of the factor graph case, we obtain:

δηi→j(θi) =
1
Zi→j

[
e βHi cos (θi−φi) ∑

k∈∂i\j

∫
dθk e βJik cos (θi−θk−ωik) δηk→i(θk)

× ∏
k′∈∂i\{j, k}

∫
dθk′ e βJik′ cos (θi−θk′−ωik′ ) ηk′→i(θk′)− δZi→j ηi→j(θi)

]

(A.20)

with δZi→j so defined:

δZi→j ≡
∫

dθi e βHi cos (θi−φi) ∑
k∈∂i\j

∫
dθk e βJik cos (θi−θk−ωik) δηk→i(θk)

× ∏
k′∈∂i\{j, k}

∫
dθk′ e βJik′ cos (θi−θk′−ωik′ ) ηk′→i(θk′)

(A.21)

A.2 The limit of zero temperature

As long as temperature is larger than zero, each cavity distribution η and η̂ is
positive definite on the whole [0, 2π) interval. Nevertheless, when T decreases,
least probable values of θ become exponentially suppressed in β, implying cavity
distributions to become Dirac delta functions in the β→ ∞ limit. However, even in
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the zero-temperature limit, small fluctuations around the most probable value are
allowed for a system with continuous degrees of freedom, meaning that reducing
spin marginals to Dirac delta functions implies a loss of precious information
about the physics of the model in the limit of very low temperatures. Hence
the correct ansatz is to describe the zero-temperature cavity distributions via the
large-deviation formalism:

{
ηi→j(θi) ≡ e βhi→j(θi)

η̂i→j(θj) ≡ e βui→j(θj)
(A.22)

so to correctly take into account the amplitude of small fluctuations around the
most probable values.

By using this notation, the BP equations (A.3) and (A.4) can be rewritten in
terms of the cavity fields h’s and the cavity biases u’s:





e βhi→j(θi) =
e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)]

∫
dθi e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)]

e βui→j(θj) =

∫
dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)]

∫
dθj dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)]

(A.23)

Then, evaluating integrals through the saddle-point method when β → ∞, the
zero-temperature BP equations can be derived:





hi→j(θi) ∼= Hi cos (θi − φi) + ∑
k∈∂i\j

uk→i(θi)

ui→j(θj) ∼= max
θi

[
Jij cos (θi − θj −ωij) + hi→j(θi)

] (A.24)

where normalizations are now additive and they are still provided by Zi→j and
Ẑi→j, respectively, evaluated in the β→ ∞ limit, so yielding:

max
θi

hi→j(θi) = 0 , max
θj

ui→j(θj) = 0 (A.25)

In this way, h’s and u’s are actually large-deviation functions, being negative
semidefinite.

In the pairwise case, the BP equations are analogous to the previous ones, with
the sole cavity messages h’s:

hi→j(θi) ∼= Hi cos (θi − φi) + ∑
k∈∂i\j

max
θk

[
Jik cos (θi − θk −ωik) + hk→i(θk)

]
(A.26)

with the additive normalization explained before.

A.2.1 Linearization at zero temperature

As in the finite-temperature case, the stability of fixed points of the BP equations
can be studied by linearization. However, this situation is more cumbersome than
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before. Indeed, when T > 0 linear evolution of perturbations in the XY model is
given by the application of an infinite-dimensional matrix — namely of an integral
transform — in which all entries are different from zero. But when β→ ∞ most of
these entries vanish, making perturbations no longer continuous functions of their
argument, but singular. For this reason, it is not clear a priori if the β → ∞ limit
and the linearization of BP equations do commute.

So let us start from BP equations (A.23), where cavity messages have already
been written in terms of large deviation functions, and let us perturb them:





e β[hi→j(θi)+δhi→j(θi)] =
e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)+∑k∈∂i\j δuk→i(θi)]

∫
dθi e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)+∑k∈∂i\j δuk→i(θi)]

e β[ui→j(θj)+δui→j(θj)] =

∫
dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)+δhi→j(θi)]

∫
dθj dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)+δhi→j(θi)]

(A.27)

Then, we expand both left and right hand sides up to the first order in perturbations.
For the first equation, the variable-to-check one, we get:

e βhi→j(θi)
[
1 + βδhi→j(θi)

]

=
e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)]

[
1 + β ∑k∈∂i\j δuk→i(θi)

]

∫
dθi e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)]

[
1 + β ∑k∈∂i\j δuk→i(θi)

]

=
e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)]

[
1 + β ∑k∈∂i\j δuk→i(θi)

]

Zi→j

(
1 + β

δZi→j
Zi→j

)

=
e β[Hi cos (θi−φi)+∑k∈∂i\j uk→i(θi)]

Zi→j


1 + β ∑

k∈∂i\j
δuk→i(θi)− β

δZi→j

Zi→j




(A.28)

from which:

δhi→j(θi) = ∑
k∈∂i\j

δuk→i(θi)− ∑
k∈∂i\j

δuk→i(θ
∗
i ) (A.29)

where the normalization constant comes from the evaluation of δZi→j/Zi→j in the
β→ ∞ limit:

θ∗i ≡ argmax
θi

[
Hi cos (θi − φi) + ∑

k∈∂i\j
uk→i(θi)

]
(A.30)

and it has the physical meaning of a null perturbation in correspondence of the
maximum of the related large-deviation function, i. e. on the most probable value
in the zero-temperature limit. Note that this normalization for perturbations is
different from the finite-temperature one, since we are now dealing with (nega-
tive semidefinite) large-deviation functions and no longer in terms of (positive
semidefinite) probability distributions.
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The second equation, the check-to-variable one, can be evaluated in the same
manner:

e βui→j(θj)
[
1 + βδui→j(θj)

]

=

∫
dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)][1 + βδhi→j(θi)

]
∫

dθj dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)][1 + δhi→j(θi)
]

=

∫
dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)][1 + βδhi→j(θi)

]

Ẑi→j

(
1 + β

δẐi→j

Ẑi→j

)

=

∫
dθi e β[Jij cos (θi−θj−ωij)+hi→j(θi)][1 + βδhi→j(θi)

]

Ẑi→j

(
1− β

δẐi→j

Ẑi→j

)

(A.31)

and hence:
δui→j(θj) = δhi→j(θ

∗
i (θj))− δhi→j(θ

∗
j ) (A.32)

where θ∗i (θj) refers to the saddle-point evaluation of the integral in the numerator
of the fraction:

θ∗i (θj) ≡ argmax
θi

[
Jij cos (θi − θj −ωij) + hi→j(θi)

]
(A.33)

while θ∗j refers to the additive normalization that shifts to zero the perturbation in
correspondence of the maximum of the large-deviation function:

θ∗j ≡ argmax
θj

[
Jij cos (θ∗i (θj)− θj −ωij) + hi→j(θ

∗
i (θj))

]
(A.34)

Let us now follow the opposite procedure, namely we firstly perform the
zero-temperature limit and then we linearize the equations. So starting from the
zero-temperature BP equations (A.24) and perturbing cavity fields and biases, we
automatically get: 




δhi→j(θi) ∼= ∑
k∈∂i\j

δuk→i(θi)

δui→j(θj) ∼= δhi→j(θ
∗
i (θj))

(A.35)

with θ∗i (θj) defined exactly as in (A.33). These are just the same expressions
obtained via the previous procedure, so the two steps (the β → ∞ limit and
the linearization) actually commute. However, by using this second method, the
proper normalization of perturbations remains hidden, while in the former case it
naturally comes out during the saddle-point evaluation of integrals.

Finally, we can write down the linearized zero-temperature BP equations also
for the pairwise case:

δhi→j(θi) = ∑
k∈∂i\j

δhk→i(θ
∗
k (θi))− ∑

k∈∂i\j
δhk→i(θ

∗
i ) (A.36)
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where:




θ∗k (θi) ≡ argmax
θk

[
Jik cos (θi − θk −ωik) + hk→i(θk)

]

θ∗i ≡ argmax
θi

[
∑

k∈∂i\j

[
Jik cos (θ∗k (θi)− θk −ωik) + hk→i(θ

∗
k (θi))

]] (A.37)

Again, perturbations are normalized in such a way that they vanish in correspon-
dence of the most probable value for their argument, namely in correspondence of
the maximum of the related cavity fields h’s.





Appendix B

Fourier expansion of BP
self-consistency equations for the
XY model

In this appendix we analyze the self-consistency equations (3.21) for Fourier
coefficients a’s and b’s in the XY model, in order to infer their scaling just below
the critical temperature.

First of all, let’s rewrite here the one for a’s coefficients:

a(i→j)
l =

2
Zi→j

∫
dθ cos (lθ) ∏

k∈∂i\j

{
I0(βJik)

+
∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]} (B.1)

being the b’s set of equations exactly equivalent.

The idea is to expand right hand side of (B.1) in a perturbative way, labeling
orders according to the number of coefficients therein. Actually, we will find that
the magnitude of coefficients will depend on their Fourier order l, but this will be
clear only at the end of the expansion.

For this task, we will retain those terms containing up to three coefficients,
namely up to the third order in a’s and b’s.
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B.1 Numerator expansion

Let’s start our expansion from the numerator of (B.1):

a(i→j)
l =

2
Zi→j

∫
dθ cos (lθ) ∏

k∈∂i\j

{
I0(βJik)

+
∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]}

=
2
Zi→j

∏
k∈∂i\j

I0(βJik)
∫

dθ cos (lθ)

× ∏
k∈∂i\j

{
1 +

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]}

' 2
Zi→j

∏
k∈∂i\j

I0(βJik)
∫

dθ cos (lθ) [1 + C1(θ) + C2(θ) + C3(θ)]

(B.2)

where C1(θ), C2(θ) and C3(θ) are respectively the terms of first, second and third
order in Fourier coefficients a’s and b’s:

C1(θ) = ∑
k∈∂i\j

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]

C2(θ) = ∑
k1,k2∈∂i\j

∞

∑
p1,p2=1

Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
[

a(k1→i)
p1 cos (p1θ) + b(k1→i)

p1 sin (p1θ)
]

×
[

a(k2→i)
p2 cos (p2θ) + b(k2→i)

p2 sin (p2θ)
]

C3(θ) = ∑
k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 cos (p1θ) + b(k1→i)

p1 sin (p1θ)
]

×
[

a(k2→i)
p2 cos (p2θ) + b(k2→i)

p2 sin (p2θ)
]

×
[

a(k3→i)
p3 cos (p3θ) + b(k3→i)

p3 sin (p3θ)
]

(B.3)

Note that in the sums over multiple k’s indexes, they are meant to be different
from each other. Indeed, they come from the product over all the neighbours of i
but j.

At this point we can perform the integration over θ for each term in the square
brackets of Appendix B. The integration over the zeroth-order term gives zero, so
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let’s move to the first-order term:

∫
dθ cos (lθ)C1(θ)

=
1
2 ∑

k∈∂i\j

∞

∑
p=1

Ip(βJik)

I0(βJik)

∫
dθ
{

a(k→i)
p cos [(p + l)θ] + a(k→i)

p cos [(p− l)θ]

+ b(k→i)
p sin [(p + l)θ] + b(k→i)

p sin [(p− l)θ]
}

=
2π

2 ∑
k∈∂i\j

∞

∑
p=1

Ip(βJik)

I0(βJik)
a(k→i)

p δp,l

=
2π

2 ∑
k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l

(B.4)

so recovering the result already obtained in (3.22) of main text. Let’s go on with
the second-order term:

∫
dθ cos (lθ)C2(θ)

=
1
2 ∑

k1,k2∈∂i\j

∞

∑
p1,p2=1

Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

∫
dθ
{

a(k1→i)
p1 cos [(p1 + l)θ]

+ a(k1→i)
p1 cos [(p1 − l)θ] + b(k1→i)

p1 sin [(p1 + l)θ] + b(k1→i)
p1 sin [(p1 − l)θ]

}

×
[

a(k2→i)
p2 cos (p2θ) + b(k2→i)

p2 sin (p2θ)
]

(B.5)

Since at this point the number of terms grows very rapidly, we immediately get rid
of the terms in which there is a product of a cosine times a sine, since they vanish
once integrated over θ. We retain only terms with a cosine times a cosine and with
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a sine times a sine:

∫
dθ cos (lθ)C2(θ)

=
1
4 ∑

k1,k2∈∂i\j

∞

∑
p1,p2=1

Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
∫

dθ

{
a(k1→i)

p1 a(k2→i)
p2

[
cos [(p1 + l + p2)θ] + cos [(p1 + l − p2)θ]

]

+ a(k1→i)
p1 a(k2→i)

p2

[
cos [(p1 − l + p2)θ] + cos [(p1 − l − p2)θ]

]

+ b(k1→i)
p1 b(k2→i)

p2

[
cos [(p1 + l − p2)θ]− cos [(p1 + l + p2)θ]

]

+ b(k1→i)
p1 b(k2→i)

p2

[
cos [(p1 − l − p2)θ]− cos [(p1 − l + p2)θ]

]}

=
2π

4 ∑
k1,k2∈∂i\j

∞

∑
p1,p2=1

Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
{

a(k1→i)
p1 a(k2→i)

p2

[
δp2−p1,l + δp1+p2,l + δp1−p2,l

]

+ b(k1→i)
p1 b(k2→i)

p2

[
δp2−p1,l + δp1−p2,l − δp1+p2,l

]}

(B.6)

Finally, we analyze the integration of the third-order term:

∫
dθ cos (lθ)C3(θ)

=
1
2 ∑

k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
∫

dθ
{

a(k1→i)
p1 cos [(p1 + l)θ] + a(k1→i)

p1 cos [(p1 − l)θ]

+ b(k1→i)
p1 sin [(p1 + l)θ] + b(k1→i)

p1 sin [(p1 − l)θ]
}

×
[

a(k2→i)
p2 cos (p2θ) + b(k2→i)

p2 sin (p2θ)
]

×
[

a(k3→i)
p3 cos (p3θ) + b(k3→i)

p3 sin (p3θ)
]

(B.7)

This time we have a further proliferation of terms, so that we just retain only those
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which gives a non-vanishing contribution once integrated over θ. We get:

∫
dθ cos (lθ)C3(θ)

=
2π

8 ∑
k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
{

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3

[
δp3−p1−p2,l + δp2−p1−p3,l + δp2+p3−p1,l

+ δp1+p2+p3,l + δp1+p2−p3,l + δp1−p2+p3,l + δp1−p2−p3,l

]

+ b(k1→i)
p1 b(k2→i)

p2 a(k3→i)
p3

[
−δp3−p1−p2,l + δp2−p1−p3,l + δp2+p3−p1,l

− δp1+p2+p3,l − δp1+p2−p3,l + δp1−p2+p3,l + δp1−p2−p3,l

]

+ b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3

[
δp3−p1−p2,l − δp2−p1−p3,l + δp2+p3−p1,l

− δp1+p2+p3,l + δp1+p2−p3,l − δp1−p2+p3,l + δp1−p2−p3,l

]

+ a(k1→i)
p1 b(k2→i)

p2 b(k3→i)
p3

[
δp3−p1−p2,l + δp2−p1−p3,l − δp2+p3−p1,l

− δp1+p2+p3,l + δp1+p2−p3,l + δp1−p2+p3,l − δp1−p2−p3,l

]}

(B.8)

At this point, the three terms can be put again together. We use a compact
notation, noticing that: (i) for each choice of p’s indexes, the related contribution
does not vanish only when they algebraically sum to l; ii) a minus sign appears
when there is an even number of b’s coefficients and when the corresponding p’s
indexes have the same sign in the algebraic sum up to l. So we can put a super-
script (l) over the sum symbols in order to enforce the algebraic sum up to l and
also a coefficient taking into account that minus sign. In the end, we get:

a(i→j)
l =

2π

Zi→j
∏

k∈∂i\j
I0(βJik)

{
∑

k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l

+
1
2 ∑

k1,k2∈∂i\j

∞

∑
p1,p2=1

(l) Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
[

a(k1→i)
p1 a(k2→i)

p2 − sign (p1 p2) b(k1→i)
p1 b(k2→i)

p2

]

+
1
4 ∑

k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

(l) Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2 a(k3→i)

p3

− sign (p1 p3) b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3

− sign (p2 p3) a(k1→i)
p1 b(k2→i)

p2 b(k3→i)
p3

]}

(B.9)
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B.2 Denominator expansion

Also Zi→j has now to be expanded up to the third order in Fourier coefficients.
Following the same steps as before, we write:

Zi→j =
∫

dθ ∏
k∈∂i\j

{
I0(βJik) +

∞

∑
p=1

Ip(βJik)
[

a(k→i)
p cos (pθ) + b(k→i)

p sin (pθ)
]}

= ∏
k∈∂i\j

I0(βJik)

×
∫

dθ ∏
k∈∂i\j

{
1 +

∞

∑
p=1

Ip(βJik)

I0(βJik)

[
a(k→i)

p cos (pθ) + b(k→i)
p sin (pθ)

]}

' ∏
k∈∂i\j

I0(βJik)
∫

dθ [1 + C1(θ) + C2(θ) + C3(θ)]

(B.10)

where C1(θ), C2(θ) and C3(θ) are exactly the same terms defined in the expansion
of numerator. As before, we can integrate them separately.

The integration of zeroth-order term just gives a 2π factor, while the integration
of first-order term gives a vanishing contribution. So let’s move directly to the
second-order term:

∫
dθ C2(θ)

= ∑
k1,k2∈∂i\j

∞

∑
p1,p2=1

Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
∫

dθ
[

a(k1→i)
p1 cos (p1θ) + b(k1→i)

p1 sin (p1θ)
]

×
[

a(k2→i)
p2 cos (p2θ) + b(k2→i)

p2 sin (p2θ)
]

=
2π

2 ∑
k1,k2∈∂i\j

∞

∑
p1,p2=1

Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
[

a(k1→i)
p1 a(k2→i)

p2 δp1−p2,0 + b(k1→i)
p1 b(k2→i)

p2 δp1−p2,0

]

=
2π

2 ∑
k1,k2∈∂i\j

∞

∑
p=1

Ip(βJik1)Ip(βJik2)

I0(βJik1)I0(βJik2)

[
a(k1→i)

p a(k2→i)
p + b(k1→i)

p b(k2→i)
p

]

(B.11)

where we suddenly discarded those terms which would have given a null contri-
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bution. Then, let’s integrate also the third-order term:

∫
dθ C3(θ)

= ∑
k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
∫

dθ
[

a(k1→i)
p1 cos (p1θ) + b(k1→i)

p1 sin (p1θ)
]

×
[

a(k2→i)
p2 cos (p2θ) + b(k2→i)

p2 sin (p2θ)
]

×
[

a(k3→i)
p3 cos (p3θ) + b(k3→i)

p3 sin (p3θ)
]

=
2π

4 ∑
k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
{

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3

[
δp3−p1−p2,0 + δp2−p1−p3,0 + δp2+p3−p1,0

+ δp1+p2+p3,0 + δp1+p2−p3,0 + δp1−p2+p3,0 + δp1−p2−p3,0

]

+ b(k1→i)
p1 b(k2→i)

p2 a(k3→i)
p3

[
−δp3−p1−p2,0 + δp2−p1−p3,0 + δp2+p3−p1,0

− δp1+p2+p3,0 − δp1+p2−p3,0 + δp1−p2+p3,0 + δp1−p2−p3,0

]

+ b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3

[
δp3−p1−p2,0 − δp2−p1−p3,0 + δp2+p3−p1,0

− δp1+p2+p3,0 + δp1+p2−p3,0 − δp1−p2+p3,0 + δp1−p2−p3,0

]

+ a(k1→i)
p1 b(k2→i)

p2 b(k3→i)
p3

[
δp3−p1−p2,0 + δp2−p1−p3,0 − δp2+p3−p1,0

− δp1+p2+p3,0 + δp1+p2−p3,0 + δp1−p2+p3,0 − δp1−p2−p3,0

]}

=
2π

4 ∑
k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

(0) Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2 a(k3→i)

p3

− sign (p1 p3) b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3

− sign (p2 p3) a(k1→i)
p1 b(k2→i)

p2 b(k3→i)
p3

]}

(B.12)

where, as before, the superscript (0) just means that the sum runs over all the
possible values of p1, p2 and p3 that algebraically sum up to zero.
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Let’s put all the terms back into Zi→j:

Zi→j = 2π ∏
k∈∂i\j

I0(βJik)

{
1 +

1
2 ∑

k1,k2∈∂i\j

∞

∑
p=1

Ip(βJik1)Ip(βJik2)

I0(βJik1)I0(βJik2)

×
[

a(k1→i)
p a(k2→i)

p + b(k1→i)
p b(k2→i)

p

]

+
1
4 ∑

k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

(0) Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2 a(k3→i)

p3

− sign (p1 p3) b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3

− sign (p2 p3) a(k1→i)
p1 b(k2→i)

p2 b(k3→i)
p3

]}

(B.13)

B.3 Analysis of the expansion

Now, if we compare the numerator and denominator expansions for a(i→j)
l , then

we can see that both them have the factor 2π ∏k∈∂i\j I0(βJik), and hence it can be
discarded. Furthermore, we can use the approximation 1/(1 + ε) ' (1− ε) in
order to go further in the expansion of a(i→j)

l up to the third order, so obtaining:

a(i→j)
l =

{
∑

k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l +
1
2 ∑

k1,k2∈∂i\j

∞

∑
p1,p2=1

(l) Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

×
[

a(k1→i)
p1 a(k2→i)

p2 − sign (p1 p2) b(k1→i)
p1 b(k2→i)

p2

]

+
1
4 ∑

k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

(l) Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2 a(k3→i)

p3

− sign (p1 p3) b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3 − sign (p2 p3) a(k1→i)

p1 b(k2→i)
p2 b(k3→i)

p3

]}

×
{

1− 1
2 ∑

k1,k2∈∂i\j

∞

∑
p=1

Ip(βJik1)Ip(βJik2)

I0(βJik1)I0(βJik2)

[
a(k1→i)

p a(k2→i)
p + b(k1→i)

p b(k2→i)
p

]

− 1
4 ∑

k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

(0) Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2 a(k3→i)

p3

− sign (p1 p3) b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3 − sign (p2 p3) a(k1→i)

p1 b(k2→i)
p2 b(k3→i)

p3

]}

(B.14)
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Let’s analyze order by order the terms which comes out from this product. The
first order is simply given by:

∑
k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l (B.15)

and again it just corresponds to the linear analysis performed out in the main text.
Then, the second-order term is given by:

1
2 ∑

k1,k2∈∂i\j

∞

∑
p1,p2=1

(l) Ip1(βJik1)Ip2(βJik2)

I0(βJik1)I0(βJik2)

[
a(k1→i)

p1 a(k2→i)
p2 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2

]

(B.16)
and in the end the third-order term is given by:

1
4 ∑

k1,k2,k3∈∂i\j

∞

∑
p1,p2,p3=1

(l) Ip1(βJik1)Ip2(βJik2)Ip3(βJik3)

I0(βJik1)I0(βJik2)I0(βJik3)

×
[

a(k1→i)
p1 a(k2→i)

p2 a(k3→i)
p3 − sign (p1 p2) b(k1→i)

p1 b(k2→i)
p2 a(k3→i)

p3

− sign (p1 p3) b(k1→i)
p1 a(k2→i)

p2 b(k3→i)
p3 − sign (p2 p3) a(k1→i)

p1 b(k2→i)
p2 b(k3→i)

p3

]

− ∑
k∈∂i\j

Il(βJik)

I0(βJik)
a(k→i)

l

× 1
2 ∑

k1,k2∈∂i\j

∞

∑
p=1

Ip(βJik1)Ip(βJik2)

I0(βJik1)I0(βJik2)

[
a(k1→i)

p a(k2→i)
p + b(k1→i)

p b(k2→i)
p

]

(B.17)

A careful inspection of these terms tells us that in general none of them is zero.
Furthermore, other interesting remarks can be made.

1. If there is a ferromagnetic order, then we can always perform a global rotation
so that bp’s coefficients become negligible; otherwise, if there is a spin glass
order, then it is reasonable that ap’s and bp’s coefficients are of the same order
of magnitude; hence, for the following analysis we can focus on those terms
only containing ap’s coefficients.

2. Perturbative expansion for coefficients of order l > 1 always contains terms
like:

a(i→j)
l ∝ ∏

k∈∂i\j
a(k→i)

pk (B.18)

with pk’s algebraically summing up to l. So we are allowed to make the
following ansatz on the scaling of coefficients:

a(i→j)
l ∝

(
a(i→j)

1

)l
(B.19)

otherwise the perturbative expansion itself would diverge.
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