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Higher-order corrections to the effective potential close to the jamming transition
in the perceptron model
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In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech.
(2016) 093301], regarding a Plefka-like expansion of the free energy up to the second order in the perceptron
model, we improve the computation here focusing on the role of third-order corrections. The perceptron model
is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near
jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method
enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained
functional, which depends on the generalized forces and the effective gaps between particles. The analysis of
the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in
the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also
study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first
contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to
finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in
the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument
proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming
line, which define a crossover regime connecting the control parameters of the model to an effective temperature.
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I. INTRODUCTION

The anomalous properties of low-temperature structural
glasses have been the object of intense studies for decades.
By analyzing a vast class of materials with only repulsive
contact interactions—for instance, emulsions, hard-sphere sus-
pensions, and granular media—a new kind of transition has
been detected [1–9], the jamming transition, consisting in the
passage from a fluid phase to a regime characterized by a stiff
arrangement of particles unable to move and flow. While the
glass transition is generated by a rapid cooling down of the
liquid in order to avoid crystallization, the jamming transition
is induced by an increasing density protocol in the zero-
temperature limit. This defines a purely geometric problem
where thermal energy does not contribute to determining or
facilitating the transition. In any case, the analytical investiga-
tion of the jamming transition turns out to be a very challenging
issue, both in a mean-field scenario and in finite dimension.

Very recently a breakthrough has been achieved in the
context of hard-sphere systems in the limit of infinite space
dimensions [10–15]. In this context, the possibility of es-
tablishing a unifying framework for jamming, irrespective
of microscopic details and specific numerical setups, looks
very intriguing. Indeed, several properties of the jamming
transition—such as the emergence of a power-law behavior
in the distribution of the forces and gaps between particles, the
nature and the shape of vibrational modes [3–5]—turn out to
be independent of the protocol.

*altieri.ada@gmail.com

The underlying idea of a sort of universal behavior goes
beyond mechanical considerations, involving a broader class
of systems, known as continuous constraint satisfaction prob-
lems (CSPs), where a set of constraints is imposed on a
set of continuous variables. Similarly, in a jammed system,
the particle motion is hindered by neighboring particles,
which induce geometrical and mechanical constraints in
terms of force and torque balance. The connection between
jammed systems and the CSP paradigm has been proposed
in several works [16–20]. However, further developments
in this field have been made possible once it was realized
that sphere systems in high dimension belong to the same
universality class as a simplified model, the perceptron,
according to a new interpretation proposed by Franz and
Parisi [21].

The perceptron model has been exploited as a linear signal
classifier in computer science for many years [22,23]. It is
nevertheless proposed here in a modified form [24–26], with
a particular emphasis on a regime that gives rise to nonconvex
properties in the space of allowed configurations. We shall
clarify this point in more details later.

The Franz-Parisi model is a remarkable starting point
for studying jamming in the infinite-dimensional limit. It
essentially consists of M obstacles randomly distributed over
a spherical surface in N dimensions. The positions of the
particles must satisfy specific constraints, which affect the
general properties of the model and the energy value, as for
each violated constraint there is an associated energy cost
to pay. The Hamiltonian of the model depends on M = αN

random gaps hμ(�x) (where μ = 1, . . . ,M) by a soft-constraint
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interaction:

H[�x] = 1

2

M∑
μ=1

h2
μ(�x)θ [−hμ(�x)], (1)

where θ (x) is the Heaviside function. The gaps are functions
of the system configuration �x = {x1, . . . ,xN }, defined on a N -
dimensional hypersphere, i.e.,

∑N
i=1 x2

i = N . They satisfy the
following relation:

hμ(�x) =
N∑

i=1

ξ
μ

i xi√
N

− σ, (2)

corresponding to the scalar product between the random ob-
stacles ξ

μ

i (i = 1, . . . ,N and μ = 1, . . . ,M) and the reference
particle position. Since the scalar product is a random variable
of order

√
N , the factor

√
N ensures that the gap is of order one.

The components ξ
μ

i , which play the role of quenched disorder,
are independent and identically distributed random variables
according to a normal distribution N (0,1).

By conveniently varying the two tunable parameters, σ and
α = M/N , one might identify different regions of the phase
diagram. In particular, the system might undergo a critical
transition from a satisfiable region, the SAT phase (where
at least one configuration �x satisfies simultaneously all the
constraints), to an unsatisfiable one, the UNSAT phase (where
all the constraints are not verified at the same time). The former
corresponds to the hard-sphere (HS) regime defined by a zero
energy manifold, whereas the second scenario can be mapped
to a soft-sphere (SS) problem described by a harmonic potential
in hμ(�x) [see Eq. (1)]. Physically, this SAT-UNSAT transition
coincides with the jamming transition at which the volume
of the space of solutions satisfying the given assignments
continuously shrinks to zero.

Depending on the positive or negative value of the control
parameter σ , two different situations can occur. For positive σ

the model defines the usual perceptron classifier, which gives
rise to a convex optimization problem, whereas for negative σ

the space of allowed configurations is no longer convex, losing
its ergodicity properties and inducing new interesting features.
In Fig. 1 a simple instance in the space of configurations is
sketched in the presence of a single constraint �ξ1. If σ > 0,
then the scalar product between the space variable �x and
the constraint �ξ1 defines a convex region. Adding one more
constraint has the effect of reducing the space of allowed
configurations, which remains nevertheless convex as it results
from the intersection of two convex domains. The situation
is completely different for σ < 0 because the scalar product
defined in Eq. (2) should be bigger than a negative constant.
Each constraint thus defines a nonconvex domain of allowed
configurations with the possibility to observe disconnected
clusters of solutions. This can indeed be regarded as the prob-
lem of a single dynamical sphere in a background of quenched
obstacles �ξμ, often called patterns in neural network notation:
each of them prevents from reaching and ergodically exploring
a given domain around it. It has been shown [21,26] that this
second regime plays a fundamental role in the description of
jamming and glassy phases. As a matter of fact, the perceptron
model bridges the gap between generic CSPs and disordered
sphere packings, thanks to the similarity between its phase

SAT
O

�ξ1

�x

FIG. 1. Schematic illustration of the perceptron model for σ > 0,
with only one constraint. The scalar product between �x and �ξ1 should
be bigger than a positive threshold, hence excluding all the vectors in
the region below the dashed blue cone. The resulting space of solutions
is convex. In the presence of more constraints the space of allowed
configurations would reduce but always preserving its convexity. By
contrast, for σ < 0 a completely different situation occurs given by
the intersection of nonconvex domains: to go from one set of allowed
solutions to another one should contemplate the possibility to pass
through a positive energy region.

diagram and that of hard spheres in high dimensions and to
the emergence of a jamming transition belonging to the same
universality class. Formally speaking, while for positive σ

a replica symmetric description can be safely applied, for
negative σ and sufficiently close to the jamming line, the ergod-
icity breaking translates into a full replica symmetry breaking
(RBS) [24,26].

We aim at determining an effective thermodynamic poten-
tial, which might properly describe the perceptron model. It
turns out to be a central issue especially in the SAT phase, where
the energy manifold is flat and unseemly to analyze small har-
monic fluctuations around the metastable states of the systems,
i.e., the minima of a suitable functional. Therefore, we need to
introduce coarse-grained variables and formulate a systematic
approach in order to study the free-energy landscape. At the
end a detailed analysis of the most relevant features of the SAT
phase and the jamming regime will be suitably addressed.

In Ref. [25] the definition of an effective potential as
a function of local order parameters, namely of both the
average particle positions and the generalized forces, has been
proposed. Generalized in the sense that they result from the
differentiation of the potential with respect to the effective
gaps rather than to the particle positions. Our computation is
focused on a formal coupling expansion of the free energy,
which actually coincides with a perturbative diagrammatic
expansion in 1/N , valid both in the liquid phase and in the
low-temperature regime. In our previous work only the first
two moments of the expansion have been taken into account
within a mean-field-like picture. The main goals of this paper
are instead: (i) the computation of third-order corrections to
the effective potential, which might also capture important
features in the physics of low-temperature glasses in finite
dimensions, and (ii) the estimation of subleading contributions
to the generalized forces.

The paper is organized as follows. In Sec. II, we introduce
the mathematical details to define the model and we briefly
summarize the main steps to derive the effective potential in
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the SAT phase. In Sec. III we compute third-order corrections
and we explain why their contribution reasonably vanishes
at jamming. Once a suitably coarse-grained free energy as a
function of both particle positions and contact forces is defined,
in Sec. IV we evaluate the leading and subleading contributions
of such forces. We highlight the emergent contributions of
terms that can be incorporated in a generic scaling function,
which accounts for distinguishing between the jamming limit
and the more general case. Two kinds of corrections in the
force expression are expected: one due to subleading terms in
the asymptotic expansion of the potential near the jamming
line, visible even in a mean-field framework, and another due
to finite-size corrections in ordinary systems. Finally, in Sec. V
we propose a scaling argument based on the full RSB ansatz,
which provides a fairly accurate estimate of a crossover regime
as a function of an effective temperature.

II. TAP FREE ENERGY FOR THE NEGATIVE
PERCEPTRON

In Ref. [25] the effective thermodynamic potential �( �m, �f ),
as a function of both particle positions and forces, has been
derived for the perceptron model. In the following we shall
give a hint of the analytical scheme to implement to calculate

the effective potential in high-dimensional systems. We shall
make use of a small coupling expansion according to the
formalism proposed first by Plefka [27] and reformulated then
by Georges and Yedidia [28]. Thanks to the fully connected
structure of the model, the calculations lead to a simplified
derivation and to a reasonable truncated expansion with only
a finite number of terms. This approach provides a nonconvex
free-energy functional that nevertheless gives access to the
metastable states of the system. We start with the following
definition:

e−G( �m) =
∫

d �xe−βH [�x]+∑N
i=1 ui (xi−mi ), (3)

where the integral is performed over the positions �x in the
presence of N Lagrange multipliers, which fix the average
value mi = 〈xi〉. However, to address the problem from a
broader perspective, given the definition of the gaps in Eq. (2),
we also enforce that hμ = hμ(x) in the partition function via
M auxiliary variables iĥμ conjugated to the gaps. As we did
for the average positions, we introduce M other Lagrange
multipliers vμ which in turn enforce the average value of iĥμ

to be 〈iĥμ〉 = fμ. Therefore:

e−�( �m, �f ) =
∫

d �xd �hd �̂h e−βH [�h]+∑i (xi−mi )ui+
∑

μ(iĥμ−fμ)vμ+∑μ iĥμ(hμ(x)−hμ) = eJ (�u,�v)− �m·�u− �f ·�v , (4)

with ∂J
∂ui

= ∂J
∂vμ

= 0,∀i,μ. The functional �( �m, �f ) thus reads:

�( �m, �f ) =
N∑

i=1

miui +
M∑

μ=1

fμvμ − log
∫

d �xd �hd �̂he−βH [�h]+∑N
i=1 xiui+

∑M
μ=1 iĥμvμ+∑M

μ=1 iĥμ(hμ(x)−hμ), (5)

and by definition G( �m) corresponds to

G( �m) = �( �m, �f ) evaluated in
∂�( �m, �f )

∂f
= 0 . (6)

To clarify the meaning of fμ in this formalism, we consider
the total force acting on particle i and given by

Fi = −dH
dxi

=
M∑

μ=1

(−hμθ (−hμ))
dhμ

dxi

=
∑
μ∈C

fμSμi, (7)

where Sμi = dhμ/dxi is usually called dynamical matrix [26].
The notation μ ∈ C stands for those contacts such that hμ < 0,
namely the set of unsatisfied constraints. Starting from this
definition of the contact force and looking at the derivative
of the functional �( �m, �f ) with respect to the gap, we recover
back:

d�( �m, �f )

dhμ

= d

dhμ

⎡
⎣β

2

M∑
μ=1

h2
μθ (−hμ)

⎤
⎦+ 〈iĥμ〉. (8)

As we are interested in the SAT regime where the gaps are
positive definite, the only surviving term is the ensemble
average value 〈iĥμ〉, defined above as the generalized forces
fμ. They result from the differentiation of the free-energy
functional with respect to the gaps rather than to the position
variables.

Similarly to a spin-glass model where the free energy is
a function of the overlap value, here the free energy depends
on the self-overlap between two particle configurations, also
called the Edwards-Anderson parameter, as well as on the first
two moments of the forces:

q = 1

N

N∑
i=1

m2
i , r = − 1

αN

M∑
μ=1

f 2
μ, r̃ = 1

αN

M∑
μ=1

〈
ĥ2

μ

〉
. (9)

Equation (5) can then be rewritten as:

�( �m, �f ) =
N∑

i=1

miui +
M∑

μ=1

fμvμ − log
∫

d �xd �hd �̂h eSη(�x,�h, �̂h),

(10)

where

Sη(�x,�h, �̂h) =
N∑

i=1

uixi +
M∑

μ=1

ivμĥμ − λ

N∑
i=1

(
x2

i − N
)

− β

2

M∑
μ=1

h2
μθ (−hμ) − i

M∑
μ=1

ĥμ(hμ − ηhμ(x))

− b

2

M∑
μ=1

(
ĥ2

μ − αNr̃
)
. (11)
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Note that we have introduced two additional parameters com-
pared to Eq. (5): λ guarantees the correct normalization on the
N -dimensional sphere, while b enforces the second moment
of iĥμ. As we shall clarify in the following, we also need to fix
the average value of (iĥμ)2 to handle a closed set of equations.
Note that the value of the multiplier b is constrained to be
(1 − q) by the saddle-point equation ∂�

∂r̃
= 0.

The main goal of this paper is to study the low-energy
phase of the perceptron model at zero temperature. In the zero-
temperature limit we can distinguish two different behaviors.
In the SAT phase several solutions are possible and the overlap
parameter q < 1. Conversely, in the UNSAT phase, the energy
has one single minimum and the overlap parameter is always
equal to 1. In the following, we will focus on the SAT phase in
the T → 0 limit in which the free energy corresponds to the
configurational entropy of the system as a measure of the num-
ber of microstates �(v) with a given volume v. In other terms,
S ∝ log �(v), where �(v) = ∫

d �xδ(v − W (�x))jamm, the 

function enforcing the excluded volume constraint [29,30].
The core of our computation lies in the definition of an

auxiliary effective HamiltonianHeff = iη
∑

μ ĥμhμ(�x), where
η represents the parameter in terms of which we perform a
Plefka-like expansion [27,28]. Indeed, the original Hamilto-
nian in Eq. (1) is zero in the whole SAT phase and it only
contributes to forcing the particles to stay close.

Our expansion in η actually coincides with a diagrammatic
expansion in the inverse of the dimension 1/N , benefitting

from the fact that in a fully connected system in the large-
N limit one can recover the mean-field predictions by con-
sidering the first two terms of the expansion only. Higher-
order terms provide systematic corrections to the mean-field
approximation, relevant for short-range interacting models or
finite-dimensional ones. In general, we need to determine the
following quantity:

�(η) =
∑
n=0

1

n!

∂n�

∂ηn

∣∣∣∣
η=0

ηn, (12)

where � is the free-energy functional, which, for the sake of
convenience, we write here as a function of the parameter η

only. We formally expand around η = 0 and then we set η = 1
without any loss of generality. From Eq. (11) we compute the
first derivative of the free-energy functional with respect to η,
which coincides with the average effective Hamiltonian:

∂�

∂η
= −〈Heff〉 = −

∑
i,μ

ξ
μ

i mifμ√
N

, (13)

whereas the second derivative gives rise to the Onsager
reaction term in the Thouless-Anderson-Palmer (TAP) for-
malism [31]. It consists of the connected part of the effective
Hamiltonian plus mixing terms associated with the derivatives
of the Lagrange multipliers ui and vμ:

∂2�

∂η2
= −

{〈
H 2

eff

〉− 〈Heff〉2 +
〈
Heff

[∑
i

∂ui

∂η
(xi − mi) +

∑
μ

∂vμ

∂η
(iĥμ − fμ)

]〉}
. (14)

The resulting expression for the potential up to the second order in η thus reads:

�( �m, �f ) =
N∑

i=1

φ(mi) +
M∑

μ=1

�(fμ) + ∂�

∂η

∣∣∣∣
η=0

η + 1

2

∂2�

∂η2

∣∣∣∣
η=0

η2 + O(η3)

≈ −N

2
log(1 − q) +

∑
μ

�(fμ) −
∑
i,μ

ξ
μ

i mifμ√
N

+ αN

2
(r̃ − r)(1 − q). (15)

Note that, while in a fully connected ferromagnetic model
the only relevant term is the first moment, as all couplings
are O(1/N ) and all spins are equivalent [32], in a disordered
system both the first and the second moments cannot be
neglected. To obtain the last line of Eq. (15), we have simply
evaluated via a saddle-point computation the integral over �x,
which corresponds to the entropy of a noninteracting system
constrained on a spherical manifold. The term φ(mi) then turns
out to be proportional to log(1 − q), as expected for a spherical
model. For more details, we refer the interested reader to
Appendix A or Ref. [25].

Factorizing the terms that depend on the Lagrange multi-
plier vμ and on ĥμ, ĥ2

μ, respectively, the functional
∑

μ �(fμ)
can be rewritten in a more straightforward way. Note that while
the integral over ĥμ is extended over all values in (−∞,∞), the
integral over the gaps hμ can take only positive values in the
SAT phase. Since iĥμ is a real variable by definition, namely
a physical force, the integration is actually performed in the

complex plane and one looks at the values of hμ and ĥμ for
which the action is stationary. We then obtain:

�( �f ) = min
v

[
f v − log H

(
σ − v√
1 − q

)]
, (16)

where we indicated as H (x) ≡ 1
2 Erfc

(
x√
2

)
. Differentiating the

above equation with respect to vμ, we immediately obtain the
expression for the forces fμ. Their behavior as a function
of (σ − vμ) is shown in Fig. 2 by progressively varying the
distance from the jamming threshold. It is worth noticing that
both the method and the results discussed here for the negative
perceptron can be safely generalized to sphere systems in high
dimensions, where the effective potential takes roughly the
same form.

Focusing now on the perceptron model, from Eq. (15) we
can immediately write the following stationary equations for
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FIG. 2. Generalized forces as a function of σ − vμ plotted for
different values of the overlap q. In the jamming limit, as q → 1, the
function approaches the vertical axis (green line), in agreement with
the expected divergence of the forces.

the local quantities mi and fμ to be solved iteratively:

∂�

∂mi

= 0 ⇒ mi

[
1

1 − q
− α(r̃ − r)

]
=
∑

μ

ξ
μ

i fμ√
N

, (17)

∂�

∂fμ

= �
′
(fμ) −

∑
i

ξ
μ

i mi√
N

+ (1 − q)fμ = 0. (18)

An alternative procedure consists in deriving the belief propa-
gation equations [33] for the xi’s and iĥμ’s and then assuming
that they can be parametrized by Gaussian distributions.
Assuming that the moments can be expanded up to order
O(1/N ), we end up with the belief propagation equations in
terms of single-site quantities associated with the nodes of a
factor graph [33]. This procedure leads exactly to Eqs. (17) and
(18). In an ordinary ferromagnet the solution of the equations
above is very easy to find since the couplings are known and
they do not depend on the space indices separately. In a spin
glass or a generic disordered system the situation is much more
complex since the ξ

μ

i ’s are random variables whose probability
distribution is the only available information. However, for
an infinite-range model in the N → ∞ limit, it is possible
to prove [32] that only a marginal modification is needed,
namely considering an auxiliary system of N − 1 and M − 1
variables with the ith and the μth ones removed. Defining∑N

i=1
ξ

μ

i mi√
N

≡ hμ( �m) + σ and recalling that �
′
(fμ) = vμ, we

can rewrite Eq. (18) as:

hμ( �m) = vμ − σ + (1 − q)fμ

= vμ − σ −
√

1 − q
H ′
(

σ−vμ√
1−q

)
H
(

σ−vμ√
1−q

) . (19)

If the argument of the complementary error function H (x)
is much greater than 1, i.e., in the jamming limit, then the last
term can be simplified and the resulting expression turns out
to be linear in (σ − vμ)/

√
1 − q. In this regime we exactly

recover a logarithmic effective potential as a function of the
average gaps. This characteristic behavior is independent of
the actual dimension of the system and exactly derivable in
infinite-dimensional systems [25].

The random gaps are thus written as the contribution of the
so-called cavity field, in the parlance of spin-glass literature

[32,33], and the Onsager reaction term, which provides the
correction with respect to the naïve mean-field equation. This
argument can be understood looking at Eq. (18) in which
the value of vμ is actually due to mi in the absence of the
μth contact. The reaction term, namely (1 − q)fμ, represents
instead the influence of the μth particle on the others. Hence,
there is a subtle difference between the effective gap hμ

( �m)
and the cavity field vμ − σ , the field that neighboring particles
would feel if one removes a single particle in the network.
As mentioned above, the set of values for which hμ < 0
corresponds to the effective contacts at jamming and, since
in the SAT phase the gaps are positive, the only possibility is
to have negative values for the cavity field.

III. THIRD-ORDER CORRECTIONS
TO THE EFFECTIVE POTENTIAL

In the previous section we showed the derivation of the TAP
free energy by taking into account only the first two terms of the
expansion, in a mean-field-like picture. One might be interested
in defining a modified version of the perceptron—for instance,
a diluted model with finite-connectivity patterns �ξμ—or even
a finite-dimensional system not exactly at jamming. In both
cases, further order corrections would play a relevant role
and provide a finite contribution to the perturbative expansion
in the inverse of the dimension. Hence, we should take into
account all the corrections to the potential coming from loopy
structures by summing over triplets, quadruplets and generic
combinations of links. The computation of the next order
corrections to the TAP free energy turns out to be a useful
tool to understand how the coarse-grained potential deviates
from its critical trend. We then need to determine the following
expression [28,34]:

∂3�

∂η3
= 〈Heff〉∂〈Heff〉

∂η
+ 〈Heffϒ2〉

+ 〈Heff (Heff − 〈Heff〉 + ϒ1)2〉, (20)

where ϒn reads:

ϒn =
∑

i

∂

∂yi

(
∂n�

∂ηn

)
(si − yi) . (21)

For simplicity, we indicated both derivatives, with respect to
mi and fμ, as (si − yi) ∂

∂yi
. The resulting expression for the

third-order correction thus reads:
∂3�

∂η3
= 〈H 3

eff〉 + 〈Heff〉〈H 2
eff〉 − 2〈Heff〉3

−〈Heff〉αNr(1 − q) − 〈Heff〉αNq(r̃ − r)

+
〈
Heff

⎛
⎝−

∑
i,μ

δxi√
N

ξ
μ

i fμ

⎞
⎠

2〉

+
〈
Heff

⎛
⎝−

∑
i,μ

δfμ√
N

ξ
μ

i mi

⎞
⎠

2〉

− 2

〈
H 2

eff

(∑
i

δxi

∑
μ

ξ
μ

i fμ√
N

+
∑

μ

δfμ

∑
i

ξ
μ

i mi√
N

)〉
,

(22)
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where δxi = (xi − mi) and δfμ = (iĥμ − fμ) are the relative
deviations of the particle positions and the contact forces
from their own mean value respectively. The first terms in
Eq. (22) reminds an analogous expression for the Sherrington-
Kirkpatrick (SK) model in the TAP approach [32]. The other
terms are instead due to the variation of the additional parame-
ters, on which the perceptron model actually depends. In prin-
ciple, such finite-size corrections are not negligible. However,
in the jamming limit, i.e., as q → 1, most of these terms can
be reexpressed in a more straightforward way. The fourth and
the fifth term cancel with the next two terms with opposite
sign, their squared moments being (1 − q)r and (r̃ − r)q,
respectively. We have only to deal with the first three terms and
the very last one. As in the jamming limit the position and force
variables tend to their coarse-grained values, i.e., xi → mi and
iĥμ → fμ, the last term can be neglected and then the most
interesting contribution comes from the first three terms. In
particular, the first two ones in Eq. (22) can be rewritten as:〈∑

i,μ

ξ
μ

i xiiĥμ√
N

∑
j,ν

ξ ν
j xj iĥν√

N

∑
k,ρ

ξ
ρ

k xkiĥρ√
N

〉

+
〈∑

i,μ

ξ
μ

i

2
x2

i (iĥμ)2

N

〉 〈∑
j,ν

ξ ν
j xj iĥν√

N

〉
. (23)

In our previous work [25] we gave an argument to support the
fact the only contributing terms are those with equal indices,
i.e., i = j and μ = ν, as detailed in the Appendix. In the same
spirit of the derivation proposed in Ref. [25] up to the second
order, we can apply here the same reasoning. Furthermore, an
underlying property of jamming is the presence of very weak
correlations, which seem to connect the jamming transition
to a mean-field-like scenario. The jamming limit corresponds
indeed to a small-cage size expansion, which implies in turn
that actual forces and positions can be safely replaced by
their coarse-grained values. This is why the two terms above
give roughly the same contribution in the jamming limit
compensating the third term with opposite sign in Eq. (22).
We can thus conclude that in this regime the first three terms
as well give a vanishing contribution. This is in remarkable
agreement with the fact that the jamming transition is well
described in terms of binary interactions only [35]. We shall
better clarify this point in the next section concerning the
analysis of the typical scaling of the effective forces.

The idea supporting our computation is that all powers, ex-
cept for the first two, actually vanish in the jamming limit. This
means that, by considering the functional derivative ∂n�

∂ηn

∣∣
η=0

evaluated at η = 0, the result should be identically zero.
Moreover, the gaps are marginally satisfied at the transition
[26] as we can immediately understand considering Eq. (19)
above. We proved that as q → 1 the complementary error
function can be asymptotically expanded to obtain:

hμ( �m) = vμ − σ −
√

1 − q
H ′
(

σ−vμ√
1−q

)
H
(

σ−vμ√
1−q

)

≈ vμ − σ −
√

1 − q

[
− σ − vμ√

1 − q
−

√
1 − q

σ − vμ

]
, (24)

since H ′(x)/H (x) ≈ −x − 1/x + O(1/x3) at the leading or-
der. The jamming condition is identified by σ−vμ√

1−q
� 1, which

allows us to neglect the last term in Eq. (24) and to conclude
that the remaining term exactly cancels out with vμ − σ . As
hμ( �m) approaches zero in the jamming limit, as a consequence,
all further correlation functions defined from the random gaps
are zero as well.

We also expect that fourth-order corrections to the effective
potential do not change the disclosed behavior in the critical
jamming region. The underlying reason is again related to
isostaticity. At the jamming transition the number of degrees
of freedom in the system exactly equals the number of
contacts, each contact being shared at most by two particles.
This condition allows to justify the presence of second-order
corrections, and hence binary interactions, only. More work
will be needed to give an analytical evidence of the vanishing
trend of all corrections at any order greater than two. We leave
this proposal for future research.

However, it is worth highlighting that in glassy systems
a perturbative diagrammatic expansion of the correlation
functions can be established if the cage of the particles is
sufficiently small [36,37], namely in the high-pressure regime.
The hypernetted chain (HNC) approximation [38,39] fails in
the case of small-cage radius, but alternative approaches can
be exploited. In particular, in Ref. [40] the authors proposed a
method that allows us to rewrite the correlation functions of the
glass as the correlation functions of the effective liquid. In that
case, the contributions due to three-point correlators can be
factorized and rewritten as a function of two-point correlators
only. Our result, based on the determination of a well-defined
potential exclusively in terms of the first two moments in the
jamming limit, seems to be strictly correlated to this issue.

IV. LEADING AND SUBLEADING CONTRIBUTIONS
TO THE FORCES NEAR JAMMING

The experimental determination of interparticle forces in
glassy materials is generally a complicated task. Conversely,
from an analytical point of view, the distribution of forces
can be exactly reconstructed, at least in the jamming limit.
In this section we show the connection between the effective
forces and the gaps and we determine their leading and sub-
leading contributions. The computation is performed in the
perceptron model where only one annealed particle interacts
with a quenched background of spherical obstacles. Anyway,
the generalization to sphere systems is immediate. In that case,
the gaps will depend on two labels (αβ), which identify two
interacting particles.

The main difficulty in determining the effective interactions
in amorphous systems stems from the impossibility of writing
a simple relation between the force and the gap as soon as one
attempts to extend the formalism beyond jamming. Indeed,
on decreasing the density, there is no reason to believe that the
effective forces should remain binary. As we briefly mentioned
in the Introduction, two kinds of corrections should emerge
in the expression of the generalized forces, one related to
finite-size effects and another due to the increasing distance
from jamming. Let us focus on the first type. As in the
jamming limit Eq. (22) reduces to zero, its derivative with
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respect to fμ reflects the same behavior and confirms the
validity of Eq. (18). Far from jamming we should instead take
into account further contributions, in particular coming from
∂

∂fμ

∂3�( �m, �f )
∂η3 . It requires a long and more careful analysis as,

in addition to the first and second-order moments, nonlinear
terms in fμ and random contributions, like 〈Heff〉(1 − q)fμ or

αNq(r̃ − r)
∑N

i=1
ξ

μ

i mi√
N

, must be embedded in the computation
as well. Clearly, this much complicates Eq. (18) preventing
us from writing a simple one-to-one relation between contact
forces and gaps. Plotting in log-log scale the force scaling
versus the gaps, we should expect a significant scatter around
the linear function, more pronounced the greater the distance
from jamming and then proportional to the amplitude of next
many-body interactions.

Let us consider now the second kind of correction to
investigate how the mutual relation between the forces and
the gaps is modified on increasing the distance from jamming,
even in a mean-field-like scenario. The starting point is the
definition of the potential �( �f ):

�( �f ) = min
v

[
f v − log H

(
σ − v√
1 − q

)]

≈ min
v

{
f · v + θ (σ − v)

[
(σ−v)2

2(1−q)
+ log

(
σ−v√
1−q

)]}
.

(25)

We aim at refining our estimate by taking into account also
subleading terms in the asymptotic expansion of the comple-
mentary error function, provided that (1 − q) approaches zero
in the jamming limit. Inserting the following expression in the
potential:

H (x) = 1

2
Erfc

(
x√
2

)
≈ e−x2/2

√
2πx

[
1+

∞∑
n=1

(−1)n
(2n)!

n!(
√

2x)2n

]
,

(26)

we get:

�( �f ) ≈ min
v

[
f v + θ (σ − v)

(
(σ − v)2

2(1 − q)
+ log

(
σ − v√
1 − q

)

− log

{
1 − 1

[(σ − v)/
√

1 − q)]2

})]
. (27)

Differentiating with respect to v as before, we obtain a better
estimate for the generalized force:

f = σ − v

1 − q
+ 1

σ − v
− 2(1 − q)

(σ − v)3
[
1 − (1−q)

(σ−v)2

] . (28)

Assuming q to be not exactly one, but very close to it, we can
expand the last term as a sum of odd powers of σ − v, which
leads to:

fμ ≈
(

σ − vμ

1 − q

)[
1 + 1 − q

(σ − vμ)2
− 2(1 − q)2

(σ − vμ)4

− 2(1 − q)3

(σ − vμ)6
+ · · ·

]

≈ 1

hμ( �m)

[
1 + hμ( �m)2

1 − q
− 2hμ( �m)4

(1 − q)2
+ · · ·

]

fμ ≈ 1

hμ( �m)
G
[

hμ( �m)√
1 − q

]
. (29)

The intermediate expression in Eq. (29) is justified by the
fact that at the leading order the term σ−v

1−q
coincides with the

inverse gap, as largely explained in Ref. [25] and expected near
jamming. Note that this scaling is valid only on approach-
ing the critical transition from the SAT phase. Next terms,
including odd powers of 1

σ−v
, seem to encode the effect of a

rescaled inverse pressure, which typically vanishes in the SAT
region. More precisely, a logarithmic interaction dominating
the jamming regime emerges under the assumption to neglect
terms of order h2

μ/(1 − q). They would instead contribute in
the unjamming regime of the perceptron phase diagram as
explained in Ref. [25]. This result, which has been proven
for a fully connected system in the thermodynamic limit, is in
remarkable agreement with the argument proposed by Wyart
et al. [41,42] analyzing three-dimensional hard-sphere glass
formers. It thus supports the idea of a kind of universal behavior
at jamming, independent of the dimension and the microscopic
details.

The last line of Eq. (29) can be easily understood by looking
at the connected part of the average gap:

〈h2
μ〉c = 1

N

∑
ij

ξ
μ

i ξ
μ

j (〈xixj 〉 − mimj ) = 1 − q. (30)

Given this relation, Eq. (29) can be written in a more compact
way in terms of a scaling function G:

fμ ≈ 1

〈hμ〉G
(

〈hμ〉〈
h2

μ

〉
c

1/2 ,α

)
, (31)

which gives rise to two different behaviors depending on the
specific limit. As α → αJ , where αJ is the critical jamming
value, the scaling function G → 1, confirming that the only
relevant scale is the interparticle gap, whereas for α < αJ a full
expression forG is needed. Indeed, the crossover regime, which
determines where the logarithmic potential is no longer valid, is
signaled by the condition: hμ ∼ √

1 − q. Another way to better
investigate this aspect is to consider directly the expression for
the generalized forces fμ:

fμ = − 1√
1 − q

H ′
(

σ−vμ√
1−q

)
H
(

σ−vμ√
1−q

) , (32)

and to use Eq. (19), reported below, which highlights the
relationship forces and gaps in a mean-field framework:

hμ( �m) = vμ − σ + (1 − q)fμ. (33)

Inserting the above equation in (32), we obtain:

√
1 − qfμ = −

H ′( −hμ√
1−q

+ √
1 − qfμ

)
H
( −hμ√

1−q
+ √

1 − qfμ

) . (34)

By inverting this function with respect to fμ, we can
immediately recover the typical trend shown in Fig. 3,
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FIG. 3. Scaling function showing the generalized forces as a
function of the gaps, in linear and log-log scales, well fitted via a
power law a + b

( hμ√
1−q

)−c
in the small-gap regime.

which is divergent as the gaps shrink to zero and finite
otherwise.

Equation (29) and, consequently, Eq. (34) suggest a deep
analogy between the free energy of a hard-sphere glass and the
energy of an athermal network of logarithmic springs [35,41] if
one looks at the dynamics on a time interval much greater than
the collisional time but smaller than the structural relaxation
time. This leads to the determination of a contact network
and, thanks to the fact that all configurations are equiprobable
at jamming [29,35,43], a one-to-one mapping between the
particle displacements and the gaps can be established. The
total number of contacts equals the number of degrees of
freedom, according to the isostaticity condition. In this case,
a simple relationship between the forces and the gaps can be
determined as well.

One might wonder why this relation should be valid in
dimensions higher than 1, where the mapping is no longer
linear. The answer again lies in the underlying isostaticity con-
dition, which characterizes the jamming transition. However,
on increasing the distance from the jamming line this condition
does not hold anymore and the forces are not only functions
of hμ but of a complex combination of random parameters.
However, no analytical predictions about the typical scaling
of the forces by taking into account also subleading terms are

available.1 Several numerical simulations have been carried
out attempting to explain the observed behavior [41,44]. In
particular, in Ref. [41] the authors showed that the deviation
of the force from its leading behavior can be estimated numer-
ically in molecular dynamics and the subleading term should
be of order of the number of effective contacts δz = z − zc.

Recently, a numerical analysis of both hard and soft-sphere
systems has been proposed [45] to investigate the effect of
multibody interactions below jamming. Concerning the hard-
sphere regime, our results are in great agreement with the
above-mentioned work in which the authors claim that the
effective forces trivialize to binary interactions with no need
to take care of cage fluctuations. The plot reported in their
Supplementary Material, which shows the force behavior for
hard disks, exactly maps onto the upper plot of Fig. 3 above.
The only difference is in some spurious effects due to negative
gaps as a consequence of their dynamical protocol. The other
aspect pointed out in Ref. [45] concerns the non-mean-field
nature of further many-body contributions, which seem to
remain relevant also at jamming if one relaxes the hard-core
constraint and considers softer potentials.

We caution the reader that our analysis is entirely concen-
trated on the SAT phase of the perceptron model, namely on
the hard-sphere phase, where a robust mean-field-like behavior
seems to emerge in the jamming limit. We can nevertheless
study softer interactions within this framework provided some
modifications. In the UNSAT phase, when T → 0, the entropy
is zero and the free energy exactly coincides with the energy of
the system. The UNSAT phase minima are isolated and their
properties can be directly studied. However, by contrast to the
hard-sphere case, once the expression for the effective forces
is known, we need to pay attention to correctly compute the
zero-temperature limit and hence to make a suitable ansatz for
the overlap parameter q and its scaling with temperature. This
point will be better discussed in the following section.

V. SCALING BEHAVIORS AND CROSSOVER REGIME

We discussed above the leading behavior of the generalized
forces near jamming and the emergence of a smooth loga-
rithmic interaction in the perceptron model, computable for
hard-sphere systems in high dimensions as well. However, as
hμ ∼ √

1 − q the transition towards a logarithmic regime is
progressively smeared out.

In this section we shall focus on the scaling functions
describing the SAT and the UNSAT phase. In particular, our
aim is to understand their matching in the crossover region. We
shall make use of the main predictions known from full RSB
solution and largely explained in Ref. [26] in order to determine

1Another interesting issue concerns the distribution of the effective
forces acting on a single particle, instead of the total force distribution
that is well known to scale near the jamming line as P (f ) ∼ f θ with
θ = 0.42311. This computation can be presumably done in the cavity
formalism [33] suggesting another interesting direction for future
research.
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the crossover temperature-dependent behavior between these
two phases.

At low temperature in the UNSAT phase the overlap has a
simple dependence on temperature given by:

1 − q = χT + O(T 2), (35)

where χ is determined by the condition:(
1 + 1

χ

)
=
√

α

αJ (σ )
. (36)

The parameter αJ (σ ) is the critical value on the jamming line,
for which a generic expression was first derived by Gardner in
the context of neural networks [23].

The zero-temperature limit should be carefully performed,
sending T and 1 − q = χT to zero simultaneously. At jam-
ming χ → ∞ and q → 1, which determines two different
scaling solutions depending on the values of q and q∗,
the Edwards-Anderson parameter and the matching point,
respectively. The matching point corresponds to the condi-
tion χP (1,0)

√
1 − q∗ ∼ 1, where the probability distribution

P (q,h) is evaluated in q = 1 and h = 0 and it verifies the Parisi
equation [32]. If q � q∗, then we recover the ordinary UNSAT
phase behavior, while for q � q∗ the jamming solution occurs.
We know that in the UNSAT phase the pressure is proportional
to the first moment of the gap [h], which in turn satisfies
the following relation [h] ≡ 1/N

∑M
μ=1 hμθ (−hμ) ∝ 1/χ2.

Using these relations we have [26]:

(1 − q∗) ∼ χ
k

1−k , (37)

with an exponent k ≈ 1.41. To make progress, we note that
close to jamming the full RSB equations show a scaling regime.
We focus on the regime in which the Edwards-Anderson
parameter is close to the cut-off value, q ∼ q∗, and we deduce
the typical behavior in temperature. Let us suppose that
temperature is raised by a finite amount, yielding:

(1 − q∗) ∼ χ
k

1−k ∼ χT . (38)

From this relation we also conclude that:

T ∗ ∼ χ
2k−1
1−k . (39)

Given that in the soft-sphere regime (UNSAT) the pressure
scales as p ∼ 1/χ2 [24,26], we can write:

T ∗ ∼ p
2k−1
2k−2 . (40)

For T ∼T ∗ the UNSAT phase and the jamming solution cannot
be distinguished. Note that the relation (40), connecting tem-
perature and pressure, exactly coincides with the one proposed
in Ref. [42] based on an effective medium theory argument.

Moreover, in the SAT phase (1 − q) ∼ εk , where ε stands
for the linear distance from the jamming line. These two
relations together lead to the condition:

T ∗ ∼ ε2k−1. (41)

Under these assumptions we should be able to define a scaling
function of the form:

(1 − q) ∼ εkF(T ε1−2k), (42)

which guarantees the correct trend in each regime, either
when its argument diverges or goes to zero. According to this

simple argument, three different regimes can be highlighted:
a HS-SAT regime, characterized by a zero energy manifold
and studied in this paper by means of the TAP formalism; a
SS-UNSAT regime, whose low-energy vibrational properties
have been largely analyzed in Ref. [24]; and an anharmonic
regime signaled by the crossover temperature T ∗, which can be
also related to the linear distance ε from jamming. Below T ∗
the system actually consists of an assembly of soft harmonic
particles, whereas above it its vibrational properties turn out to
be indistinguishable from those of a hard-sphere system.

VI. CONCLUSIONS

We presented a simple model of continuous CSP, the neg-
ative perceptron, which displays a critical jamming transition.
According to whether the constraints are violated, this model
displays two different phases: a SAT phase, corresponding to
a hard-sphere (HS) regime, and an UNSAT one, which can
be mapped to a soft-sphere (SS) problem, well described by
a harmonic potential in the average gaps. This SAT-UNSAT
transition exactly coincides with the jamming line.

Our main goal was to capture the most relevant features of
the HS regime and to specialize then the analysis in the jammed
phase. In line with the derivation proposed in Ref. [25] of the
TAP free energy, which serves as a coarse-grained functional
after integrating out fast degrees of freedom, we developed here
the computation up to the third order. The analytical scheme
is based on a formal Plefka-like expansion of the free energy,
valid both in the high-temperature and in the low-temperature
phases. The results obtained for the negative perceptron can be
safely generalized to high-dimensional sphere models allowing
to get to the same conclusions.

Our analysis showed that higher-order corrections do not
contribute in the jamming limit, as correctly expected ac-
cording to the isostaticity argument, a very general argument
independent of the details and the dimension of the system
looking into. These results suggest the idea of a close link
between the jamming regime and a mean-field scenario. By
contrast, third and higher-order corrections turn out to be
relevant in accounting for finite-dimensional systems not
exactly at jamming. They can be of great interest for numerical
simulations and real glasses.

From the analysis of the effective potential near the jamming
line, we also derived the leading and subleading contributions
in the expression of contact forces, which correctly diverge
at jamming and are finite away from the critical line. The
subleading contributions can be embedded in a scaling function
that depends on the average gaps and the distance from
jamming. The behavior of such scaling function has been
analyzed in this framework.

The discussion about the typical scaling laws dominating
the jamming phase naturally led to the investigation of a
crossover regime between the SAT and the UNSAT phases of
the perceptron model. We determined a crossover temperature
and connected it to other physical quantities of the model, such
as the pressure and the linear distance from the jamming line.
This crossover temperature plays a central role in defining two
different regimes. Below that threshold, the system behaves
like a zero-temperature assembly of soft particles, otherwise it
enters the entropic-like regime.
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APPENDIX A: DERIVATION OF THE EFFECTIVE POTENTIAL IN THE SAT PHASE

To help the potential reader in deeply understanding the mathematical formalism and the results outlined in this paper, we
repropose here some of the main equations already derived in Ref [25]. To define an effective potential as a function of mean
particle position, we define:

e−G( �m) = e−∑N
i=1 miui

∫
d �x e−βH [�x]+∑N

i=1 xiui = e−∑N
i=1 miui+K[�u], (A1)

which is evaluated in �u such that �m + ∇�uK[�u] = 0. In other words, the potential G( �m) identifies the coarse-grained free energy
once that fast degrees of freedom are integrated out. However, to get the expression for the potential G( �m) we find more convenient
to write a more generic expression including in its definition generalized forces as well. We enforce hμ = hμ(x) in the partition
function via M auxiliary variables iĥμ that are conjugated to the gaps, while the average values of the forces and the positions
are enforced via N and M Lagrange multipliers, ui and vμ, respectively. We thus have:

e−�( �m, �f ) =
∫

d �xd �hd �̂h e−βH [�h]+∑i (xi−mi )ui+
∑

μ(iĥμ−fμ)vμ+∑μ iĥμ(hμ(x)−hμ) = eJ (�u,�v)− �m·�u− �f ·�v, (A2)

where ∂J
∂ui

= ∂J
∂vμ

= 0,∀i,μ. From Eq. (A2) the functional �( �m, �f ) reads:

�( �m, �f ) =
N∑

i=1

miui +
M∑

μ=1

fμvμ − log
∫

d �xd �hd �̂he−βH [�h]+∑i xiui+
∑

μ iĥμvμ+∑μ iĥμ(hμ(x)−hμ). (A3)

Defining the self-overlap and the first two moments of the generalized forces, i.e.,

q = 1

N

N∑
i=1

m2
i , r = − 1

αN

M∑
μ=1

f 2
μ, r̃ = 1

αN

M∑
μ=1

〈
ĥ2

μ

〉
, (A4)

we can rewrite the potential as:

�( �m, �f ) =
∑

i

miui +
∑

μ

fμvμ − log
∫

d �xd �hd �̂h eSη(�x,�h, �̂h), (A5)

where the action Sη(�x,�h, �̂h) reads:

Sη(�x,�h, �̂h) =
∑

i

uixi +
∑

μ

ivμĥμ − λ
∑

i

(
x2

i − N
)− β

2

∑
μ

h2
μθ (−hμ) − i

∑
μ

ĥμ(hμ − ηhμ(x)) − b

2

∑
μ

(
ĥ2

μ − αNr̃
)
. (A6)

We introduced two additional Lagrange multipliers to fix the spherical constraint on the xi’s and the average moment of ĥ2
μ.

Our analysis is based on a Plefka-like expansion of the free energy in terms of the coupling η, which the effective Hamiltonian
Heff = iη

∑
μ ĥμhμ(�x) actually depends on. The first derivative of the functional (A5) with respect to the parameter η, set to one

at the end of the computation, coincides with the average effective Hamiltonian evaluated in the corresponding coarse-grained
values, i.e.,

∂�

∂η
= −〈Heff〉 = −

∑
i,μ

ξ
μ

i mifμ√
N

, (A7)

while the second-order derivative gives rise to a more involved expression, including both the connected part of the effective
Hamiltonian and the partial derivatives of the additional Lagrange multipliers. As far as the second-order term is concerned, in
principle one should consider several mixing terms in the second-order correction to the potential. We checked that only those
with equal indices (μ = ν, i = j ) provide a nonvanishing contribution. For more details we refer the interested reader to the
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Appendix in Ref. [25]. Therefore, the second-order term reads:

∂2�

∂η2
= −

{
〈H 2

eff〉 − 〈Heff〉2 +
〈
Heff

[∑
i

∂ui

∂η
(xi − mi) +

∑
μ

∂vμ

∂η
(iĥμ − fμ)

]〉}
, (A8)

where the term in bracket can be decomposed as:

∂ui

∂η
= ∂2�

∂η∂mi

= −i
∑

μ

ξ
μ

i 〈ĥμ〉√
N

= −
∑

μ

ξ
μ

i fμ√
N

, (A9)

∂vμ

∂η
= ∂2�

∂η∂fμ

= −
∑

i

ξ
μ

i 〈xi〉√
N

= −
∑

i

ξ
μ

i mi√
N

. (A10)

The expressions above allow us to rewrite the last terms in Eq. (A8) as:

〈
H
∑

i

∂ui

∂η
(xi − mi)

〉
= αNr(1 − q), (A11)

〈
H
∑

μ

∂vμ

∂η
(iĥμ − fμ)

〉
= αNq(r̃ − r), (A12)

and then the second moment of the potential as:

∂2�

∂η2
= −{αN (−r̃ + qr) + αNr(1 − q) + αNq(r̃ − r)} = αN [(r̃ − r)(1 − q)] . (A13)

Gathering all relevant information above, the resulting expression up to the second order in η turns out to be:

�( �m, �f ) =
∑

i

φ(mi) +
∑

μ

�(fμ) + ∂�

∂η

∣∣∣∣
η=0

η + 1

2

∂2�

∂η2

∣∣∣∣
η=0

η2 + O(η3)

≈ −N

2
log(1 − q) +

∑
μ

�(fμ) −
∑
i,μ

ξ
μ

i mifμ√
N

+ αN

2
(r̃ − r)(1 − q). (A14)

To obtain this expression we have simply evaluated by a saddle-point approximation the integral over �x, corresponding to the
entropy of a noninteracting system constrained on a hypersphere, i.e.,

φ(m) = min
u

[
mu − log

∫
dxe−λ(x2−1)+ux

]
. (A15)

Using the integral representation of the δ function and neglecting irrelevant prefactors, this computation leads to a logarithmic
contribution, as correctly expected in the presence of a spherical constraint:

∑
i

φ(mi) ≈ −N

2
log(1 − q). (A16)

The functional
∑

μ �(fμ) can also be written in a more straightforward way:

�(f ) = min
v

[
f v − log

∫
dhdĥ

2π
e−iĥ(h+σ )+ivĥ− b

2 (ĥ2−r̃)

]
, (A17)

where we actually neglected the original Hamiltonian term β

2 h2θ (−h), which is identically zero in the SAT phase. While the
integral over ĥμ is extended over all values in (−∞,∞), the integral over the gap variables hμ is allowed to take positive valuesonly
in the SAT phase. Reminding that at the saddle point the parameter b is equal to (1 − q), we finally obtain:

�( �f ) = min
v

[
f v − log H

(
σ − v√
1 − q

)]
, (A18)
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where we used the notation H (x) ≡ 1
2 Erfc

(
x√
2

)
for the complementary error function. As mentioned in the main text, by

differentiating the expression above with respect to vμ we immediately get the expression for the generalized forces fμ, i.e.,

fμ = − 1√
1 − q

H ′
(

σ−vμ√
1−q

)
H
(

σ−vμ√
1−q

) . (A19)

APPENDIX B: DETAILED COMPUTATION OF THE THIRD-ORDER CORRECTIONS TO THE TAP FREE ENERGY

We present here a detailed derivation of the third-order term in the TAP free energy, which was studied in the main text by
using a Plefka-like expansion [27,28,34]. We have to evaluate the following expression:

∂3�

∂η3
= 〈Heff〉∂〈Heff〉

∂η
+ 〈Heffϒ2〉 + 〈Heff (Heff − 〈Heff〉 + ϒ1)2〉, (B1)

where ϒn reads:

ϒn =
∑

i

∂

∂yi

(
∂n�

∂ηn

)
(si − yi), (B2)

and the average effective Hamiltonian 〈Heff〉 = ∑
i,μ

ξ
μ

i mifμ√
N

. We can rewrite Eq. (B1) as:

∂3�

∂η3
= −〈Heff〉∂

2�

∂η2
+ 〈Heffϒ2〉 + 〈Heff (Heff − 〈Heff〉 + ϒ1)2〉

= 〈Heff〉
[〈

H 2
eff

〉− 〈Heff〉2 −
〈
Heff

∑
i

(si − yi)
∂〈Heff〉

∂yi

〉]
+
〈
Heff

∑
i

(si − yi)
∂

∂yi

∂2�

∂η2

〉

+
〈
Heff

(
Heff − 〈Heff〉 −

∑
i

∂〈Heff〉
∂yi

(si − yi)

)2〉
. (B3)

Expanding the last square term and differentiating explicitly with respect to mi and fμ, we obtain:

∂3�

∂η3
= 〈

H 3
eff

〉+ 〈Heff〉
〈
H 2

eff

〉− 2〈Heff〉3 + 〈Heff〉
〈
Heff

∑
i

∂〈Heff〉
∂mi

(xi − mi)

〉

+〈Heff〉
〈
Heff

∑
μ

∂〈Heff〉
∂fμ

(iĥμ − fμ)

〉
+
〈
Heff

(∑
i

∂

∂mi

∂�

∂η
(xi − mi)

)2〉
+
〈
Heff

(∑
μ

∂

∂fμ

∂�

∂η
(iĥμ − fμ)

)2〉

− 2

〈
H 2

eff

[∑
i

(xi − mi)
∂〈H 〉
∂mi

〉
+
∑

μ

(iĥμ − fμ)
∂〈Heff〉

∂fμ

]〉

= 〈
H 3

eff

〉+ 〈Heff〉
〈
H 2

eff

〉− 2〈Heff〉3 + 〈Heff〉
〈∑

ij,μν

ξ
μ

i ξ ν
j

N
xi(xj − mj )iĥμfν

〉

+〈Heff〉
〈∑

ij,μν

ξ
μ

i ξ ν
j

N
ximj iĥμ(iĥν − fν)

〉
+
〈
Heff

(∑
i

(xi − mi)
∑

μ

(
−ξ

μ

i fμ√
N

))2〉

+
〈
Heff

(∑
μ

(iĥμ − fμ)
∑

i

(
−ξ

μ

i mi√
N

))2〉
− 2

〈
H 2

eff

[∑
i

(xi − mi)
∑

μ

ξ
μ

i fμ√
N

+
∑

μ

(iĥμ−fμ)
∑

i

ξ
μ

i mi√
N

]〉
. (B4)
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Off-diagonal terms do not contribute in the computation, which means that we have to consider only diagonal terms, with i = j

and μ = ν. For more details, we refer the reader to the Appendix of Ref. [25]. The final expression reduces to:

∂3�

∂η3
= 〈

H 3
eff

〉+ 〈Heff〉
〈
H 2

eff

〉− 2〈Heff〉3 − 〈Heff〉αNr(1 − q) − 〈Heff〉αNq(r̃ − r) +
˝

Heff

⎛
⎝−

∑
i,μ

δxi√
N

ξ
μ

i fμ

⎞
⎠

2˛

+
˝

Heff

⎛
⎝−

∑
i,μ

δfμ√
N

ξ
μ

i mi

⎞
⎠

2˛
− 2

*
H 2

eff

(∑
i

δxi

∑
μ

ξ
μ

i fμ√
N

+
∑

μ

δfμ

∑
i

ξ
μ

i mi√
N

)+
. (B5)
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