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Abstract – We apply for the first time a new one-loop topological expansion around the Bethe
solution to the spin-glass model with a field in the high connectivity limit, following the method-
ological scheme proposed in a recent work. The results are completely equivalent to the well-known
ones, found by standard field-theoretical expansion around the fully connected model (Bray and
Roberts 1980, and following works). However this method has the advantage that the starting
point is the original Hamiltonian of the model, with no need to define an associated field theory,
nor to know the initial values of the couplings, and the computations have a clear and simple phys-
ical meaning. Moreover this new method can also be applied in the case of zero temperature, when
the Bethe model has a transition in field, contrary to the fully connected model that is always in
the spin-glass phase. Sharing with finite-dimensional model the finite connectivity properties, the
Bethe lattice is clearly a better starting point for an expansion with respect to the fully connected
model. The present work is a first step towards the generalization of this new expansion to more
difficult and interesting cases as the zero-temperature limit, where the expansion could lead to
different results with respect to the standard one.

Copyright c© EPLA, 2018

Introduction. – Spin glasses (SGs) are models whose
mean-field (MF) version [1] undergoes a phase transition,
crossing a critical line in the temperature-field (T, h)-
plane. The solution of the MF problem sees the introduc-
tion of replicas of the original system as a mathematical
trick to perform computations. The resulting Hamiltonian
is symmetric under replica exchanges. However, quite sur-
prising, one finds that in the low-temperature spin-glass
phase the replica symmetry is broken. While the MF be-
havior of the model is completely under control [2], also
from a rigorous viewpoint [3], we still do not have a con-
firmed theory for the finite-dimensional version. In partic-
ular, there is not agreement both on the upper and lower
critical dimension, looking at theoretical, numerical and
experimental data [4–12].

The project to perform a renormalization group (RG)
analysis is an old one. The spin-glass transition in
zero-field was already studied within the RG by Harris
et al. [13], and in field by Bray and Roberts [14], limiting
at the sector associated with the critical eigenvalue, the so
called replicon. Their one-loop analysis was then repeated
adding the other sectors, longitudinal and anomalous ones,

in refs. [5,15–17]. In a recent work also the two-loop com-
putation in a field has been performed [7], suggesting the
possibility of a non-perturbative fixed point.

These works are expansions around the fully connected
(FC) mean-field model. They start studying the sym-
metric phase, approaching the transition from the high-
temperature side, where replica symmetry holds. Thus,
the replica symmetric Lagrangian is written, that in its
most complete version has three bare masses and eight cu-
bic couplings involving the replica fields, which correspond
to all the possible invariants under the replica symmetry.
At this point one can perform a renormalization á la Wil-
son, integrating the degrees of freedom over an infinites-
imal momentum shell, extracting the leading, one-loop,
order approximation in ε = 6 − d. Although the scheme
is clear, the computation is highly technical also from the
algebraic viewpoint.

Recently a new loop expansion around the mean-field
Bethe solution was proposed in ref. [18]. The new method
can be applied to each model that is well defined on a
Bethe lattice. In this paper, we apply for the first time this
new expansion to the SG in a field. We restrict ourselves
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to the limit of high connectivity z → ∞ to perform compu-
tations analytically. We compute the 1st-order correction,
and we show that in the T > 0 region this new expan-
sion is completely equivalent to the field-theoretical one,
recovering the results of Bray and Roberts [14]. How-
ever it has the advantage that the starting point is the
original Hamiltonian of the model, with no need to de-
fine an associated field theory, nor to know the initial val-
ues of the couplings, and the computations have a clear
and simple physical meaning: while in standard field the-
ory Feynmann diagrams have no special meaning, here
the important diagrams have a geometrical interpreta-
tion. Moreover, the expansion is around Bethe lattice
that has finite connectivity, an important characteristic
shared with finite-dimensional systems. Even if in this
work we obtain the same results as standard RG around
the fully connected model, we will discuss the differences
that could arise in the two methods in particular situa-
tions. This work is first of all a verification of the correct-
ness of the method proposed in ref. [18] and it is a first
step towards the generalization of this new expansion to
more complicated cases: finite small connectivity and zero
temperature.

Expanding around the Bethe lattice solution. –
In this section we just recap the results of ref. [18],

while in following sections we will apply for the first
time these results to the SG model in a field. Starting
from a D-dimensional system, the M -layer construction of
ref. [18] consists of taking M copies of the original model
and rewire them. In the M → ∞ limit, the rewiring pro-
cedure leads to the Bethe lattice. One can then expand
the observables in powers of 1

M . In particular, we will fo-
cus our attention on the correlation functions, connected
over the disorder, let us name them G. The 1

M expansion
results in a topological expansion in the number of loops.
At order 1

M , the correlation function between the origin
and a point d in the D-dimensional model results to be:
G(d) =

∑∞
L=1 B(d, L)gB(L), where B(d, L) is the number

of non-backtracking walks that go from the origin to the
point d in the original D-dimensional model and gB(L) is
the correlation between points at distance L on a Bethe
lattice.

At order 1
M2 , the correlation function on the original

system receive a leading contribution that is the product
of the so-called line-connected observable glc(L) computed
on a Bethe lattice, in which it has been manually injected
a loop L of the type in fig. 1, multiplied by the number
of such a structure L present on the original model. The
line-connected observable is just the observable computed
on a Bethe lattice with the loop minus the observable com-
puted on the two paths L0, L1 + 1, L3 and L0, L2 + 1, L3

considered as independent.
The quantities gB(L) and glc(L) are model dependent.

In the following we will compute them for the spin glass
in a field. To make the computation analytically feasi-
ble, we will compute things on a Bethe lattice in the high

σσ 0

L3L L+1

L+1
dyx

0

2

1

Fig. 1: Spatial loop L that gives the first correction to the
bare correlation functions in the expansion around the Bethe
solution.

connectivity limit, at temperature T > 0. However things
can be computed in finite connectivity and even at T = 0
using numerically the Belief Propagation equations. This
will be the subject of a subsequent paper.

We just want to recall that one could perform the same
M -layer construction around the fully connected model
instead of the Bethe lattice. In the former approach, the
leading divergences at each order are exactly given by the
corresponding terms in the loop expansion of the contin-
uum field theory. In ref. [18] it is claimed that, if the
critical behaviour of the fully connected model and of the
Bethe lattice model is the same, then also the two expan-
sions will lead to the same results. We will see that this
is exactly the case for the SG with field at T > 0.

Model and definitions. – To be concrete, we are in-
terested in the SG model in a field, that has the following
Hamiltonian:

H({σ}) = −
∑

i=1,N

σih
R
i −

∑
ij∈E

σiσjJij ,

where E is the set of the edges of the lattice. On this
model we should compute the quantities gB(L) and glc(L)
introduced in the previous section.

We will consider the model on a Bethe lattice (for def-
initeness on a random z-regular lattice) in the large con-
nectivity limit, i.e., z large: we will keep the leading terms
and we will neglect the 1/z corrections. Only at the end
we will perform the limit z → ∞. In this limit, compu-
tations are easier and the model has the same properties
of the Sherrington-Kirkpatrick one [1]. The procedure of
first computing the results for finite z in the thermody-
namic limit (N → ∞) and later send z to infinity makes
the physical approach much clearer.

The couplings are i.i.d. random variables extracted from
a distribution with the following properties: Jij = 0,
J2

ij = 1/z. Higher-order moments are irrelevant in the
z → ∞ limit. We have indicated by hR

i the field on the
site i. It can be either a local random field extracted from a
given distribution or a spatially uniform field. The physics
is equivalent in the two cases. For simplicity here we con-
sider the case where the fields hR

i are Gaussian variables
with zero average and finite variance vh (see footnote 1).

1The attentive reader could notice that the variance vh never ap-
pears in the following. This is not because things do not depend
on vh, but because the dependence is hidden in the definitions of
the magnetizations: m2 ≡ 〈σ〉2 and higher moments will implic-
itly depend on vh.
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Zn =
∑
{σ}

eβ
P

a

P

i σa
i hR

i eβ
P

a

P

ij σa
i σa

j Jij �

∑
{σ}

eβ
P

a

P

i σa
i hR

i

∏
ij

(
1 + β

∑
a

σa
i σa

j Jij +
β2

2

∑
a,b

σa
i σb

i σ
a
j σb

jJ
2
ij

)
. (1)

With standard notation, we indicate with 〈·〉 the thermal
average and with · the average over the disorder (random
couplings and fields).

In the thermodynamic limit we will compute different
kinds of correlation functions first between point at dis-
tance L on a standard Bethe lattice; this will lead to the
bare propagator and we will compute its exact expression
with two different methods in the high-temperature re-
gion: the replica method and the cavity method. Then we
will compute the first correction to this result due to the
presence of one spatial loop. The limit z → ∞ allows us
to compute all the quantities analytically. For finite con-
nectivity, one could compute everything numerically using
Belief Propagation as usually done on Bethe lattices.

The replica computation of line-correlations. –
In the high connectivity limit (that corresponds to small
couplings limit) we can expand the replicated partition
function as

see eq. (1) above

The neglected terms give sub-leading contributions for
large z.

As usual in SG computations, a, b, c, . . . ∈ [1, n] indi-
cate the replica index, where the replicas are independent
copies of the system with the same disorder realization.

A Bethe random regular graphs in the N → ∞ limit
becomes locally loop-less. The distance on the graph be-
tween two generic points (i.e., the length of the shortest
path between them) is of order log(N). We are inter-
ested in the computation of the correlation functions of
spins that are on points at a distance L between them,
in the limit where N goes to infinity at fixed L. In this
limit with probability one there is a unique path (of finite
length) connecting them so the computation can be done
on a single line.

In general we will be interested in correlation functions
that are connected with respect to the disorder. At this
end it is convenient to compute

Ga,b;c,d(L) ≡ 〈σa
0σb

0σ
c
Lσd

L〉 − 〈σ0〉2 · 〈σL〉2, (2)

from which we can extract connected and disconnected
(with respect to thermal average) correlation functions.
In the following, for simplicity of notation, we will in-
dicate with (·)c

the correlations connected with respect
to the disorder: 〈σa

0σb
0σ

c
dσ

d
d〉

c
≡ 〈σa

0σb
0σ

c
dσ

d
d〉 − 〈σ0〉2 ·

〈σd〉2. We define the matrix T ∈ R
n(n−1)×n(n−1) such as

Tab,cd(i) ≡ β2

2 〈σa
i σb

i σ
c
i σ

d
i 〉. We define T only for a 	= b,

c 	= d, following what is usually done for the matrix
Qab(i) = 〈σa

i σb
i 〉 in replica calculations2. Remembering

that Jij = 0, J2
ij = 1

z , from eq. (1) we find that

Ga,b;c,d(L) =
2

β2zL

[
L∏

i=0

T (i)

]
ab,cd

. (3)

Please notice that all the i ∈ [0, L] are present in eq. (3).
In fact on a Bethe lattice, two spins are linked just by a
path. If the link between two spins is cut, the spins be-
come disconnected. This means that if a coupling is 0,
all the correlation functions between the two spins linked
by that coupling are zero. This automatically implies
that a correlation function should be proportional to the
product of all the couplings on the path between the two
spins.

From eq. (3), we need to compute powers of the ma-
trix T . It is easy to show that

Tab,cd(i) =
β2

2
〈σa

i σb
i σ

c
i σ

d
i 〉 =

β2

2
·

⎧⎪⎨
⎪⎩

1, if a = c, b = d or if a = d, b = c,

m2, if a= c or b = d or a = d or b= c,

m4, if a 	= b 	= c 	= d (4)

with m2 = 〈σi〉2 and m4 = 〈σi〉4. Let us just mention that
for eq. (3) to hold, T should be defined as the so-called
“cavity” average: the average over the rest of the system
with the exception of the neighbouring spins on the con-
sidered line. However, in the large z limit, cavity averages
are equal to standard averages (see also the Supplemen-
tary Material Supplementarymaterial.pdf (SM)).

Equation (4) can be written in the form

Tab,cd =
β2

2
· [m4 + (m2 − m4)(δad + δbc + δbd + δac)

+ (1 − 2m2 + m4)(δacδbd + δadδcb)] . (5)

In order to compute correlation functions, we need to
compute powers of T . For this reason, we proceed to the
diagonalization of T . The whole calculation is explained
in the SM. Here we just sketch the main steps and state
the final result. First of all we look for eigenvalues and
eigenvectors of Tab,cd, of the form:

∑
cd Tab,cdψcd = λψab.

2Please be careful to not confuse T with a tensor. We could use
two superindices i, j ∈ [1, n(n − 1)] instead of the couples ab, cd.
However we choose this notation because it will be useful to define
the different types of correlation functions in the following.
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Because of the symmetry of the matrix T under permuta-
tions of the replica indices, we know that there are three
symmetry classes of eigenvectors (in an analogous way
to what one does when looking to the stability of the
Sherrington-Kirkpatrick solution for the FC model [19])
and three associated eigenvalues:

In the limit n → 0 the first two eigenvalues (longitudinal
and anomalous) are λL/A = β2(3m4 − 4m2 +1), while the
third one (replicon) is λR = β2(1 − 2m2 + m4).

We just want to point out that the eigenvalues are not
the same ones as the usual “replicon, anomalous, longitu-
dinal” eigenvalues that comes out from the diagonalization
of the Hessian in ref. [19], but we called them in the same
way because they identify the same sub-spaces with the
same replica symmetries. In particular at the spin-glass
transition the usual replicon goes to zero, while λR as de-
fined in this paper goes to λR = 1 leading to the divergence
of the spin-glass susceptibility (see the following section).

At this point, we construct the projectors on the sub-
spaces of the eigenvectors and write T as a combination of
the projectors. In this representation, it is easy to compute
powers of T . A special care should be taken in performing
the limit n → 0, because of the degeneration of λL and λA.
The final result is

TL(n = 0) =
β2

2
LλL−1

L/A(3m4 − 2m2)R

+λL
L/A

(
−R

2
− Q

)
+ λL

R

(
R

2
+ Q + P

)
,

where we defined the matrices Rab,cd = 1, Qab,cd = 1
4 [δac+

δad + δbc + δbd], Pab,cd = 1
2 [δac · δbd + δbc · δad].

For a spin-glass model, for each realization of the sys-
tem different correlation functions can be defined. Because
of the symmetry of the coupling distribution, the average
over the realizations of all the “linear” correlations will
be zero, and the relevant ones will be the squared corre-
lations. We will define three main correlations averaged
over the thermal noise:

– The total correlation: 〈σ0σL〉.
– The disconnected correlation: 〈σ0〉〈σL〉.
– The connected correlation:

〈σ0σL〉c = 〈σ0σL〉 − 〈σ0〉〈σL〉.

Obviously only two of these correlations are linearly
independent.

With these two-spins correlations, we can build different
squared correlations:

– The total-total correlation at distance L:

〈σ0σL〉2
c

=
2

β2zL
lim
n→0

[
1

n(n − 1)

∑
a�=b

(
TL+1

)
ab,ab

]
=

2
β2zL

(
3
2
λL+1

R − λL+1
L/A

+ (L + 1)λL
L/A

β2

2
(3m4 − 2m2)

)
. (6)

– The disconnected-disconnected correlation at dis-
tance L:

〈σ0〉2〈σL〉2
c

=
2

β2zL
lim
n→0

[
1

n(n−1)(n−2)(n−3)

∑
a�=b �=c �=d

(TL+1)ab,cd

]
=

2
β2zL

(
λL+1

R

2
−

λL+1
L/A

2

+ (L + 1)λL
L/A

β2

2
(3m4 − 2m2)

)
. (7)

– The total-disconnected correlation at distance L:

〈σ0σL〉〈σ0〉〈σL〉
c

=
2

β2zL
lim
n→0

[
1

n(n − 1)(n − 2)

∑
a�=b �=c

(
TL+1

)
ab,ac

]
=

2
β2zL

(
3λL+1

R

4
−

3λL+1
L/A

4

+ (L + 1)λL
L/A

β2

2
(3m4 − 2m2)

)
. (8)

– The connected-connected correlation at distance L,
whose expression can be obtained as a combination
of the previous ones:

〈σ0σL〉2c = (〈σ0σL〉 − 〈σ0〉〈σL〉)2 = 〈σ0σL〉2

− 2〈σ0σL〉〈σ0〉〈σL〉 + 〈σ0〉2〈σL〉2 =
1

β2zL
λL+1

R . (9)

Also in this case only three of these correlations are lin-
early independent3.

Others correlations can be readily obtained from the
previous one by integration by part. In the SM, we show
how to obtain the connected and disconnected bare corre-
lation functions in a cavity approach leading to the same
results.

The dominant contribution in the correlation
functions. – To build the susceptibility associated with a
given correlation function C(0, L) in a Bethe lattice (where
C can be one among the correlation functions considered
in the previous section), one should sum over all the spins
that are at distance L from the spin 0, and then over all
the distances L:

χB
C ∝

∞∑
L=1

NLC(0, L), (10)

where NL = z(z−1)L−1 is the number of spins at distance
L from a given spin in a Bethe lattice with connectivity z.

3The expression for the connected correlation in the Bethe lattice
is obtained in this paper from a large z expansion. However we
numerically checked that also for small z eq. (9) is valid substituting
z with z − 1 (that is equivalent in the large z limit).
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〈σa
0σb

0σ
c
dσ

d
d〉

c

lc
=

(
β2

2

)2 1
zL0+(L1+1)+(L2+1)+L3

×
∑

q,r,s,t

(
TL0

)
ab,qr

[ ∑
e,f,g,h,l,m,o,p

Vqr,ef,gh

(
TL1

)
ef,lm

(
TL2

)
gh,op

Vst,lm,op

] (
TL3

)
st,cd

. (13)

The SG transition line is commonly associated to the di-
vergence of the SG susceptibility, that is the susceptibility
associated to the connected correlation function. Substi-
tuting eq. (9) and the expression for NL in eq. (10), we
discover that the critical line is identified by λR = 1 (see
footnote 4). Looking at the eigenvalues, we can numer-
ically check that λL/A < λR. All the bare correlation
functions, as shown in the two precedent sections, have a
term proportional to λL

R, that is thus the dominant one.
Recovering the result of standard theory, the critical be-
havior of all the correlation functions is the same because
all depend on the only critical eigenvalue [20]. The suscep-
tibility associated to the different correlations, computed
at the critical point, is divergent at the critical line. On
the Bethe lattice, this divergence is a consequence of the
exponential decay of the correlations multiplied by the ex-
ponential numbers of neighbours at a given distance. Until
now we have computed χB

C on the Bethe lattice. If now we
want to use the Bethe approximation to compute the sus-
ceptibility in a D-dimensional lattice, following ref. [18]
(recall the section “Expanding around the Bethe lattice
solution”), we should replace NL in eq. (10) with the to-
tal number B(d, L) of non-backtracking paths of length L
between two points at distance d on the original lattice,
and add a sum over d. For large d and L

B(d, L) ∝ (2D − 1)L|L|−D/2 exp(−|d|2/(2L)) (11)

implying that at this order the divergence of the suscep-
tibility in a finite-dimensional lattice takes place in cor-
respondence with the divergence in a Bethe lattice with
connectivity z = 2D.

One spatial loop in the RS phase. – In a Bethe
lattice in the thermodynamic limit, the density of loops of
finite length vanishes, while spatial loops of finite length
are common in finite-dimensional lattices. In ref. [18] a
new expansion around the Bethe lattice is performed. As
a result, the first correction to the bare propagator com-
puted in the precedent sections comes from one spatial
loop. In this section, we will compute this contribution
confirming that it is totally equivalent to the first correc-
tion computed in the usual field-theoretical loop expan-
sion, as stated in ref. [18]. Following the prescriptions of
ref. [18], we construct a spatial loop structure L, shown in

4Indeed one can check that in the limit of z → ∞ λR, as defined
in this paper, is deeply related to the replicon eigenvalue λ of eq. (15)
from ref. [19]. Using eq. (11) of ref. [19], it can be demonstrated that

the relation
`

KT
J

´2
λ = −λR +1 holds. The usual SG line associated

with λ = 0 translates in λR = 1.

fig. 1, formed by two paths of length L1 +1 and L2 +1 be-
tween the points x and y (the length of the internal paths
are defined of length L1 + 1 and L2 + 1 because in this
way results are more compact), plus two external legs of
length L0 and L3 to the external spins σ0 and σd. The
rest of the lattice is a Bethe lattice without loops in the
thermodynamic limit.

We will compute the correction to the “bare” correlation
functions computed in the previous section, that are those
connected over the disorder. Analogously to the definition
of T , we define the vertex

Vab,cd,ef (x) = 〈σa
xσb

xσc
xσd

xσe
xσf

x〉 =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if three pairs of indices are equal,

m2, if two pairs of indices are equal,

m4, if one pair of indices is equal,

m6, if the indices are all different.

As in the case of T , a 	= b, c 	= d, e 	= f . We write the
partition function in the presence of one loop L and we
expand it for small J ’s analogously to eq. (1). From it,
following the same reasoning of the section “The replica
computation of line-correlations”, we obtain the form of
the correlation function when a structure L is present:

〈σa
0σb

0σ
c
dσ

d
d〉

c

L = 〈σa
0σb

0σ
c
dσ

d
d〉

c

L0,L1+1,L3

+ 〈σa
0σb

0σ
c
dσ

d
d〉

c

L0,L2+1,L3

+ 〈σa
0σb

0σ
c
dσ

d
d〉

c

lc
, (12)

where the first and second terms turn out to be ex-
actly the “bare” correlations computed as the two paths
L0 + (L1 + 1) + L3 and L0 + (L2 + 1) + L3 were inde-
pendent. They have, respectively, L0 + (L1 + 1) + L3

and L0 + (L2 + 1) + L3 couplings, that are the minimal
number of couplings to have a non-zero correlation. The
last term has L0 + (L1 + 1) + (L2 + 1) + L3 couplings and
turns out to be

see eq. (13) above

Thus, in our case, from eq. (12) we see that 〈σa
0σb

0σ
c
dσ

d
d〉

c

lc
is

exactly the line-connected correlation function, that gives
the one-loop correction in the 1

M expansion around the
Bethe solution. The one-loop contribution takes a very
intuitive form.
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To compute the explicit form for 〈σa
0σb

0σ
c
dσ

d
d〉

c

lc
, we per-

formed sums and products in eq. (13) using Mathematica5.
At this point we can compute the one-loop contribution to
the different correlation functions as in the section “The
replica computation of line-correlations”. The whole ex-
pressions are reported in the SM. As for the bare term,
the dominant terms are those with the highest power of
λR, that are

(〈σ0σd〉c)2lc � (〈σ0〉2〈σd〉2
c
)lc � 32λL0+L1+L2+L3

R

× [1 + 44m2
2 + 101m2

4 + m4(22 − 90m6)
− 2m2(7 + 67m4 − 30m6) − 10m6 + 20m2

6]. (14)

As explained in the section “The dominant contribution
in the correlation functions”, following ref. [18], we can
now compute the correction to the susceptibility summing
over all the length L0, L1, L2, L3, once we have multiplied
by the number of non-backtracking walks.

Relation with previous RG studies. – In ref. [14],
the authors perform standard RG calculations in 6 − ε
dimensions for SG with a field. They write the field-
theoretic Hamiltonian in the vicinity of the critical line
projected on the replicon eigenspace as a function of the
order parameter qαβ as

H =
1
4
r
∑

q2
αβ +

1
4

∑
(∇qαβ)2

− 1
6
w1

∑
qαβqβγqγα − 1

6
w2

∑
q3
αβ

with r the reduced temperature, and w1, w2 being cou-
pling constants. The correlation functions in the momen-
tum space k (projected on the replicon eigenspace) are
proportional to (r + k2)−1. Integrating over an infinites-
imal shell e−dl < k < 1 in the momentum space, they
obtain the recursion relation for r:

dr

dl
= (2 − η)r − Kd

(1 + r)2
(4w2

1 − 16w1w2 + 11w2
2), (15)

with η = 1
3Kd(4w2

1 − 16w1w2 + 11w2
2) and Kd the usual

geometrical factor, together with analogous recursion re-
lations for w1 and w2. The first term in eq. (15) is the
contribution connected to a renormalization of the critical
temperature, and that we can compute in our approach
computing the correction given by a spatial tadpole struc-
ture. The second term is the one coming from the non-
trivial loop.

Following refs. [21,22], in a Bethe lattice in finite and in-
finite connectivity, as well as in the fully connected model,
w1 ∝ 1 − 3m2 + 3m4 − m6 and w2 ∝ 2m2 − 4m4 + 2m6.
Inserting these expressions in the loop term of eq. (15),

5The same results can be concluded from eq. (62) of ref. [15] after
a suitable correspondence between quantities like the propagators
and 3-point vertex.

we obtain

4w1 − 16w1w2 + 11w2
2 ∝ 4 − 56m2 + 176m2

2 + 88m4

− 536m2m4 + 404m2
4 − 40m6

+ 240m2m6−360m4m6+ 80m2
6,

that is exactly proportional to the coefficient of the dom-
inant term for the spatial-loop correction to the con-
nected correlation function eq. (14) (see footnote 6). Our
approach permits to find the same results in a clearer,
simpler and more physically intuitive way.

Conclusions and perspectives. – In ref. [19] a new
expansion is introduced around the Bethe lattice. This
expansion can be applied to all the models that can be
defined on a Bethe lattice. It is supposed to give the same
results as standard perturbation theory for fully connected
models when the physics of fully connected and finite con-
nectivity MF models is the same. We test the new ex-
pansion of ref. [18] for the first time in the case of the
spin-glass model at finite temperature and with an exter-
nal field in the limit of high connectivity. We analytically
find the same results of standard RG [14], confirming the
validity of the new M -layer topological expansion.

The new method has, however, the advantage that the
equations are physically very intuitive: the bare correla-
tions are just the correlation on a Bethe lattice (i.e., on a
line), and the first-order correction to the correlation func-
tion is just the value of the correlation function computed
on a spatial loop (finite loops are absent in the Bethe lat-
tice and present in finite-dimensional systems) once the
contributions of the two lines forming the loop, consid-
ered as independent graphs, are subtracted. Even if for
the case of the SG in a field in the limit z → ∞ and finite
temperature the results of the new expansion add nothing
to what already known about the SGs in finite dimensions,
there are cases in which things should be different.

It was already underlined how the Bethe lattice is more
similar to finite-dimensional systems [23] with respect to
the FC version for different disordered spin models. In the
particular case of SG in a field, the critical line on the FC
model tends to infinite field when the temperature goes to
zero, while in the Bethe lattice it ends at a finite field hc

at T = 0 [21]. If the critical point for SGs in field in finite
dimension is a zero-temperature one, as supposed by some
authors [5,6], it is crucial to perform an expansion around
the Bethe solution, instead of around FC model, since the
latter model is always in the SG phase at T = 0. This
paper is a first step in this direction. The application of
the topological expansion to the SG model in a field at
T = 0 and finite connectivity is at the moment under
study. It could be done according to lines similar to what
done in the case of the random field Ising model [24].

6Please note that the replicon contribution, that is the one multi-
plied by the coefficient b4, that corresponds to the one found by Bray
and Roberts, is the dominant one for the correlation functions. In
our approach, we obtain also the sub-dominant corrections coming
from the other sectors, as in refs. [15,16].
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