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How the fittest compete for leadership: A tale of tails
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We investigate how leaders emerge as a consequence of the competitive dynamics between coupled papers in
a model citation network. Every paper is allocated an initial fitness depending on its intrinsic quality. Its fitness
then involves dynamically as a consequence of the competition between itself and all the other papers in the
field. It picks up citations as a result of this adaptive dynamics, becoming a leader if it has the highest citation
count at a given time. Extensive analytical and numerical investigations of this model suggest the existence of a
universal phase diagram, divided into regions of weak and strong coupling. In the former, we find an “extended”
and rather structureless distribution of citation counts among many fit papers; leaders are not necessarily those
with the maximal fitness at any given time. By contrast, the strong-coupling region is characterized by a strongly
hierarchical distribution of citation counts, that are “localized” among only a few extremely fit papers, and exhibit
strong history-to-history fluctuations, as a result of the complex dynamics among papers in the tail of the fitness
distribution.
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I. INTRODUCTION

The field of complexity has gained greatly in importance in
recent times, in part because examples of such systems abound
in the real world, and in part because advances in numerical
and analytical techniques enable their detailed examination.
Physical systems such as earthquakes and sandpiles, social
systems such as communities, financial systems such as stock
markets, and biological systems such as the human brain all
manifest complexity [1]. These are all examples of systems
whose many components interact with each other dynami-
cally, leading to the emergence of collective effects that are
nontrivial and often unexpected. Typically, these interactions
are nonlinear, which is a key reason behind some of the
surprising outcomes. Irreversibility and history-dependence
are other key ingredients of such systems, which are typically
far from equilibrium.

Statistical physics has usually concerned itself with trying
to model real, complex phenomena by using a variety of
tools, of which one of the most important is agent-based
modeling [2]. Here, agents on a lattice or other network interact
according to the domain under consideration, be this traders
in a stock market or genes in a gene network. Our own work
in this domain has ranged from black hole accretion [3] to
more abstract examinations of competitive dynamics [4]. The
present paper is the culmination of a body of work starting from
the latter, where the following question was raised: who are
the survivors in a given scenario of competitive or predatory
dynamics, and what determines their survival? Our findings
were that the “survival of the fittest” is not always a given
in such a situation; often it is the less fit who survive, in a
situation we have referred to as “winning against the odds” [5].
The addition of spatial complexity, via a network with random
nodal connectivities, provides ways for outliers to hide from,
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and sometimes survive, the overt competition of hubs [6]. More
recently, we were able to identify universality in the statistics
of survivors among competing agents on networks [7]. These
findings were reminiscent of the universality found in various
studies, empirical as well as theoretical, of citation networks,
which focused on the citation counts of single papers [8–17].

Our motivation for the present work is to understand how
such universality might come about, which has led us to
propose a model in the context of citation networks. Our
emphasis is, however, on collective rather than individual
dynamics: thus, rather than focusing on the citation counts
of a single paper, we examine that of an ensemble of papers in
a specific discipline, each one with a given initial fitness. These
papers, as in real life, are coupled both to their predecessors
and their successors, which leads to a dynamical evolution of
their fitness. The strength of the coupling constant g is crucial
to the adaptive dynamics that characterize this evolution. The
results of our analytical and numerical work will demonstrate
that when papers are weakly coupled, the citation counts they
acquire during their lifetimes are well described by mean-field
dynamics. In the limit of strong coupling, on the other hand,
we will see that a few very fit papers have the lion’s share
of citation counts, and simple mean-field theories are no
longer adequate to describe them. The competitive dynamics
that occur in the tail of the fitness distribution give rise to
phenomena that can justifiably be called complex, of which a
striking example is the fact that the paper that has the highest
citation counts (the so-called leader or “winner”) at any given
time is not necessarily the one with the highest fitness (the
so-called “record”). It is this competition among the fittest
papers that is the most important ingredient of the present
study.

The model is defined in Sec. II. The mean-field approach
of Sec. III provides an analytical description of its steady state
and predicts a universal phase diagram, with a weak-coupling
regime (WCR) and a strong-coupling regime (SCR) separated
by a sharp crossover near the critical coupling gc. Section IV
contains numerical results on many quantities of interest
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including the total activity, the fates of single papers, and the
distribution of citation counts; in particular, we examine two
sequences of exceptional papers, records and leaders, based
on their fitnesses and citation counts. These lead naturally to
a discussion of the strong-coupling regime of the model, for
which we develop an effective model based on the statistics of
records in Sec. V. Finally, we discuss our results in Sec. VI,
relegating to Appendix a mean-field analysis of the model for
an arbitrary distribution of initial fitnesses.

II. THE MODEL

The main criteria behind the formulation of the present
model are simplicity and minimalism, i.e., we choose the least
complex model that still manages to capture the essence of
fitness and citation dynamics.

A new field of study is established at some initial time
(t = 0), as papers begin to appear in it; we assume additionally
that they appear at random times, with a constant rate ω, and
are numbered in the order in which they appear. We mention
in passing that this situation can easily be generalized to one
where new papers in the field draw on, and then compete with,
papers from established fields; this can be done by a simple
modification of the empty initial configuration here presented
to an appropriately structured, nonempty one.

Initial fitnesses ηi(ti) = εi are allocated to papers i, pub-
lished at times ti . These are quenched random variables,
drawn from some probability distribution ρ(ε) with a bounded
support, i.e., εmax finite. Initial fitnesses provide measures
of the intrinsic quality of the papers with which they are
associated. In this work, they are drawn from the uniform
distribution on [0, 1]. A generalization of our mean-field
analysis to arbitrary fitness distributions on [0, 1] is presented
in the Appendix.

In the following, the evolution of the dynamic fitness ηi(t)
of paper i from its initial value εi is largely determined by the
competition between itself and all the other papers in the field.
We choose to model this evolution as follows:

d

dt
ηi(t) = −(1 + δ − εi)ηi(t) + γi(t). (1)

The first term represents the spontaneous decay in the course
of time of the fitness of a single paper in the absence of
interactions. The associated relaxation time

τi = 1

1 + δ − εi

(2)

is an increasing function of the initial fitness εi , so that
fitter papers have a longer-lasting impact. Perfectly fit papers
(εi = 1) have the largest relaxation time τi = 1/δ. The
damping rate δ plays the role of a regulator.

Intuitively, there are a couple of features to be taken into
account when modeling the interaction term γi(t), representing
competition between papers:

(1) the competition should be tougher for the fitter papers;
(2) the intrinsic quality of papers, as measured by their

initial fitnesses, should also have a lasting effect.

The following simple form for the interaction term is
accordingly chosen:

γi(t) = g
∑

j

(εi − εj )ηi(t)ηj (t), (3)

where the sum runs over papers j which compete with paper
i at time t , i.e., all papers published before time t , and g is
a positive coupling constant. The requirement 1 is modeled
by taking the interaction to be proportional to the product
ηi(t)ηj (t) of the instantaneous fitnesses of both competitors,
and the requirement 2 is taken into account via the bias factor
εi − εj .

We suggest also that papers accumulate citations stochas-
tically, so that any paper k quotes any earlier paper i with
probability pk,i . This citation probability is entirely dictated
by the dynamic fitness ηi(tk) of paper i at the time tk when
paper k was published. For definiteness we assume a linear
law of the form

pk,i = ληi(tk), (4)

where λ is a small positive constant.
The mean number of references of paper k is computed by

evaluating an average over the stochastic citation process. This
reads

Rk = λ
∑

i

ηi(tk), (5)

where the sum runs over papers i published before time tk . The
mean citation count Ci(t) of paper i at time t is, analogously,
given by

Ci(t) = λ
∑

k

ηi(tk), (6)

where the sum runs over papers k published between ti and t .
In particular, the mean citation count accumulated by paper i

during its whole history reads

C∞
i = λ

∑
k

ηi(tk), (7)

where the sum runs over papers k published after ti .

III. MEAN-FIELD THEORY

In this section we present an approximate analytical
description of the model, using mean-field theory. It turns
out that mean-field predictions are exact for some global
quantities. Additionally, the predictions for all but the fittest
individual papers are essentially correct (see Sec. IV).

A. The fate of an individual paper

The key idea of mean-field theory is to look at the evolution
of an entity in a mean environment, whose characteristics
are then obtained self-consistently. In this case, we look at
the evolution of a selected individual paper with given initial
fitness, competing with all the others.

The subsequent analysis is limited to the steady state of
the model, when the field has matured. The existence and the
uniqueness of the steady state are guaranteed by the finiteness
of all the relaxation times Eq. (2), which in turn relies on the
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presence of a nonzero damping rate δ. Since the steady state of
the model is invariant under time translation, it can be assumed
that the selected paper is published at time t = 0 with no loss
of generality. This paper is characterized by its initial fitness
ε, with the subsequent evolution of its dynamic fitness η(t ; ε)
being described by the stationary form of Eq. (1), i.e.,

d

dt
η(t ; ε) = −[1 + δ − ε − g(Aε − B)]η(t ; ε). (8)

The two mean fields acting on the selected paper,

A =
〈∑

i

ηi(t)

〉
, B =

〈∑
i

εiηi(t)

〉
, (9)

are independent of time t , since we are dealing with a steady
state. The sums in the above expressions run over papers i

published before the selected paper (i.e., at negative times).
Here and throughout the following, brackets denote averages
over the whole stochastic history of the model. In the present
mean-field context, this amounts to averaging over the fitnesses
and publication times of all papers entering the sums.

It is useful to introduce the combinations

L = 1 + δ + gB, M = 1 + gA, (10)

so that Eq. (8) reads

d

dt
η(t ; ε) = −(L − Mε)η(t ; ε). (11)

The dynamic fitness of the selected paper then reads

η(t ; ε) = ε e−(L−Mε)t . (12)

This exponential relaxation law for the dynamic fitness is a
key result of the mean-field approach. The relaxation rates L

and M , related to the mean fields A and B through Eq. (10),
have a nontrivial dependence on the model parameters δ, g,
and ω.

The mean number of references of a paper in the steady
state is obtained by averaging Eq. (5) over the fitnesses and
publication times of all other papers. This reads

R = λA. (13)

The mean number of references of the selected paper is an
indication of the activity of the field, so we will, from now on,
refer to A as the mean activity of the model.

The mean citation count of the selected paper at time t can
be computed similarly:

C(t ; ε) = λω

∫ t

0
η(t ′; ε) dt ′

= λωε

L − Mε
[1 − e−(L−Mε)t ]. (14)

In particular, the mean citation count accumulated by the paper
during its whole history is predicted to be

C∞(ε) = λωε

L − Mε
. (15)

For a perfectly fit paper (ε = 1), this reads

Chigh = λω

L − M
. (16)

B. Mean-field equations and their solution

Here, we evaluate the mean fields A and B as well as the
relaxation rates L and M .

The mean fields obey the self-consistency equations

A = ω

∫ 1

0
dε

∫ ∞

0
η(t ; ε) dt, (17)

B = ω

∫ 1

0
ε dε

∫ ∞

0
η(t ; ε) dt. (18)

These equations are derived from Eq. (9) by approximating the
sum over i by integrals over t = −ti , the age of paper i at time
t = 0, i.e., when the selected paper appears. Moreover, η(t ; ε)
is given by Eq. (12). The resulting equations can be solved by
using

x = ln
L

L − M
(19)

as a parameter. Introducing the notation


 = 2(ex − 1)[(x − 1)ex + 1]δ + e2x − 2xex − 1, (20)

we obtain after some algebra:

gω = 2(exδ − δ − 1)


(ex − 1)3
, (21)

L = ex


(ex − 1)3
, (22)

M = 


(ex − 1)2
, (23)

A = ω
(ex − 1)[(x − 1)ex + 1]



, (24)

B = ω
(2x − 3)e2x + 4ex − 1

2

, (25)

Chigh = λω
(ex − 1)3



. (26)

Mean-field theory becomes exact in the absence of inter-
actions (g = 0). We have then L = 1 + δ and M = 1 [see
Eq. (10)]. The parameter x, the mean activity A, and the highest
citation count Chigh take their minimal values,

x0 = ln
1 + δ

δ
, (27)

A0 = ω

[
(1 + δ) ln

1 + δ

δ
− 1

]
, (28)

C
high
0 = λω

δ
. (29)

Starting from these values, a monotonic rise with increasing
g is observed for all these quantities. This will be seen more
clearly in the next subsection.

C. Mean-field phase diagram

The situation of most interest is where the damping rate δ

is small. In this regime, even in the absence of interactions, the
model already exhibits a broad spectrum of relaxation times τi

[see Eq. (2)], with the largest relaxation time, corresponding
to perfectly fit papers (ε = 1), diverging as τmax = 1/δ. In the
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0 gc g

WCR SCR

FIG. 1. Mean-field phase diagram of the model in the situation
where the damping rate δ is very small. WCR, weak-coupling regime
(g < gc). SCR, strong-coupling regime (g > gc).

presence of interactions, for δ � 1 the mean-field solution
Eqs. (20)–(26) yields a nontrivial phase diagram (Fig. 1),
where a weak-coupling regime (WCR) and a strong-coupling
regime (SCR) are separated by a sharp crossover near the
critical coupling,

gc = 2δ

ω
. (30)

From a quantitative viewpoint, the following predictions
can be readily obtained by appropriately expanding the general
mean-field solution Eqs. (20)–(26) in various regimes.

1. Weak-coupling regime (g < gc)

The WCR corresponds to the range of parameters x such
that ex is comparable with 1/δ. In this regime, Eqs. (20) and
(21) yield after some elementary algebra

x ≈ ln
1

(1 − g/gc)δ
. (31)

The mean activity A and the highest citation count are then,
respectively, given by

A ≈ ω

[
ln

1

(1 − g/gc)δ
− 1

]
, (32)

Chigh ≈ λω

(1 − g/gc)δ
. (33)

All over the WCR, the damping rate δ is renormalized by the
factor (1 − g/gc), which vanishes as the critical coupling is
approached (g → gc).

2. Strong-coupling regime (g > gc)

The SCR corresponds to the range of parameters x such
that ex is much larger than 1/δ. In this regime, we have

x ≈ g/gc − 1

2δ
. (34)

The prediction for the mean activity A reads

A ≈ A∞(1 − gc/g), (35)

with

A∞ = 1

gc

= ω

2δ
. (36)

We have also

L ≈ M ≈ g

gc

. (37)

These estimates imply that the relaxation rate entering Eq. (11)
vanishes almost linearly with 1 − ε, so that very fit papers have

0 1 2 3 4 5
g/g c

0

0.2

0.4

0.6

0.8

1

A
/A

∞ 0.01
0.02
0.03
0.05
0.1
0.2
0.3
0.5

FIG. 2. Mean-field prediction for the reduced mean activity
A/A∞ against g/gc for damping rates δ ranging from 0.01 to 0.5
(bottom to top). Black line, SCR prediction Eq. (35). Symbol, location
of the threshold coupling geff ≈ 0.45 [see Eq. (44)] for δ = 0.1 and
ω = 1, so that gc = 0.2.

very long relaxation times. The relaxation time of perfectly fit
papers (ε = 1), and the corresponding citation count,

Chigh ≈ 2λδ

g
ex, (38)

with x given by Eq. (34), are exponentially large in 1/δ all
over the SCR.

3. Critical point (g = gc)

In the borderline situation where the coupling constant is at
its critical value (g = gc), the critical value xc of the parameter
x satisfies

2(xc − 1)exc ≈ 1

δ2
. (39)

It therefore diverges essentially logarithmically, as

xc ≈ � − ln � + 1 + ln �

�
+ · · · , (40)

with

� = ln
1

2δ2
. (41)

The prediction for the critical mean activity Ac reads

Ac ≈ ω(xc − 1), (42)

while we have

Chigh
c ≈ λω

2(xc − 1)δ2
. (43)

Figure 2 illustrates the above results. It shows a plot of
the reduced mean activity A/A∞ against g/gc for damping
rates δ ranging from 0.01 to 0.5. The black line shows the
SCR prediction Eq. (35). For each δ, there is a threshold
coupling geff(δ) beyond which the latter prediction suddenly
becomes very accurate. When δ is very small (lower curves),
the crossover between WCR and SCR is very sharp, and geff(δ)
is very close to the predicted threshold gc [see Eq. (30)].
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For larger values of δ (upper curves), the crossover becomes
broader, whereas geff(δ) progressively becomes larger than gc.
This incipient discrepancy with increasing δ is to be expected,
since the analytical prediction for gc was derived in the limit
of a very small damping rate δ.

IV. NUMERICAL RESULTS

This section comprises extensive numerical explorations of
various aspects of our model. In Sec. IV A, we examine the
behavior of a global quantity such as the total activity. The
fates of individual papers, including a test of the validity of
mean-field theory in this case, are studied in Sec. IV B. Next,
in Sec. IV C, we look at the sequences of successive papers
ranked by high fitness and citation counts. Finally, we present
some statistical information on the distribution of the highest
citation counts (Sec. IV D).

All the results of this section have been obtained by means
of a direct numerical solution of the coupled differential
Eq. (1) describing the evolution of the dynamic fitnesses
ηi(t). Mean values of observables are defined as averages over
these fitnesses, i.e., over the whole stochastic history of the
model. Similarly, probabilities are defined with respect to the
ensemble of all such histories. A major simplification results
from the fact that we can use the expression Eq. (6), without
having to actually simulate the full stochastic citation process,
as we are only interested in mean citation counts. Also, as the
short-time dynamics of the model are entirely irrelevant, we
can safely replace the random publication times of papers by
regularly spaced times. Unless stated otherwise, we choose
ω = 1 from now on, so that paper number t is published at the
integer time t , and δ = 0.1. For these parameter values, the
onset of the SCR (see Fig. 2) reads

geff ≈ 0.45. (44)

This number, shown as a symbol in Fig. 2, is roughly twice the
prediction gc = 0.2 [see Eq. (30)], which holds in the δ → 0
limit.

A. Total activity

The total activity

A(t) =
∑

i

ηi(t), (45)

where the sum runs over papers i published before time t , is
the fluctuating counterpart of the mean activity A, discussed
above. It is also the simplest of all global quantities. Figure 3
shows a plot of A(t) during a single history of N = 1000
papers with g = 0.5. The system soon reaches a steady state,
where the activity keeps fluctuating around a well-defined
mean value.

There is, however, a subtlety that is not visible on Fig. 3;
this concerns the very slow relaxation dynamics whereby the
steady state is reached, as shown in Fig. 4. Here, the mean
total activity 〈A(t)〉 is plotted against 1/(ωt) for two specific
situations, g = 0.5 and ω = 1 (lower dataset) and g = 1 and
ω = 0.5 (upper dataset), such that the condition gω = 0.5
is maintained. Both datasets converge to the common limit
3.01, as shown by two-parameter fits (blue lines). This limit

0 200 400 600 800 1000
t

0

1

2

3

4

5

A
(t

)

FIG. 3. Total activity A(t) against time t during a single history
of N = 1000 papers with ω = 1, δ = 0.1, and g = 0.5.

is in excellent agreement with A = 3.009 82, the mean-field
prediction Eq. (24) for the mean activity, and shows how well
mean-field theory works for steady-state values of such global
quantities. On the other hand, the slow relaxation in 1/(ωt)
is quite unusual, since one would normally expect the steady
state to be attained exponentially fast. Here, this effect can be
explained by using extreme-value statistics [18–20]. At time
t , the system only contains a finite number of papers, n = ωt .
In other words, time serves as a measure of the system size.
In particular, at time t the fitness distribution will only have
been sampled n times, so that the largest initial fitness met up
to time t reads

εmax ≈ 1 − x

n
, (46)

where the random variable x has the exponential probability
distribution e−x . The fitness distribution is therefore rescaled
down by a finite-size correction of the order of 1/n = 1/(ωt).
Hence, all global observables are expected to exhibit slow
relaxations in 1/(ωt) to their steady-state values.

0 0.01 0.02 0.03 0.04 0.05
1/(ωt)

1.8

2

2.2

2.4

2.6

2.8

3

3.2

<
A

(t
)>

FIG. 4. Mean total activity 〈A(t)〉 against 1/(ωt). Black (lower)
dataset: g = 0.5 and ω = 1. Red (upper) dataset: g = 1 and ω = 0.5.
Each dataset is averaged over 10 000 independent histories of N =
500 papers. Blue lines, two-parameter fits with common intercept
3.01.
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FIG. 5. Fitness-resolved gain G(ε,t) against ε, for (a) t = 100
and (b) t = 200, and values of g ranging from 0.2 to 1 (bottom to top
in each panel).

B. The fates of individual papers

The finite-size effects leading to the slow power-law
relaxation of global observables discussed above also turn out
to affect individual papers. These effects are expected to be
largest in the SCR and for very fit papers. That these constitute
special cases is already evident from mean-field theory, where
Eqs. (11) and (37) reveal a very slow decay of their dynamic
fitnesses.

We first compare numerical results and analytical predic-
tions for the mean citation counts of individual papers of
given initial fitness ε. For a given observation time t , the
fitness-resolved gain,

G(ε,t) =
〈

Ci(t)

CMFT(t − i; ε)

〉
, (47)

is defined by averaging the citation counts Ci(t) of all papers
i = 1, . . . ,t whose initial fitnesses εi are close to ε. The mean-
field prediction CMFT(t − i; ε) in the denominator is given by
Eq. (14). Figure 5 shows histogram plots of G(ε,t) against ε for
times t = 100 and t = 200, and several coupling constants g

denoted by different colors. In order to focus on the high-fitness
end, which is the region of most interest, data are only shown
for ε > 0.8.

For a fixed suboptimal fitness (ε < 1), the gain G(ε,t)
approaches unity in the long-time limit. Mean-field theory
is thus clearly appropriate to describe the citation counts of
papers in the long-time regime, provided their fitnesses are
suboptimal. On the other hand, all over the SCR, i.e., for
g > geff [see Eq. (44)], the gain also exhibits a peak near the
upper edge of the fitness distribution. The height of the gain
peak stays roughly constant with increasing time; its location
approaches the upper edge (ε → 1) while its width shrinks to
zero. This is a strong indication that the gain peak is due to the
few fittest papers of a typical history. We conclude that, while
suboptimal papers are well described by mean-field theory, the
fittest papers in the SCR need more sophisticated treatment.

C. The fates of exceptional papers

The results of the previous section lead us to a different
way of examining exceptional papers—i.e., those that are the
fittest and/or the most cited. In this approach, we are inspired
by a body of literature on growing networks [21–29], in the
context of which we refer to the fittest papers as “records” and
the most cited papers as “leaders.”

1. Fittest papers (records)

The fittest paper It is the paper with the largest initial fitness
encountered until time t :

εIt
= εmax(t) = max(ε1, . . . ,εt ). (48)

This continues to be the fittest paper until a paper with larger
initial fitness is published. A sequence of such papers, each
one adjudged the fittest at its time, can be characterized as a
sequence of records, whose statistics have been widely studied
[30–33]. A key result in this field is that the “record-breaking
probability,” i.e., the probability that paper t is the fittest
published so far, is nothing but 1/t . The mean number Nt

of such papers up to time t thus grows logarithmically, as

Nt =
t∑

i=1

1

i
≈ ln t + γ, (49)

where γ ≈ 0.577 215 is Euler’s constant.

2. Most-cited papers (leaders)

The most-cited paper Jt at time t has the highest citation
count:

CJt
(t) = Cmax(t) = max[C1(t), . . . ,Ct (t)]. (50)

This too maintains its position until it is superseded by a newer
paper with a higher citation count. A sequence of such papers,
each with the highest citations at a given time, is known as
a sequence of leaders; we denote the mean number of such
leaders up to time t by Lt . In the present model, a former
leader cannot come back to the lead again, so that the mean
number of lead changes up to time t is Lt − 1.

In the absence of interactions (g = 0), the fittest papers
(records) usually become the most cited papers (leaders), as
the following simple argument shows. For t much larger than
the microscopic time scale 1/δ fixed by the regulator, the mean
citation count of a paper is given by Eq. (15), with L = 1 + δ
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FIG. 6. Mean number Lt of successive most cited papers (leaders)
up to time t against ln t for coupling constants g ranging from 0
to 1.2 (top to bottom). The dashed lines have slopes C0 = 1 and
CSCR = 0.57.

and M = 1 [see Eq. (10)], i.e.,

Ci ≈ λωεi

1 + δ − εi

. (51)

This expression is an increasing function of εi , which indicates
that, except in a brief transient regime, the most citations
(highest Ci) indeed go to the fittest papers (highest εi). As
mentioned above, the sequences of records and leaders are thus
essentially identical; in particular, we predict a logarithmic
growth law for the mean number of leaders at g = 0:

Lt ≈ Nt ≈ ln t. (52)

Figure 6 shows a plot of the mean number Lt of leaders up
to time t against ln t for coupling constants g ranging from 0
to 1.2. The data suggest that a logarithmic growth of the form

Lt ≈ C ln t (53)

holds for all values of the coupling constant g. Another
interesting feature is that the amplitude C exhibits a rather
sharp crossover around g ≈ geff ≈ 0.4 (green track), from the
value C0 = 1 in the WCR [in agreement with Eq. (52) for
g = 0], to a nontrivial asymptotic value CSCR ≈ 0.57 deep in
the SCR. We will put these results in perspective with other
models in the literature in Sec. VI.

In order to explore the statistical properties of records and
leaders further, we define the following two probabilities:

Pt = Prob (Jt = It ) (54)

is the probability that the leader (most cited paper) is the record
(current fittest paper) at time t , while

�t = Prob (Jt ∈ {I1, . . . ,It }) (55)

is the probability that the leader at time t belongs to the
sequence of records. We recall that probabilities are defined
with respect to the ensemble of all stochastic histories of the
model.

These probabilities are plotted in Fig. 7 against g for several
fixed times t . In the absence of interactions (g = 0), we have
Pt ≈ �t ≈ 1 for large times, in agreement with the above
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FIG. 7. (a) Probability Pt that the most cited paper at time t is the
current fittest paper; (b) probability �t that the most cited paper at
time t belongs to the sequence of fittest papers. Both probabilities are
plotted against g for several times t ranging from 100 to 1000 (top to
bottom in each panel).

observation that the sequences of records and leaders are
essentially identical. Beyond this, however, one sees a dramatic
dependence on g in both probabilities, with strongly different
behavior in the weak- and strong-coupling regimes.

In the WCR, which is effectively defined by g < geff [see
Eq. (44)], both probabilities exhibit marked minima near the
middle of the WCR (g ≈ geff/2 ≈ 0.2). The minima of �t

are more symmetric and more pronounced. The observed
slow decay of both minima with time suggests that both
probabilities Pt and �t converge to zero in the whole WCR,
albeit logarithmically slowly. As a consequence, the most cited
papers are in general not among the fittest ones, at least for
very late times.

In the SCR (g > geff), the probability �t is very close to
unity, implying that the most cited paper is almost certainly a
record, i.e., one of the successive fittest papers. The probability
Pt , on the other hand, seems to converge to a nontrivial
asymptotic value PSCR ≈ 0.44 deep in the SCR. A very weak
residual dependence of this asymptotic value on g cannot,
however, be ruled out. The above results suggest that the
theory of records might be an appropriate way of further
investigating the dynamics of the model in its most interesting
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regime, i.e., deep in the SCR. While we will return to these
considerations in Sec. V, it is well worth reemphasising the
strikingly counterintuitive results obtained above: leaders are
almost always not records in the WCR for asymptotic times,
and even in the SCR where a leader is in general one of the
records, it is not necessarily the fittest among them.

D. The statistics of highest citation counts

In this section, we complement the above analysis by
investigating the statistics of the highest citation counts. These,
too, show qualitatively different behavior in the WCR and
SCR. We have chosen to monitor two observables that are
selectively sensitive to high citation counts. The first one is
self-explanatory: it is the largest mean citation count Cmax(t)
at time t . The second observable is the so-called moment ratio,
defined as

Y (t) =
∑

i Ci(t)2[∑
i Ci(t)

]2 , (56)

where the sums run over papers i published before time t ,
Such dimensionless moment ratios have been widely used to
investigate classical disordered systems; Derrida and Flyvbjerg
[34] used them to investigate the statistics of random objects
such as valleys in spin glasses as well as in models of
fragmentation, and they have been widely used since to
examine other complex systems [35–40]. A similar quantity
known as the inverse participation ratio (IPR) [41–43] is widely
used as a measure of the spatial extension of wave functions in
quantum systems. In the context of Anderson localization, its
use allows one to distinguish between extended and localized
states [44,45].

Here, the statistics of the quantity Y (t) will be used to
highlight the difference between the relatively featureless,
“extended” distribution of citation counts in the WCR and the
strongly rugged, “localized” distribution in the SCR, where by
contrast a few papers dominate the overall distribution with
their huge citation counts. Figure 8 shows log-log plots of the
average of the largest citation count at time t , 〈Cmax(t)〉, and
of the product t〈Y (t)〉, against t ; the values of the coupling
constant g are chosen to be the same as in Fig. 6. Both
quantities again exhibit a crossover around g ≈ geff ≈ 0.4
(green tracks).

In the WCR, the largest citation count saturates to a finite
value, or possibly grows very slowly in time, while the moment
ratio Y (t) falls off essentially as 1/t . Both indicators point
toward a rather flat and structureless distribution of citation
counts among many papers, with relatively few fluctuations.
This would correspond to an “extended” regime, in the
language of Anderson localization.

The picture in the SCR is entirely different, though; here,
the maximal citation count grows approximately linearly in
time, and the mean moment ratio Y (t) slowly converges to a
nontrivial limit. This is a clear signature that strong fluctuations
persist even in the “thermodynamic” limit of very long times.
These observations are corroborated by Fig. 9, which shows
a histogram plot of the probability distribution of Y for
g = 1.2 (which is deep in the SCR) for two large times,
t = 500 and t = 1000. Despite the undoubted presence of
finite-size effects, there is a noticeable convergence toward
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FIG. 8. Log-log plots of (a) the average 〈Cmax(t)〉 of the largest
citation count in units of λ and (b) the product t〈Y (t)〉, against t , for
coupling constants g ranging from 0 to 1.2 (bottom to top in each
panel). Dashed lines with unit slope are guides to the eye.

a nontrivial asymptotic distribution f (Y ), demonstrating that
fluctuations are neither small nor trivial. This limit distribution
is observed to be very asymmetric and vanishes exponentially
fast at both endpoints (Y → 0 and Y → 1).
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FIG. 9. Probability distribution of the moment ratio Y for g = 1.2
and t = 500 and t = 1000.
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Such distributions of the moment ratio Y are characteristic
of non-self-averaging systems [34,36], where strong history-
dependent fluctuations ensure that even very large systems
cannot incorporate all possible fluctuations. As a consequence,
observables fail to self-average in the thermodynamic limit. In
our case, this comes about, first, because of the emergence of
a strongly hierarchical distribution of high individual citation
counts, such that the largest counts are finite fractions of the
total sum and, second, because these largest counts fluctuate
strongly between different histories. A somewhat similar
phenomenon has been observed in a model for the dynamics
of movie competition [46]: the late-time competition there
observed between the best movies, characterized by very
slow oscillations in their popularities, would yield a similar
distribution f (Y ) to that of Fig. 9. Conversely, we would
also expect to see such slow oscillations between the dynamic
fitnesses of the fittest papers in our model, in a given stochastic
history.

All the results of this section underline the special role
played by exceptional papers—leaders and records, especially
in the SCR. In the next section, we present an effective model
of the citation counts of such exceptional papers deep in the
SCR.

V. EFFECTIVE MODEL DEEP IN THE
STRONG-COUPLING REGIME

A. Construction

We propose here an effective model of the main features
of exceptional papers, i.e., those with large fitnesses and large
citation counts, deep in the SCR. Our model is based on the
following observations:

(1) Deep in the SCR, the most cited paper is almost
certainly one of the records (successive fittest papers). This
is manifested by �t ≈ 1, as can be seen from Fig. 7(b).
This suggests that we restrict the dynamics to the sequence
of records.

(2) Deep in the SCR, the mean-field prediction L ≈ M

[see Eq. (37)] implies that the relaxation rate entering Eq. (11)
vanishes essentially linearly with 1 − ε, so that very fit papers
have very long relaxation times. This will be used as a
prescription to model the dynamics of records.

We therefore set ω = 1 as above, and L = M = 
, keeping
the effective rate 
 as a phenomenological, and in fact the only,
parameter of our effective model.

Within this framework, a very fit paper published at time t0
with initial fitness ε has a dynamic fitness

η(t) = e−
(1−ε)(t−t0) (57)

and a mean citation count

C(t) = λ


(1 − ε)
[1 − e−
(1−ε)(t−t0)]. (58)

The actual construction of the effective model is based
on record statistics [30–33]. Consider a fixed, very large
observation time t , from which the sequence of successive
fittest papers (records) is read backwards. Using a continuous
time formalism, the fittest paper to date was published at some
time t1, uniformly distributed between 0 and t , with initial
fitness ε1 = 1 − x1/t , where x1 is drawn from the exponential
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FIG. 10. Log-log plot of the citation counts Ck(t) in units of λ

for a single history of the effective model with 
 = 1, against time
t up to the observation time t = e10 ≈ 22 026. Colors alternate for a
clearer reading.

distribution e−x1 [see Eq. (46)]. Similarly, the fittest paper up
to time t1 was published at some time t2, uniformly distributed
between 0 and t1, with initial fitness ε2 = 1 − x1/t − x2/t1,
such that x2 has the exponential distribution e−x2 , and so on. We
thus obtain the following recursive scheme. The publication
dates t1,t2, . . . of the successive fittest papers, numbered
backwards from time t , and the corresponding initial fitnesses
ε1,ε2, . . . read

tk = t sk, εk = 1 − rk

t
, (59)

where the dimensionless reduced times sk and reduced fit-
nesses rk obey the random recursions

sk = uksk−1, rk = rk−1 + xk

sk−1
, (60)

with s0 = 1, r0 = 0, and therefore

sk = u1 · · · uk, (61)

rk = x1 + x2

u1
+ x3

u1u2
+ · · · + xk

u1 · · · uk−1
. (62)

The uk are uniform random variables between 0 and 1,
whereas the xk are drawn from the exponential probability
distribution e−x .

The dynamic fitnesses ηk(t) and citation counts Ck(t) of the
successive records at the observation time t are obtained by
inserting Eq. (59) into Eqs. (57) and (58). We thus obtain

ηk(t) = e−
rk (1−sk ), (63)

Ck(t) = λt


rk

[1 − e−
rk (1−sk )]. (64)

Figure 10 shows a log-log plot of the citation counts
obtained in units of λ for a single history of the effective
model with 
 = 1, against time t up to the observation time
t = e10 ≈ 22 026. Note the regularity of this typical pattern
on a logarithmic time scale, where citation counts rise very
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fast and level out rather suddenly, so that every record paper
is soon overtaken by a later one, which in turn is overtaken by
one of its successors, and so on.

An interesting feature of the effective model is its exact
self-similarity. The dynamical quantities ηk(t) and Ck(t) only
depend on the dimensionless random quantities sk and rk [up
to an overall factor of t in the citation counts Ck(t)]. In the
full model, by contrast, the scaling laws that characterize
the SCR [such as the linear growth of 〈Cmax(t)〉] only hold
asymptotically for very large times.

The above self-similarity relies on the choice of a uniform
distribution of initial fitnesses. For a different fitness distri-
bution, e.g., one which obeys the power law Eq. (A13), the
estimate Eq. (59) would read 1 − εk ∼ t−1/(1−β), so that the
dynamic fitnesses ηk(t) would acquire an explicit time depen-
dence, thus breaking scale invariance. Even for the uniform
fitness distribution we consider here, the self-similarity breaks
down at an exponentially large time scale, beyond which our
model should not be pushed:

t� ∼ exp

(
g/gc − 1

2δ

)
. (65)

This is where the citation count C1(t�), say, becomes compa-
rable to the mean-field estimate Eq. (38) for Chigh.

Before we present the main results of the effective model,
it is worth looking at the fates of very early records, labeled by
large k, which were born much before the observation time t .
We observe that

zk = − ln sk = ln
t

tk
(66)

is the sum of k positive random variables yk = − ln uk ,
drawn from the exponential probability distribution e−y [see
Eq. (61)]. The distribution of zk is therefore a “gamma”
distribution of the form

fk(z) = zk−1e−z

(k − 1)!
. (67)

We have in particular 〈zk〉 = k. For large k, the distribution of
sk is strongly peaked around the typical value s

typ
k = e−〈zk〉 =

e−k . Putting all this together, we see that the publication times
of early records, as well as their citation counts, typically fall
off exponentially with k:

t
typ
k ∼ C

typ
k (t) ∼ e−k t. (68)

These simple estimates have important consequences. First,
for a large but finite observation time t , the sequence of fittest
papers contains only k ≈ ln t papers—this estimate being
obtained by setting t

typ
k ∼ 1. We thus recover the logarithmic

law Eq. (49) for the mean number of fittest papers (records),
including its unit prefactor. Second, even for an infinite history,
the exponential decay of C

typ
k (t) predicted in Eq. (68) implies

that the number of papers with significant citation counts
remains effectively finite. These findings are in agreement
with the results of our numerical simulations of the full model
presented in Sec. IV.
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FIG. 11. The first three probabilities pk and the mean moment
ratio 〈Y 〉 of the effective model, against the effective rate 
.

B. Main results

Since the effective model is still too complicated to be
solved analytically, we take recourse to numerical simulations
for further investigations. In order to allow for a comparison
with the results on the full model presented in Sec. IV, we
focus our attention on the probability pk that the kth fittest
paper (numbered backwards from the observation time t) is
the most cited. The first of these, p1, is the probability that
the most cited paper is the current fittest one. It is therefore
the analog of the probability Pt defined in Eq. (54) for the full
model. We also investigate the statistics of the moment ratio

Y =
∑

k Ck(t)2[∑
k Ck(t)

]2 , (69)

where the citation counts Ck(t) are given by Eq. (64). The
quantity Y thus defined is independent of the observation time
t , as a result of the exact self-similarity of the effective model.

Figure 11 shows a plot of the first three probabilities pk

(k = 1, 2, 3) and of the mean moment ratio 〈Y 〉 against the
effective rate 
. The plotted quantities are observed to depend
smoothly on 
. As 
 increases, the probability p1 increases
steadily, whereas the other probabilities slowly fall off to zero,
and the mean moment ratio 〈Y 〉 increases slowly. It will be
seen in Fig. 13 that the full distribution of Y also shifts to the
right with increasing 
. All these observations suggest that the
“localization” features mentioned in Sec. IV D become more
and more pronounced as 
 is increased.

The effective model allows one to explore more subtle
issues, which cannot be addressed directly in the full model.
One example concerns the probability that the most cited paper
at the observation time t is a very early record, corresponding
to a large value of the label k. Figure 12 shows logarithmic
plots of the probabilities pk for a wide range of values of k,
and for four values of 
. The smallest of these probabilities
is of the order of 10−6. Such a figure is far too small to be
measurable by means of a direct numerical simulation of
the full model. The probabilities pk are clearly observed to
decay more rapidly than exponentially. In the present context,
this superexponential behavior can be explained as follows.
Consider a history (i.e., a draw of the random variables uk and
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FIG. 12. Logarithmic plots of the probabilities pk against k for
four values of the effective rate 
 ranging from 0.5 to 4 (top to
bottom). Full lines: fits of the form pk = A[μk/�(k + b)]2, with
μ ≈ 2.48 for 
 = 0.5, μ ≈ 1.82 for 
 = 1, μ ≈ 1.26 for 
 = 2,
μ ≈ 0.92 for 
 = 4. The product 
μ2 is observed to be slightly
above 3 in all cases.

xk) such that the most cited paper was published very early
on (k � 1). This history violates the estimates Eq. (68) quite
strongly. Such atypical behavior can only be obtained if sk and
rk are of order unity (instead of being exponentially large or
small). Now, for a fixed scale μ, the probability for having
sk > e−μ, i.e., zk < μ, can be read off from the result Eq. (67):
for large k, it scales as μk/k!. The constraint on the rk can be
argued to bring a second factor of the same order of magnitude.
We are thus left with the estimate

pk ∼
(

μk

k!

)2

. (70)

Despite the qualitative nature of the above arguments, the fits
in Fig. 12 show that the probabilities pk agree very well with
the superexponential estimate Eq. (70).

The effective model also exhibits another striking feature,
shown in Fig. 13. Histogram plots of the probability distribu-

0 0.2 0.4 0.6 0.8 1
Y

0

1

2

3

4

f(
Y

)

0.5
1
2
4

FIG. 13. Probability distribution f (Y ) of the moment ratio Y for
the same values of the effective rate 
 as in Fig. 12.

tion of the moment ratio Y defined in Eq. (69) are shown for
four values of the effective rate 
. The most salient feature
of these plots is the occurrence of singularities at Y = 1/2,
1/3, 1/4, and so on. Singularities of this kind are ubiquitous in
the statistics of random objects such as attractors in dynamical
systems or valleys in disordered systems [34,36]. Discrete
mathematics also contains many instances of distributions with
such singularities in the statistics of random trees, maps and
permutations (see, e.g., Ref. [47]). In the present situation,
the occurrence of these singularities can be explained in
elementary terms. Consider a history where the n largest
citation counts are almost equal, whereas all other ones are
negligibly small. Such a history yields Y = 1/n + ε, where ε

is very small and positive. It therefore contributes to f (Y ) for
Y = 1/n + ε, but not for Y = 1/n − ε. For all its roughness,
this argument correctly predicts the occurrence of singularities
in f (Y ) at all the inverse integers.

Apart from this, the distribution of Y is observed to
depend smoothly and rather weakly on the phenomenological
parameter 
. The main effect of 
 is again a shift of Y to
larger values for larger 
. Furthermore, all over the rather
broad range of values of 
 considered here, its overall
shape reproduces qualitatively the main characteristics of the
distribution observed in the full model deep in the SCR (see
Fig. 9).

In conclusion, our effective model offers at least a quali-
tative explanation for the main observed features of the full
model deep in the SCR.

VI. DISCUSSION

Our main aim in this work has been to examine the competi-
tive dynamics of high-fitness entities with a view to determine
how they become leaders (or winners and survivors, in the
language of earlier models [4,5]). The particular paradigm we
have used is that of a model citation network, where individual
papers with given initial fitnesses compete with one another to
gain the highest citation counts. We were inspired to make this
choice by findings of universality in citation statistics [8,10],
which we felt might be related to our own findings of universal
features in competitive dynamics on complex networks [7].
It is, however, useful to reemphasize here that whereas the
findings of Refs. [8,10] related to universality in the citation
counts of individual papers, we have chosen to focus on
more collective aspects in our analysis. Here, the presence of
adaptive dynamics between individual papers results in their
fitnesses, and hence their citation counts, being dynamically
modified in the course of time, as a result of interactions.
Interestingly, our analysis of these more complex collective
dynamical quantities still retains a flavor of universality, of
which more will be said below.

Our main result is the emergence of a nontrivial phase
diagram, with a weak-coupling regime (WCR) and a strong-
coupling regime (SCR), separated by a sharp crossover near the
critical coupling gc. This mean-field picture was corroborated
by an in-depth numerical study of many different facets of the
model. Global observables, such as the total activity, exhibited
a slow power-law relaxation to their steady-state mean values,
around which they fluctuated. The mean-field predictions
concerning single papers were found to be essentially correct,
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except in the SCR regime and for very fit papers. To be specific,
there are no interactions between papers at zero coupling,
so that there can be no adaptive dynamics: the leaders and
the records are then essentially identical, the highest citations
going to the papers with greatest initial fitness. In the WCR,
there are few surprises at the mean-field level, where the
mean activity and citation counts increase smoothly as a
function of the coupling constant. The WCR, nevertheless,
exhibits unexpected behavior as correlations between records
and leaders are examined: for large times, it becomes less and
less probable that the most cited paper belongs to the sequence
of fittest papers (records). In the SCR, the fittest papers are
shown to have very long relaxation times and the first signal
of nontrivial behavior is in the fitness-resolved gain, where a
few papers in the tail of the fitness distribution are seen to get
nearly all the citations. The investigation of the probabilities
Pt and �t reveals that leaders are certain to belong to the
sequence of records, even if it is not always the fittest among
them who win out.

A further probe involving the use of the moment ratio Y

emphasized the qualitative differences between both regimes,
the WCR being characterized by an “extended” and rather
structureless distribution of citation counts among many fit
papers, and the SCR by a “localized” and strongly hierarchical
distribution of citation counts, with only a small number of
winners attracting very large citation counts, that fluctuated
strongly between different histories. This regime was the
focus of the effective model of Sec. V, which was aimed
at capturing the main features of papers with large fitnesses
and large citation counts deep in the SCR. This self-similar
model is based on a recursive construction of the random
sequence of fittest papers (records) and of the dynamics of
their fitnesses and citation counts. Its results were found to be in
qualitative agreement with the numerical results found earlier.
In particular, and importantly, it corroborated the existence
of a nontrivial distribution of the moment ratio, which is the
clearest manifestation of non-self-averaging effects and of the
role of fluctuations in the problem. This distribution provides
a focal point for the investigation of competition among the
fittest in future empirical studies of citation dynamics: a good
starting point could be the plotting of the relative citation
counts of leaders (as done in another context in Ref. [46]),
where the detection of slow oscillations would point toward
a detailed examination of the moment ratio and thus a test of
our theory.

We now put our results in perspective with other models,
focusing first on generic growing networks and next on work
specifically related to citation networks.

The record-driven growth process investigated in Ref. [27]
models the zero-temperature limit of a growing network model
with preferential attachment in a rugged fitness landscape
introduced by Bianconi and Barabási [23,24]. The latter model
may itself be viewed as an elaboration on earlier models of
complex networks, being either growing [21] or static [48,49].
In Ref. [27], a logarithmic law of the form of Eq. (53) holds,
with a prefactor C ≈ 0.624, which is not too far from the
prefactor CSCR ≈ 0.57 found in our work. However, while
the asymptotic probability for the current record to be the
current leader also takes the same value of 0.624 in Ref. [27],
our value for this, PSCR = 0.44, is significantly different,

suggesting that the two models differ significantly in their
treatment of correlations. Additionally, we observe that models
of growing networks with preferential attachment of nodes
with intrinsic fitnesses, such as the Bianconi-Barabási model in
its low-temperature regime [29], share the hierarchical features
manifested in this work by the nontrivial histogram of the
moment ratio.

Moving on to citation networks, our work builds on earlier
ideas such as the loss of relevance of papers as they age [9],
on which we base the evolution of our dynamical fitness. The
observation that fitter papers have longer lifetimes and nonex-
ponential relaxation [9] is also incorporated in our dynamics.
Empirical studies of citation networks have, however, usually
focused on typical papers, which are observed to have a broad
power-law distribution of citation counts [9,10]; our focus is on
the even broader distributions of time scales and citation counts
that are seen for exceptional papers. In our treatment of those
exceptional papers, we find evidence of extremely nontrivial
behavior, which resemble features that have been seen for
exceptional movies [46]. Last but not least, the importance of
ranking has also been underlined [15], which is a reassuring
fact in the context of our leaders- and records-based approach
to exceptional papers.

Finally, and more generally, we suggest that although
this model has been formulated in the context of a citation
network, its results at least in the SCR might be more generally
applicable to problems where a few strongly interacting
players dominate the behavior of a large assembly, and where
their competitive dynamics result in huge random fluctuations
across different histories. Although the fight among the fittest
could result in leaders whose identities might fluctuate across
histories, the underlying dynamical processes are strikingly
universal. These processes, involving players in the tail of the
fitness distribution, often lead to the emergence of a leader
who, while very fit, is not actually the fittest of them all.
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APPENDIX: MEAN-FIELD THEORY FOR AN ARBITRARY
FITNESS DISTRIBUTION

In this Appendix, we extend the mean-field theory of Sec. III
to the general situation where the fitness distribution takes an
arbitrary form ρ(ε) on [0, 1].

The solution of the self-consistency Eqs. (17) and (18) for
the mean fields A and B now reads

A = ω

M
((1 + z)I (z) − 1), (A1)

B = ω

M
((1 + z)2I (z) − 1 − z − ε). (A2)
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In these expressions, the parameter z reads

z = L − M

M
, (A3)

where L and M are related to A and B by Eq. (10), whereas

ε =
∫ 1

0
ε ρ(ε) dε (A4)

is the mean fitness, and

I (z) =
∫ 1

0

ρ(ε) dε

1 + z − ε
(A5)

is the Hilbert transform of the fitness distribution.
All the quantities of interest can be expressed in terms of

the parameter z in the range 0 < z < δ, which satisfies the
implicit equation

(1 + z)I (z) = 1 − ε

δ − z
+ gωε2

(δ − z)2
. (A6)

We have, in particular,

L = (1 + z)gωε

δ − z
, M = gωε

δ − z
. (A7)

The key quantities of mean-field theory, namely the mean
activity A and the highest citation count Chigh, read

A = ωε

δ − z
− 1

g
, (A8)

Chigh = λ(δ − z)

gεz
. (A9)

In the case of the uniform distribution, considered in the
body of this paper, the Hilbert transform

I (z) = ln
1 + z

z
(A10)

is logarithmically divergent as z → 0. The above expression
can be parametrized as

z = 1

ex − 1
, I (z) = x, (A11)

and so we recover the solution given in Sec. III B.
Consider now an arbitrary fitness distribution. In order for

the mean-field solution of the model to be well-behaved for
arbitrary values of the coupling constant g, the implicit Eq.
(A6) must keep a physically relevant solution in the range
0 < z < δ for arbitrarily large g. The Hilbert transform I (z),
therefore, has to diverge as z → 0. This condition essentially
amounts to saying that the fitness distribution ρ(ε) should not
vanish at its upper edge (ε → 1). In other words, sufficiently
many very fit papers should be published at any time.

The situation where the fitness distribution has a finite
density ρ(1) at its upper edge is in every respect similar to
the case of a uniform fitness distribution, studied in detail in
Sec. III. In this case, the Hilbert transform indeed diverges as
z → 0, albeit only logarithmically:

I (z) ≈ ρ(1) ln
1

z
(z → 0). (A12)

A qualitatively novel behavior is observed in the case
where the occurrence of very fit papers is enhanced more

TABLE I. Predictions of mean-field theory for a fitness distribu-
tion diverging at its upper edge as a power law with exponent β [see
Eq. (A13)]. The table gives the exponents governing the power-law
behavior as δ → 0 of the parameter z, the mean activity A, and
the highest citation count Chigh in the three different regimes: WCR
(g < gc), critical (g = gc), and SCR (g > gc).

Quantity g < gc g = gc g > gc

z 1 2/(β + 1) 1/β

A −β −2β/(β + 1) −1
Chigh −1 −2/(β + 1) −1/β

significantly, i.e., where the fitness distribution diverges near
its upper edge as a power law:

ρ(ε) ≈ K(1 − ε)−β (ε → 1), (A13)

with an exponent β in the range 0 < β < 1. Its Hilbert
transform also diverges according to the same power law:

I (z) ≈ K̃z−β (z → 0), (A14)

with

K̃ = πK

sin πβ
. (A15)

Henceforth, we focus our attention onto the latter case of a
power-law divergence of the fitness distribution. The situation
of most interest again corresponds to a small damping rate
(δ � 1). The phase diagram depicted in Fig. 1 still holds,
with a weak-coupling regime (WCR) and a strong-coupling
regime (SCR) separated by a sharp crossover near the critical
coupling

gc = δ

ωε
. (A16)

We obtain the following predictions, which are summarized in
Table I.

(1) In the WCR (g < gc), the estimates

z ≈ (1 − g/gc)δ, (A17)

Chigh ≈ λω

(1 − g/gc)δ
(A18)

hold for an arbitrary fitness distribution.
The mean activity A diverges as a power of δ:

A ≈ ωK̃[(1 − g/gc)δ]−β. (A19)

(2) In the SCR (g > gc), the estimates

A ≈ A∞(1 − gc/g), (A20)

A∞ = 1

gc

= ωε

δ
, (A21)

L ≈ M ≈ g

gc

(A22)

hold for an arbitrary fitness distribution.
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The parameter z vanishes and the highest citation count
Chigh diverges as powers of δ:

z ≈
(

K̃δ

(g/gc − 1)ε

)1/β

, (A23)

Chigh ≈ λωgc

g

(
(g/gc − 1)ε

K̃δ

)1/β

. (A24)

(3) Right at the critical point (g = gc), all the relevant
quantities of interest obey power laws:

z ≈
(

K̃δ2

ε

)1/(β+1)

, (A25)

A ≈ ωε

(
K̃

ε δ2β

)1/(β+1)

, (A26)

Chigh ≈ λω

(
ε

K̃δ2

)1/(β+1)

. (A27)
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