
On the number of limit cycles in asymmetric neural

networks

Sungmin Hwang1, Viola Folli2, Enrico Lanza3, Giorgio Parisi4,

Giancarlo Ruocco2,4, Francesco Zamponi5
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Abstract. The comprehension of the mechanisms at the basis of the functioning of

complexly interconnected networks represents one of the main goals of neuroscience.

In this work, we investigate how the structure of recurrent connectivity influences the

ability of a network to have storable patterns and in particular limit cycles, by modeling

a recurrent neural network with McCulloch-Pitts neurons as a content-addressable

memory system.

A key role in such models is played by the connectivity matrix, which, for neural

networks, corresponds to a schematic representation of the “connectome”: the set of

chemical synapses and electrical junctions among neurons. The shape of the recurrent

connectivity matrix plays a crucial role in the process of storing memories. This

relation has already been exposed by the work of Tanaka and Edwards, which presents

a theoretical approach to evaluate the mean number of fixed points in a fully connected

model at thermodynamic limit. Interestingly, further studies on the same kind of model

but with a finite number of nodes have shown how the symmetry parameter influences

the types of attractors featured in the system. Our study extends the work of Tanaka

and Edwards by providing a theoretical evaluation of the mean number of attractors

of any given length L for different degrees of symmetry in the connectivity matrices.
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1. Introduction

Understanding the collective functioning, the emerging properties and cognitive

processes of a large network of complexly interconnected neurons on the basis of local

activity and neuronal circuitry represents one of the primary goals of neuroscience

[1, 2, 3, 4, 5, 6]. The mammalian brain contains billions of neurons and hundred

trillions of synapses and the complexity of the biological neural networks increases

exponentially with dimension, being higher brain systems working on apparently quasi-

segregated areas that indeed are complexly connected and integrated with each other

[1]. The comprehension of the way how a brain works is one of the most fascinating

problems in modern science, to the extent that some authors claim that “...the capacity

of any explaining agent must be limited to objects with a structure possessing a degree of

complexity lower than its own. If this is correct, it means that no explaining agent can

ever explain objects of its own kind, or of its own degree of complexity, and, therefore,

that the human brain can never fully explain its own operations.” [7]. Being this prima

facie hypothesis true or not, the problem presents such a high level of complexity

that the use of (over)simplified models is unavoidable. Indeed, controlling the global

behavior of an artificial neural network and the resulting collective adaptive behavior

and information processing at the level of local structural connectivity and synaptic

asymmetry may shed light on the functioning of living nervous systems.

In this work, we investigate how the structure of recurrent connectivity influences

the ability of the network to have storable patterns, and in particular limit cycles of a

given length L. To this aim, we model a recurrent neural network with McCulloch-Pitts

neurons [8] as a content-addressable memory system [9]. In a recurrent neural network,

the information is stored nonlocally and the memory retrieval process is associated

with complex neuronal activation patterns (attractors) encoding memory events. The

strength of these patterns fixes the ability to quickly recall memories of a specific event.

The architecture of the connectivity matrix itself determines the clustering operation

of the set of data inputs, reducing the complexity of the N -dimensional initial problem

(many-to-few mapping). The weights of the connections between cells are self-organized

on the basis of the set of input patterns, and the asymptotic solution of network

dynamics represents the response of the network to a given stimulus with which the

initial condition is identified.

The Hopfield model [9, 10], and the idea that information is stored via attractor

states has proven to be a powerful conceptual tool in neuroscience. Indeed, there is some

experimental support for discrete attractors in the patterns of activity of hippocampal

cells during spontaneous activity in rodents [11] or persistent activity in monkeys during

tasks [12, 13]. Furthermore, the Hopfield model may benefit from the analogy between

neural networks and spin systems (for which some interesting results have already been

obtained) since both models refer to a network of elementary units, whose dynamics

depend on the interaction of neighboring elements. A key role in these models is played

by the connectivity matrix Jij. For neural networks, the matrix Jij is a schematic
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representation of the “connectome”: the set of chemical synapses and electrical junctions

among neurons. The shape of the recurrent connectivity determined by Jij plays a key

role in the process of storing memories.

Such dependency has been explored in the work of Tanaka and Edwards [14], which

presents a theoretical approach to evaluate the mean number of fixed points in a random

ensemble of fully connected Ising spin glass models at thermodynamic limit. A network

of N binary neurons, encoded as spin (binary) variables σi ∈ {−1, 1} (i = 1, . . . , N),

presents 2N different possible states or “firing patterns” σ(t) = {σ1(t), σ2(t), . . . , σN(t)}.
At each time step, the evolution rule updates synchronously all nodes according to the

following rule:

σi(t+ 1) = sgn
( N∑
j=1

Jijσj(t)
)
, (1)

where sgn(x) is the sign function. The matrix element Jij represents the strength of the

connection between node i and j and is assumed to be a quenched random variable drawn

from a fixed distribution with zero mean. Because the chosen dynamics is deterministic,

each state is univocally connected to another one: this results in a deterministic path in

the state space towards the corresponding attractor. Indeed, as the state-space is finite,

the dynamics necessarily reaches a “final” state, that can be either a fixed point or a

limit cycle of a certain length L (1≤ L ≤ 2N).

Interestingly, further studies on the same kind of model but with a finite number

of nodes have shown numerically how the symmetry parameter influences the types of

attractors featured in the system [15]. One way of quantifying the symmetry of the

connection’s strengths Jij is through the symmetry parameter η, which corresponds to

the following value:

η =
〈JijJji〉
〈J2

ij〉
.

With this definition, η = 1 represents symmetric connectivity matrices, η = 0

asymmetric ones, while η = −1 refers to antisymmetric matrices. The main finding

in this case is linked to a transition at ηc ≈ 0.5 [16]. For η > ηc, these systems feature

mainly fixed points or limit cycles of length 2 whose number increases exponentially with

N , while for systems with η < ηc the typical length of limit cycles increases exponentially

with N and the dynamics is chaotic. Note that the transient time τ [15, 17], which is the

time needed by the system to reach the corresponding limit cycle from a randomly chosen

initial state, is exponential (τ ∼ eNg(η)) for any η < 1, and it only becomes polynomial at

η = 1 [16]. An additional dynamical transition may be seen in the chaotic regime around

ηd ≈ 0.33. For ηd < η < ηc, the number of limit cycles of length 2 is exponentially high,

but with vanishing basins of attraction. For 0 < η < ηd, exponentially long limit cycles

have dominating basins of attraction [16]. Other works investigated the existence of

transitions in generalizations of this system, e.g. adding noise [18, 19] and dilution [20],

with the possible use of other characteristic values that may be linked to transitions, like
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the gain function [21, 22] or self-interaction [23]. Interestingly, recent numerical studies

demonstrated how the dilution of a fully asymmetric network leads to an increase in the

complexity [24]. The analytical study of the dynamics of these networks was initiated

in [25, 26, 27].

For practical purposes, in order to numerically construct a J matrix with a given

symmetry, we introduce a different symmetry parameter. Specifically we exploit the

following representation of the matrix elements:

Jij =
(

1− ε

2

)
Sij +

ε

2
Aij, (2)

where Sij and Aij are symmetric and antisymmetric random matrix elements

respectively (with Sji=Sij, Aji=−Aij, while Sii=Aii=0), independently extracted from

a fixed distribution P (x). As will be explicitly shown later, our main results will be

largely independent of the choice of P (x) as long as it does not depend on the size of

system N . For the numerical simulations, however, we tested our results for a Gaussian,

a uniform and a binary distribution of Jij. The aforementioned symmetry parameter η

widely used in the literature is related to ε by

η =
1− ε

1− ε+ ε2

2

. (3)

For ε = 0 (or equivalently η = 1) all nodes interact symmetrically with each other,

whereas for ε = 1 (η = 0) and ε = 2 (η = −1) their interaction is asymmetric and

antisymmetric respectively.

In this paper, we focus on the problem of counting the number of limit cycles of

length L, irrespectively of their basins of attraction. We extend the work of Tanaka and

Edwards [14], in which the exponential growth rate Σ1 of the number of fixed points

was computed. Specifically, we develop a framework based on the one of Ref. [25] that

allows us to determine, for different degrees of symmetry η in the connectivity matrices,

the average number of attractors of any length L of the form nL ∼ (AL/L)eNΣL . These

results are then used to support the existence of a transition of the type discussed above.

Besides, our approach provides additional information on the cycle structures such as

the overlap parameters between configurations forming a cycle. Finally, thanks to the

fact that our formalism is exact, this can also be used to verify the approximations and

assumptions made in the analytical arguments employed in [16].

Our manuscript is organized as follows. In section 2, we first present the results of

numerical simulations to provide the overall picture of the dynamics. Next, we develop

a statistical mechanics formalism that computes the number of attractors of a given

length L. This translates our problem into an optimization problem over a finite set

of variables. In section 3, we analytically determine the exponential growth rates ΣL

for L = 1, L = 2 and L = 3 by numerically solving the corresponding optimization

problems. Then, we move on to the case of arbitrary longer cycle lengths L in the

vicinity of η = 0 where a perturbative approach is valid. Finally in section 4, we discuss

the implications of our results, especially in terms of the transition to chaos.
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2. Methods

We consider a network of N binary neurons σi ∈ {−1, 1} evolving according to Eq. (1),

with quenched couplings Jij constructed as in Eq. (2) using a distribution P (x) to be

specified in the following, and a symmetry parameter ε. It is worth to note that, because

the connectivity matrix appears in the dynamical equation only as the argument of the

sign function, any scaling J→ αJ (with α > 0) does not alter the dynamics. Note that

we set Jii=0 (no autapses) to exclude chaotic behavior where the system is characterized

by an extreme sensitivity to initial conditions and two nearly identical starting points

will reach different attractors [21].

In this paper, we mainly focus on the long-time properties of the dynamics, i.e.,

the statistical properties of periodic points (or limit cycles) of the dynamics. The non-

existence of Hamiltonian implies that cycles with any length can exist in the system. As

an exception, it can be shown that there exists an energy function at ε = 0 only allowing

cycles of length L = 1 or L = 2 [16]. Similarly, at ε = 2 only cycles of length L = 4

exist. In the following, we present a general formalism, based on a slight modification

of the one developed in [25], that computes the average of the number of L-cycles in the

limit N →∞.

2.1. Numerical simulations

To evaluate numerically the average properties of the limit cycles of the networks,

we randomly generate a statistically significant number of realizations of connectivity

matrices J’s with equal symmetry properties of the same size. Once the connectivity

matrix has been generated for a given pair (N, ε), we evolve all 2N initial conditions.

Because the configuration space is finite and the dynamics are deterministic, after

a transient time, the system evolves towards a fixed point or a limit cycle. The

algorithm works through a many-to-few mapping connecting 2N initial patterns to the

corresponding attractors for each realization of the connectivity matrix. The evolution

paths are distributed on a number (n(J)) of oriented graphs each one containing one

attractor [28].

For each graph k (k = 1 . . . n(J)), we measure the length Lk of its attractor (fixed

point, L = 1, or limit cycles, L ≥ 2). Thus, we are readily able to evaluate the number

of L-cycles, i.e., nL(J) =
∑n(J)

k=1 δL,Lk . After processing a statistically significant number

of realizations, we may compute the average number of cycles n̄ = n(J) and the average

cycle length, L̄, as L̄ =
∑

L LnL(J)/n(J). Here, the overline (· · · ) is used to denote

the average over realizations of J. The explored region of N ranges from 8 to 20 for

Gaussian couplings and N from 8 to 32 for binary couplings, while the sampling of ε

covers the [0,1] range with 0.05 spacing and 0.01 spacing from the critical region (where

ε ≈ 0.7) up to 1. Other quantities of interest include the size of basins of attraction and

the average distance between a generic state and the corresponding attractor, which are

not discussed in the present paper.

Figures 1, 2, and 3 show examples of results obtained through our simulations for
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Figure 1. Mean number of the total amount of limit cycles per matrix, n̄, as a

function of ε for systems of different sizes (N = 14, 15, 16, 17 and 18). Overall, the

number of independently generated random matrices for each ε value ranges from

100,000 at N=14 to 1,000 at N=18.

Gaussian couplings: Figure 1 reports the results obtained for the mean total number

of limit cycles as a function of ε for various system sizes N , while Figure 2 shows the

mean number of limit cycles of length 1, 2 and 4 as a function of ε for systems with

N = 18. Finally, Figure 3 shows the average number of limit cycles of length 1, 2 and

4 as a function of N , for systems with symmetry parameter ε = 1.

2.2. Basic theoretical formalism

Our formalism follows closely the one of [25], with some adaptation to the problem of

interest here. Given two spin configurations σ,σ′, let us first ask whether σ′ is the one

step evolution of σ according to (1). To answer this question, we define a corresponding

indicator random variable w(σ,σ′) which is one if such event occurs and zero otherwise.

A convenient representation of this indicator variable is obtained by observing that σ′

is the evolution of σ under (1) if and only if the local field Hi(σ) =
∑

j Jijσj has the

same sign as σ′i, for all i. This condition is then encoded as a product of Heaviside theta

functions:

w(σ,σ′) =
N∏
i=1

θ (σ′iHi(σ)) . (4)

Now, we are ready to write our starting equation for the number of L-cycles. For

given (L + 1) spin configurations σ = {σ(1), · · · ,σ(L),σ(L + 1)}, the quantity
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Figure 2. Mean number of limit cycles of various lengths, nL = nL(J), (L = 1, 2

and 4) in logarithmic scale as a function of ε for systems with 18 nodes.
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Figure 3. Mean number of limit cycles of various lengths, nL = nL(J), (L = 1, 2

and 4) in logarithmic scale as a function of N for systems with symmetry parameter

ε = 1.

∏L
t=1w(σ(t),σ(t+ 1)) now detects the trajectory of a L-step evolution of (1).
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The power of this construction comes from the ability that by imposing additional

constraints it allows us to select a subset of trajectories. In our case, we introduce

either the periodic boundary condition σ(L + 1) = σ(1) or the skew-periodic

boundary condition σ(L+ 1) = −σ(1), where the minus sign indicates the spin-flipped

configuration of σ(1). To handle both cases together, we will use the parameter P = ±1

to encode the boundary condition σ(L + 1) = Pσ(1). With this setting, we define the

partition function:

ZP
L =

∑
σ

L∏
t=1

w(σ(t),σ(t+ 1)), (5)

where σ now only contains the spin configurations with the boundary condition

associated to P .

Certainly, if we impose the periodic boundary condition, the partition function Z+
L

is closely related to the number of L-cycles in the system. However, they are not exactly

the same due to the fact that this boundary condition is also satisfied by other cycles of

length L′ provided that L′ is a divisor of L, i.e., L′|L. Denoting the number of L-cycles

by nL, we thus have the following identity

Z+
L =

∑
L′|L

nL′L
′ , (6)

where the additional factor L comes from the fact that each L-cycle consists of L distinct

spin configurations.

Fortunately, we will show that the partition function develops multiple saddle points

for each L′ satisfying L′|L, and thus allows us to choose the desirable saddle point that

corresponds to the cycles of length L. For this purpose, it will be convenient to define

the two-time overlap parameter Q(t, s) = 1
N

∑
i σi(t)σi(s) for two different time points

t < s. This measure always falls within the interval [−1, 1] and becomes 1 only when

two configurations σ(t) and σ(s) are identical. This implies that the saddle point we

are seeking for should be the one satisfying the condition Q(t, s) < 1 for all pairs of

t < s. From now on, by excluding the possibility of having Q(t, s) = 1 for any two

time points t and s, we will use the notation Z+
L to indicate only the contributions for

L-cycles which cannot be broken into subcycles of smaller length.

There is however another possibility, that follows from the parity-invariant

symmetry imposed by the evolution (1), such that −σi(t + 1) = −sgn
[∑

j Jijσj(t)
]

=

sgn
[∑

j Jij(−σj(t))
]

(see [16] for a more comprehensive discussion). Namely, if one

follows a trajectory that visits the spin-flipped configuration of one of the previously

visited configurations at distance L apart, this trajectory automatically forms a cycle

of length 2L of the form:

σ1 → σ2 → · · · → σL → −σ1 → −σ2 → · · · → −σL → σ1.

In this case, we say that this trajectory satisfies a skew-periodic boundary condition of

length L. In other words, the trajectory can be broken in two halves, the first going
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from σ1 to −σ1 over a length L, the second going back from −σ1 to σ1. Even though

the contribution of this type of trajectories can also be extracted from the periodic

boundary condition of length 2L with the condition Q(t, t + L) = −1, we find it more

convenient to independently analyze these special trajectories by considering only the

first half of the trajectory, thus introducing the boundary condition P = −1 into the

partition function. Combining both contributions for P = ±1, the overall complexity

ΣL for each L is then given by

ΣL =

{
Σ+
L for odd L ,

max(Σ+
L ,Σ

−
L/2), for even L .

(7)

In the next section we show how to compute ZP
L and from it extract ΣP

L .

2.3. Average of the number of L-cycles

In this section, we present a detailed analysis of the annealed average of ZP
L over different

realizations of {Jij}. As usually done in fully-connected models, our aim is to transform

ZP
L into an integral over a set of variables X and in turn extract the asymptotic behavior

via the saddle point method:

ZP
L =

∑
X∗

AL(X∗)eNΣPL (X∗), (8)

with corrections of order O(N−1). Here, the starred variables X∗ indicate the extrema

of ΣP
L(X). Once the form of the partition function (8) is determined, the typical cycle

length in the system is given by the one yielding the largest exponential growth rate

ΣP
L , provided that N is sufficiently large.

After some calculations, detailed in Appendix A, we show that ZP
L can indeed be

cast into a saddle point form over two symmetric matrices of variables Q(t, s), R(t, s)

and one non-symmetric matrix S(t, s). Namely, ZP
L reads

ZP
L ∼

∫
R,Q,S

eNΣPL (9)

up to a multiplicative constant. The complexity is then given by

ΣP
L = −

∑
t>s

R(t, s)Q(t, s)− η

2

∑
t,s

S(t, s)S(s, t) + log
(
ZPL
)
, (10)

with one site partition function

ZPL = trPλ,σ e
− 1

2

∑
t λ(t)2e−

∑
t>sQ(t,s)λ(t)σ(t+1)λ(s)σ(s+1)+

∑
t>sR(t,s)σ(t)σ(s)e

∑
t,s ηS(t,s)Iλ(t)σ(t+1)σ(s),

(11)

where trPλ,σ (...) refers to the (weighted) integrations and the sums over possible values

of λ(t) and σ(t) given by

trPλ,σ (...) =
∑
{σ(t)}P

∫ ∏
t

dλ(t)

2π(Iλ(t) + ε)
(...), (12)
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with ε being a positive infinitesimal number, and I is the imaginary unit.

For each L, this expression should be extremized with respect to Q(t, s), R(t, s) and

S(t, s). As it can be checked, the parameter ε only enters in ΣP
L via the single parameter

η defined in (3). In principle, the multiplicative prefactor APL can be computed within

this framework by computing the corrections to the saddle point, and some specific

values of APL will be reported for ε = 1, where ΣP
L vanishes. Note that from Eq. (6) and

the following discussion we obtain nL ∼ (AL/L)eNΣL .

For the periodic boundary condition, one can make a further simplification. Because

cycles are by definition symmetric under translation of time (i.e. t→ t+ t0 for any t0),

one may employ an ansatz that Q(t, s) and R(t, s) are only functions of the distance

|t − s|, i.e. write Q(|t − s|) and R(|t − s|), respectively. It should be noticed that the

distance |t − s| is defined by taking into account periodic boundary condition, i.e. by

considering the minimum difference between t and all the periodic images of s. Similarly,

one can write S(t, s) = S(s− t). One crucial difference, in this case, is that the function

S(s− t) is not even in s− t, as the two time directions are not equivalent.

3. Results

In the following, we present the results for the average number of cycles of given length

L, i.e. nL, of the form

nL(ε,N) =
AL(ε)

L
eΣL(ε)N . (13)

As discussed above, the form of the prefactor with L at the denominator is a consequence

of Eq. (6). Note that ΣL is independent of the choice of distribution as long as the

distribution is symmetric with a finite second moment, whereas AL, which is independent

of N , depends also on the fourth cumulant of distribution. One may even generalize

this result to non-symmetric distributions with zero mean without changing ΣL. Since

the behavior is mainly determined by ΣL for sufficiently large N , we first focus on

determining ΣL.

Computing ΣL for arbitrary L involves finding saddle points of three matrices

Q(t, s), R(t, s) and S(t, s), which is a non-trivial problem. We thus first focus on

determining the behavior of ΣL for L = 1, 2, 3 by numerically optimizing for the above

matrix elements. To do this, one needs to consider Σ+
L for L = 1, 2, 3 and Σ−L for L = 1

as suggested by (7). We then study in detail the case ε = 1 for arbitrary L, giving

insight into the numerically observed phase transition. Surprisingly, we will show that,

at ε = 1, ΣL = 0 for all L, thus the behavior of AL plays a crucial role to determine the

relative importance of cycles of length L.

In the following, the calculation will be performed in terms of ε or η, depending on

the specific convenience.
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Figure 4. (Left) The function ΣL(ε) as a function of ε for L = 1, 2, 3. Dashed

lines indicate the lower-order contribution computed from the perturbation theory in

η ∼ 1 − ε. The curve for L = 2 is always larger than the other curves for all ε < 1.

(Right) The constrained Σ2(q) for different values of q at ε = 0.3. The two local maxima

at q = 0 and q = 1 correspond to Σ2(dot-dashed) and Σ1(dashed), respectively. This

implies that the saddle point corresponding to q = 0 gives the dominating contribution.

3.1. Complexity of fixed points: L = 1

In this special case the only nontrivial parameter is S ≡ S(t, s) = S(1, 1). Namely, the

complexity ΣP
1 reads

ZP
1 ∼

∫
dSe−

1
2
NηS2

(∑
σ

∫
dλ

2π(Iλ+ ε)
e

1
2

[−λ2+2ηPSIλ]

)N

∼
∫
dSeNΣP1 ,

where

ΣP
1 = −1

2
ηS2 + log

(
2

∫
dλ

2π(Iλ+ ε)
e

1
2

[−λ2+2ηPSIλ]

)
= −1

2
ηS2 + log 2 + log Φ(ηPS), (14)

where Φ(x) is the CDF of the standard Gaussian distribution, i.e., Φ(x) =
1√
2π

∫ x
−∞ e

−t2/2 dt. The fact that the substitution S → PS removes the occurrence

of P implies Σ+
1 = Σ−1 and furthermore Z+

1 = Z−1 . For ε = 0 we find back the Tanaka-

Edwards result Σ1 = 0.19923 . . .. At ε = 1, we find Σ1 = 0. The whole Σ1(ε) vs. ε is

reported in figure 4 (left panel) as full blue line.

3.2. Complexity of limit cycles with L = 2

For L = 2, the non-trivial parameters are the following: Qd ≡ Q(1, 2), Rd ≡ R(1, 2),

S1 ≡ S(1, 1), S2 ≡ S(2, 2), S12 ≡ S(1, 2) and S21 ≡ S(2, 1), which already describes the



On the number of limit cycles in asymmetric neural networks 12

high-dimensional nature of our problem. The complexity (10) in this case reads

ΣP
2 = −RdQd −

1

2
η(S2

1 + S2
2 + 2S12S21) (15)

+ log

{
2
∑
σ

eRdσ
∫

dλ1dλ2

4π2(Iλ1 + ε)2
e−

1
2

(λ21+λ22+2QdPσλ1λ2)eη[Iλ1(S1σ+S12)+Iλ2(S1σ+PS21)]

}
.

First, we show that there exists a saddle point that satisfies the following conditions:

Qd = Rd = S1 = S2 = 0. Note that these terms only appear with σ as the argument of

the logarithm. Because of this, the derivative of the logarithmic term with respect to

any of these variables yields an additional σ, and subsequently cancel out when summing

over σ, which verifies the saddle point condition at the above conditions. Under these

conditions, collecting the remaining terms, we find a result similar to the one for S1

in (14):

ΣP
2 = −PηS12S21 + 2 log 2 + log Φ(ηS12) + log Φ(ηS21), (16)

where we have applied a transformation S12 → PS12 which makes the parameter space

symmetric under the exchange S12 ↔ S21. If this symmetry is unbroken, the saddle

point should satisfy S12 = S21 ≡ S. Within this ansatz, the complexity is further

simplified to

ΣP
2 = −ηPS2 + 2 log 2 + 2 log Φ(ηS). (17)

Surprisingly, this implies

Σ+
2 (η) = 2Σ+

1 (η) , (18)

and

Σ−2 (η) = Σ+
2 (−η) = 2Σ+

1 (−η). (19)

This is the first important result of the present paper. To our knowledge, this is the

first derivation of the number of cycles of length larger than one.

As shown in Figure 4 (left), the exponential growth rate Σ+
2 (η) is always positive

in the range 0 < η ≤ 1. This automatically means from (19) that Σ−2 (η) is positive

for η < 0. Thus, according to Eq. (7), the skew-periodic trajectories of length 4 give a

positive contribution to Σ4(η) when η < 0. Furthermore, it is worth noting that Qd = 0

suggests that two configurations comprising 2-cycles each are spatially uncorrelated.

This result provides a solid ground for the annealed approximation that is used in [29]

for the case of L = 2.

To check whether this solution yields the dominating contribution, we should further

determine whether there are other saddle points. To provide some evidence, we consider

the sub-problem of fixing Qd to have a prescribed value q, and optimizing only over

the other variables. If there are other solutions, the complexity ΣP
2 (q) should develop

different local maxima. In Figure 4, we numerically confirm that q = 0 is indeed the

solution for the case P = 1. The figure shows that there is another solution at q = 1 as

well, which, as expected, corresponds to the solution of 1-cycle (i.e., Σ+
1 ).
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3.3. Complexity of limit cycles for L = 3 with P = 1

Here, we repeat the same procedure for L = 3. To reduce the unnecessary complexity,

we focus our interest to the case P = 1. In this particular case, we have five non-trivial

parameters, namely Q1, R1, S−1, S0 and S1 where the argument indicates the difference

between two time points. Then, the complexity reads

Σ+
3 = −3Q1R1 −

1

2
η
(
3S2

0 + 6S1S2

)
+ log

(
Z+

3

)
, (20)

where

Z+
3 = tr+

λ,σ e
− 1

2

∑
t λ(t)2e−Q1

∑
t>s λ(t)σ(t+1)λ(s)σ(s+1)eR1

∑
t>s σ(t)σ(s)e

∑
t,s ηS(t,s)Iλ(t)σ(t+1)σ(s).

Obviously, the numerically challenging part to determine the saddle point is the

evaluation of Z+
3 , which is a three-dimensional complex-valued integral. Instead of

performing a direct integration, we can convert this problem to a problem of finding

an expectation value of the Gaussian measure by employing a Hubbard-Stratonovich

transformation, which yields

Z+
3 = Ez

∑
{σ(t)}+

eR1
∑
t>s σ(t)σ(s)

3∏
t=1

Φ

(
σ(t)(z

√
Q2 + S−1σ(t− 1) + S1σ(t) + S1σ(t+ 1))√

1−Q2

)
,

(21)

where Ez refers to the average with respect to the standard Gaussian variable z. After

this conversion, we arrive at a real-valued one dimensional Gaussian integral which is

numerically much more feasible. Figure 4 shows a plot of Σ3 (which is equal to Σ+
3 )

numerically optimized over five variables. The fact that Σ3 always lies below Σ2 implies

that the 3-cycles are exponentially outnumbered by the cycles with length two for the

entire range of 0 ≤ ε ≤ 1.

Σ3(ε) ≤ Σ2(ε) for 0 ≤ ε ≤ 1. (22)

3.4. Vanishing of the complexity of limit cycles for arbitrary L at ε = 1

As seen from the previous case, performing a saddle point calculation becomes quickly

unmanageable as we increase L. However, we have already captured one important

observation: for arbitrary ε < 1, we have Σ2 > ΣL for L = 1, 3. Surprisingly, our

numerical studies suggest that this behavior is robust also for larger L’s.

For small enough ε . 0.7, corresponding to η & 0.5 according to Eq. (3), the typical

length of limit cycles is two, whereas longer cycles come into play more frequently as

ε increases. To understand this behavior, let us focus on ε = 1, which corresponds to

η = 0, i.e. to fully asymmetric coupling matrices. In this case, the matrix S(t) does not

appear in the complexity, see Eq. (10), and we can focus only on the two matrices Q(t)

and R(t). Further, we note that at ε = 1, the choice R(t) = 0 and Q(t) = 0 (for t 6= 0)



On the number of limit cycles in asymmetric neural networks 14

10 12 14 16 18 20
10

1

10
2

10
3

10 12 14 16 18 20
2
-6

2
-5

2
-4

Figure 5. Numerical simulations of nL for L = 2 (a) and L = 3 (b) at ε = 0.4; The

slope of dashed triangles indicates the exponential growth rate of nL, i.e., ΣL computed

using (18) and (20), respectively. Even for relatively small system size N < 20, the

growth of nL is well described by its asymptotic growth rate ΣL in the entire range

of ε.

verifies the saddle point equations, for all finite values of L, and the corresponding value

of complexity is ΣP
L = 0. We will conjecture that this is the dominant saddle point at

ε = 1, and therefore all the complexities vanish in this case; this is consistent with the

solutions for L ≤ 3 we have obtained from the previous analysis. It also implies that

any pairs of two configurations comprising a L-cycle is uncorrelated, which is once again

consistent with the annealed approximation adopted in [29] for the case ε = 1.

ΣL(ε=1) = 0 for L = 1, 2, ...∞. (23)

3.5. Complexity of limit cycles for arbitrary L close to ε = 1

Given the simple structure of the solution R(t) and Q(t) at ε = 1, we can analyze ΣL

perturbatively as a power-series of η, i.e. perturbatively for ε close to 1. Relegating the

detailed steps to Appendix B, we simply summarize the leading behaviors of ΣP
L :

(i) first order :

ΣP
1 =

1

π
η + h.o , ΣP

2 =
2P

π
η + h.o , (24)

(ii) second order

ΣP
4 =

8

π2
η2 + h.o , Σ−L = O(η3) for all other L , (25)

(iii) third order

Σ+
3 =

20

π3
η3 + h.o , Σ+

6 =
40

π3
η3 + h.o ,

(26)
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(iv) fourth order

Σ+
8 =

224

π4
η4 + h.o , Σ+

L = O(η5) for all other L , (27)

Although this analysis is not easily extended to higher orders, it uncovers two interesting

behaviors. First, for odd L, we found

2Σ+
L(η) = Σ+

2L(η) for small η .

which generalizes Eq. (18) to all L. Second, we find that for even L:

Σ+
L(η) = ηL/2WL ; WL = 2L/2L!

(L2 +1)!L
2

!πL/2
.

Assuming that this trend continues to be satisfied, the asymptotic behavior for WL reads

WL ∼ e(3 log 2−log π)L
2 , hence

Σ+
L ∼

{
eκ

L
2 for even L ,

eκL for odd L ,
with κ = log(8η/π) . (28)

Within this conjecture, one can conclude that ΣL decreases exponentially with L for

small enough η, where κ < 0. Note that κ becomes positive for η > π/8 ≈ 0.393,

but for such large η the perturbation theory developed in this section is certainly not

correct (also because an exponential growth of Σ+
L with L would be incompatible with

the bound Σ+
L < log(2) which follows from the fact that the total number of neuron

states is 2N).

3.6. Distribution of limit cycles of length L at ε = 1

Having derived that ΣP
L = 0 for ε = 1 and all finite lengths L, it is important to

understand how the prefactor grows with L, i.e., ZP
L = APL exp(NΣP

L) = APL . In

Appendix C, we explicitly computed

APL = MP (L) exp(H) , (29)

where

H = −P 2

π
δL,2 +A 6

π2
[δL,2 + 2PδL,4] , (30)

MP (L) is a constant converging to one exponentially fast upon increasing L, and H
is a distribution-dependent constant which is non-zero only for L = 2 and L = 4

(see Appendix C for details). Consequently, for sufficiently large L, we have ZP
L ' 1.

However, this might seem surprising, because L cannot be arbitrarily large in finite

systems. Certainly this is because of the limit N →∞ at a fixed L. Thus for finite N ,

there must be a cut-off function Lc(N) which effectively determines the maximum cycle

length. The obvious upper bound is Lc(N) ≤ 2N .

To better clarify this point, in the left panels of figures 6 (binary distribution of

J) and 7 (Gaussian distribution) we report the distribution function nL = nL(J) as a
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Figure 6. (Left) Numerical estimation of the average number of limit cycles nL
as a function of the cycle length L, for binary couplings, with various network sizes

N at ε = 1. The data are well fitted by the form nL = (2/L) exp{−[L/Lc(N)]3/2}
(dot-dashed lines). (Right) Using the fitted value of Lc(N) all curves can be collapsed.

(Inset) The values of Lc(N) are well fitted by Lc(N) ∼ exp[0.95 + 0.21N ].

function of the cycle length L, for various network sizes N at ε = 1. Only even L are

reported. The graph confirms the power law shape of nL at small L and the existence

of a cut-off at larger L, which shifts towards larger L with increasing network size. The

N dependence of the cut-off Lc(N), as defined by the condition nLc=constant, with a

constant in the range 10−4-10−5 , confirms the exponential dependence on N and reveals

that the logarithmic slope α is about 0.21 in the whole range (α=0.21 ± 0.01).

Moreover, we observe that, at ε=1, nL is well represented by the following function

for all values of N and both J distributions (see the dot-dashed lines in the right panel

of figures 6 and 7):

nL =
2

L
exp

(
−
[

L

Lc(N)

]3/2
)

; Lc(N) = exp (αN + β) (31)

for even L.

Incidentally, this result indicates that the quantity nL(ε=1, N) depends only on a

scaling parameter Lc(N), as demonstrated by the right panel of figures 6 and 7 where

Lc(N)nL is reported as a function of L/Lc(N) and all data points collapse on a single

curve given by x−1e−x
3/2

.

Within the annealed approximation, it has been shown that the cut-off Lann
c (N)

is given by the same form with α ' 0.228 [29]. Despite the fact that this result was

obtained from the mean number of cycles weighted by the size of basins, this striking

similarity suggests a marginal role of basin weights in determining the cutoff.
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Figure 7. (Left) Numerical estimation of the average number of limit cycles nL as

a function of the cycle length L, for Gaussian couplings, with various network sizes

N at ε = 1. The data are well fitted by the form nL = (2/L) exp{−[L/Lc(N)]3/2}
(dot-dashed lines). (Right) Using the fitted value of Lc(N) all curves can be collapsed.

(Inset) The values of Lc(N) are well fitted by Lc(N) ∼ exp[0.95 + 0.21N ].

3.7. Distribution of number of cycles within one sample

This scaling equation (31) provides valuable information of the number of cycles n̄ within

one sample for the case ε = 1. This quantity n̄ is simply given by

n̄ =
∑
L

nL. (32)

Using the scaling form in (31) and also taking into account the contribution of cycles of

odd length (see Appendix E), we establish a linear relationship between n̄ and N :

n̄ ' 0.35N + 1.2, (33)

where the coefficients were estimated from the simulation results for nL (See the inset of

Figure 8 (Right)). In contrast to the exponential growth of Lc(N), this implies that the

mean number of cycles behaves rather mildly, and thus does not lead to proliferation of

many cycles.

To check the consistency, we study the distribution of number of cycles n(J).

According to our estimate (33), the mean value of the distribution increases roughly

proportional to N . In Figure 8 (Left), our statistics are shown to be moderately

distributed and their characteristic size is well described by the peak of distribution.

Furthermore, it is clearly observed that the peaks are moving to the right with the

network size N . Given this fact, the region around the peak should be well collapsed

according to our theory (33) (See Figure 8 (Right)).
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Figure 8. (Left) Histogram of the number of cycles n(J) within a sample for binary

couplings at ε = 1. The position of the peaks moves to the right with increasing

network size N . (Right) The scaled distribution of the number of cycles n(J) by the

mean value n̄. From our scaling theory (31) and (33), the peak should be collapsed

when scaled by n̄ given in (33). The distribution seems to have a stretched exponential

tail, and thus decays slower than a Poisson distribution. (inset) Plot of n̄ as a function

of N . It shows a clear linear relationship.

3.8. Average cycle length

Now, we present an argument to estimate the divergence point of the average length of

cycles L̄. First, we note that from Eq. (13) we have

L̄ =
A1e

NΣ1 + A2e
NΣ2 +

∑Lc(N)
L=3 ALe

NΣL

A1eNΣ1 + A2

2
eNΣ2 +

∑Lc(N)
L=3

AL
L
eNΣL

∼
2 + 1

A2

∑Lc(N)
L=3 ALe

N(ΣL−Σ2)

1 + 2
A2

∑Lc(N)
L=3

AL
L
eN(ΣL−Σ2)

, (34)

where we neglected the term L = 1 because we already know that Σ1 < Σ2 for all ε < 1.

We showed in the previous sections that at ε = 1 we have AL ≈ 1, and we are

going to assume that this result holds in the vicinity of ε = 1 as well. Moreover, for

ε ∼ 1 we also have from Eq. (28) that ΣL decreases exponentially with L, leading to the

conjecture that Σ2 is the largest complexity. Because AL ≈ 1 and ΣL ≈ 0 at large L,

the sums in Eq. (34) have leading terms that behave as

Lc(N)∑
L=3

ALe
N(ΣL−Σ2) ≈ Lc(N)e−NΣ2 ,

Lc(N)∑
L=3

AL
L
eN(ΣL−Σ2) ≈ log[Lc(N)]e−NΣ2 . (35)

Interestingly, if we assume that Lc(N, ε) ≈ Lc(N, ε = 1) ≈ eαN increases exponentially

fast as discussed above, the second sum is always exponentially small in N , while the

first sum can either vanish or diverge with N , leading, at leading order in N , to

L̄− 2 ≈ 1

A2

Lc(N, ε)e
−NΣ2(ε) ≈ eN [α−Σ2(ε)] (36)

This formula implies a transition from L̄ = 2 when α < Σ2(ε) to L̄→∞ when α > Σ2(ε),

thus confirming our numerical results for the transition in average cycle lengths [17, 16].
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The condition Σ2(εc) = α identifies the critical value of the parameter ε where the

transition to chaos takes place. This condition gives εc = 0.797 or ηc ≈ 0.393. Note

that curiously, this critical value coincides with the point where Eq. (28) indicates an

unphysical exponentially growing ΣL, suggesting a breakdown of perturbation theory.

Even though this analysis provides a strong evidence for the transition to chaos, the

hypothesis that our cutoff Lc does not change as a function of ε has to be challenged.

In fact, a refined analysis indicates that this hypothesis is actually not reliable (See

Appendix E). Nevertheless, our main findings remain correct apart from the precise

position of εc, that is estimated to be slightly larger. Specifically, we found εc = 0.835

(ηc = 0.321).

Our estimate of ηc turns out to be smaller in comparison to the value 0.5 obtained

from the average weighted by the size of the basins of attraction [16]. Since longer cycles

tend to have a larger basin, we find it natural to obtain a smaller value since the second

contribution in (34) is less weighted if the size of basin is not taken into account.

4. Discussion and conclusions

In this paper, we derived an analytical expression for the average number of limit cycles

of length L, called nL, of a neural network defined by Eq. (1), where the connectivity

matrix is a random fully connected matrix with asymmetry parameter η or ε, thus

generalizing the previous results of Tanaka and Edwards [14] for the case L = 1. We

have shown that nL ∼ (AL/L)eNΣL for N →∞, and provided an analytical expression

of ΣL. Unfortunately the resulting expression is difficult to evaluate numerically for

generic L. We have thus focused on the case L ≤ 3 and provided results for ΣL(ε) in

that case. We found that:

• Σ2 is the largest ΣL for L = 1, 2, 3 and for all ε, see figure 4;

• a perturbative expression of ΣL for η ∼ 1 − ε � 1 indicates that ΣL ∼ e−κL is a

decreasing function of L, Eq. (28), leading to the conjecture that Σ2 > ΣL, ∀L and

∀ε < 1;

• all the complexities ΣL = 0 and the prefactor AL ≈ 1 when ε = 1;

• for finite N , the maximum cycle length is cutoff at Lc(N, ε), where Lc(N, ε = 1) ∼
eαN with α ≈ 0.2.

From these results, we conjectured that there exists a critical value εc ≈ 0.797 (or

ηc ≈ 0.393) defined by Σ2(εc) = α, such that:

• for ε < εc or η > ηc, the average cycle length is dominated by L = 2, which

correponds to the largest complexity Σ2;

• for ε > εc or η < ηc, the largest complexity is still Σ2, but the cutoff Lc(N) diverges

fast enough that the sum of all cycles with 2 < L < Lc(N) is larger than the

number of cycles with L = 2, leading to a divergence of the average cycle length.
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Furthermore, we found that for ε = 1, the dominant cycles of length L are

composed by uncorrelated configurations, which supports the correctness of the annealed

approximation adopted in [29, 26].

Our analysis focused only on the number of cycles, and thus did not take into

account the size of the basins of attraction, and for this reason we cannot obtain

information on the transient time and on the second transition reported in [16]. This is

certainly a problem that deserves to be investigated in the future. Another interesting

direction for future work would be to repeat our calculations in the case of finite

connectivity random matrices, using the cavity method.
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Appendix A. Evaluation of Eq.(10)

In this appendix, we present the detailed steps for evaluating ΣP
L defined in (10). We

first compute the two lowest-order terms that together determine both ΣP
L and APL as

defined in (8) for a Gaussian distribution. This result will then be extended in the

following subsection to general distribution with non-zero fourth cumulant.

Appendix A.1. Gaussian case

First of all, we present a useful integral representation for the partition function ZL
defined in (5). To this end, it is convenient to employ the Fourier representation of a

theta function:

θ(x) =

∫ ∞
−∞

dλ

2π

eIλx

Iλ+ ε
=

∫ ∞
−∞

dλ

2π

∫ ∞
0

dφ eIλ(x−φ) , (A.1)

(where ε → 0+) and we define Dλ = dλ
2π(Iλ+ε)

. By definition of θ-function, it should

be invariant under any scalings of the form x → Ax for positive A. In fact, it can be

also checked through any of the above representations for example by taking the joint

scaling λ→ Aλ, φ→ φ/A. We will shortly exploit this property to reduce the number

of free parameters.

Applying this integral representation to each of the theta function appearing in (4),

the partition function now takes the form:

ZP
L = TrPλ,σ e

∑
i,j,t Iλi(t)σi(t+1)Jijσj(t)

= TrPλ,σ e
∑
i>j,t ISij(1− ε

2)[λi(t)σi(t+1)σj(t)+i↔j]e+IAij
ε
2

[λi(t)σi(t+1)σj(t)−i↔j] (A.2)
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where i ↔ j denotes the preceding term with i and j exchanged. The trace TrPλ,σ
is introduced as a shortcut notation for integrations and summations with respect to

variables λi and σi with appropriate weights, i.e.,

TrPλ,σ (...) =
∑
σ

∫ ∏
t,i

dλi(t)

2π(Iλi(t) + ε)
(...). (A.3)

As a next step, we proceed to compute the disordered average of ZP
L . Specifically,

we want to find the expression for FL as given by the following equation :

ZP
L ≡ TrPλ,σ e

NFL . (A.4)

For each independent random variable X, which is either Sij or Aij, the corresponding

term is the average of the form eiXm for a suitable choice of m. This expression is nothing

but the characteristic function, which is then e−
J2m2

2 for the Gaussian distribution. Using

these results for each Sij and Aij yields

NFL =−
∑
i<j

J2

2

(
1− ε

2

)2
(∑

t

λi(t)σi(t+ 1)σj(t) + i↔ j

)2

−
∑
i<j

J2

2

( ε
2

)2
(∑

t

λi(t)σi(t+ 1)σj(t)− i↔ j

)2

. (A.5)

In order to study the asymptotic behavior of ZP
L , it is desirable to rescale FL such that

it remains to be of O(1). This can be achieved by using the invariance of θ-function,

namely, we employ a transformation λi(t)→
√

2Cε
J
√
N
λi(t), where Cε is an arbitrary constant

which will be chosen later. Expanding the squared terms above, we thus have

FL =
∑
i<j

Cε
N2

[(
1− ε

2

)2
(∑

t

Iλi(t)σi(t+ 1)σj(t) + i↔ j

)2

+
( ε

2

)2
(∑

t

Iλi(t)σi(t+ 1)σj(t)− i↔ j

)2 ]
(A.6)
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which is then expanded to

FL =− 1

2N2

∑
i 6=j

{∑
t,s

λi(t)σi(t+ 1)σj(t)λi(s)σi(s+ 1)σj(s)

+ η
∑
t,s

λi(t)σi(t+ 1)σj(t)λj(s)σj(s+ 1)σi(s)

}

=− 1

2N2

∑
i,j

{∑
t,s

λi(t)σi(t+ 1)σj(t)λi(s)σi(s+ 1)σj(s)

+ η
∑
t,s

λi(t)σi(t+ 1)σj(t)λj(s)σj(s+ 1)σi(s)

}

+
1

2N2
(1 + η)

∑
i

{∑
t,s

λi(t)σi(t+ 1)σi(t)λi(s)σi(s+ 1)σi(s)

}
, (A.7)

where η = (1− ε)/(1− ε+ ε2/2) in (3) and we have chosen Cε = 1/(2− 2ε+ ε2).

Now, the equation can be factored into terms depending only on a single index i;

introducing a set of variables

R(t, s) = − 1

N

∑
i

λi(t)σi(t+ 1)λi(s)σi(s+ 1)

Q(t, s) =
1

N

∑
i

σi(t)σi(s)

S(t, s) =
1

N

∑
i

Iλi(t)σi(t+ 1)σi(s)

U(t, s) =
1

N

∑
i

λi(t)σi(t+ 1)σi(t)λi(s)σi(s+ 1)σi(s), (A.8)

the terms depending on both indices i, j are completely decoupled:

FL = F (0)
L +

1

N
F (1)
L =

1

2

∑
t,s

(
R(t, s)Q(t, s) + ηS(t, s)S(s, t)

)
+

1 + η

2N

∑
t,s

U(t, s).

(A.9)

So far, we have rewritten FL as a function of the newly introduced variables in

(A.8). These relations can be implicitly imposed by employing a set of delta functions.

For example, for each variable Q(t, s) we introduce a trivial identity as a double integral

1 =
N

2π

∫
Q(t,s)Q̂(t,s)

dQ(t, s)dQ̂(t, s)eINQ̂(t,s)(Q(t,s)e−
∑
i σi(t)σi(s)). (A.10)

Before writing a complete expression that will be unmanageably large, let us make a

couple of simplifications.
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After the substitutions, the asymptotic behavior of the remaining integrals are

evaluated via the saddle point method. Since U(t, s) appears in the next-to-leading

order O(N−1), the exponential rate ΣP
L cannot be perturbed by the presence of this

term. Thus, we must have

Û(t, s)∗ = 0. (A.11)

Additionally, we can reduce the number of delta functions by observing that FL
in (A.9) is mostly linear in certain variables. Removing redundant variables through

relations such as IR(t, s) = Q̂(t, s) or Q(t, s) = Q(s, t), we find

ZP
L =

(
Ni

2π

)L(L−1)
2
(
Ni

2π

)L2

2
∫
R,Q,S

eNΣPLeF
(1)
L , (A.12)

where ΣP
L is given in (10). The multiplicative prefactor eF

(1)
L is then evaluated by

computing

U(t, s) = 〈λ(t)σ(t+ 1)σ(t)λ(s)σ(s+ 1)σ(s)〉P (A.13)

where

〈· · ·〉P =
1

ZPL
trPλ,σ e

− 1
2

∑
t λ(t)2e−

∑
t>sQ(t,s)λ(t)σ(t+1)λ(s)σ(s+1)

e
∑
t>sR(t,s)σ(t)σ(s)+

∑
t,s ηS(t,s)Iλ(t)σ(t+1)σ(s) (· · ·) . (A.14)

Finally, after determining the saddle points of Q(t, s), R(t, s) for t > s and S(t, s),

we arrive at

ZP
L =

eNΣPLeF
(1)
L√

| detH({Q(t, s), R(t, s), S(t, s)})|
, (A.15)

where H({Q(t, s), R(t, s), S(t, s)} is the Hessian matrix constructed at the saddle point.

Appendix A.2. General case

As a next step, let us consider a general case for symmetric distributions with non-zero

fourth-order cumulant. Previously, we have pointed out that each disorder average is of

the form eiXm. As we consider a general case, this term allows a cumulant expansion of

the form

log eiXm = −J2m
2

2
+
κ

4
m4 +O(m6), (A.16)

where we did not take a conventional denominator 4! but rather use 4 for simplicity.

As previously argued in the case of a Gaussian distribution, the same scaling λi(t) →√
2Cε

J
√
N
λi(t) is needed to make FL of O(1). Thus, the higher order contributions due to

the presence of κ appears only as corrections of order O(N−1).
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Now, let us evaluate the additional term explicitly:

G =
∑
i<j

C2
ε κ

J4N2

[(
1− ε

2

)4
(∑

t

Iλi(t)σi(t+ 1)σj(t) + i↔ j

)4

+
( ε

2

)4
(∑

t

Iλi(t)σi(t+ 1)σj(t)− i↔ j

)4 ]
. (A.17)

Similarly to the Gaussian case, G can be written in a succinct way by introducing

a set of variables

Vx(t1, t2, t3, t4) =
1

N

∑
i

(
x∏
g=1

λi(tg)σi(tg + 1)

)(
4∏

g=x+1

σi(tg)

)
(A.18)

for x = 0, 1, · · · , 4. Thus, G reads

NG =
C2
ε κ

J4
[X1 +X2 +X3] +O(N−2), (A.19)

where

X1 =

((
1− ε

2

)4

+
ε4

16

) ∑
t1,t2,t3,t4

V4(t1, t2, t3, t4)V0(t1, t2, t3, t4), (A.20)

X2 =4

((
1− ε

2

)4

− ε4

16

) ∑
t1,t2,t3,t4

V3(t1, t2, t3, t4)V1(t4, t1, t2, t3), (A.21)

and

X3 =3

((
1− ε

2

)4

+
ε4

16

) ∑
t1,t2,t3,t4

V2(t1, t2, t3, t4)V2(t3, t4, t1, t2). (A.22)

Thus, once the saddle point of ΣP
L in (10) is determined, we now include the contribution

of G to the partition function (A.15):

ZP
L =

eNΣLeH√
| detH({Q(t, s), R(t, s), S(t, s)})|

, (A.23)

where H = F (1)
L + G and Vx(t1, t2, t3, t4)’s in G are determined via

Vx(t1, t2, t3, t4) =

〈(
x∏
g=1

λ(tg)σ(tg + 1)

)(
4∏

g=x+1

σ(tg)

)〉
P

. (A.24)
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Appendix B. Perturbative approach for ZP
L around ε = 1

To understand ΣP
L close to ε = 1, we applied perturbation theory, in which the variables

appear as a power series of η. To this end, we need to evaluate a huge number of

integrals as a result of the higher-order expansions in (10). Nevertheless, this can be

carried out systematically exploiting the observation that every term appearing in the

expansion of logZPL should always be of the following factorized form〈∏
t

σ(t)e(t)λ(t)f(t)

〉
P

≡ trPλ,σ e
− 1

2

∑
t λ(t)2

∏
t

σ(t)n1(t)λ(t)n2(t), (B.1)

for some positive integers n1(t) and n2(t). By solving the integrals one by one for each

t, it is then easy to verify that this integral is nonzero only if all the n1(t)’s are even

and n2(t)’s are either odd or zero. The second condition is established by the following

identity:

Gk ≡
∫ ∞
−∞

dλ

2π

∫ ∞
0

dφ e−Iφλe−
1
2
λ2λk =

i2
k
2
−2
(
(−1)k − 1

)
Γ
(
k
2

)
π

(B.2)

for arbitrary positive integers k.

For the symmetric boundary condition P = 1, by the definition of cycles, translation

invariance holds. As a result, the number of independent variables can be dramatically

decreased. Here, we assume that the saddle point in the vicinity of η = 0 allows the

following expansion:

X(t) = X0(t) + ηX1(t) + η2X2(t) + · · · , (B.3)

where X is any of {Q,R, S}.
Now, we briefly sketch how to determine the first-order correction. By expanding

(10) up to O(η), we are led to compute the following averages:

η

〈∑
t>s

Q1(|t− s|)Iλ(t)σ(t+ 1)Iλ(s)σ(s+ 1) +
∑
t>s

R1(|t− s|)σ(t)σ(s)+ (B.4)

∑
t,s

S0(t− s)Iλ(t)σ(t+ 1)σ(s)

〉
+

+ o(η) (B.5)

Using the criterion specified below (B.1), it is easy to show that the first two terms

vanish for every pair of t > s. Similarly, one can see that the third term does not vanish

only when t+ 1 = s. Thus, collecting all the nonzero contributions in (10), we have the

following

(Σ+
L)1 =

1

2

∑
t,s

S(s− t)S(t− s) +

√
2

π
LS(−1) +O(η). (B.6)
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Thus, the corresponding saddle point from the above action is readily found as S0(t) =√
2
π
δ1, which then implies Σ+

1 = 1
π
η + O(η2), Σ+

2 = 2
π
η + O(η2) and Σ+

L = O(η2) for

L > 2.

Repeating the procedure up to fourth-order coefficients in η, the series is found to

be

Q(t) =
2

π − 2
(δt,2(1 + δL,4))η +

8(π − 1)

(π − 2)2π
(δt,L−4(1 + δL,8))η2 +O(η3)

R(t) = O(η3)

S(t) =

√
2

π
δt,1 +

2
√

2

π3/2
δt,3η +O(η2). (B.7)

Due to the lack of translation symmetry for P = −1, the perturbative analysis

is more involved. Instead of considering one-time variable, we need to keep two time

quantities in (10). Apart from that, we can proceed similarly to the case of P = 1.

Within our computational capacity, we managed to perform 2nd order perturbation

theory.

Appendix C. Computing ZP
L at ε = 1

At ε = 1, the saddle point analysis for (10) becomes relatively straightforward. Since

S(t, s) does not appear in the action, only the other two matrices Q(t, s) and R(t, s)

should be extremized. Namely, the partition function (A.12) for η = 0 reads

ZP
L =

(
Ni

2π

)L(L−1)
2
∫
R,Q

eNΣPLeF
(1)
L +G, (C.1)

where

ΣP
L = −

∑
t>s

R(t, s)Q(t, s) + log
(
ZPL
)
, (C.2)

and

ZPL = trPλ,σ e
− 1

2

∑
t λ(t)2e−

∑
t>sQ(t,s)λ(t)σ(t+1)λ(s)σ(s+1)e+

∑
t>sR(t,s)σ(t)σ(s). (C.3)

From this, it is straightforward to see that there exists a saddle point corresponding to

R(t, s) = 0 and Q(t, s) = 0 for all t > s.

At this saddle point, the integrals for 〈· · ·〉P defined in (A.14) is simplified to

〈· · ·〉P = trPλ,σ e
− 1

2

∑
t λ(t)2 (· · ·) , (C.4)

where we have used the relation ZPL = 1 at Q(t, s) = R(t, s) = 0.

First, let us determine U(t, s), Vx(t1, t2, t3, t4) using (A.13) and (A.24). For U(t, s),

we need to evaluate the following integral:

U(t, s) = U(s, t) = 〈λ(t)σ(t+ 1)σ(t)λ(s)σ(s+ 1)σ(s)〉 (C.5)
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In order to have a nonzero contribution, the spin variables should be of even power,

while the lambda variables of odd power. This can be achieved only when L = 2 and

t = s+ 1. Using the identity (B.2), U(s+ 1, s) is evaluated to −2P
π
δs,s+2. Similarly, one

can show that

X1 = 0, X2 = 0 (C.6)

and

X3 =
6

π2
(δL,2 + 2PδL,4) . (C.7)

Plugging these solutions into (A.19), (30) is derived. Surprisingly, we find that F (1)
L and

G are mostly zero except for special cases L = 2 and L = 4.

Next, let us compute the determinant of Hessian matrix at the saddle point. For

later convenience, we introduce Q̂(t, s) = iR(t, s). Expanding logZPL up to second order,

we find that this step is equivalent to performing the following Gaussian integral:

MP (L) =

∫ ∏
t>s

[
dQ(t, s)dQ̂(t, s)

2π

]
e
∑
t>s(−

Q̂(t,s)2

2
+iQ̂(t,s)Q(t,s)− 2

π
iQ̂(t,s)Q(t−1,s−1)P δt,0 )

=

∫ ∏
t>s

[
dQ(t, s)√

2π

]
exp

[∑
t>s

−
(
Q(t, s)− 2

π
Q(t− 1, s− 1)P δt,0

)2

2

]
. (C.8)

The last equation implies that the spin configurations only interact with others having

the same two-time distance |t− s|. Thus, for each distance d = |t− s|, this integrand is

simply a Gaussian integral on a linear chain. Specifically, they form L−1
2

L-chains if L

is odd, while L−2
2

L-chains and one L/2-chain.

For P = 1, the couplings between two adjacent nodes are uniform, and thus the

corresponding quadratic form is circulant. Using the well-known results in the theory

of circulant matrices, we find that the integral on the linear chain with length L is

evaluated to

CL =
πL

πL − 2L
, (C.9)

which results in

M+(L) =

{
(CL)

L−1
2 , for odd L

(CL)
L−2
2 CL/2, for even L

(C.10)

For P = −1, it turns out that the integral for each L chain gives the same result

as the one for P = 1. The only difference comes from the chain with length L/2 if L

is even, in which case, there is one positive coupling constant instead of a negative one.

For this case, one can compute the integral of the form

DL =
πL

πL + 2L
, (C.11)
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Figure C1. Simulation results for APL for various L = 10, 12, 14, · · · , 20. A Gaussian

distribution is used to generate coupling matrices. The data points (small symbols)

seem to approach the theoretical value, which is marked by the black large dots with

notable exceptions for L = 2 or L = 4.

and thus

M−(L) =

{
(CL)

L−1
2 , for odd L

(CL)
L−2
2 DL/2, for even L

. (C.12)

Finally, inserting both contributions into (A.15) completes our analysis:

ZL = MP (L) exp(H), (C.13)

where H = F (1)
L + G.

In order to corroborate our results, we have performed an extensive simulation to

determine APL for system sizes up to 20. In Figure C1, we show the values of APL for

different sizes of L. This shows that simulation data are mildly scattered around the

theoretical values. In some cases, we also observe a clear trend with the data converging

to the theoretical point. However, this is not always true. Especially for P = 1 at

L = 4, the simulation results clearly overshoot the theoretically predicted point (black

dot). We attribute this deviation to a finite size effect. In fact, we will provide a strong

evidence to support this claim in Appendix D by directly computing AP2 through an

exact integration.

Appendix D. Direct integration of ZP
2 at ε = 1

In Appendix C, we have observed some disagreements between simulation data and

the theoretical predictions for A+
L especially for L = 2 and L = 4. Here, our direct

integration will show that this discrepancy is simply attributed to a finite size effect in

the case of L = 2. For L = 4, it is difficult to repeat the same procedure. Nevertheless,

we believe the same scenario should apply as well.

The choice of Gaussian distribution makes the analysis easier. In this case, (C.1)

is exact since no truncation in the cumulant expansion has been made. Recovering the
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exact integral domains, the partition function reads

ZP
2 =AP2 =

(
N

2π

)∫ i∞

−i∞

∫ N−2
N

−N−2
N

dRdQ exp
[
−NQR +N logZP2

]
, (D.1)

where

ZP2 =
∑
σ=±1

Φ2

(
PN

N − 1

(
Qσ − 1

N

))
eRσ (D.2)

with Φ2(x) = π+2 sin−1(x)
2π

. This function Φ2(x) corresponds to two times the probability

that two correlated Gaussian random variables with correlation parameter x are both

positive. Note that the integral domain of Q should be now considered as a discrete

sum rather than an integral. Also, we have excluded the trivial case by only considering(
−N−2

N
, N−2

N

)
. Finally, expanding the term (ZP2 )N using the binomial theorem and

performing the delta-function integrals with respect to R, we arrive at

ZP
2 =

N−1∑
k=1

(
N

k

)
Φ2

(
−P (−2k +N + 1)

N − 1

)N−k
Φ2

(
−P (2k −N + 1)

N − 1

)k
. (D.3)

In order to study the same problem for arbitrary distributions, we need to come

up with a different approach. This relies on the fact that our formalism is based on

truncation of cumulant expansion. Surprisingly, we can construct a powerful formalism

that works for arbitrary distributions for the case of ε = 1.

Now, let us compute the number of cycles of period 2, i.e., ZP
2 , using a new

approach. By symmetry, we may focus on the configuration with σi = 1 for all

i = 1, ..., N . At the next time step, we can imagine that the configuration will evolve

to another with k positive σi’s and (N − k) negative σi’s for some k. Certainly, there

are
(
N
k

)
different configurations corresponding to such event. As each choice gives an

identical contribution, let us reorder the spin indices such that first k spins are positive

while N − k spins are negative. The case k = 0 and k = N are trivial and they appear

with weight 1. The probability will depend if the spin at the first step is positive or

negative. Let us call these probabilities UP
± (k). With these definitions, the mean number

of cycles should satisfy the following formula

ZP
2 =

∑
k

(
N

k

)(
UP

+ (k)
)k (

UP
− (k)

)N−k
(D.4)

Now, let us determine UP
+ (k) for neurons 1 ≤ i ≤ k. For each neuron i, there is

an associated quenched synaptic coupling vector Jij with Jii = 0. According to our

conditioning, the coupling vector should satisfy(
k∑
j=1

Jij +
k+1∑
j=N

Jij

)
> 0, (D.5)
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for 1 ≤ i ≤ k. Moreover, the condition for the path being closed can be written as(
k∑
j=1

Jij −
k+1∑
j=N

Jij

)
P > 0. (D.6)

Luckily, both conditions can be written only in terms of two quantities, i.e., a ≡
∑k

j=1 Jij

and b ≡
∑k+1

j=N Jij and their probability densities are given by the (k − 1)-fold (due to

the condition Jii = 0) and (N − k)-fold convolution of the coupling distribution P(J)

‡. Putting them together, one can find

UP
+ (k) =

∫
dadbPk−1(a)PN−k(b)θ(P (a− b))θ(a+ b)∫

dadbPk−1(a)PN−k(b)θ(a+ b)

= 2

∫
dadbPk−1(a)PN−k(b)θ(P (a− b))θ(a+ b), (D.7)

where Px(a) refers to the x-fold convolution of P(J) and the denominator of the first

equation is introduced due to the condition on being a positive bit. Along the same

line, one can easily find

UP
− (k) = 2

∫
dadbPk(a)PN−k−1(b)θ(P (a− b))θ(−a− b). (D.8)

Since UP
+ (k) and UP

− (k) can be determined for any distributions, the exact solution (D.4)

can be obtained.

Now, let us consider two interesting special cases, i.e., i) a Gaussian distribution and

ii) a binary distribution. For the Gaussian distribution, one can easily check that Eqs.

(D.7) and (D.8) correspond to two times the probability that both elements of a random

vector drawn from a bivariate Gaussian with a certain correlation ρ± are positive, where

the correlations are given by ρ+ = P 2k−N−1
N−1

and ρ− = P −2k+N−1
N−1

, respectively. Note

that this reproduces exactly the formula we obtained using a different approach (D.3).

Let us focus our attention to the binary distribution. In this case, Px(a) corresponds

to a binomial distribution. Expanding Px(a) as a binomial summation, we arrive at

UP
+ (k) =

2

2N−1

k−1∑
a=0

N−k∑
b=0

(
k − 1

a

)(
N − k
b

)
θ(2(a− b) +N − 2k + 1)θ(2(a+ b)− (N − 1))

(D.9)

and

UP
− (k) =

2

2N−1

k∑
a=0

N−k−1∑
b=0

(
k

a

)(
N − k − 1

b

)
θ(2(a−b)+N−2k−1)θ(−2(a+b)+(N−1)).

(D.10)

In Figure D1 (a), we plotted the exact solutions (open symbols) as predicted by

(D.4) as well as the results of numerical simulations (crosses) for the case of Gaussian

‡ Note that this distribution is not identical to P (x) which is a PDF of Sij and Aij .
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Figure D1. (a) Estimations of AP2 from the direct integration in (D.4) (empty

symbols) and the numerical simulations for N < 20 (crosses). The black dashed line

and the dotted line indicate the asymptotic values π
π−2e

−2/π and π
π+2e

2/π, respectively.

For P = +1, the data points clearly overshoot the theoretical prediction. (b) Double-

logarithmic plot of AP2 − AP2 (∞) as a function of N . As predicted by our formalism,

both curves decays as N−1, corroborating the validity of our theoretical frameworks.

(c) and (d) Same procedure is repeated for the binary distribution using (D.4), (D.9)

and (D.10).

couplings. Since the numerical errors are negligible compared to the size of the symbols,

the error bars are omitted. What is surprising especially for P = 1 is that the data

points, as a function of N , overshoots the asymptotic result A+
2 (N = ∞) = π

π−2
e−2/π

around N ' 25. However, it turns out that it is simply because of a strong finite size

correction. To illustrate this point, we have drawn the difference between A+
2 and its

asymptotic value A+
2 (N = ∞) (See Figure D1 (b)). The figure shows that both errors

for P = ± decay as N−1 as predicted by our formalism. In Figure D1 (c) and (d),

we repeat the same analysis for the binary distribution, in which we found the same

pattern.

To describe the strong finite size correction, one may extract the 1/L-correction

from the exact solution (D.4) of the form A2 = A
(0)
2 + A

(1)
2 /N + O(1/N2). We found

that A
(1)
2 /A

(0)
2 = 4(4+(π−2)(π−1)π)

(π−2)3π2 ' 3.18. Thus, to obtain a reliable estimate of the

asymptotic value of A2 within few percents of error, one needs to increase the system

size to N ∼ O(102). In Figure D1, one can indeed see the reasonable convergence in the

range of N ∼ O(102).
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Figure E1. Mean cycles length, L̄, as a function of ε for the case N = 16. Red

dots: numerical simulations. Green line: Equation (36) with α kept fixed at its ε=1

value, α=0.21. Red line: Equation (E.1) with α(ε) determined from the exponential

N dependence of the cut-off Lc(ε,N) (see Figure E2).

Appendix E. More on the average cycle length

The derived value for εc strongly depends on the assumption that α does not depend

on ε. To check this hypothesis, we need a robust derivation of these quantities, which

relies on a good determination of Lc.

Given the explicit expression for nL (see Eq. (31)) and the N dependence of

Lc(N) = eαN+β, with α and β obtained by fits such as those ones exemplified in the

insets of the right panel of figures 6 and 7, the quantity L̄ (Eq. (34)) can be estimated

by approximating the sum with integrals and keeping the leading and sub-leading terms

in LC as follows:

L̄ =
2 + [Γ(3

2
)Lc − 3]e−Σ2N

1 + [3
2

log(Lc
3

)− γ]e−Σ2N
. (E.1)

At ε=1, where Σ2=0, α=0.21 and β=0.93, this equation for the case N=16 gives L̄=12.2,

which compares favourably with the simulation value 12.1.

If we now keep the parameters α and β fixed at all ε, we can compute the ε

dependence of L̄. As an example, this quantity is reported for N=16 as a green line in

Figure E1, and it clearly fails to satisfactorily represent the whole ε dependence of L̄ as

obtained by the numerical simulation (full red dots). This is a clear indication of the



On the number of limit cycles in asymmetric neural networks 33

100 101 102

L

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

n
L

0 =0.75

nL = 10!4

N = 10
N = 11
N = 12
N = 13
N = 14
N = 15

10-2 10-1 100

L=LC(N )

10-8

10-6

10-4

10-2

100

102

104

n
L
L

C

9 10 11 12 13 14 15 16

N

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

lo
g

(L
c(

N
))

9 0:13N + 2:6

Figure E2. Left panel: The number of cycles of length L, nL, is reported as a function

of L for different N values and, as an example, for the case ε = 0.75. The large L

portion of the data recall the behavior found for ε = 1, with a clear cutoff, while at

small L a second L-scale appears. The value of the cut-off, Lc(ε,N), is determined

by the condition nL = 10−4. Right panel: the scaled quantity nLLc is reported a s a

function of Lc/L. A good collapse is observed at large L values. The inset shows the N

dependence of Lc, demonstrating the validity of the relation Lc ≈ exp(α(ε)N + β(ε)).

α(N) turns out to decrease on decreasing ε.

failure of the hypothesis that Lc does not depend on ε.

To determine the ε dependence of α and β, we simulated nL(ε,N), reported at

ε=0.75 in Figure E2 as an example. We notice that i) for ε < 1 the function xe−x
3/2

no longer describes the data; ii) beside Lc, a second, shorter “scale” appears in the

description of nL; iii) a cut off Lc can still be introduced. As we cannot rely on the fit

for the determination of Lc, we determine this quantity from the condition nL=10−4.

This yields Lc values up to an unknown proportionality factor, which is fixed at all ε by

using the known value at ε=1. As a consistency check, the obtained values for Lc(ε,N)

are entered in Eq. (31) and the result is reported in Figure E1 as a full red line for the

case N = 16. As we can see, the agreement is satisfactory. Finally, from the determined

α(ε), using the condition Σ2(εc) = α(εc), we found εc = 0.835 (ηc = 0.321), a value that

is slightly higher (lower) than the one found with the assumption α(ε) = α(ε = 1).
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