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Abstract. The phenomenon of many-body localization in disordered quantum 
many-body systems occurs when all transport is suppressed despite the fact that 
the excitations of the system interact. In this work we report on the numerical 
simulation of autonomous quantum dynamics for disordered Heisenberg chains 
when the system is prepared with an initial inhomogeneity in the energy density 
profile. Using exact diagonalisation and a dynamical code based on Krylov subspaces 
we are able to simulate dynamics for up to L  =  26 spins. We find, surprisingly, the 
breakdown of energy diffusion even before the many-body localization transition 
whilst the system is still in the ergodic phase. Moreover, in the ergodic phase we 
also find a large region in parameter space where the energy dynamics remains 
diffusive but where spin transport has been previously evidenced to occur only 
subdiffusively: this is found to be true for initial states composed of infinitely many 
hydrodynamic modes (square-wave energy profile) or just the single longest mode 
(sinusoidal profile). This suggestive finding points towards a peculiar ergodic phase 
where particles are transported slower than energy, reminiscent of the situation in 
amorphous solids and of the gapped phase of the anisotropic Heisenberg model.
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1. Introduction

The theory of disordered quantum systems aims to understand transport in a wide 
range of paradigms in condensed matter physics. This is due in large part to the 
seminal work of Anderson in 1958 [1] who found that sufficiently strong disorder was 
enough to completely localize an electron on a disordered lattice leading to the absence 
of diffusion. The lack of transport for sufficiently strong disorder, and its absence in 
one and two dimensions has remained under intense investigation since its original 
 inception [2, 3].

The phenomenon of many-body localization (MBL) is the persistence of localization, 
and hence complete suppression of transport, even in the presence of interactions: an 
initial macroscopic inhomogeneity in the energy density profile of the system persists 
over arbitrarily long times. The possibility that the localized phase could be stable to 
weak interactions was first put forward in the seminal work of Basko et al [4] and was 
surprising given that the general consensus was that interactions should lead to col-
lisional dephasing and hence delocalization. Following this impetus, the past decade 
has seen a surge of studies related to the properties of the MBL phase [5–7], its rich 
phenomenology [8, 9], including emergent integrability [10–12], various approximation 
methods to numerically analyse its properties [13–17], and the presence of a many-body 
mobility edge [6, 18–20].

The ergodic phase, however, has received less attention, firstly because the numer-
ics are more demanding and secondly the expectation is that the ergodic phase is 
generic and hence less ‘interesting’ than the newly discovered MBL phase. However 
recent works have pointed towards a highly nontrivial ergodic region. In the ergo-
dic region of MBL Hamiltonians, the entanglement dynamics is characterized by a 
power-law growth of entanglement entropy [21–24] (contrasting with logarithmic 
growth in the localized region [23, 25–28]). In terms of the transport of conserved 
quantities, evidence has mounted for a regime of subdiffusion for the spin transport 
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in the ergodic phase [7, 29, 30], as well as the presence of Griffiths rare regions 
close to the transition  leading to anomalous power laws in certain spectral functions  
[16, 29, 31]. Kim and Huse have previously demonstrated, in an ergodic but not dis-
ordered spin chain, that the entanglement grows linearly with time while the energy 
is transported diffusively [32], suggesting a relation between entanglement transport 
and energy transport [15, 16].

In this study, we provide evidence that there is a considerable portion of the ergodic 

phase where energy transport is diffusive, but the diffusive behaviour breaks down well 

before the many-body localisation transition. Moreover, earlier works have argued for 
anomalous spin transport in the ergodic phase [7, 29, 30, 33]; it therefore behoves us to 
ask how energy is transported in such systems, in particular whether it is at the same 
or a different rate as the spin transport. The latter scenario, where energy and spin 
excitations are transported at different rates, can occur if they are decoupled or weakly 
coupled leading to different transit times across the insulating or critical Griffiths 
islands, with the effect being exponentially exacerbated in the thermodynamic limit 
[34]. Our numerics point towards this scenario.

These two findings taken together point towards a highly nontrivial ergodic region 
where (i) energy stops diffusing well before the localized phase, and (ii) energy does 
diffuse in parts of it but particles are transported more slowly, reminiscent of the 
situation in amorphous solids (glasses) [35] and the gapped phase of the anisotropic 
Heisenberg chain [36, 37]. This could be related to the possible existence of a so-called 
non-ergodic extended phase in the Anderson problem on the Bethe lattice or in the 
high dimension [38–41]. Moreover, compared to the results of recent work [33], we find 
that the energy diffusion breaks down very close to the point when the entropy spread 
becomes subdiffusive, a manifestation of the entanglement entropy growth dominating 
the growth of the correlation functions of physical observables.

2. Model

The Hamiltonian of what is by now the standard model to study many-body 
 localization–delocalization transition [6, 42, 43] is given by

H =

L
∑

i=1

(

J�si · �si+1 + his
z

i

)

≡

L
∑

i=1

Hi, (1)

where the hi represents static fields on each site i uniformly distributed in the inter-
val [−h,h] and the spins �si are spin-1/2 representations of the SU(2) algebra. Periodic 
boundary conditions are understood throughout. In what follows we set J  =  1 and 
denote the Hilbert space size by NH. We recall that numerical work shows a transition 
to a fully many-body localized phase when h exceeds hc = 3.7± 0.1 [6, 42] although 
this number might be larger [44]. For all values of the model parameters, the model 
conserves the total spin Sz along the z direction; in the rest of the work we have chosen 
the subspace with Sz  =  0. This model is equivalent (through the Jordan–Wigner trans-
formation) to that of spinless fermions with nearest-neighbour density–density interac-
tions hopping on a lattice (the Sz  =  0 subspace corresponds to half filling).
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In this work we are interested in the dynamics of a specially constructed out-of-
equilibrium initial state which has an inhomogeneous energy density. We are motivated 
by the primary question of whether ‘hot’ and ‘cold’ regions in a given isolated quantum 
system can effectively act as a bath for itself, resulting in thermalization. In par ticular, 
we study how well a hydrodynamic description of the system fares. To this end we 
employ two protocols: (a) we build a close-to-infinite temperature density matrix with 
a sine-wave energy lump in the energy density profile. This follows the technique used 
in [42] to create a magnetization imbalance, and (b) we construct a pure initial state 
with a macroscopic energy imbalance and observe its equilibration. From now on, we 
will frequently refer to (a) and (b) above as ‘first’ and ‘second’ protocol or set-up, 
respectively.

Both techniques have their advantages and disadvantages. In the sine-wave energy 
density profile, the system is in the linear-response regime and we can control the wave 
number of the initial perturbation k but we cannot treat large system sizes and are 
limited at L  =  16. This protocol is primarily used as a check on the next protocol where 
we can go to much larger system sizes; both lead to qualitatively similar results.

In the second set-up the system is in the fully nonlinear response regime and we 
cannot finely control the initial perturbation but, after a transient, we can find the 
diffusion coefficient quite accurately and we can, using appropriate numerical tech-
niques, simulate systems up to L  =  26.

In the first protocol, (a), we will study a constructed sinusoidal energy lump at 
infinite temperature by starting with a single mode, mixed state density matrix (evolv-
ing a density matrix instead of a pure state does not make a difference in the thermal-
izing phase)

ρs =
1

NH

[

+ ǫ

L
∑

i=1

sin

(

2π(i− 1)

L

)

sz
i
sz
i+1

]

, (2)

where NH =
(

L

L/2

)

 is the dimension of the zero magnetization subspace and the wave 

mode is k = 2π/L. Defining the local energy density

Hi = J�si · �si+1 + his
z

i
, (3)

we have that 〈Hi(t = 0)〉 = tr (ρsHi) = Jǫ sin
(

2π(i−1)
L

)

+O(ǫ/L) with the amplitude 

ǫ ≪ J, 4/L; the initial energy is thus distributed sinusoidally across the chain, as can 
be seen in the left panel of figure 1 (the correction is small and independent of h).

For the second protocol, (b), we initialise the state by cutting the chain defined 
by equation (1) into two open half chains by switching off the boundary terms 

H(B) = J�sL/2 · �sL/2+1 + J�sL · �s1 (see figure 1). An initial Hamiltonian is defined as

H(0) = H −H(B) = H(L)
⊗

(R)
+

(L)
⊗H(R) (4)

where H(L), H(R) denote the Hamiltonians for the left and right halves of the chain. We 
then choose an initial state which is a tensor product of the highest energy eigenstate 
of H (L) and the groundstate of H (R) so that

|Ψin〉 = |Ψ(L)
es 〉 ⊗ |Ψ(R)

gs 〉. (5)
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This state is an atypical, infinite temperature configuration of the system. Once we 
switch on the two boundary terms, the full unitary evolution generated by (1) of the 
initial state (5) is non-trivial. Assuming ergodic dynamics, it should eventually allow 
for energy to flow from one side to the other (and thus for the system to thermalize). 
These boundary terms perturb the initial energy levels of the energy lump by O(1), and 
therefore the relative mean-squared fluctuations in the energy are 〈∆H〉/〈H〉 ∝ 1/

√
L, 

thereby vanishing in the thermodynamic limit, demonstrating that most of the eigen-
states |Ei〉 appearing in the expansion |Ψin〉 =

∑
i
ci|Ei〉 are close to the middle of the 

many-body spectrum.
For these two high energy initial states, equations (2) and (5), the MBL transition 

point is predicted to be at hc = 3.7± 0.1 [6].

3. Methods

One approach for evaluating the dynamics is to undertake full diagonalisation of the 
system to compute its eigenvalues and eigenvectors. This allows one to reach up to sys-
tem sizes L  =  16 spins using moderate computing facilities; this approach is utilised for 
the first set-up where the density matrix describes the initial state. We may thus effect 
the unitary time-evolution through ρs(t) = e−itHρs(0)eitH from the computed eigenval-
ues {Ek} and eigenvectors matrix V, and following this time evolution we are interested 
in the subsequent evolution of the energy density profile:

tr (ρs(t)Hi) =
∑

k,k′

e−i(Ek−E
k′
)tρ̃kk′H̃i,k′k, (6)

where tilde denotes Õ = V
T
OV  (representation of the operator O in the H-eigenbasis). 

Specifically we study the temporal behaviour of the energy imbalance defined by

Figure 1. Partition of the disordered chain into hot (red) and cold (blue) regions at 
time t  =  0. In the first set-up (left) the hot and cold regions are inhomogeneously 
distributed across the chain’s halves as a sinusoidal wave, with the hotness/coldness 
being maximal at the centre of the right/left halves and the energy density being 
smoothly connected (indicated by white) at the centre and edge of the chain. In 
the second set-up (right) the energy is distributed uniformly across each half, with 
a discontinuity in the energy density at the centre of the chain (indicated by the 
dotted lines) and the edge.
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∆E(t) = 〈Ψ(t)|H(L)|Ψ(t)〉 − 〈Ψ(t)|H(R)|Ψ(t)〉. (7)

Five thousand to 70 disorder realizations were employed to obtain the disorder- averaged 
energy imbalance for system sizes L  =  10–16.

For the second set-up where we have pure states as initial states with two different 
homogeneous energy densities (square-wave lump) we can do better. Because we only 
need the dynamics generated by the full Hamiltonian,

|Ψ(t)〉 = e−itH |Ψin〉, (8)

we may employ the technique of Krylov subspaces that avoids full diagonalisation. We 
thereby demonstrate that this technique can be used to study dynamics in system sizes 
up to L  =  26. Ten thousand to 120 disorder realizations were employed to obtain the 
disorder-averaged energy imbalance for system sizes from L  =  10–22; the representative 
results displayed for L  =  26 employed only up to 10 samples.

A similar stratagem for matrix exponentiation was first employed to compute trans-
ition amplitudes without explicit knowledge of the eigenstates [45]. The basic idea of 
Krylov subspace techniques [46] is to approximate the solution of equation (8), i.e. 
|Ψ(t)〉 = |Ψin〉 − iHt|Ψin〉 −

H
2

2!
t2|Ψin〉+ . . ., with an optimal polynomial approximation 

from within the Krylov subspace Km = Span{|Ψin〉, H|Ψin〉, H
2|Ψin〉 · · · , H

m−1|Ψin〉}. 
This is obtained by an Arnoldi decomposition of the matrix Am = V T

m
HVm, where m is 

the dimension of the subspace (m ≪ NH), Am is a Hessenberg matrix which is a projec-
tion of H onto Km with respect to the orthonormal basis Vm [46]. The solution is then 
given by |Ψ(t)〉 ≈ Vmexp(−itAm) |e1〉, where |e1〉 is the first unit vector in the Krylov 
subspace. The more compact (m×m instead of NH ×NH) and projected Hamiltonian 
Am is then exponentiated using standard Padé techniques [47]. On the other hand, 
simply summing up the power series of the exponential can yield unstable and inac-
curate results unless the number of terms in the series and the machine precision are 
increased [48].

4. Transport and diffusion

In the deep localised phase (h � 3.7) the energy imbalance is seen to persist in the 
energy density profile evolution over arbitrarily long times, in agreement with the 
theor etical results on MBL. At a sufficiently weak disorder intensity, the profile is 
instead seen to relax to the equilibrium (flat) profile on a finite time scale (see left and 
top panels of figures 2 and 4). Our primary goal in the following is to establish a quanti-
tative phenomenology for the observed transport.

Hydrodynamics is the macroscopic description of transport. One expects that for 
disturbances with wavelength λ ≫ a, the lattice spacing, an effective description of 
transport arises which is dependent on the specific microscopic dynamics only through 
a few transport coefficients, at least for a large class of physically relevant initial states.

The globally conserved quantities in our system are total spin Sz and total energy 
E. The spin density transport in the model under consideration has been investigated 
in previous works, and has been found to be subdiffusive either in the entire ergodic 
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phase [7, 33] or close to the MBL transition [29]. In what follows we will be interested 
in obtaining an effective hydrodynamic description for the second conserved quantity 
viz. energy density; indeed there is no reason why spin and energy transport should 
occur equally quickly [31, 15, 35, 37]. Given a state, pure or mixed, the energy density 
is given respectively as e(i, t) = 〈Ψ(t)|Hi |Ψ(t)〉 and e(i, t) = tr(ρ(t)Hi). The conserva-

tion of energy necessitates that 
∑L

i=1
e(i, t) = E is a constant.

Obtaining a rigorous hydrodynamic framework from an underlying quantum 
mechanical evolution is by any means a formidable task. Nevertheless in what follows 
we show that such a heuristic approach can indeed work exceptionally well. That is, we 

Figure 2. Energy transport in the ergodic phase of the disorder-averaged 
Heisenberg model with a sinusoidal energy lump for the initial state. Left top and 
bottom panels: spatial energy profiles at various fixed times t  =  0, 5, 100 ( , ◦,△) 
for disorder strengths h  =  1 (top) and h  =  2 (bottom) in an L  =  16 chain. Right 

4× 4 panels: Energy imbalance between the left and right halves of L  =  10, 12, 
14, 16 chains (clockwise from top-left) for disorder strengths h  =  1, 2, with the 
hydrodynamic fits shown as full red lines.

Figure 3. Scaling of diffusion constant De(L) := L2γ/4π2 with inverse system size 
1/L at disorder strengths with the sinusoidal energy lump as the initial condition; 
extrapolation with an exponential scaling is shown. Note the qualitative and 
quantitative difference in the extrapolated values for the two cases, suggesting 
considerably weaker diffusion (arguably even subdiffusion) for h  =  2 as compared 
to h  =  1 which has a clear nonzero thermodynamic value for De(L). The grey lines 
show the uncertainty in the fits from a stability analysis (see text).
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provide evidence for a simple diffusion law to model the relaxation process to equilib-
rium in the ergodic regime, but which breaks down well before the value of the disorder 
strength where the MBL transition is expected to occur.

Observation of the relaxation of the energy density profile (see, e.g. left and top 
panels of figures 2 and 4) suggests a phenomenological diffusion law. Its time evolution 
should then satisfy the equation

∂e(i, t)

∂t
= De(∇

2e(t))(i), (9)

Figure 4. Energy diffusion in the ergodic phase of the disordered Heisenberg model 
within the second protocol (square-wave initial state). Top panel: disorder-averaged 
spatial profile of local energies e(i, t) ≡ 〈Hi〉t for a periodic L  =  20 chain at disorder 
strengths h  =  0.5 (top) and h  =  5.0 (bottom), at various fixed times t  =  0, 5, 490. 
Note the energy equilibration in the weak disorder regime at long times but the 
absence of any transport deep in the MBL phase. Left panel: disorder-averaged 
energy imbalance for disorder strengths h  =  0.5, 2.5, 5 for which the disordered spin  
chain is expected to be deep in the ergodic phase, close to the localisation transition, 
and well within the MBL phase respectively for system size L  =  26. Right panel: 
Exponential extrapolation functions (solid lines) of De(L) = De + c0 exp(−c1L) to 
the thermodynamic limit at various fixed disorder strengths, similar to figure 3. 
The 3σ confidence intervals of the extracted De(L) are indicated along with those 
for the L → ∞ extrapolated values.
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where ∇2 is the Laplacian on the lattice, which in our case becomes

(∇2e(t))(i) = e(i+ 1, t)− 2e(i, t) + e(i− 1, t),

and De is a diffusion coefficient. We expect that this equation may effectively describe 
the emergent transport behaviour of energy on a large, coarse-grained, spacetime 
scale.

Let us first focus for definiteness on the first set-up, where the initial state (2) gives 
an energy density profile shaped as the longest harmonic,

e(i, 0) = A(0) sin

(

2π(i− 1)

L

)

 (10)

with A(0) ∝ ǫ. If a diffusion equation is satisfied, then the sinusoidal shape of the profile 
is maintained during time evolution and its amplitude decreases in time as

A(t) = A(0) e−γt, (11)

where γ = De4π
2/L2.

The observation of the facts that the shape of the profile is maintained during 
time evolution and that its amplitude is exponentially damped in time, alone, would 
simply indicate compatibility with a generic translation-invariant phenomenological 
equation of the form

∂e

∂t
= f

(

∇
2
)

e, (12)

with the function f undetermined. What really indicates diffusive behaviour (i.e. 
f(∇2) ∝ ∇

2) is the precise scaling of the exponential decay rate γ with the system size L,

γ = De

4π2

L2
, (13)

for some fixed, L-independent value of De. A different scaling law would imply a 

different phenomenological equation; e.g. γ = D̃e(2π/L)
2+b, with b  >  0, would imply 

a subdiffusion law (corresponding to f
(

∇
2
)

∝ (∇2)1+b/2). In this light, the crucial step 

of our analysis will be the determination of the scaling law of the extracted values of 
γ versus L.

We stress that we are interested in capturing a diffusive regime in these systems, 
and interpret the vanishing of the diffusion constant before the MBL transition as the 
possible onset of subdiffusion. This approach, as opposed to directly modelling a frac-
tional transport equation with a generic exponent b, is reasonable for three reasons: 
(i) diffusive transport of conserved quantities is generically expected in disordered sys-
tems [1, 2] for some range of disorder strengths, in particular, it is also expected and 
observed in the many-body case [4, 15, 16, 29, 30]; (ii) at weak disorder strengths for 
the systems of sizes L  =  20–30, had we modelled the dynamics with a generic trans-
port equation with a nonzero b, an erroneous value of the exponent b could be inferred 
because large scattering lengths L∗ ≫ L in this regime (due to ballistic energy trans-
port in the clean limit) can overestimate the transport rate, thereby incorrectly sug-
gesting anomalous transport [33], as argued in [30]; (iii) primarily, anomalous diffusion 
entails a space-dependent (or equivalently time-dependent, when space and time are 
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nontrivially related 
√
∆x2 ∼ t

β) diffusion constant De(x) ∼ x
2β−1

β  [29, 30], with β = 1/2 

for diffusion and β < 1/2 for subdiffusion. Therefore when the space/time-dependence 
of the extracted De(x) drops out for large enough L, we may interpret the transport 
as being normal diffusive; whereas when the space/time-dependence of De(x) continues 
to the thermodynamic limit, extrapolating to zero, we may interpret the transport as 
being subdiffusive. This is precisely what our extrapolations of De(L) to the thermody-
namic limit achieves.

Our analysis thus consists of, for each value of the disorder strength h, (i) observing 
such an exponential decay, (ii) extracting the decay constant γ(L), and from this (iii) 
the scaling versus L of the quantity De(L) := γ(L)L2/(4π2). If De(L) settles to a finite 
nonzero value as larger and larger system sizes are considered, we can claim that the 
observed transport is compatible with a diffusion equation with De ≡ De(L → ∞) > 0.7  
This is indeed what we find, as explained in the next section. Note that when the 
system thermalizes, whether by diffusion or subdiffusion, the (sub)diffusion coefficient 
De(L) is dependent only on the system size L at long-times, i.e. there is no character-
istic time-scale involved apart from that defined by γ(L)−1. This is analogous to the 
one-particle problem where the Thouless time-scale τT ∝ L2/D captures the essence of 
diffusion for a fixed system size L [49].

7 A numerically vanishing De(L) might also arise from an exponentially suppressed De rather than a finite b, which 
is still consistent with the first point of our paper, i.e. there is energy diffusion in a large part of the ergodic phase.

Figure 5. Disorder-averaged energy imbalance as a function of time with a square 
wave energy density as the initial state for a range of system sizes L and disorder 
strengths h. Hydrodynamic diffusion fits using equation (16), up to n  =  11, for a 
range of system sizes and disorder strengths. This procedure was employed to 
extract the diffusion constants plotted in the right panel of figure 4.
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Instead of the amplitude A one can use the energy imbalance defined by equa-

tion (7) that can be written as ∆E(t) =
∑L

2

i=1 e(i, t)−
∑L

i=
L

2
+1

e(i, t). This quantity 

behaves in a similar way but is easier to extract.
Let us now focus on the second protocol. The initial state defined by equation (5) 

will exhibit an approximate square-wave shape in the energy density profile; it should 
be rigorously so in the thermodynamic limit and with a sufficient number of disorder 
averaging. As it contains many modes, the shape is not retained during time evo-
lution; see top panel of figure 4 where this fact is visible, though masked by disorder 
fluctuations. Nevertheless, assuming the transport equation (9) applies, by solving it 
one can straightforwardly derive the following expected evolution of the energy imbal-
ance for a periodic chain,

∆E(t) = ∆E(0)
8

π2

∑

n∈2N+1

e−De(
2πn

L
)2t

n2
. (14)

The procedure to establish a diffusive behaviour is then akin to that pertaining to the first 
protocol above: for fixed h we extract the parameter De(L) by fitting the numerical data 
for ∆E(t) with the functional form of equation (14), after appropriately truncating away 
a transient regime for the different system sizes and disorder strengths. The truncation is 
implemented such that (i) the extracted γ(L) are relatively stable with respect to the time 
of truncation, and (ii) the maximum time-range is reasonably captured by the fit8. If De(L) 
settles to a finite value as L → ∞, we may claim compatibility with the diffusion law.

For the extrapolation we find that an exponential function De(L) = De + c0 exp(−c1L) 
is a good fit to the data as long as De  >  0 measurably. In contrast, the absence of 
diffusion or the presence of subdiffusion would be signalled by limL→∞ De(L) = 0 (such 
that De(L) ≃ DeL

−b for subdiffusion).

5. Analysis and results

Sinusoidal wave: We first study the energy diffusion with the initial condition given 
by a mixed state equation (2) through an analysis of the energy imbalance between 
the left and right halves of the chain, as explained in the previous section. Note that 
the single-mode initial condition is independent of sample and disorder strength for a 
given system size L because the z-field term does not contribute to the energy density: 
tr(ρssz

i
) = 0.

The left panel of figure 2 displays the energy profiles at various fixed times for 
these disorder strengths, illustrating how the sinusoidal shape of the k-mode is well 
retained. The disorder-averaged results at disorder strength h  =  1, 2 for L  =  10, 12, 14, 
16 chains (clockwise from top-left) are displayed in the right 4× 4 panels. The full red 
line denotes a fit to an exponential decay, given by the diffusion law,

8 The lower the time-range that is included in the fit (for instance, just the extreme tails) the more γ(L), and 
thence De(L), will be suppressed; it is then only sensible that we take the maximum time-range for which the 
exponential decay models the data.
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∆E(t)/∆E(0) = c∞ + b exp (−γt), (15)

where the free parameters c∞, b, γ are extracted for each dataset (h, L). For all of 
them the functional form (15) fits rather well. The offset c∞ is to account for finite-size 
effects, and is seen to vanish as L → ∞ in the region compatible with diffusion. We 
scale the extracted diffusion constants De(L) = L2γ(L)/4π2 with the inverse system 
size for a range of system sizes. As displayed in figure 3, we exponentially extrapolate 
to the thermodynamic limit. For analyzing the stability of our fits and extrapolations 
we consider both exponential and polynomial fits, as well as fitting only a certain range 
of the data points; the uncertainty in the fits are denoted by the grey shaded area in 
figure 3. A clear discernible difference is apparent between the two cases: for h  =  1, 
De(L → ∞) is finite whereas for h  =  2, De(L → ∞) ≈ 0. This suggests diffusion in the 
former case and drastically suppressed diffusion (or arguably even subdiffusion in the 
latter, where we find a power law extrapolation with zero offset works well too9). This 
is confirmed by a more thorough analysis of the second (square-wave) protocol, where 
we may go up to much larger system sizes using the Krylov technique on pure states.

Square wave: We now turn to the second protocol, with a square-wave initial profile, 
in order to sharpen and corroborate the findings from the analysis of the single mode 
as the initial state; moreover here we can treat larger system sizes as explained previ-
ously. Let us first draw a broadbrush picture from the spatial energy density profiles as 
the system evolves. In the top panel of figure 4 we display the energy profile across a 
chain of length L  =  20 at three different fixed times in the weak (top plot) and strong 
(bottom plot) disorder regimes. In the former case we see that there is energy equilibra-
tion at long times and the entire chain reaches a uniform energy density. This is to be 
contrasted with the strong disorder case where the spin chain is expected to be in the 
MBL phase: no transfer of energy is observed for a wide range of times and no effective 
temperature may be defined for the system [50].

The same qualitative picture might also be inferred from the time evolution of the 
energy imbalance between the left and right halves of the chain. The time evolution of 
the disorder-averaged energy imbalance (7) for a larger system size L  =  26 is plotted in 
the left panel of figure 4 for three regimes: (a) weak disorder limit h  =  0.5, (b) close to 
the transition h  =  2.5, and (c) deep in the localised phase h  =  5 (recall that the critical 
value for the MBL transition is hc = 3.7± 0.1). The qualitative behaviour is as follows. 
In the first case, h  =  0.5, ∆E  goes quickly to zero at long times, to a situation of a 
uniform energy density across the entire chain. In the third case h  =  5, ∆E  clearly does 
not decay in time. This is due to the lack of energy transfer which is expected in the 
MBL region, where there is no equilibration. In between the two cases, for h  =  2.5 for 
example, there is a very slow relaxation process governing the dynamics of the system 
which is very weakly diffusive or even possibly subdiffusive with a continuously chang-
ing dynamical exponent.

We may perform a similar analysis, mutatis mutandis, for the present case as was done 
for the sinusoidal wave in the right 4× 4 panels of figure 2. In this case, the analysis was 
performed for a larger range of disorder strengths and system sizes, which helps to sub-
stantiate our previous claims: for h  =  0.5, 0.75, 1, 1.5, 2, 2.5 and L  =  12, 14, 16, 18, 20, 22,  

9 See footnote 7.
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temporal diffusion fits for ∆E(t)/∆E(0) are undertaken, with a modification of the 
functional form (14),

∆E(t)/∆E(0) = c∞ + A0

∑

n∈2N+1

e−De(
2πn

L
)2t

n2
. (16)

The free fit parameters are c∞, A0, De. Some of these diffusion fits for a couple of h and 
L values are shown in figure 5. Just as before for the sinusoidal case and the fit equa-
tion (15), the functional form given by the diffusion law fits equation (16) quite well for 
all the datasets of the square wave case; it turns out that only the first few terms give a 
substantial contribution to the above series in the fit (we used up to n  =  5). The offset 
c∞ is to account for finite-size effects, and is seen to vanish as L → ∞ in the region 
compatible with diffusion. A short-time parabolic transient is present in the numerical 
curves for the energy imbalance, which is a quantum-mechanical effect that has noth-
ing to do with transport and must be appropriately truncated away; the truncation is 
implemented in such a way that (i) the extracted γ(L) are relatively stable with respect 
to the time of truncation, and (ii) the maximum time-range is reasonably captured by 
the fit10.

For each given disorder strength h the extracted values De(L) for various system 
sizes L allow for extrapolation to the thermodynamic limit. We find that an exponen-
tial function is a good fit to the data as long as De  >  0 measurably: the fit parameters 
De(L) are extracted and are scaled with L, as shown in the right panel of figure 4 for 
various fixed disorder strengths h. The exponential infinite-size extrapolation fits are 
displayed by solid red lines at each disorder strength as a function of inverse system 
size, limited to a finite value for weak disorder strengths. In contrast, since only the 
first harmonic gives a substantial contribution, a subdiffusion law would be signalled 

by limL→∞ De(L) = 0 and a power law fit for finite-size corrections De(L) ≃ D̃eL
−b, 

where the exponent b  >  0 is the subdiffusion exponent and D̃e
 is to be interpreted as 

the subdiffusion coefficient.
That the extrapolated (L → ∞) diffusion coefficients are finite for sufficiently weak 

disorder substantiates the claim that the model displays diffusive transport in this range 
of parameters. The value of De decreases as the disorder h is increased and becomes 
compatible with zero for h = h

∗ � 2, implying a breakdown of diffusion around this 
value of disorder strength and the possible onset of subdiffusive energy transfer pro-
cesses. The dependence of the values De(L) extracted from the fit and of their extrapo-
lation to infinite size limL→∞ De(L) on the disorder strength is plotted in figure 6. The 
same point as with the sinusoidal lump is more clearly apparent here: diffusion is sup-
pressed around h = h

∗ � 2, well before the onset of full many-body localization. This 
encapsulates the two main findings of this work: that there is an energy diffusion in the 
ergodic phase and that it ceases well before the localization transition.

We mention a caveat at this stage: for weak disorder strengths there is the pos-
sibility that on the short length and time scales accessed here the rarity of scattering 
processes might lead to an overestimation of the transport rate; for spin diffusion such 
a length scale is L∗ ∼ 1/hν, with ν ≈ 1 [30]. Such a critical length scale must arguably 
hold here too for energy transport; clearly this effect is relevant for our studied system 

10 See footnote 8.
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sizes only for h/J ≪ 1 and not when h/J ∼ O(1). Nevertheless we indicate in figure 6 
a shaded area where our transport rate might have been overestimated. The value 
h
∗
≈ 2 is thus the result of the best available numerics for the onset of the Griffiths 

effects which are the cause of subdiffusion. One should, however, not forget the finite 
size effects which become strong approaching the MBL transition; the transport phe-
nomenology emerges at length scales bigger than any disorder-born correlation length, 
which was identified to exist and be less than, but still of the order of, the system sizes 
used in the present work at h  =  2.5 [51].

We also note that the extrapolation of the De(L) values obtained for the sinusoidal 
and square wave protocols are not in agreement within the statistical errors (at h  =  1 
limL→∞ Dsqr.

e
(L) ≈ 0.6Dsin.

e
(L)). This could be due to an underestimation of De(L) for 

the square-wave case from the higher modes still being present there, or it could be due 
to an inaccurate extrapolation of the results from the small system sizes studied in the 
sinusoidal case (recall that for the single-mode case the largest system size is L  =  16, 
while for the square-wave it is L  =  22), or both. Nevertheless there is good qualitative 
agreement between the two cases vis-á-vis a large part of the ergodic phase harbouring 
substantial energy diffusion, and another large part of the same phase where energy 
diffusion is suppressed (and arguably becomes subdiffusive).

6. Discussions and conclusions

In summary, we have studied the quantum dynamics of inhomogeneous energy den-
sity profiles in a disordered Heisenberg spin chain by means of a numerical Krylov 
subspace technique. Our results indicate that (i) energy transport is diffusive in an 
extended region of the delocalized phase, and (ii) is transported either with exponen-
tially suppressed diffusion or arguably even subdiffusively well before the transition 

Figure 6. Diffusion constant as a function of disorder strength in the system with 
the square wave initial energy lump (showing here the same values of the bottom-
right panel in figure 4 as a function of h). The diffusion constant vanishes well 
before the localization transition, which occurs at hc ≈ 3.7; the dashed line is the 
thermodynamic result obtained from the bottom-right panel in figure 4 and may 
also be taken as a guide to the eye. The shaded area indicates a regime where 
transport rates might be overestimated due to the rarity of impurity scattering, 
events leading to a remnant of quasi-clean transport, as explained in the text [30].
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to the localised phase. Although it is possible that we have overestimated transport 
rates in the diffusive regime due to the short accessible time-scales, the goodness of 
the diffusion fits and the scaling of the extracted De(L) constants behove us to suggest 
otherwise. Moreover the overestimation of the transport rate is a severe possibility only 
when L ≪ L∗ ∼ 1/hν, with ν > 1, due to rare scattering processes over small lengths 
L, leading to quasi-clean transport behaviour [30]; for h/J = O(1) such an issue is no 
longer pertinent.

The first of our findings—the observation of energy diffusion breaking down at 
h
∗
≈ 2, which is approximately the point at which a recent study [33] found that 

the spreading of entanglement entropy changes from diffusive to subdiffusive—further 
points towards a more exotic ergodic phase which harbours two subphases with vastly 
differing dynamics of energy transport. The nondiffusive energy transport which occurs 
between h∗

≈ 2 and hc  =  3.7 should stop altogether beyond the MBL transition. A simi-
lar diffusive–subdiffusive transition for the spin dynamics within the ergodic phase has 
been established in a number of works already [29, 30].

The second of our findings agrees qualitatively with findings from other works  
[15, 16] (where deep in the ergodic phase energy is expected to be diffusive) but is 
in contrast with some of the existing literature [33] (where anomalous transport of 
entanglement entropy is expected to occur throughout the entire ergodic phase). This 
indicates that the existing phenomenology of the Griffiths effects, which accounts 
for transport in these systems, needs to accommodate the diffusion of one conserved 
quanti ty in the ergodic phase without it simultaneously aiding an equally fast thermal-
ization of another conserved quantity. In fact after our work was completed, [34] was 
published, which contains an improved analysis of the renormalization group results 
and can accommodate the observations of our paper, i.e. the coexistence of anomalous 
and normal diffusion in the ergodic phase.

We have shown that a refined phenomenology of the Heisenberg model with dis-
order is needed (and possibly of other many-body localizable models) including the 
 possibility of a separate fully ergodic, diffusive phase and a subdiffusive phase with 
respect to energy transport.
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