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Abstract. We study the details of the distribution of the entanglement 
spectrum (eigenvalues of the reduced density matrix) of a disordered spin chain 
exhibiting a many-body localization (MBL) transition. In the thermalizing 
region we identify the evolution under increasing system size of the eigenvalue 
distribution function, whose thermodynamic limit is close to (but possibly 
different from) the Marchenko–Pastur distribution. From the analysis we extract 
a correlation length Ls(h) determining the minimum system size to enter the 
asymptotic region. We find that Ls(h) diverges at the MBL transition. We 
discuss the nature of the subleading corrections to the entanglement spectrum 
distribution and to the entanglement entropy.
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1. Introduction

The study of disordered, isolated quantum systems has recently received a lot of atten-
tion due to both technological progress in the isolation and manipulation of mesoscopic 
quantum systems [1–3] and theoretical advances. Among the latter, the phenomenon 
of many-body localization (MBL) has taken center stage since its theorization [4] as 
the surprising breakdown of ergodicity due to quantum effects in a generic (i.e. non-
integrable) disordered system [5, 6]. The MBL phase, which is the continuation of the 
celebrated Anderson localized phase [7] to interacting systems, has been characterized, 
among others, via the absence of transport of conserved quantities (particles or spin 
and energy) [4, 6, 8, 9], nature of the eigenstates [10–12], spreading or evolution of 
entanglement [13–17] and emergent local integrability [18–22]. MBL is emerging as 
a compelling and universal phenomenon and its implications for our understanding 
of quantum dynamics and applications to future technologies are becoming evident 
[23–25].

Entanglement is commonly used as a characterization of a quantum state and of 
its non-classical properties [26, 27]. As said before, it has been used to character-
ize the MBL phase as well [13–17, 28]. In disordered systems one should discuss the 
probability distribution over realizations of the quenched disorder of the various 
entanglement measures. In particular, the typical value of the entanglement entropy 
of a single eigenstate has been shown to be a good discriminator of the two phases: 
the system’s entanglement follows a volume law in the ergodic phase (in line with the 
eigenstate thermalization hypothesis, see [29, 30] and the recent review [31]) and an 
area law in the MBL phase [10]. The sample-to-sample fluctuations of the entangle-
ment entropy have been instead shown [32] to be good locators of the transition, and 
have been proposed as a signal of its first-order nature. The entanglement spectrum 
[33] has proved in various situations to contain a lot more information than the 
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entanglement entropy alone, and, where it is the case, it shows signatures of topologi-
cal order.

In the context of MBL, the entanglement spectrum has been studied in some recent 
papers [34–36] (but see also in a similar setting [37]); when focusing on the MBL phase, 
these works find power-law distributions for the entanglement spectrum (similar to 
those found in [11]), while in the ergodic phase the distribution is found similar to a 
Marchenko–Pastur distribution, which is the distribution of eigenvalues of the reduced 
density matrices of random states [38–40]; [35] instead focuses on the level statistics of 
the entanglement spectrum, revealing interesting details of the transition on the MBL 
side.

The aim of this paper is to show that deviations from Marchenko–Pastur of the 
probability distribution of the entanglement spectrum in the ergodic phase provide an 
important characterization of the ergodic phase of such a disordered system. Moreover, 
such deviations from Marchenko–Pastur can be used to define a correlation length and 
predict the location and finite-size scaling exponents of the MBL transition. We will 
show that the entanglement spectrum therefore appears to be a crucial quantity, being 
able to identify even the most subtle correlations that are present in the ergodic phase 
of a disordered quantum system. The tools developed in this work should be useful for 
future studies of disordered quantum systems in their delocalized phases.

2. Model and definitions

We consider what has become the standard model of MBL in one dimension: the spin-
1/2 Heisenberg chain with random fields

H = −J

L∑

i=1

�si · �si+1 −

L∑

i=1

his
z

i
, (1)

where we fix J = 1 and the random fields hi are drawn from a uniform distribution in 
[−h, h], and sxyz = 1

2
σ
xyz (σk being the Pauli matrices). Furthermore, we choose to work 

in the subspace with total magnetization Sz
= 0, whose dimension is N =

(

L

L/2

)

. In the 

numerics we study L = 8 to 18, and consider periodic boundary conditions. The local-
ization transition happens, for these parameters, at h = hc ≈ 3.7 according to various 
numerical investigations [10, 12, 41].

We consider a single eigenstate of H, |ψ〉, computed through the exact diagonaliza-
tion of H, so that the corresponding eigenvalue is in the center of the energy spectrum; 
this can be obtained by targeting an energy E = N−1

TrH in a shift-invert diagonaliza-
tion algorithm (this estimates the mean spectral energy and accounts for its finite size 
corrections). Not averaging over a number of eigenstates corresponding to the same 
disorder realization removes a source of correlation.

To study the entanglement properties we focus on half of the chain, of size L/2, 
indicated as region A, the complementary region being B. We compute the reduced 
density matrix of this (pure) state as

ρA = TrBρ = TrB|ψ〉〈ψ| (2)
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and determine its 2L/2 eigenvalues λi; this set (or better, the set of the logarithms lnλi) 
is called the entanglement spectrum. Because of the Sz = 0 constraint, (2) is in a block-
diagonal form. We obtain numerical data with 106 disorder realizations up to L = 14, 
7.5 · 104 realizations for L = 16 and 2500 to 5000 realizations for L = 18.

In the delocalized phase the eigenvalues are all of the same order. Because of the 
normalization condition 

∑
i λi = 1, we have therefore λi ∼ 2

−L/2. One can think of the 
eigenvalues of order 2−ℓ as originating from states that are (approximately) uniformly 
entangled over a region of ℓ spins, so that log2 λi can be thought of as a length scale.

A few examples will clarify the main idea. Consider first a maximally entangled state, 
such that the reduced density matrix of half system A has all eigenvalues λi = 2−L/2. 
The only scale in the system is clearly L/2, as entanglement is evenly spread all over 

subsystem A. As a second example, consider a state such that the maximum eigenvalue 

is λ1 = µ = O(1) and all the others are λi = O(2−L/2) such that µ+
∑

j �=1
λj = 1; then 

there are two scales, one O(log
2
µ) = O(1) and the other one “global”, O(L/2). This 

situation typically arises when one biases the purity of a random state, so that one 
eigenvalue ‘evaporates’ out of the continuum of the other ones O(2−L/2) [40], carrying 
most entanglement. As a third example, consider a situation in which the eigenval-

ues split is two classes: λi = O(1/M1) = O(2−L/2) and µj = O(1/M2) = O(2−
√

L), their 

multiplicity such that 
∑

j µj +
∑

i
λi = 1. Then there are two scales, one more ‘local’, 

ℓ2 = O(log
2
M2) = O(

√

L) and the other one ‘global’ ℓ2 = O(log
2
M1) = O(L); these two 

scales will be in general intertwined in the system, in the sense that there will presum-
ably be correlated ‘islands’ of size O(

√

L) interspersed in the system size O(L). The 
above examples clarify that the scales are not necessarily related to the physical qubits, 
but rather to given directions in the Hilbert spaces of system A (and B), given by the 
Schmidt decomposition.

The above intuition is centerpiece in the numerical methods which are based on 
the truncation of the reduced density matrix [42] (used in the context of MBL in [43]) 
and will be useful in the following. In the next section we will investigate the details of 
the distributions and, specifically, the effects that arise from increasing the system size 
L and approaching the critical value of the disorder hc. As noticed in previous work 
[36], in the MBL phase (h > hc) the existence of a many-body localization length Ll(h) 
implies a power-law distribution for the λi. In this paper we show the signs of another 
correlation length Ls(h) in the entanglement spectrum, that will appear in the sub-
leading corrections for h < hc, and which diverges at the critical point. The different 
lengths (to be) introduced in this Article are summarized in table 1.

3. Entanglement spectrum and its probability distribution

In order to identify the different length scales in the P (λ) it is useful to consider the 
entanglement entropy, defined as

SA = −TrρA ln ρA = −

∑

i

λi lnλi. (3)
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In recent years a lot of progress has been done on understanding the properties of the 
entanglement entropy close to a quantum phase transition [44]. In our case, it will not 
be possible to get too close to the MBL phase transition due to prohibitive numerical 
difficulties, but we think it is useful to discuss the general setup in which these kind of 
questions are considered.

Using the replica trick [45] SA can also be written as (we shall drop henceforth the 
subscript A on entropies)

S = − lim
n→1

∂Tr(ρn
A
)

∂n
≡ − lim

n→1

∂S(n)

∂n
. (4)

Usually, one takes for |ψ〉 = |E0〉 (assuming E0 = 0 for simplicity) the ground state of 
some local Hamiltonian which can be obtained as

|E0〉〈E0| = lim
β→∞

e−βH . (5)

Physically, one needs β � 1/∆0, where ∆0 is the gap on the ground state. One can say 
that 1/∆0 defines a characteristic (imaginary) time after which the properties of the 
ground state can be extracted from the (imaginary) time dynamics.

Since

ρA(s
′

A
|sA) =

∑

sB

〈s′A; sB|E0〉〈E0|sA; sB〉, |sA; sB〉 ≡ |s1, . . . , sLA
; sLA+1, ..., sL〉,

 

(6)

we can consider ρA(s
′

A
|sA) as the transition amplitude from configuration {sA} to 

configuration {s′
A
}, for the imaginary time evolution e−βH. Following this construc-

tion, one can think of S(n)
= Tr(ρn

A
) as a sum over all possible configurations of spins 

si arranged on a n-sheeted (lattice) surface with two conical singularities ±2πn at the 
boundaries between A and B. At criticality when one of the parameters g → gc, a cor-
relation length ξ diverges, and one sees scale invariance in the limit 1 ≪ L � ξ. For a 
conformal field theory (CFT) ξ ∼ 1/∆ ∼ |g − gc|

−ν where ν is some critical exponent 
characteristic of the theory.

Whether the continuum limit yields a CFT or not, we can define twist operators  
[44, 45], which create conical singularities at 0 and LA in the continuum limit, and 
write the entanglement entropy as a correlation function of these operators:

S(n)(LA) = Tr(ρn
A
) = 〈On(0)O−n(LA)〉, (7)

and by taking derivatives wrt to n one obtains the entanglement entropy. Notice that 
by knowing S(n) for every n one can reconstruct the entanglement spectrum (and vice 
versa).

If the energy E of the eigenstate is extensively away from the ground state, we need 
to modify (5) as

Table 1. Lengths and scales.

System size MBL length
Correlation 
length

Boundary 
length scale

Bulk length 
scale

L Lℓ Ls ℓ1 ℓ2
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|E〉〈E| = lim
T→∞

∫

T

−T

dt

2T
e−it(H−E) +O

(

1

T

)

, (8)

where now T � 1/∆, the gap around the energy E, as one can easily show by look-
ing at the matrix elements 〈s′|E〉〈E|s〉 9. Now however, in a generic many-body model 
∆ ∼ e

−Lσ(E) is exponentially small in L (σ(E) is the entropy per spin at energy E) so 
we see that the scaling region requires ξ ∼ ln(1/∆) ∼ |g − gc|

−ν, which is probably the 
origin of claims of a dynamical exponents z = ∞ for the MBL transition [10].

As one takes larger and larger subsystems LA we have a change of behavior when 
LA ≃ ξ, entering the scaling region. We now go back to the description in terms of the 
eigenvalues of ρA and in the rest of the paper we will see how to identify the lengths-
cale ξ in the entanglement spectrum. As said before, in the delocalized phase the eigen-
value probability distribution will have a finite support and a mean value that scales 
as O(2−LA). We can then use the system-size rescaled eigenvalues 2LAλi → λi, so that 
the mean 〈λ〉 = 1 does not scale with the system size. Typically, one observes (scaled) 
distributions such as those displayed in figure 1 (obtained for h = 1). If this scaling is 
observed, then it is easy to show that

Tr(ρn
A
) = S(n)(LA) = 2−(n−1)LAφn(LA). (9)

By taking derivatives, the entanglement entropy reads

S = ln 2 LA − sLA
, (10)

where LA is the length of the interval A. The second term is related to the function φn 
and contains non-trivial information on the correlations between the twist operators. 
In particular it may also contain a non-trivial length scale. Notice that sLA

� 0 since 
the first term on the right-hand side is also the maximum possible value of SA. As we 
have chosen LA = L/2, we will denote all the quantities with their L (rather than LA) 
dependence. We will also indicate with λ the rescaled eigenvalues of the reduced den-
sity matrix.

4. Deviations from Marchenko–Pastur and emergence of other scales

Previous works [34, 36] noticed that in the delocalized phase, a substantial part of 
entanglement spectrum is well approximated at low disorder by a Marchenko–Pastur 
(MP) distribution

P (λ) =
1

2π

√

4− λ

λ
. (11)

For MP, the constant in equation (10), in the thermodynamic limit, is s∞ = 1/2. 
However, finite-L corrections are important, and, if we assume that the corrections fol-
low the same pattern as those in the MP distribution we should find

9 Other choices are possible, such as for instance ∝ e
−β(H−E)2 for β → ∞. All options should incorporate some kind 

of evolution for long times, in order to isolate a single eigenstate.
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sL ≃ s∞ + c e−mL/2, (12)

where for MP s∞ = 1/2, m = ln 2, c ≃ 0.38(3) (m and c come from the exact diagonal-
ization of random Wishart matrices: an explicit calculation should be possible using 
methods of random matrix theory [38, 40, 46] and is left for future work). Notice that 
equation (12) is of the form of the corrections expected from quantum field theory 
(see [47] and references therein) where m is the mass of the lightest excitations. Using 
this form for fitting the numerical data we find s∞ ≃ 0.66(1) and m ≃ 0.20(1) (around 
h = 1, with a small dependence on h), therefore making evident that MP is not the limit 
of the rescaled eigenvalues distribution. In order to collect more evidence about such 
difference and study the evolution of the entanglement spectrum at the MBL (critical) 
transition point, we need to look at the whole distribution.

Although equation (12) might suggest a fast approach to the thermodynamic limit, 
we remark that the asymptotic limit is achieved only when L is larger than the cor-
relation length ξ discussed before, which diverges at the transition at h = hc = 3.7. 
We will see how to identify this length, which we will call Ls(h), in deference to the 
appearance of a spinodal point in the entanglement spectrum, and show that Ls � 20 
already at h = 2.5, representing therefore the main roadblock to the observation of a 
true asymptotic region in current numerics. The width of the numerically accessible 
critical length demands that we understand more accurately the sub-leading correc-
tions to the entanglement quantities in MBL, if we want some more information on the 
theory of the critical point.

The remainder of this paper is focused on the definition and study of this correlation 
length Ls(h) in the delocalized region, by scrutinizing its divergence and the associated 
finite-size corrections.

To better characterize the distribution we consider its logarithmic derivative

β(lnλ, h, L) =
d lnP

d lnλ
, (13)

Figure 1. Rescaled entanglement spectrum lnP (λ) for different system size; 
h = 1.
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as a function of lnλ. For the MP distribution one would have β = −2/(4− λ) and, in 
the limits log λ → −∞, ln 4, one would get β → −1/2, −∞, respectively. However, one 
numerically observes the peculiar behavior in figure 2 (at h = 1) that, we will argue, 
extends all the way to the localization transition point hc = 3.7. For fixed h and small 
L, β is monotonically decreasing from −1/2 (at small λ) to −∞ (at large λ): see for 
example the L = 8 curve in figure 2. As L increases, there appears a value L = Ls(h) 
(approximately L = 10 in figure 2) where a tricritical point is found and where a mini-
mum and a maximum are born in β; for L > Ls(h) these extremal points are located 
at lnλ ≡ −ℓ1,2, and we denote their values with β(−ℓ1,2, L, h) ≡ β1,2, respectively (see 
inset in figure 2).

The tricritical point Ls is the solution of the equations (the primes denote deriva-
tives wrt lnλ):

β′(lnλ,L, h) = 0,

β′′(lnλ,L, h) = 0,
 (14)

yielding the solution (Ls, lnλ = −ℓ1 = −ℓ2) as a function of h. These equations can be 
solved easily, once a polynomial interpolating function for β is obtained from the data. 
The main lesson to be learned from this observation is the existence of the length scales 
Ls, ℓ1, ℓ2. Before going to the physical interpretation of these scales we look at the evo-
lution at fixed h of the pairs (ℓ1,2, β1,2) when L → ∞. As can be seen from figure 3, the 
maximum β2 approaches the MP value, β2 → −1/2, with its position ℓ2 remaining of 
O(1) (inset); at the same time, the minimum β1 goes to a value which is dependent on 

Figure 2. Logarithmic derivative β at h = 1. The logarithimc derivative of 
the MP distribution—dashed (red) line—is shown for comparison. Notice the 
presence of a minimum and a maximum for L � 12. We extract their coordinates 
by polynomially interpolating the numerical data, as exemplified in the inset. 
The asymptotic region of approach to the thermodynamic limit is obtained after 
the birth of a length scale Ls where a tricritical point is observed, which in this 
figure is L ≃ 10. Similar (although less clean) results can be obtained by turning 
on a finite transverse magnetic field which breaks the conservation of the total 
magnetization Sz.
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h (for h = 1, β1 → −0.8), but its position ℓ1 escapes to the arbitrarily small eigenvalue 
region, ℓ1 → ∞ (inset). We offer no explanation for this value of β1 but we notice that 
in our numerics, as h → hc, it seems that β1 → −1 (similarly to [11]).

The distribution P therefore gets closer to MP for − lnλ � ℓ2 (figure 2). Since, as 
explained before, − lnλ is to be considered a length scale, we propose that ℓ2 represents 
a typical length scale of the system, that is related to local phenomena, and charac-
terizes the bulk properties of the system, describing for example the dynamics of local 
excitations of the eigenvector, enabling us to distinguish it from the eigenvector of a 
random matrix. We also surmise that the second, larger length scale ℓ1, which goes to 
∞ as L → ∞, defines the effects on the distribution due to the size of the cut LA = L/2, 
hence boundary effects. The length scale Ls(h) is the minimum system size at which 
these two properties can be separated, and therefore it can be identified as the distance 
after which disturbances decay, or the correlation length ξ of our system.

We plot Ls versus h in figure 4 and observe its divergence at the MBL phase trans-
ition. The fit (dashed red line) gives a result consistent with the data in [12]:

Ls(h) ≃
a

(hc − h)ν
, (15)

where hc = 3.7± 0.4 and ν = 0.9± 0.2. On the other hand, by fixing the transition 
point at hc = 3.72 in the fitting procedure we get ν = 0.88 with smaller errors (in both 
cases a ≈ 23); see figure 4. Notice that Ls is a proper length, measured in lattice sites. 
Notice also that the critical exponents are close to 1. This value is again in agreement 
with what is found in the numerical literature, but inconsistent with a Harris-like 
bound in [48], which suggest ν � 2, and renormalization group analyses [49, 50] which 
give ν ≃ 3. We must remark however that, upon identification of the length Ls(h) 
which defines the beginning of the asymptotic region, the true critical exponents should 
be extracted by analyzing data at L ≫ Ls(h) and h � hc. Current technology allows 
L � 24, which means h < 2.8, therefore subleading corrections to the critical scaling 

Figure 3. Values of the local minimum and maximum β1,2, at h = 1, as a function 
of the system size L. The value β2 = −1/2 corresponds to the MP distribution. The 
corresponding points of local minimum ℓ1 and maximum ℓ2 are shown in the inset.
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might be substantial (an analog situation, in a similar context is observed in [51]). In 

particular a fit of the form Ls (h/hc) ≃ a
(

1− h

hc

)

−3

[

1− b1

(

1− h

hc

)

+ b2

(

1− h

hc

)

2

]

 

is a decent alternative to (15) even with hc = 3.72 fixed, yielding b1 ∼ 7 (admittedly 

not a small correction). This situation is unfortunate but cannot be mended in absence 
of either a full theory of the critical point of MBL (providing with the nature of the 
subleading corrections due to irrelevant operators, in the language of renormaliza-
tion group analysis) or some radically new numerical tools (e.g. a quantum computer), 
enabling the study of eigenstates/eigenvalues for significantly larger system sizes (say 
L ∼ 100).

We now return to the subleading terms sL in the entanglement entropy, discussing 
the finite size effects in this quantity as well. For h � hc, if L ≪ Ls(h) the system should 
show critical behavior. All indicators from previous works (like absence of level repul-
sion, statistics of eigenvalues, entanglement entropy etc [12, 50, 52, 53]) show that the 
critical behavior is very similar to the MBL phase and that a jump of the entanglement 
entropy occurs at the transition. An analogous result is obtained also in studies of the 
(single particle) Anderson model on the Bethe lattice, which shows a critical behavior 
indistinguishable from that of the localized region [54, 55]. So if L ≪ Ls(h) the system 

shows localization properties. Eigenstates in the MBL phase obey an area law [13–15]; 
thus, since in the localized region S = o(L), in equation (10) sL =

ln 2

2
L+ o(L) and so its 

derivative is ∂sL∂L
= ln 2

2
> 0. On the other hand, upon increasing L, if the finite-size cor-

rections in sL follow the pattern of the corrections in equation (12) we should observe, 

for L ≫ Ls(h), a negative derivative, ∂sL∂L
= −c

m
2
e
−mL/2

< 0; notice that this behavior 
and the sign of the derivative is independent of the precise value of the coefficients. 
Summarizing, we should see that, for fixed h (and hence fixed Ls(h)) and as we increase 
L, the derivative ∂sL/∂L must change sign, going from positive to negative, and then 
approach zero from negative values. This is exactly what is observed in figure 5. The 

Figure 4. System size Ls(h) at which the tricritical point is observed, as a function 
of h. The dashed line is a fit using equation (15); all the points h � 1 are used in 
the fit.
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value of L at which ∂sL/∂L = 0 is proportional to Ls (the constant of proportionality 
being very close to 1), as is the position of the minimum of ∂sL/∂L (the constant here 
is close to 1.3).

5. Conclusions and perspectives

We analyzed the distribution of the entanglement spectrum of a single eigenstate 
of a spin-1/2 Heisenberg chain with random magnetic fields, identifying the finite-
size corrections and the phase transition to an MBL phase. Our central result is the 
identification of three length scales: the first one Ls(h) determines the minimum system 
size at which one can separate bulk and boundary effects; the other two ℓ1, ℓ2 are born 
at L = Ls(h), but while the first one (ℓ1) diverges as L → ∞ and defines the boundary 

Figure 5. ∂sL(L, h)/∂L calculated between L and L− 2, as a function of the 
disorder (a) and system size (b). The dashed red line in (a) is the thermodynamic 
limit, assuming that the corrections in the delocalized region are given by (12).
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effects, the second one (ℓ2) remains finite in that limit and determines the entanglement 
properties of local dynamics. We have developed new precision tools for the study of 
the distribution of the entanglement spectrum and we foresee that they will be useful 
for the analysis of the numerics of many other models, both disordered and clean.

The study of the size dependence of the entanglement entropy of a finite region 
[44, 45, 47, 56] can unveil crucial details about the critical theory underlying the MBL 
trans ition, which is, currently, unknown. Although MBL transitions (in par ticular 
because of the infinite temperature) are not the natural setting where quantum field 
theory has been applied, an effective model which uses the emergent scale invariance at 
hc probably has a natural description in terms of QFT. If this is the case, the study of 
entanglement in MBL can be the back-door to develop a QFT of the MBL transition.
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