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Abstract

Recent work on optimization problems in random link models has
verified several conjectures originating in statistical physics and the
replica and cavity methods. In particular the numerical value 2.0415
for the limit length of a traveling salesman tour in a complete graph
with uniform [0, 1] edge lengths has been established.

In this paper we show that the crucial integral equation obtained
with the cavity method has a unique solution, and that the limit
ground state energy obtained from this solution agrees with the rig-
orously derived value. Moreover, the method by which we establish
uniqueness of the solution turns out to yield a new completely rigorous
derivation of the limit.

1 Introduction

In [11], the minimum matching and traveling salesman problems were studied
in the pseudo-dimension dmean field (or random link) model for d ≥ 1. It was
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shown that certain predictions of [4, 5, 6, 7, 8] based on the replica method
are indeed correct. Here we show that the case d = 1 allows stronger and
more detailed conclusions, and we clarify the relation to the earlier results in
[10].

The simplest random model corresponding to d = 1 is the complete graph
Kn on n vertices, with independent lengths from uniform distribution on the
interval [0, 1] associated to the edges. We consider only this model, although
the results, ultimately based on the local tree structure of the relatively short
edges, remain valid in a number of similar models.

The minimum matching problem asks for a set of n/2 edges of minimum
total length under the constraint that each vertex must be incident to exactly
one edge. This requires n to be even, but for odd n we may allow one vertex
to be left out of the pairing. It is known that the asymptotic behavior of
the optimum solution remains the same even if we only require n/2 − O(1)
disjoint edges, in other words if we allow any fixed number of vertices to
remain unmatched.

The traveling salesman problem (TSP) asks for a tour of minimum total
length visiting every vertex exactly once. Since the triangle inequality need
not hold, there will in general be shorter walks visiting each vertex and
returning to the starting point if the same vertex can be visited several times.
If such walks are permitted, one may or may not allow the same edge to be
traversed more than once. Clearly there are several possible interpretations
of the TSP, but we study the strictest one in which we ask for a cycle of n
edges.

The two problems were studied with the replica and cavity methods in
[4, 5, 6, 7, 8], and among the results were predictions about the large n limit
of the total length of the solution, or in physical language the ground state
energy in the thermodynamical limit. The idea is that as n→∞, the length
Ln of the optimal solution, which is a random quantity for each n, converges
to a non-random limit L?. One may conjecture on fairly general grounds that
E(Ln)→ L? and that Ln is “self-averaging” so that Ln → L? in probability.
Remarkably, methods of physics allow for precise calculation of the limits
L?M and L?TSP for matching and TSP respectively.

We can also define the k-factor problem where we ask for a set of kn/2
edges of minimum total length under the constraint that each vertex must
be incident to exactly k edges. Clearly k = 1 is the matching problem,
and the case k = 2 is a relaxation of the TSP allowing multiple cycles. A
nontrivial result, implicit in the early physics literature and rigorously proved
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by A. Frieze [3], tells us that in the large n limit the length of the 2-factor
and of the TSP are the same. In principle the results presented here can
be generalized to the k-factor problem for generic k, but the computations
become less explicit.

1.1 The replica and cavity results

We briefly recall some of the results of [4, 5]. Both problems lead to cer-
tain integral equations for the so-called order parameter function. For the
matching problem the equation is

G(x) =

∫ ∞
−x

e−G(y) dy, (1)

and the ground state energy is given by

L?M =
1

2

∫ +∞

−∞
G(x)e−G(x) dx. (2)

For the TSP the equations take a similar form. The order parameter function
G has to satisfy

G(x) =

∫ ∞
−x

(1 +G(y))e−G(y) dy, (3)

and the ground state energy is

L?TSP =
1

2

∫ +∞

−∞
G(x)(1 +G(x))e−G(x) dx. (4)

Here we consider only the case r = 0 (in the notation of [4, 5]), corresponding
to d = 1 in [11].

The equation (1) corresponding to minimum matching has the explicit
solution G(x) = log(1 + ex), and the ground state energy is L?M = π2/12.
There does not seem to be an explicit solution to the analogous equation
(3) for the TSP, but in [4] a numerical solution led to L?TSP ≈ 2.0415, even
though there was no proof that (3) has a solution or that such a solution
must be unique.
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1.2 Rigorous results

The π2/12-limit for matching was established rigorously by David Aldous in
2001 [1, 2]. The method was related to the physics approach, and used the
solution to (1). A similar approach to the TSP was indicated in [2], but the
main obstacle at the time seems to have been that (3) was not known to have
a solution.

In [10] the limit L?TSP of the TSP was determined with a different method.
The result (conjectured in the technical report [9]) was

L?TSP =
1

2

∫ ∞
0

y dx, (5)

where y as a function of x is defined by y > 0 and(
1 +

x

2

)
e−x +

(
1 +

y

2

)
e−y = 1. (6)

This led to the question whether the numbers given by (4) and (5) are equal,
and to the hope that a solution to (3) could somehow be reverse-engineered
from (6).

2 Agreement on the TSP

The first new result of this paper is a proof that equation (3) has a unique
solution, and that the characterization of L?TSP by (4) agrees with (5).

Proposition 2.1. The integral equation (3) has a unique solution.

Proof. We introduce the auxiliary function T given by T (g) = (1 + g)e−g. It
follows from (3) that

d

dx
G(x) = T (G(−x)), (7)

and similarly
d

dx
G(−x) = −T (G(x)).

Hence
G′(x)T (G(x)) = G′(x)G′(−x) = G′(−x)T (G(−x)). (8)

Now let W be the primitive to T for which W (0) = 0, or explicitly,

W (g) = 2− 2e−g − ge−g.
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Then by (8),
d

dx
W (G(x)) +

d

dx
W (G(−x)) = 0.

HenceW (G(x))+W (G(−x)) is a constant, which has to be 2 by the boundary
conditions. After simplification, the equation is

(2 +G(x)) e−G(x) + (2 +G(−x)) e−G(−x) = 2. (9)

At this point the similarity to (6) becomes apparent. If we let Λ be the
function that maps x > 0 to the positive solution y to (6), then (9) says
that G(−x) = Λ(G(x)). In particular, G(0) ≈ 1.146 is the unique positive
solution to the equation

(2 +G(0))e−G(0) = 1.

Replacing G(−x) by Λ(G(x)) in (7), we obtain

G′(x) = T (Λ(G(x))),

or equivalently
G′(x)

T (Λ(G(x)))
= 1.

Although not as explicit as one would first hope, we have arrived at a
differential equation relating G′(x) to G(x) without involving G(−x). Inte-
grating, we obtain

x =

∫ G(x)

G(0)

dx

T (Λ(x))
. (10)

Since the integrand is positive and G(0) is known, G(x) is uniquely deter-
mined by (10). Conversely, it is clear that the function G defined by (10) is
a solution to (3).

Remarkably, the ground state limit L?TSP can be found in terms of Λ
directly from (9), without using the uniqueness of the solution.

Proposition 2.2. The two characterizations of L?TSP are consistent. In
other words, the right hand side of (4) is equal to the right hand side of (5).
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Proof. In view of (7), equation (4) can be written

1

2

∫ ∞
−∞

G(x)G′(−x) dx =
1

2

∫ ∞
−∞

G′(x)G(−x) dx =
1

2

∫ ∞
−∞

G′(x)Λ(G(x)) du

=
1

2

∫ ∞
0

Λ(t) dt, (11)

by the substitution t = G(x). This is the same thing as (5).

If instead we let T (g) = e−g, we obtain in the same way the limit L?M
for the matching problem. In that case the solution is explicit, with W (g) =
1− e−g and Λ(t) = − log(1− e−t).

3 Rigorizing the replica results

The proof that the results of [10] are in agreement with the replica and cavity
predictions is in itself satisfying as it shows that the inherently non-rigorous
approach from statistical mechanics indeed gives a correct result.

Even more interesting is that the trick that transformed the integral equa-
tion (3) into an ordinary differential equation can produce an entirely rigorous
proof of the TSP ground state limit independently of the results in [10] (in
view of the discussion of the TSP in [2] this is perhaps not that surprising).
We first consider the technically simpler minimum matching problem, and
later return to the TSP.

3.1 Rescaling and diluted relaxation

It is convenient at this point to scale up the edge-lengths by a factor n in
order to obtain a local limit of the random model. We therefore let the edge-
lengths be uniform on the interval [0, n], which means that the total length
of the minimum matching will be of order n.

We introduce another parameter λ and study the diluted relaxation of
minimum matching. This relaxation consists in allowing any partial matching
as a feasible solution, and letting the cost of a solution be the total length of
the edges in the matching plus a penalty of λ/2 for each unmatched vertex.

Clearly edges of length greater than λ cannot participate in the optimum
solution, since it is less costly to leave the two endpoints unmatched and
pay a penalty of 2 · λ/2 = λ. Therefore the diluted relaxation is essentially a
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problem on an Erdös-Rényi random graph (sometimes called a Poisson Bethe
lattice in the physics literature) where edges are present with probability λ/n.

It was shown in [11] (and in a different setting already in [1]) that in order
to find the limit L?M of the minimum length of a perfect matching, it suffices
to study the large n limit of the diluted matching problem for fixed λ, and
finally let λ → ∞. Therefore we now leave the perfect matching problem
and regard it only as a large λ limit of the diluted problem.

3.2 An exploration game

A two-person perfect information zero-sum game called Exploration was in-
troduced in [11]. The two players Alice and Bob take turns choosing the
edges of a self-avoiding walk starting from a preassigned vertex of a graph
with lengths associated to the edges. At every move, the moving player pays
an amount equal to the length of the chosen edge to the opponent. Before
each move, the moving player also has the option of terminating the game
and paying a penalty of λ/2 to the opponent. Each player is trying to max-
imize their total payoff (what they receive minus what they pay throughout
the game).

As was shown in [11], Exploration is connected to the diluted matching
problem:

Proposition 3.1. In a finite graph, Alice’s optimal first move is to move
along the edge incident to the starting point in the solution to the diluted
matching problem if there is such an edge, and otherwise to pay λ/2 to Bob
and terminate the game immediately.

Hence in order to find the asymptotic total cost of the minimum diluted
matching, we can study the probability distribution of the cost of Alice’s first
move in Exploration starting from an arbitrary vertex.

3.3 Tree approximation

The Poisson Weighted Infinite Tree (PWIT) was introduced by David Aldous
[1, 2]. The PWIT is an infinite rooted tree where each vertex has a countably
infinite sequence of children. The edges to the children have lengths given
by a rate 1 Poissson point process on the positive real numbers (independent
processes for all vertices).
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The relevance of the PWIT in this context comes from the fact that it is
a local limit of Kn (under the rescaled edge lengths). In [1, 2] a concept of
weak limit was used, but the relaxation to finite λ allows us to work with a
stronger and simpler form of local limit.

If k is a positive integer, we let the (k, λ)-neighborhood of a vertex v in a
graph be the subgraph that can be reached by walking at most k steps from v
along edges of length at most λ. We now compare the (k, λ)-neighborhood of
the root of the PWIT with the (k, λ)-neighborhood of an arbitrarily chosen
vertex v of the complete graph Kn.

For fixed k and λ, an event E in Kn is (k, λ)-invariant if it depends only
on the isomorphism type of the (k, λ)-neighborhood of v. For such an event
E we can ask for the probability PPWIT (E) of the corresponding event on
the PWIT, with the root corresponding to v. We want to compare it to the
probability Pn(E) of E on Kn.

Proposition 3.2. For fixed k, λ and E, Pn(E)→ PPWIT (E) as n→∞.

This means that the large n asymptotic probability of an event which
depends only on the neighborhood of a particular vertex in Kn can be found
by instead studying the corresponding event on the PWIT.

3.4 Exploration on the PWIT

In view of Propositions 3.1 and 3.2, it makes sense to study Exploration
played on the PWIT. The difficulty is that Proposition 3.2 concerns only
the first k levels of the PWIT, while there is no bound on the number of
moves in Exploration. As was shown in [11], this difficulty can be handled
by introducing a concept of valuation.

By the λ-cluster, we mean the component of the root of the PWIT in the
subgraph containing only edges of length at most λ. For the reader familiar
with Galton-Watson processes, we remark that the underlying graph of the
λ-cluster is a Poisson(λ) Galton-Watson process.

A function f from the vertices of the λ-cluster to the interval [−λ/2, λ/2]
is called a valuation if for every v in the λ-cluster it satisfies

f(v) = min(λ/2, li − f(vi)), (12)

where the minimum is taken over λ/2 and the children vi of v, and li is the
length of the edge from v to vi. A valuation can be thought of as a consistent
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way for a player to assign a value to having moved to a particular vertex. The
value should represent the total future payoff to the player who just moved to
the vertex. Indeed, if the λ-cluster is finite, there is only one valuation, and
it is given by the total future payoff under optimal play. Since the λ-cluster
can be infinite, there are potentially several different valuations.

There is a simple way of constructing a valuation. For integer k ≥ 0 we
can construct a partial valuation by assigning arbitrary values to the vertices
at distance k from the root, and then propagating these values towards the
root according to (12). We define partial valuations f

(k)
A and f

(k)
B by assigning

values at distance k in favor of Alice and Bob respectively. More precisely, if
k is even, f

(k)
A (v) = −θ/2 and f

(k)
B (v) = θ/2, while if k is odd, f

(k)
A (v) = θ/2

and f
(k)
B (v) = −θ/2. As k → ∞, f

(k)
B converges pointwise to a (complete)

valuation fB. Similarly f
(k)
A converges to a valuation fA.

As is shown in [11], the justification of the replica symmetric predictions
for the matching problem reduces to showing that

E
[
f
(k)
B (root)− f (k)

A (root)
]
→ 0 (13)

as k → ∞. In [11], this is proved for the more general pseudo-dimension
d ≥ 1 case. The method is slightly non-constructive and consists in showing
that there is only one (complete) valuation f . Since f

(k)
A and f

(k)
B both have

to converge pointwise to f as k → ∞, (13) then follows from the principle
of monotone convergence. Here we show that the case d = 1 allows a more
direct proof of (13).

Theorem 3.3.

E
[
f
(k)
B (root)− f (k)

A (root)
]
≤ λ · eλ

k + 1
.

Proof. We let
Ak(x) = P (f

(k)
A (root) ≥ x)

and
Bk(x) = P (f

(k)
B (root) ≥ x).

Clearly Ak(x) and Bk(x) are equal to 1 for x < −λ/2 and equal to 0 for
x > λ/2. They are decreasing with a single discontinuity at x = λ/2 except
for A0, whose discontinuity is located at x = −λ/2. Pointwise we have

A0(x) ≤ A1(x) ≤ A2(x) ≤ · · · ≤ B2(x) ≤ B1(x) ≤ B0(x).
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Suppose in the following that −λ/2 ≤ x ≤ λ/2. Then Ak+1(x) is the

probability that there is no child vi of the root such that li − f
(k+1)
A (vi) <

x. In other words Ak+1(x) is the probability that there is no event in the

inhomogeneous Poisson process of li’s for which f
(k+1)
A (vi) > li − x. Now

notice that f
(k+1)
A (vi) has the same distribution as f

(k)
B (root). Therefore

Ak+1(x) = exp

(
−
∫ ∞
0

Bk(l − x) dl

)
= exp

(
−
∫ λ/2

−x
Bk(t) dt

)
and similarly

Bk+1(x) = exp

(
−
∫ λ/2

−x
Ak(t) dt

)
.

Differentiating, we see that

A′k+1(x) = −Ak+1(x)Bk(−x)

and
B′k+1(x) = −Bk+1(x)Ak(x).

We use the trick again (thereby promoting it to method) and write this as

d

dx
(Ak+1(−x) +Bk+1(x)) = Ak+1(−x)Bk(x)−Bk+1(x)Ak(−x)

= Bk(x) · [Ak+1(−x)− Ak(−x)] + Ak(−x) [Bk(x)−Bk+1(x)] , (14)

from which it follows that

0 ≤ d

dx
(Ak+1(−x) +Bk+1(x)) ≤ [Ak+1(−x)− Ak(−x)] + [Bk(x)−Bk+1(x)] .

By integrating over the interval −λ/2 ≤ x ≤ λ/2, we find that

Bk+1(λ/2)− Ak+1(λ/2) =

∫ λ/2

−λ/2

d

dx
(Ak+1(−x) +Bk+1(x)) dx

≤
∫ λ/2

−λ/2
(Ak+1(x)− Ak(x)) dx+

∫ λ/2

−λ/2
(Bk(x)−Bk+1(x)) dx. (15)

Summing over k, we conclude that

∞∑
k=0

(Bk+1(λ/2)− Ak+1(λ/2)) ≤ λ.
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Since Bk+1(λ/2)− Ak+1(λ/2) is decreasing in k, it follows that

Bk+1(λ/2)− Ak+1(λ/2) ≤ λ

k + 1
. (16)

Notice that

Ak+1(λ/2) = exp
(
−λ/2− E

[
f
(k)
B (root)

])
and

Bk+1(λ/2) = exp
(
−λ/2− E

[
f
(k)
A (root)

])
.

Since Ak+1(λ/2) ≥ exp(−λ), we have

exp
(
E
[
f
(k)
B (root)

]
− E

[
f
(k)
A (root)

])
=
e−λ/2 · e−E

[
f
(k)
A (root)

]

e−λ/2 · e−E
[
f
(k)
B (root)

] =
Bk+1(λ/2)

Ak+1(λ/2)
≤ 1 +

λ · eλ

k + 1
. (17)

Taking logarithms, we finally obtain

E
[
f
(k)
B (root)− f (k)

A (root)
]
≤ log

(
1 +

λ · eλ

k + 1

)
≤ λ · eλ

k + 1
.

3.5 The limit as k →∞
Since E

[
f
(k)
B (root)− f (k)

A (root)
]
→ 0 as k → ∞, Ak and Bk must converge

to a common limit function that we denote by F . It turns out that F can
be determined explicitly.

Proposition 3.4. On the interval −λ/2 ≤ x ≤ λ/2, the limit function F is
given by

F (x) =
1 + q

1 + e(1+q)x
, (18)

where q = F (λ/2), and q is determined by

λ =
−2 log q

1 + q
. (19)
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Hence the common limit distribution of f
(k)
A and f

(k)
B can be regarded as

a rescaled and truncated logistic distribution together with a point mass of
q at the point λ/2. If we let λ → ∞, and consequently q → 0, then this
distribution converges to the logistic distribution, which is what we expect
in view of the results in [2].

Proof of Proposition 3.4. On the interval −λ/2 ≤ x ≤ λ/2 the limit function
F must satisfy

F (x) = exp

(
−
∫ λ/2

−x
F (t) dt

)
, (20)

and hence
F ′(x) = −F (x)F (−x).

This means that F ′(x) = F ′(−x), which in turn implies that F (x) + F (−x)
is constant. Putting q = F (λ/2), we get

F (−x) = 1 + q − F (x), (21)

and consequently
F ′(x) = −F (x)(1 + q − F (x)).

Writing

− F ′(x)

F (x)(1 + q − F (x))
= 1

and integrating with respect to x, we obtain

log

(
1 + q − F (x)

F (x)

)
= (1 + q)x+ C,

where putting x = 0 reveals that C = 0. Hence

1 + q − F (x)

F (x)
= e(1+q)x,

from which we obtain (18).
Finally we would like to express q in terms of λ, and either of the equations

F (−λ/2) = 1 or F (λ/2) = q gives

q = e−(1+q)λ/2,

which in turn yields (19).
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3.6 The longest edge in a minimum partial matching

The number q = F (λ/2) is the probability that the starting point of the
Exploration game is not included in the optimum diluted matching, and
therefore it is the asymptotical density of unmatched vertices. The problem
of finding the minimum matching that contains a specified number of edges is
called the partial matching problem. Equation (19) gives an explicit relation
between the density of a minimum partial matching and the length of its
longest edge.

Suppose that q is fixed. We study the minimum length partial matching
that includes all but at most qn vertices. The idea is that except for small
fluctuations, we obtain such a matching by choosing λ according to (19).

Proposition 3.5. Let 0 < q < 1 and let Xn be the length of the longest
edge in the minimum partial matching on Kn that includes all but at most
qn vertices. Then

Xn
p→ −2 log q

1 + q
.

Proof. For the moment think of n as fixed. As the parameter λ goes from
0 to infinity, the optimum diluted matching will pass through all the mini-
mum partial matchings. Let λq be the value for which the optimum diluted
matching leaves out qn vertices (rounded down). By (19),

λq
p→ −2 log q

1 + q
.

Clearly the optimum diluted matching contains no edge longer than λq.
It remains to show that with high probability, the longest edge is not much
shorter than λq. Take ε > 0. Then asymptotically almost surely, as n→∞,
there will be some edge e of length between λq − ε and λq such that none
of the vertices incident to e has another edge shorter than λq. Such an edge
must obviously be in the optimum λq-diluted matching.

4 The minimum diluted matching

4.1 Asymptotic total cost

For fixed λ we now want to find the asymptotical cost of the diluted matching
problem as n → ∞. The cost (on average per vertex) of the penalties for
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vertices that are not included is concentrated at qλ/2. We therefore focus on
the distribution of lengths of the edges in the optimum matching. The final
result (Proposition 4.1 below) for the expected total length can be found with
the methods of [10], but the distribution of the lengths of the participating
edges is not available with that method.

Proposition 4.1. The expected total length of the edges in the optimum
diluted matching is

n

2
·
∫ 1

q

−2 log t

1 + t
dt+ o(n), (22)

where as before q is given by

λ =
−2 log q

1 + q
.

The upper limit of integration is thus given by the integrand being equal
to λ. Since the cost of the penalties is nλq/2, the total cost including penalties
can be written as (dropping the error term)

n

2
·
∫ 1

0

min

(
λ,
−2 log t

1 + t

)
dt.

Although we started by fixing λ, it is apparently easier to express the
final result in terms of the density q of unmatched vertices. It is of course
no coincidence that the expression for λ as a function of q is the same as the
integrand in (22), but we return to this point in a moment.

Proof. We derive (22) with the method used in [2], which in turn goes back to
the physics literature. The edge lengths are uniform on [0, n], and therefore
the density function for the length of a particular edge is simply 1/n on
that interval. The expected contribution to the total length of the optimum
matching from an arbitrary edge e between vertices u and v of Kn is therefore

1

n
·
∫ λ

0

z · P (participation given length z) dz. (23)

The edge e will participate in the optimum diluted matching if it is the
optimal first move for Alice when the game starts at either of u or v. We let
f(u) and f(v) be the game-theoretical values of playing second if the game
would start at u or v respectively, and be played with the edge e deleted from

14



the graph. If the game starts at u, Alice will go to v in her first move if and
only if the length z of the edge e satisfies

z ≤ f(u) + f(v)

(for a detailed argument see [11]).
The (k, λ)-neighborhoods of u and v (with e deleted) can be approximated

by two independent PWITs. Therefore the edge e will participate in the
optimum solution essentially if z ≤ f1 + f2, where f1 and f2 are independent
and drawn from the distribution given by F in Proposition 3.4.

Hence apart from the scaling factor 1/n, (23) is equal to∫ λ

0

z · P (z ≤ f1 + f2) dz =

∫ ∞
0

z · P (z ≤ f1 + f2) dz.

Without using any particular properties of the probability distribution, we
can rewrite this as∫ ∞

0

z

∫ ∞
−∞

(−F ′(x)) · P (f2 ≥ z − x) dxdz

=

∫ ∞
0

z

∫ ∞
−∞

(−F ′(x))F (z − x) dxdz. (24)

With u = z − x, this becomes∫ ∞
−∞

F (u)

∫ ∞
0

z(−F ′(z − u)) dzdu

=

∫ ∞
−∞

F (u)

∫ ∞
−u

(x+ u)(−F ′(x)) dxdu,

and by partial integration, this is∫ ∞
−∞

F (u)

∫ ∞
−u

F (x) dxdu. (25)

We can compute (25) using our explicit knowledge of the function F . But
there is another method which is simpler and applicable to a wider range of
problems. We introduce the function

G(u) =

∫ ∞
−u

F (x) dx.
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Clearly G′(−u) = F (u), which means that (25) is transformed to∫ ∞
−∞

G′(−u)G(u) du =

∫ u=∞

u=−∞
G(u) dG(−u). (26)

Now we begin to see some similarities to the calculations in Section 2. A
simple interpretation of (26) is that it is the area under the curve (in the
positive quadrant) when G(u) and G(−u) are plotted against each other. In
order to find the value of this integral, we therefore only need to know the
relation between G(u) and G(−u). By (20) and (21) we have F (u) = e−G(u)

and F (u) + F (−u) = 1 + q, which means that

e−G(u) + e−G(−u) = 1 + q.

Hence (26) is the area under the curve

e−x + e−y = 1 + q,

in the xy-plane, which can also be expressed as∫ − log q

0

− log
(
1 + q − e−x

)
dx, (27)

where the upper limit of integration is obtained by putting y = 0. This is
precisely what can be obtained with the methods of [10].

A convenient way of handling (27) is to differentiate with respect to q.
The derivative is, after some simplification,

2 log q

1 + q
.

By integrating back, (27) is equal to∫ 1

q

−2 log t

1 + t
dt,

which establishes (22).

We already mentioned the observation that the integrand in (22) is pre-
cisely the expression for λ in terms of q. This gives a qualitative insight:
The increase in total length of the minimum partial matching, if we require

16



one more edge, is roughly equal to the length of the longest edge in the
solution. If the difference between the minimum partial matchings of r and
r+1 edges respectively is that the (r+1)-matching contains an edge between
two vertices that do not participate in the r-matching, then of course that
edge is the longest in the (r+ 1)-matching, and the difference in total length
between the two matchings is exactly equal to the length of that edge. If the
(r + 1)-matching is obtained by replacing several edges in the r-matching,
then the difference in total length of the two matchings can be larger than
the length of the longest edge in the (r + 1)-matching, but we can conclude
here that, roughly speaking, for most r it is not much larger. We suspect
that there is a shortcut from Proposition 3.5 to Proposition 4.1 based on this
observation.

4.2 The h-function

Although it is not necessary for the computation of the expected cost of the
optimum matching, it is interesting to find the conditional probability that
an edge of given length participates in the solution. We therefore wish to
determine the function

h(x) = P (x ≤ f1 + f2),

where f1 and f2 are independent and drawn from the limit distribution given
by Proposition 3.4, and 0 ≤ x ≤ λ. We have

h(x) = q +

∫ λ/2

−λ/2
(−F ′(u))F (x− u) du

= q + (1 + q)3
∫ λ/2

−λ/2

1

(1 + e(1+q)u)(1 + e−(1+q)u)
· 1

1 + e(1+q)(x−u)
du. (28)

Here the term q comes from the case that f1 = λ/2, and the integral repre-
sents the case f1 < λ/2, when the density of f1 at u is −F ′(u). With the
substitution t = e(1+q)u we get

du =
dt

(1 + q)t
.
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Moreover, since e−(1+q)λ/2 = q, the limits of integration u = −λ/2 and u =
−λ/2 are equivalent to t = q and t = 1/q. Hence

h(x) = q + (1 + q)2
∫ u=λ/2

u=−λ/2

t

(1 + t)2(t+ e(1+q)x)
dt

= q + (1 + q)2
∫ 1/q

q

t

(1 + t)2(t+ e(1+q)x)
dt. (29)

It can be verified that, writing α = e(1+q)x, the integrand has the primitive

α

(α− 1)2
log

(
t+ 1

t+ α

)
+

1

(α− 1)(t+ 1)
,

and after some simplification we get

h(x) = q +
(1 + q)3α

(α− 1)2
log

(
α + q

1 + αq

)
− (1 + q)2(1− q)

α− 1
. (30)

If we put q = 0, then α = ex, and we get

h(x) =
1− ex + xex

(ex − 1)2
,

which agrees with Theorem 2 of [2].
Another special case is if we put x = 0, in other words α = 1. This

gives the probability h(0) that an edge of zero length will participate in the
minimum matching of density 1− q. With α = 1, (30) does not make sense,
but by evaluating (29) we find that

h(0) =
1

2
+ q − 1

2
q2.

5 The TSP

5.1 Relaxation and comply-constrain game

As was described in [11], the TSP is related to a “refusal” or “comply-
constrain” version of Exploration: Whenever Alice is about to make a move,
Bob has the right to forbid one of her move options, and vice versa. As
before, a player can quit the game at cost λ/2.
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The finite-λ relaxation of the TSP is obtained by allowing any set of edges
for which each vertex has degree at most 2, and where a penalty of λ/2 is
paid for each missing edge at each vertex. Hence a vertex of degree 1 means
a penalty of λ/2, while a vertex of degree 0 leads to a penalty of λ. In the
case of the TSP the parity of the number n of vertices is not an issue, and
therefore equivalently the total penalty is

λ · (n−# edges in the solution).

The comply-constrain game leads to a different concept of valuation. In-
stead of (12), we require

f(v) = min(λ/2,min2(li − f(vi))). (31)

Here min2 means second-smallest. We remark that equations equivalent
to (31) were derived in [4, 6, 7] and also in [2]. We similarly redefine the

partial valuations f
(k)
A and f

(k)
B in the obvious way. Again the crucial point

is to prove that the expectation of f
(k)
B (root) − f (k)

A (root) tends to zero for
large k. This time we obtain a slightly stronger bound:

Proposition 5.1.

E
[
f
(k)
B (root)− f (k)

B (root)
]
≤ eλ

k + 1
.

Proof. We again let
Ak(x) = P (f

(k)
A (root) ≥ x)

and
Bk(x) = P (f

(k)
B (root) ≥ x).

For −λ/2 ≤ x ≤ λ/2, Ak+1(x) is now the probability that there is at

most one child vi of the root such that li− f (k+1)
A (vi) < x, that is, Ak+1(x) is

the probability that there is at most one event in the inhomogeneous Poisson
process of li’s for which f

(k+1)
A (vi) > li − x. Since again f

(k+1)
A (vi) has the

same distribution as f
(k)
B (root), we get

Ak+1(x) =

(
1 +

∫ ∞
0

Bk(l − x) dl

)
exp

(
−
∫ ∞
0

Bk(l − x) dl

)
=

(
1 +

∫ λ/2

−x
Bk(t) dt

)
exp

(
−
∫ λ/2

−x
Bk(t) dt

)
(32)
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and similarly

Bk+1(x) =

(
1 +

∫ λ/2

−x
Ak(t) dt

)
exp

(
−
∫ λ/2

−x
Ak(t) dt

)
. (33)

It is convenient to introduce the functions

ak(x) =

∫ λ/2

−x
Ak(t) dt

and

bk(x) =

∫ λ/2

−x
Bk(t) dt.

Using the trick again, we consider the quantity

∆k(x) =
d

dx

[
(2 + ak(x))e−ak(x) + (2 + bk(−x))e−bk(−x)

]
.

It is easily verified that

∆k(x) = Ak(−x)(Bk(x)−Bk+1(x)) +Bk(x)(Ak+1(−x)− Ak(−x)).

Since the function (1 + x)e−x is decreasing in x, it follows inductively from
the recurrence equations (32) and (33) that pointwise,

A0(x) ≤ A1(x) ≤ A2(x) ≤ · · · ≤ B2(x) ≤ B1(x) ≤ B0(x).

Therefore

0 ≤ ∆k(x) ≤ [Bk(x)−Bk+1(x)] + [Ak+1(x)− Ak(x)] .

Summing over k, we conclude that

∞∑
k=0

∫ λ/2

−λ/2
∆k(x) dx ≤ λ.

By the boundary conditions ak(−λ/2) = bk(−λ/2) = 0, this implies that

∞∑
k=0

[
(2 + ak(λ/2))e−ak(λ/2) − (2 + bk(λ/2))e−bk(λ/2)

]
≤ λ.

20



Observe that

E[f
(k)
B (root)− f (k)

A (root)] = bk(λ/2)− ak(λ/2).

Since (2 + x)e−x is monotone decreasing for x ≥ 0, it follows that

(2 + ak(λ/2))e−ak(λ/2) − (2 + bk(λ/2))e−bk(λ/2) ≤ λ

k + 1
.

Since the absolute value of the derivative of (2 + x)e−x is (1 + x)e−x, which
is decreasing, and trivially bk(λ/2) ≤ λ, it follows that

bk(λ/2)− ak(λ/2) ≤ λeλ

(λ+ 1)(k + 1)
≤ eλ

k + 1
.

This completes the proof.

5.2 The finite-λ integral equation

The functions Ak and Bk thus converge to a common limit that we again
denote by F , and which satisfies

F (x) =

(
1 +

∫ λ/2

−x
F (t) dt

)
exp

(
−
∫ λ/2

−x
F (t) dt

)
.

If we write G for the common limit of ak and bk, that is,

G(x) =

∫ λ/2

−x
F (t) dt,

then we obtain
G′(x) = (1 +G(−x))e−G(−x).

This equation looks like the Krauth-Mézard-Parisi equation, but the
difference is that for finite λ, we only require it to hold in the interval
[−λ/2, λ/2]. Moreover, the boundary conditions depend on λ. By the trick,
again,

(2 +G(x))e−G(x) + (2 +G(−x))e−G(−x) = C,

for some constant C in the interval 2 < C < 4.
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If C is fixed, the solution is unique: Supposing that we know C, G(0) is
determined by

(2 +G(0))e−G(0) = C/2.

Let Λ be the function mapping G(x) to G(−x), and as in Section 2 let
T (g) = (1 + g)e−g. Then

G′(x)T (G(−x)) = T (Λ(G(x))),

and again

x =

∫ G(x)

G(0)

dt

T (Λ(t))
. (34)

This shows that G is uniquely determined by C (and vice versa), and in
view of the results of the previous section, C is therefore determined by λ.

5.3 The length of the minimum tour

In analogy with minimum matching, we obtain the cost of the minimum
diluted tour as ∫ λ

0

zP (z ≤ f1 + f2) dz.

Through calculations analogous to those of Section 4.1, this can be trans-
formed to the area under the curve given by

(2 + x)e−x + (2 + y)e−y = 2− q,

where 2−q is the average degree of a vertex in the solution. Again this agrees
with what is obtained in [10]. The asymptotical total length of the optimum
tour is then recovered in the limit λ → ∞, leading to the calculations of
Section 2. The fact that λ→∞ corresponds to the TSP is again a nontrivial
result and depends on the theorem of Frieze [3].
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