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Attractive colloids display two distinct amorphous solid phases: the attractive glass due to particle
bonding and the repulsive glass due to the hard-core repulsion. By means of a microscopic mean field
approach, we analyze their response to a quasistatic shear strain. We find that the presence of two distinct
interaction length scales may result in a sharp two-step yielding process, which can be associated with a
hysteretic stress response or with a reversible but nonmonotonic stress-strain curve. We derive a generic
phase diagram characterized by two distinct yielding lines, an inverse yielding and a critical point
separating the hysteretic and reversible regimes. Our results should be applicable to a large class of glassy
materials characterized by two distinct interaction length scales.
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Introduction.—In the last few years, important progress
has been achieved in the study of the response of amor-
phous solids to a shear strain, which can be characterized
by measuring the associated shear stress [1–4]. At small
enough strain, the stress response is elasticlike, as for
standard solids, whereas, upon increasing the strain, the
response becomes more complex and characterized by
intermittent mesoscopic drops of the stress (“plasticity”),
while the system remains macroscopically solid [1–7]. At
even larger strains, the solid finally yields and starts to flow,
which is signaled by the stress becoming, on average,
independent of the strain [3]. More precisely, the yielding
transition can happen in several ways, depending on the
system’s properties and preparation [3,8]: One observes
either a very abrupt drop in the shear stress (“brittle
behavior” characteristic of hard molecular and metallic
glasses) or a smooth crossover when the stress reaches a
plateau sometimes displaying an overshoot before the onset
of flow (“ductile behavior” characteristic of soft colloidal
glasses and emulsions) [9–11].
Numerous studies have been carried out in order to better

characterize the yielding transition by means of numerical
simulations, phenomenological models, and microscopic
approaches. One interesting outcome is that the yielding
transition can be understood, in mean field theory, as a
spinodal point of the solid phase in the presence of disorder
[12–15], which has also been confirmed numerically
[16,17]. Once the effect of structural disorder, which results
in a distribution of local stresses [18–20], is taken into
account, the spinodal can persist leading to brittle behavior,
or it can be destroyed by fluctuations leading to a ductile
behavior [21,22]. Nucleation effects can also be studied
within the Random First-Order Transition (RFOT) theory
[23,24]. Mean field theory is thus a good starting point to

develop a microscopic theory of yielding, and in particular,
it provides qualitatively correct predictions for the behavior
of several relevant observables, including the shear modu-
lus, the dilatancy, the onset of plastic behavior, and the
yielding point itself [12,14,25,26].
The above phenomenology applies to systems whose

interaction potential contains a single relevant length scale
(e.g., the sphere diameter). A more complex behavior is
observed for potentials with two length scales. A proto-
typical example is that of attractive colloids with square-
well potentials characterized by a hard-core repulsion with
length scale lHC and an attractive tail with length scale
lat ≪ lHC [27–30]. These potentials describe, for example,
a colloidal suspension in the presence of a nonadsorbing
polymer [31]. A first-principles analysis of these systems
has been performed in Mode-Coupling Theory (MCT)
[32–34], and the results were confirmed numerically [35]
and experimentally [28]. They exhibit two distinct amor-
phous solid phases: a repulsive glass dominated by lHC,
where caging is due to the repulsion of neighboring
particles and an attractive glass dominated by particle
bonding over scale lat.
For these systems, in proximity of the boundary between

the two solid phases, a complex response to shear has been
experimentally observed, characterized by two distinct
yielding transition [36–40]. The first has been associated
to the breaking of attractive bonds and the second to the
breaking of repulsion-induced cages. A similar behavior
has been subsequently observed in other systems charac-
terized by two distinct interaction length scales [41–43].
However, due to the complexity of these experiments and to
the fact that the yielding transition is never sharply defined
in three-dimensional systems, a systematic investigation of
this two-step yielding phenomenon in parameter space
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(density, intensity of the attraction, lat=lHC, and strain) has
not been performed. While MCT overall provides a very
good description of the rheology of these systems
[10,44,45], to the best of our knowledge, it has not yet
been developed to describe the two-step yielding process
[46], and no other phenomenological or microscopic theory
of this process has been proposed.
In this Letter, we construct a microscopic mean field

theory for the square-well potential, and we fully character-
ize the response of the attractive and repulsive glasses to a
quasistatic shear strain, computing in particular the stress-
strain curves and the yielding point of the two glasses. We
establish a phase diagram in the space of temperature,
density, and shear that unifies the usual single yielding of
both glasses with the two-step yielding process. We also
provide new predictions: in particular, the existence of an
“inverse spinodal” for the repulsive glass phase, which
results in a hysteretic stress-strain curve, and the existence
of a critical point where this inverse spinodal merges with
the yielding of the attractive glass, giving rise to a smooth
but nonmonotonic stress-strain curve. Our results can be
experimentally tested in colloidal-polymer mixtures by
tuning the volume fraction, the polymer concentration,
and the polymer coil radius. Using mean field theory as a
guide, numerical simulations could also be carried on
straightforwardly.
Model.—We consider a system of identical d-dimensional

particles in the thermodynamic limit at number density ρ and
temperature T ¼ 1=β subject to the following two-body
square-well potential with attraction strength U0:

vðrÞ ¼
8
<

:

∞ r < lHC;

−U0 lHC < r < lHC þ lat;

0 r > lHC þ lat:

ð1Þ

While we are of course ultimately interested in describing
systems in d ¼ 3, we make use here of the abstract limit of
d → ∞ in which both the thermodynamics and dynamics
can be exactly solved via mean field theory [47–50]. The
predictions of the theory for what concerns the response to a
quasistatic strain in the case U0 ¼ 0 (pure hard spheres)
[12,14,25,26] have been extensively tested in d ¼ 3 [25,26]
and are qualitatively correct. The relevant adimensional
control parameters are the scaled packing fraction
φ̂ ¼ 2dφ=d ¼ ρπd=2ld

HC=½dΓð1þ d=2Þ�, the scaled temper-
ature Û0 ¼ βU0 ¼ 1=T̂, and the scaled interaction length
lat=lHC ¼ σ̂=d. The control parameters φ̂, T̂, σ̂ have
to be kept finite when d → ∞ to obtain a nontrivial
phase diagram. We also define for convenience a rescaled
potential v̄ðyÞ¼βv½lHCð1þy=dÞ�, such that v̄ðy<0Þ¼∞,
v̄ð1 < y < σ̂Þ ¼ −Û0, v̄ðy > σ̂Þ ¼ 0.
Glass transition.—We first briefly recall the properties

of the glass transition in the absence of strain [51].

The relevant order parameter for the glass transition in
d → ∞ is the scaled mean square displacement (MSD)

ΔðtÞ ¼ d
l2
HC

�
1

N

XN

i¼1

jxiðtÞ − xið0Þj2
�

: ð2Þ

In the liquid phase, ΔðtÞ is diffusive at large times, while in
the glass phases, it reaches a plateau Δ ¼ limt→∞ΔðtÞ,
which gives the “cage radius,” i.e., the amplitude of
vibrations in the glass phase, and can be taken as the
order parameter for the glass transition. The value of Δ
corresponds to the local minimum of the scaled Franz-
Parisi potential [52]. Its explicit expression derived in
Refs. [12,50,51] for the potential v̄ðyÞ defined above reads

VFPðΔÞ ¼ − logðΔÞ

− φ̂

Z
∞

−∞
dyey½qðΔ; yÞ logqðΔ; yÞ þ v̄ðyÞe−v̄ðyÞ�;

qðΔ; yÞ ¼ ð1 − eÛ0ÞΘ
�
yþ Δ − σ̂

2
ffiffiffiffi
Δ

p
�

þ eÛ0Θ
�
yþ Δ
2

ffiffiffiffi
Δ

p
�

;

ð3Þ
where ΘðxÞ ¼ ½1þ erfðxÞ�=2. Using Eq. (3), a vanishing
derivative of the Franz-Parisi potential V 0

FPðΔÞ ¼ 0 gives its
stationary points, which are the solutions of

1

φ̂
¼ F 1ðΔÞ ¼ −Δ

Z
∞

−∞
dyey

∂qðΔ; yÞ
∂Δ log qðΔ; yÞ: ð4Þ

For Û0 ¼ 0 (hard spheres), the function F 1ðΔÞ has a single
maximum [47]. As a consequence, for φ̂ < 4.8067, Eq. (4)
has no solutions corresponding to the liquid phase where
the MSD is diffusive. For φ̂ > 4.8067, Δ is given by the
smallest solution of Eq. (4), which is a minimum of Eq. (3),
and the dynamics is arrested due to the hard-core repulsion
(“repulsive glass”).
We now focus on Û0 > 0 (square-well attractive poten-

tial) and σ̂ ¼ 0.062, the corresponding phase diagram [51]
being given in Fig. 1. For high temperature (low attraction)
T̂ ¼ 1=Û0, the system is close to the hard sphere limit, and
a single-glass transition to the repulsive glass phase is
observed, which converges to the hard sphere value when
T̂ → ∞. At low T̂, a single-glass transition is also observed
but at a much smaller value of Δ indicating that the glass
formation is induced by the attraction that leads to bonding
between particles (“attractive glass”). At intermediate
temperature, the two glass transition lines cross, giving
rise to a region where Eq. (4) has four solutions, two local
minima and two local maxima of the Franz-Parisi potential,
and both glassy solutions formally coexist [51], the
smallest (largest) Δ corresponding to the attractive (repul-
sive) glass. While the dynamics starting from an equili-
brated initial condition should become arrested in the
smallestΔ solution, i.e., the attractive glass, other protocols
might be able to select the repulsive glass, as we discuss
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below. This phenomenology is qualitatively identical to the
d ¼ 3 case [27–30,32–35].
Quasistatic strain.—We now briefly recall the “state

following” construction that allows one to follow the
evolution of the glass under a quasistatic shear strain
[12]. We assume that the system can be equilibrated at a
state point ðφ̂g; T̂gÞ in the dynamically arrested region of
the phase diagram in Fig. 1, which corresponds in finite
dimensions to the deeply supercooled liquid phase [12,50];
nowadays, equilibration in this regime can be very effi-
ciently achieved by the swap algorithm in numerical
simulations [53], while in experiments, one can simply
wait long enough so that the system can overcome the
barrier separating distinct glass states and reach equilibrium
[54,55]. Once an equilibrium configuration Y ¼ fyig is
obtained at ðφ̂g; T̂gÞ, we assume that a shear strain is
applied over a timescale that is slow with respect to all fast
relaxation timescales of the glass (so that it is quasistatic)
but fast with respect to the time needed to overcome
barriers and relax the glassy structure.
Under these assumptions, the quasistatic response of the

system can be described by the Franz-Parisi construction
[12]. One considers an identical copy of the system subject
to a weak pinning field to the reference configuration Y,
which is used as a template for the glass state. The resulting
Franz-Parisi potential now depends on two parameters: Δ,
the MSD in the glass state, and Δr, the relative MSD of a
glass configuration and the reference Y [12]. Differentiation

of the potential, whose expression is not given here
explicitly, provides two equations for Δ and Δr:

2Δr¼Δþ φ̂gΔ2

Z
∞

−∞
dyey

∂
∂Δ ½qγð2Δr−Δ;yÞlogqðΔ;yÞ�;

2

Δ
¼−φ̂g

Z
∞

−∞
dyey

� ∂
∂Δr

qγð2Δr−Δ;yÞ
�

logqðΔ;yÞ;

ð5Þ

where

qγðΔ; yÞ ¼
Z

dζ
ffiffiffiffiffiffi
2π

p e−ðζ2=2ÞqðΔþ γ2ζ2; yÞ; ð6Þ

and γ is the shear strain. Note that here we work at constant
density, but we obtain qualitatively similar results at
constant pressure. These equations can be solved iteratively
starting with the initial condition Δ ¼ Δr ¼ Δðγ ¼ 0Þ,
valid at zero strain, and computing numerically the
right-hand side for a new estimate of Δ and Δr, until
convergence is reached. From the converged values of Δ,
Δr, one can compute the shear stress Σ (scaled in units of
temperature T, which is natural in the hard sphere limit),

Σ ¼ dφ̂g

2

d
dγ

Z
∞

−∞
dh ehqγð2Δr − Δ; hÞ log qðΔ; hÞ; ð7Þ

the pressure, and any other interesting observable [12].
Results for the two-step yielding transition.—We focus,

for illustration, on a fixed potential with σ̂ ¼ 0.062 and
T̂ ¼ 0.485 (red line in the phase diagram of Fig. 1) using
density φ̂ as a control parameter; similar results are
obtained in other regions of the phase diagram.We examine
in particular three values of φ̂ (red crosses in Fig. 1) for
which stress-strain curves are reported in Fig. 2.
For γ → 0, the theory predicts a linear regime Σ ¼ μγ

with shear modulus μ ¼ 1=Δðγ ¼ 0Þ [56]. The shear
modulus of the attractive glass, which has a much smaller
Δ, is thus much bigger than the one of the repulsive glass.
This is illustrated in Fig. 2(a). Upon increasing γ, both
glasses enter in a nonlinear regime, display a stress over-
shoot, and ultimately yield via a spinodal mechanism, in
which the solution of Eq. (5) is lost via a bifurcation,
leading to a square-root singularity of ΣðγÞ [12]. This leads
us to define two distinct yielding points γaY , γrY . In
particular, if the system is prepared in the attractive glass
state and then strained, it will first undergo a yielding
transition at γaY towards the repulsive glass, which will then
yield at γrY , leading to a two-step yielding process very
similar to the one observed in experiments [36,38,40]. Note
also that if the attractive glass is strained up to
γ0 ∈ ðγaY; γrYÞ, the system yields and jumps to the repulsive
glass. Releasing the strain, the system follows the repulsive
glass curve back to γ ¼ 0, leading to a hysteretic response.

FIG. 1. Phase diagram in the ðT̂; φ̂Þ plane at fixed range
σ̂ ¼ 0.062, in the absence of strain. The full blue (black) line
is the dynamical transition at which the repulsive (attractive) glass
appears. On the green line, the two glass states merge in a single
glass. The glass-glass coexistence region is in shaded gray. The
two green dots indicate higher-order singularities of the Franz-
Parisi potential. The red dashed line indicates the value of T̂ ¼
0.485 studied in the following, and the red crosses indicate the
three state points studied in Fig. 2.
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Subsequent straining cycles will follow reversibly the
repulsive glass curve. This protocol provides a way to
produce the repulsive glass at this state point, where the
dynamics from an equilibrium configuration naturally
selects the attractive glass solution.
Upon increasing the density [Fig. 2(b)], one reaches the

point where at γ ¼ 0 the two glasses merge into a single
one. Beyond that point, we find—surprisingly—that the
repulsive glass still exists at finite γ, and it can be accessed,
as before, by increasing γ beyond the yielding point γaY .
Upon decreasing γ, the repulsive glass undergoes an
“inverse yielding” γinvY at which it jumps back into the
attractive glass before the strain is fully released. In this

region, we thus find three spinodal points, which leads to
the new prediction of a hysteretic response at intermediate
γ, as illustrated in Fig. 2(b). Note that the hysteresis loop
would now be observed during all straining cycles of
amplitude γ0 ∈ ðγaY; γrYÞ. This prediction could be easily
tested in cyclic strain experiments.
Upon further increasing φ̂, the hysteretic loop shrinks

and ultimately disappears via a critical point where
the repulsive and attractive glasses merge at finite γ.
Beyond that point [Fig. 2(c)], we find a single smooth
and reversible stress-strain curve, which, however,
remains nonmonotonic, as a vestige of the hysteretic loop.
The stress-strain curve terminates in a single yielding
point which is the analytic continuation of γrY . The
evolution with the density of the three spinodal points
can be reported in a phase diagram in the ðγ; φ̂Þ plane
(Fig. 3) characterized by a single-glass region, a coexist-
ence region, and a “flow” region (where all glasses have
become unstable).
Conclusions.—We studied, within the exact infinite-

dimensional solution, an attractive colloid with square-well
interaction potential. In the region of the phase diagram
where the attractive and repulsive glasses coexist, we
detected a two-step yielding mechanism. When the system
is prepared in the attractive glass phase, it undergoes a first
yielding due to bond breaking, which brings it to the
repulsive glass, followed by a second yielding where the
repulsive cage breaks [Fig. 2(a)]. Upon increasing density,
the repulsive glass becomes unstable at γ ¼ 0 but remains
present at γ > 0, leading to an unexpected hysteresis loop at
intermediate γ, associated to a new inverse yielding
instability of the repulsive glass [Fig. 2(b)]. At even higher
density, the hysteresis loop closes, leading to a smooth,
reversible, but nonmonotonic stress-strain curve [Fig. 2(c)].
We investigated these effects systematically, resulting in a
complete phase diagram (Fig. 3). All the equations needed
to construct the stress-strain curves and the phase diagram
are given above so that the results can be easily extended to
other ranges of parameters.

(a) (b) (c)

FIG. 2. Stress-strain curves in logarithmic scale for several densities φ̂, at T̂ ¼ 0.485 and σ̂ ¼ 0.062. (a) Coexistence of the two glasses
displaying distinct yielding points leading to a two-step yielding process for the attractive glass. (b) The coexistence only happens at
γ > 0, leading to a hysteresis loop at intermediate γ, as indicated by the arrows. (c) The hysteresis loop closes leading to a smooth and
reversible but nonmonotonic stress-strain curve with a single yielding point.

FIG. 3. Yielding phase diagram in the ðγ; φ̂Þ plane obtained by
following the evolution in φ̂ of the yielding points defined in
Fig. 2. The lines γaY and γinvY delimitate the coexistence region and
merge in a critical point. Outside the coexistence region, only
one glass exists. The dynamical transitions, at which the γY
vanish, are, respectively, located in φ̂r

d ¼ 6.4697, φ̂a
d ¼ 6.5272,

φ̂sp ¼ 6.9093. Vertical lines indicate the densities for which the
stress-strain curve is reported in Fig. 2.
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We thus proposed a solid theoretical framework to
describe the rheology of colloidal systems based on the
Franz-Parisi construction and the infinite-dimensional sol-
ution. This work opens new perspectives for the theoretical,
numerical, and experimental investigation of these systems.
Theoretically, one could investigate the marginal stability
of the glass (the so-called Gardner transition [48]) and
study how the yielding transitions are affected by disorder
and by a finite shear rate. It could be useful to have a more
direct comparison between our theoretical predictions in
d → ∞ and numerical simulations in d ¼ 3 to test the
phase diagram of Fig. 3. Finally, it would be extremely
interesting to try to detect experimentally the inverse
spinodal we predicted and the associated hysteresis loop.
We believe that our results should apply quite generically to
systems whose interaction potential displays two distinct
length scales.
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