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We propose a new algorithm to learn the network of the interactions of pairwise Ising models.
The algorithm is based on the pseudo-likelihood method (PLM), that has already been proven to
efficiently solve the problem in a large variety of cases. Our present implementation is particularly
suitable to address the case of sparse underlying topologies and it is based on a careful search of
the most important parameters in their high dimensional space. We call this algorithm Parameters
Activation to Maximize Pseudo-Likelihood (PAMPL). Numerical tests have been performed on a
wide class of models such as random graphs and finite dimensional lattices with different type
of couplings, both ferromagnetic and spin glasses. These tests show that PAMPL improves the
performances of the fastest existing algorithms.

The Ising model is a graphical model whose parame-
ters {Jij , hi} can be tuned in order to describe station-
ary distributions of binary variables, si, according to the

weight P (s) ∼ exp
(

∑

i<j Jijsisj +
∑

i hisi

)

. In many

practical problems in different domains - e.g. physics, bi-
ology, neuroscience, finance, sociology - the topology of
the graph and the values of the couplings are unknown
and they need to be reconstructed from the data. The
inverse Ising problem aims to find the parameters of the
model that best fit the data.

From the original attempt to solve this problem [1],
many techniques of statistical mechanics and machine
learning have been developed [2–12] to study different
cases. The need to develop approximate algorithms
can be understood from the observation that the like-
lihood depends on the partition function, which is gen-
erally intractable. Among these methods, the pseudo-
likelihood [13] has been proven to be particularly effi-
cient, leading to polynomial algorithms which give the
exact solution in the limit of infinite sampling. Meth-
ods based on the pseudo-likelihood need to be comple-
mented with a threshold procedure, implemented a pos-
teriori or through a regularization function. An improve-
ment of this method based on a decimation scheme was
presented in [11]. The decimation based algorithm has
been shown to outperform existing algorithms based on
the pseudo-likelihood method in terms of the quality of
the reconstructed graph and it has been commonly used
in a variety of contexts [14–16]. Our aim is to improve
this algorithm in the case of sparse graphs. In fact, in
this case, the underlying structure is closer to an empty
graph than to a fully connected graph and we would like
to avoid to explore the full set of parameters in the infer-
ence process, while maintaining the same quality in the
inferred graph. While the decimation step is O(N2), our
elementary operation is O(N). We begin formulating the
Inverse Ising problem. We discuss the pseudo-likelihood

method and the present implementation. Finally we de-
scribe the results of our algorithm in a wide class of Ising
models with a comparison with the fast Minimum Prob-
ability Flow (MPF) [4], showing that the two methods
have similar execution times and that ours outperform
the other in terms of the quality of the reconstructed
graphs.
An Ising model in the absence of local fields is

defined by the Hamiltonian H(s) = −
∑

i<j Jijsisj .
After the observation of M independent equilibrium
configurations, the problem of inferring the couplings
can be formulated in terms of the Bayes theorem
P (J |{s(µ)}µ=1,...,M ) ∝ P ({s(µ)}µ=1,...,M |J)P (J), where
the two functions on the r.h.s. are named likelihood and
prior, respectively. If we assume to be in a Bayes opti-
mal case setting where we do not need to introduce local
fields in the model, the log-likelihood function is defined
by L(J) = M−1 logP (s(µ)}µ=1,...,M |J) and reads

L(J) =
β

M

M
∑

µ=1

∑

i<j

Jijs
(µ)
i s

(µ)
j − logZ(J), (1)

where Z(J) =
∑

s e
β
∑

i<j Jijsisj is the partition function
of the problem, and β an inverse temperature. Optimiz-
ing L(J) over the parameters of the model leads to

∂L(J)

∂Jij
= β

(

〈sisj〉Data − 〈sisj〉Model

)

, (2)

where we defined M 〈sisj〉Data =
∑M

µ=1 s
(µ)
i s

(µ)
j and

β 〈sisj〉Model = ∂Jij
logZ. The J that maximizes the

log-likelihood is such that

〈sisj〉Data = 〈sisj〉Model . (3)

This formulation involves the computation of the parti-
tion function, which is a complicated object. The log-
pseudo-likelihood [17] is introduced to deal with this dif-
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ficulty. It is defined by

S(J) =
1

M

N
∑

r=1

M
∑

µ=1

log p(s(µ)r |s
(µ)
\r ) (4)

where p(sr|s\r) =
[

1 + e−2βsr
∑

j 6=r
Jrjsj

]−1

, and as dis-

cussed in the Appendix A, maximizing S leads to the
correct solution in the infinite sampling limit.
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FIG. 1. 2-D ferromagnetic lattice with N = 36 and free
boundary conditions, M = 5000, β = 0.5. Main Figure: (a)
−BIC/M and 10ǫ as a function of x, fraction of couplings, for
the activation-based method. x is 0 at the beginning and it
increases as the iteration proceeds. Only the first part of the
iteration is presented. The Arrow specifies the directions in
which the iteration moves. Inset: ROC curve, with the TNR
on the x-axis and the TPR on the y-axis.

The use of the pseudo-likelihood has been already
shown to be very useful in the context of the Inverse
Ising problem [6, 13]. The standard implementation of
this method consists in maximizing each of the N local
likelihood functions separately, thus getting two different
estimates for each coupling. When complemented with
a post-optimization parameter thresholding procedure,
this method can be shown to reconstruct arbitrary Ising
models [12]. Anyway, this scheme relies on the delicate
choice of the threshold and leads to extimated couplings
that are systematically smaller than the true values. This
problem was first addressed in [11] to eliminate the bias
in the coupling estimation, where an iterative decimation
based approach was developed. A maximization over the
pseudo-likelihood is alternated with a decimation step
where the smallest estimated couplings are set to zero.
More details and examples are provided in Appendix B.
Here we propose an improvement of this algorithm es-

pecially suitable for sparse graphs. In fact, in this case,
starting from the complete graph and decimating cou-
plings requires a long time before reaching the correct
stopping point. On the contrary, it would be wiser to

have an iterative algorithm that starts from the empty
graph, and add links sequentially. We call this algorithm
Parameters Activation to Maximize Pseudo-Likelihood
(PAMPL). In order to add the correct links, we search
for the directions, in the parameter space, that give the
largest gain in the log-pseudo-likelihood. The change in
S due to a change in the coupling Jij is estimated using
a second order approximation,

S(J+∆Jij) = S(J)+S ′(J)∆Jij+
S ′′(J)

2
∆J2

ij+. . . , (5)

where prime denotes differentiation with respect to Jij .
Couplings are updated with one step of the Newton
method,

0 = S ′(Jij) + S ′′(Jij)∆Jij , (6)

and ranked in an ascending order according to the values
of the quantities

∆Sij = −
1

2

S ′2(Jij)

S ′′(Jij)
, (7)

obtained by plugging eq. (6) in eq. (5). Finally, the first
K are included in the set of non-zero couplings J and
optimized as explained below. This procedure is iterated
adding more and more couplings in J at each iteration. In
order to keep this elementary step O(N), updating and
sorting need to be done carefully. In particular, there
is no need to update all of the ∆Sij at each step, since
only O(N) of them are affected by the presence of a new
coupling in J. Moreover, since most of them are small,
we don’t need to order O(N2) elements, but only O(N).
We use the Bayesian Information Criterion (BIC), intro-
duced in [18], to locate the stopping point of the iteration.
For our purposes, it is defined by

BIC = 2MS∗ − k logM , (8)

where k = ||J|| is the cardinality of the set J, correspond-
ing to the number of links used to describe the obser-
vations, and S∗ is the maximum of S found optimizing
the couplings in J. In order to perform the optimization
step on the couplings of J, we used the LBFSG [19] al-
gorithm and a simple gradient ascent. Results obtained
in the two cases are the same within numerical errors
and, since the second one is faster, it is particularly ap-
propriate for large systems. In the following we update
one coupling per iteration time. More details about the
algorithm are provided in Appendix C.
We generate independent equilibrium configurations

from given graphs using a Monte Carlo sampling algo-
rithm. Then, during the inference process, we compare
the inferred graph with the original one using the mea-
sure

ǫ =

√

∑

i<j(Jij − J∗
ij)

2

∑

i<j J
2
ij

, (9)
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FIG. 2. Random regular spin glass with N = 50 spins,
c = 4, 100 couplings, βc = 0.524. (a): Main Figure: average
of BIC/M as a function of the iteration time over 10 runs of
the activation algorithm, for different values of M at β = 0.8.
Inset: average of BIC/M as a function the iteration time over
10 runs of the activation algorithm, for different values of the
inverse temperature β, at M = 8000. BIC corresponding
to different β has been shifted in order to fit in the same
figure. (b): Average of ∆BIC(t) over 10 runs of the activation
algorithm, for different values of the inverse temperature β.

were J∗ is the original set of couplings. We study graphs
with ferromagnetic and spin glass interactions. We de-
note with spin glass graph systems with couplings equal
to ±1 with probability 0.5. We stress that no extra time
is required to infer the structure of a spin glass topol-
ogy compared to the ferromagnetic case. In Fig. 1 we
show the behavior of our algorithm on a 2-D lattice with
N = 36 and free boundary conditions. Inference is made
after observing M = 5000 samples extracted at equilib-
rium at β = 0.5. In the inset we plot the ROC curves
that give information on the fraction of true couplings
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FIG. 3. 2D ferromagnetic diamond lattice with N = 44
spins, 64 couplings, βc = 0.609. (a): Main Figure: average
of BIC/M as a function of the iteration time over 10 runs of
the activation algorithm, for different values of M at β = 0.5.
Inset: average of BIC/M as a function the iteration time over
10 runs of the activation algorithm, for different values of
the inverse temperature β at M = 8000. BIC corresponding
to different β has been shifted in order to fit in the same
figure. (b): Average of ∆BIC(t) over 10 runs of the activation
algorithm, for different values of the inverse temperature β.

retrieved (true positive rate, TPR), and the fraction of
non-existent couplings not created by the algorithm (true
negative rate, TNR). Each point of the curve corresponds
to the graph inferred at a particular stage of the iterative
process. Ideally, for a perfect reconstruction, the inferred
graph corresponds to the point (1, 1). We observe that
the maximum of the BIC does not coincide with the point
where ǫ is minimum. This is due to the fact that after
the activation of all the correct couplings of the graph,
the BIC keeps growing for some other time steps before
the penalty terms start to be effective. Despite this is-
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sue, we notice that the correct stopping point is clearly
recognizable by a visual inspection: this problem can be
overcame easily, as will be shown below.
In Fig. 2-3 we study the performances of the algo-

rithm with M and β for different topologies and sizes.
As expected, inference becomes hard in the low temper-
ature phase and when the dataset is too small. In fact,
for small M the singular behavior of the BIC becomes
smoother, and the detection of the stopping point is im-
possible. On the other hand, at larger values of β, more
and more samples are required for a correct inference be-
cause most of the samples are very close to the ground
state(s) and we lose information from fluctuations. We
consider a Random Regular (RR) spin glass graph with
N = 50 and c = 4 and a ferromagnetic diamond lattice
of N = 44 spins. Diamond lattices [20], [21] are graphs
constructed recursively from a single link corresponding
to the generation n = 0. The generation n = 1 consists of
2 branches in parallel, each one made by 2 links in series.
The generation n = 2 is obtained by applying the same
transformation to the each link. The present case corre-
sponds to the case n = 3. In this graphs there is a clear
hierarchy between couplings and we show that the learn-
ing algorithm is clearly sensitive to it. In both cases we
study the quantity ∆BIC(t) = [BIC(t)−BIC(t− 1)]/M ,
averaged over 10 inference iterations, as a function of the
iteration time. We observe that it becomes very small
as soon as the correct graph structure is recovered, and
that this threshold behavior is more evident in the vicin-
ity of the phase transition. We find that a good stopping
point can be defined when ∆BIC < 0.01. The quality of
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FIG. 4. ROC values for the (a) random graph case consid-
ered in Fig. (2), (b) diamond lattice case considered in Fig.
(3). In both cases, each point corresponds to a different value
of M , for M = 100, 200, 300, 400, 500, 1000, 2000, 4000, 8000,
and they approach (1, 1) as M increases.

the reconstructed graphs using this criterion is studied
in detail in Fig. 4, where we plot the ROC parameters
TNR and TPR for different temperatures, for the cases

discussed above.
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FIG. 5. Comparison between the log of the execution time
(seconds) needed to find a solution as function of N and β
for a RR spin glass with c = 3 using (a) PAMPL and (b)
MPF. Each point corresponds to an average over 10 runs of
the algorithm with M = 4000. βc = 0.615.
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FIG. 6. Error ǫ, defined in eq. (9), as a function of N and
β for a RR spin glass with c = 3 using (a) PAMPL and (b)
MPF. Each point corresponds to an average over 10 runs of
the algorithm at M = 4000.

We compare the performances of PAMPL with those
of another fast inference method, namely the MPF [4].
MPF is as fast as a single maximization of the pseudo-
likelihood and needs to be complemented with a thresh-
old procedure. In Fig. 5-6 we analyze a RR graph with
c = 3 with these two methods. MPF is expected to be
O(MN2), as ours. While the tests show a more pro-
nounced temperature dependence for PAMPL, we ob-
serve that the execution times are of the same order,
both being very fast. Moreover, as the decimation algo-
rithm improved the performances of methods based on
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the maximization of the pseudo-likelihood, similarly the
errors in the reconstructed graph made by PAMPL are
2-3 time smaller than those made by MPF. We also note
that while the errors made by PAMPL does not depend
on N , the error made by MPF do. More details on MPF
and the case of a 2-D ferromagnetic lattice is discussed
in details in Appendix D.

In summary we presented a new method, to recon-
struct the hidden structure of Ising models based on the
pseudo-likelihood and an activation procedure that in-
cludes recursively new parameters into a set whose ele-
ments are then optimized over. The method is exact in
the limit of very large number of samples M and does
not require setting ad-hoc extra parameters, apart from
the choice of K which is mostly irrelevant. Performances
of PAMPL are as good as or better than existing algo-
rithms both based on PSL and other approaches, and the
method is especially suitable to study inference problems
with underlying sparse graphs.
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Research Council (ERC) under the European Unions
Horizon 2020 research and innovation program (grant
agreement No [694925]). S. Franz and J. Rocchi acknowl-
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SUPPLEMENTAL MATERIAL

Appendix A: Pseudo-likelihood

We show that in the infinite sampling limit S and L
are maximized by the same J . From the definition of S
in eq. (4), we obtain the property

∂S

∂Jij
= 2β〈sisj〉Data − β

〈

si tanhβ
∑

m 6=j

Jjmsm

〉

Data

− β

〈

sj tanhβ
∑

m 6=i

Jimsm

〉

Data

(10)

and thus S is maximum on the parameters J such that

〈sisj〉Data =

〈

si tanhβ
∑

m 6=j

Jjmsm

〉

Data

. (11)

On the other hand, using the identity

〈sisj〉Model =

〈

si tanhβ
∑

m 6=j

Jjmsm

〉

Model

(12)

in eq. (3), we notice that L is maximum when

〈sisj〉Data =

〈

si tanhβ
∑

m 6=j

Jjmsm

〉

Model

, (13)

and thus, since in the infinite sampling limit
limM→∞ 〈f(s, J)〉Data = 〈f(s, J)〉Model , we observe that
S and L are maximized by the same J .

Appendix B: Decimation algorithm

The idea of the decimation algorithm [11] is that start-
ing from the complete graph, the full S is maximized
(maximization step) and the K couplings with the small-
est values are set to zero (decimation step). The two steps
are iterated until when no more couplings are present in
the graph. In order to locate the stopping point, a new
function is defined. Be Sc

max the maximum of the pseudo-
likelihood on the complete graph. When no couplings re-
main, the pseudo-likelihood is −N log 2. The new func-
tion is given by St(x) = S − [xSc

max − (1 − x)N log 2],
where x ∈ [0, 1] is the fraction of couplings, being 1 on
the complete graph and 0 at the end of the decimation
process. This function is 0 at the beginning and at the
end of the process, by construction, and it is positive in
the intermediate steps. The stopping point x∗ is chosen
by looking at the maximum of St. The solutions found
with this method are much better than those found with

other methods based on PSL. In Fig. 7 we show the be-
havior of this algorithm in the study of a 2-D ferromag-
netic lattice with free boundary conditions with N = 36.
In the inset we show the TPR and the TNR evolving with
the iterations. The point where St is maximum coincides
with the point where ǫ is minimum. In Fig. 1 we analyze
the same dataset with PAMPL and find a solution much
faster because we starts from the empty graph, rather
than from the fully connected graph. Each step of the
decimation algorithm is O(MN2), since it needs to opti-
mize the PSL over the number of couplings that haven’t
been decimated yet. If the true graph is sparse we need
to run the iterations for O(N2) times. In comparison,
ours takes O(MN2) operations to provide a solution in
sparse graphs, as explained in the following section and
it is thus much faster.
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FIG. 7. 2-D ferromagnetic lattice with N = 36 and free
boundary conditions, M = 5000, β = 0.5. Main Figure: St

and 10ǫ as a function of x for the decimation based method. x
is 1 at the beginning and decreases as the iteration proceeds.
Only the last part of the iteration is presented. The Arrow
specifies the directions in which the iteration moves. Inset:
ROC curve, with the TNR on the x-axis and the TPR on the
y-axis.

Appendix C: Details of the implementation

Bayesian Information Criterion: In PAMPL we can-
not use the tilted pseudo-likelihood to locate the stop-
ping point because this would require the maximiza-
tion of the pseudo-likelihood on the complete graph.
As stated in the main text, the quantity that we ob-
serve during learning is thus the Bayesian Informa-
tion Criterion, defined in eq. (8). Let us consider
P ({s(µ)}µ=1,...,M ) =

∫

dJP ({s(µ)}µ=1,...,M |J)P (J). Un-
der the assumption of a flat prior P (J), we expand
L(J) = M−1 logP ({s(µ)}µ=1,...,M |J) to the second or-
der around the parameters J∗ for which the likelihood
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P ({s(µ)}µ=1,...,M |J) is maximum. A Gaussian integra-
tion leads to

P ({s(µ)}µ=1,...,M ) = eML(J∗)

(

2π

I(J)M

)
k
2

(14)

where I(J) = L′′(J∗) ∼ O(1). Thus, we see that
P ({s(µ)}µ=1,...,M ) ∼ eML∗−k/2 logM . In our analysis, we
may replace L∗ with S∗ and obtain P ({s(µ)}µ=1,...,M ) =
eBIC/2, using eq. (8): the largest the BIC, the better the
parameters J describe the observations.
Complexity: Updating and sorting the elements ∆Sij ,

defined in eq. (4), requires a careful discussion. In fact, if
we want to keep the iterative step O(MN), we cannot af-
ford O(N2) operations. The way we overcome this prob-
lem is explained below. At the initial time step we evalu-
ate and sort all the gains in pseudo-likelihood ∆Sij . After
the sorting, we create the vector V with the largest O(N)
elements. This vector is updated at each step and its size
is kept to be O(N). This makes the sorting less expan-
sive. The cost of updating O(N2) element is alleviated by
considering only ∆Sij whose nodes are involved in the ac-
tivation of the couplings of the previous time step. More
precisely, if coupling Jij has been updated at time t, at
t + 1 we update ∆Sik and ∆Sjk with k = 1, . . . , N and
neglect the changes in the others. These operations cost
O(N). If some of these values happen to be larger than
the mean value of the elements of V , they are included in
V . Finally, all the elements vi < 0.01max{vi} of V are
excluded from it. These wise precepts allows the size of V
to remain O(N) and, thus, the ensemble of iterative steps
to be O(MN2). The optimization of the couplings in the
set J is performed with a gradient ascent with a learning
rate of 0.0001 until ∆PSL/PSL < 0.00001, where ∆PSL
is the difference between the PSL computed before and
after the updating.
Derivatives: The expression of the first and second

derivatives of S with respect to Jij in terms of the average
over samples read

(15)

∂S

∂Jij
=

2β

M

M
∑

µ=1

s
(µ)
i s

(µ)
j

[

1

1 + e2βs
(µ)
i

∑
m

Jjms
(µ)
m

+
1

1 + e2βs
(µ)
j

∑
m Jims

(µ)
m

]

,

∂2S

∂2Jij
= −

4β2

M

M
∑

µ=1





1

2 + 2 cosh
[

2βs
(µ)
i

∑

m Jjms
(µ)
m

]

+
1

2 + 2 cosh
[

2βs
(µ)
j

∑

m Jims
(µ)
m

]



 .

(16)

It is easy to check that eq. (15) coincide with eq. (10).

Stopping point: The increase of the BIC after the cor-
rect stopping point is due to the fluctuations induced by
the finite size sampling. This can be understood consid-
ering different datasets, each one made by M configura-
tions. We use each dataset to extract the inferred graphs,
and we observe the behavior of the BIC and the error.
Then we compute the mean and the standard deviation
of the two quantities and we observe that the minimum
of the error is reached when the BIC reaches for the first
time the value BICmax − σBIC, being σBIC the standard
deviation. In Fig. 8a we show the results for a 2-D lat-
tice with N = 49 and free boundary conditions. In Fig.
8b we show the results for a random regular graph with
N = 100 and mean connectivity equal to 4. In both cases
we observe that the increase of the BIC after the correct
stopping point (corresponding to the minimum of the er-
ror) is irrelevant. In order to locate the stopping point
we thus adopt the criterion explained in the main text.

ROC curves: We consider a 2-D ferromagnetic lattice
with periodic boundary condition in Fig. 10. In these fig-
ures we plot the TPR and the TNR for the inferred graph
as a function of the (inverse of the) number of observed
samples. We observe a weak dependence on the size of
the system and a more severe one on the temperature.
This is in line with the performances of specific algo-
rithms for which it is possible to compute the scaling of
the mininum number of samples for a perfect inference,
where the dependence on N is logarithmic and that in β
is exponential [12]. We notice that a TNR smaller than
1 means that the reconstructed graph contains couplings
that are not present in the original graph, i.e. that our
criterion does not detect correctly the stopping point and
couplings keep being activated for some other step.

Appendix D: Minimum probability flow

Algorithm: The Minimum Probability Flow (MPF)
learning algorithm [4] is based on an hypothetical
dynamics in the parameter space {J}, that we use
to parametrize the probability distribution P (s|J) =

exp[−Es(J)]/Z(J) = exp
(

∑

i<j Jijsisj

)

/Z(J). This

dynamics starts from the data distribution and ends up
in the point J that minimize the Kullback-Leibler DKL

divergence between the distribution of data and P (s|J).
Using detailed balance, it is possible to define a transition
matrix that allows the dynamics to relax to the chosen
probability distribution,

Γs,s′ = gs,s′ exp

[

1

2
(Es′ − Es)

]

(17)

with gs,s′ being a sparse matrix with 1 between config-
urations differing by one-spin flip, and 0 elsewhere. The
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FIG. 8. Average and standard deviation of the BIC over 10
runs of the activation-based algorithm. Blue and red arrows
indicate the stopping point and the point at which the BIC
is maximum. Main Figures: (a) 2-D spin glass lattice with
N = 49 spins and 84 couplings with free boundary conditions.
Each run of the algorithm is made on a subset of M = 3000
samples extracted from a dataset of 20000 samples at equilib-
rium at β = 0.6. (b) Random regular spin glass with N = 100
spins, c = 4, corresponding to 200 couplings. Each run of the
algorithm is made on a subset of M = 8000 samples extracted
from a dataset of 20000 samples at equilibrium at β = 0.8.
Insets: Average and standard deviation of the error over the
same L = 10 runs of the activation-based algorithm.

dynamics considered is thus

∂tp
(t)
s =

∑

s′ 6=s

Γs,s′p
(t)
s′ −

∑

s′ 6=s

Γs′,sp
(t)
s , (18)

where Γs,s′ is the transition rate from configuration s′ to
s. This dynamics may take several time steps to converge
to the desired distribution and it is not practical. Rather
than waiting such a long time, MPF considers a small
time t = ǫ. In fact, among the trajectories that leads to
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FIG. 9. log(1 − TNR + 0.001) and log(1 − TPR + 0.001) at
different N for a 2D lattice with periodic boundary conditions
at different β as a function of 1/M . We notice that as M
increases, both the TPR and TNR approach 1. Each point
corresponds to the average of ∼ 50 runs of the activation
algorithm, stopped using the criterion defined in the text.
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FIG. 10. log(1−TNR + 0.001) and log(1− TPR + 0.001) at
different N for a RR graph with c = 3 at different β as a
function of 1/M . We notice that as M increases, both the
TPR and TNR approach 1. Each point corresponds to the
average of ∼ 50 runs of the activation algorithm, stopped
using the criterion defined in the text.

J∗, a special role is played by the one that points in the
direction of J∗ already in the early steps. In this limit,
it is possible to show that

DKL(p
(0), p(t)) =

ǫ

M

∑

s′∈D

∑

s/∈D

Γs,s′ ≡ K(J) , (19)

where D denotes the dataset. Parameter estimation is
provided by J∗ = argminJ K(J). If the system is big
enough, and the configurations of the dataset sampled
independently, it is likely that configuration space is
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FIG. 11. ǫ and δK as a function of the iteration time t for
the MPF learning on a RR graph with c = 3, N = 40 and
M = 4000. (a) β = 0.3 (b) β = 1.1. The total execution time
is roughly 30 seconds on a normal laptop, learning is stopped
after 700 steps. Insets: histograms of the learned couplings
J at different stages of learning. After the last time, δK is
equal to 0.0011 (a) and 0.0057 (b). In both cases the majority
of the true couplings have been found: setting a threshold at
|J |= 0.5, TPR and TNR are respectively 1-1 (a) and 0.95-1
(b).

not sampled extensively and thus, for each configuration
s′ ∈ D of the dataset, all those that differ from it for a
spin flip are not part of D. The second sum in the defini-
tion of K(J) is thus replaced by

∑

s:gs,s′=1. This makes

each step of the minimization process O(MN). On the
other hand, given that the algorithm optimizes over all
the parameters J , we observe that the actual cost of each
learning step is O(MN2). For the case under considera-
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FIG. 12. ǫ and δK as a function of the iteration time t
for the MPF learning on a 2D lattice with periodic boundary
condition, N = 49 and M = 4000. (a) β = 0.2 (b) β =
0.5. The total execution time is roughly 55 seconds on a
normal laptop, learning is stopped after 700 steps. Insets:
histograms of the learned couplings J at different stages of
learning. After the last time, δK is equal to 0.0065 (a) and
0.0025 (b). In both cases the majority of the true couplings
have been found: setting a threshold at |J |= 0.5, TPR and
TNR are respectively 1-1 (a) and 0.983-1 (b).

tion, Es = −
∑

i<j Jijsisj and

K(J) =
ǫ

M

M
∑

µ=1

N
∑

t=1

e−β
∑

q 6=t
Jtqs

(µ)
t s(µ)

q . (20)

K(J) can be optimized either with a simple gradient de-
scent and with a more sophisticated LBFSG [19] algo-
rithm with similar results. Performances depend on the
learning rate. In particular, when β is large, generally a
smaller learning rate needs to be used. Moreover, a small
mini-batch allows to find solutions in a smaller amount
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of time. Mini-batch size should not be smaller than a
few dozens in any case. A comparison between execution
times in Figs 5-13 shows that MPF is as fast as PAMPL.
In the paper we present results with M = 4000, 100 mini-
batch and ǫ = 0.025, that plays the role of a learning rate:

∂K

∂Jij
= −

ǫβ

M

M
∑

µ=1

s
(µ)
i s

(µ)
j ×

×
[

e−β
∑

q 6=i
Jiqs

(µ)
i

s(µ)
q + e−β

∑
q 6=j

Jjqs
(µ)
j

s(µ)
q

]

.

(21)

Moreover, we observe that MPF provides an alternative
method to infer couplings that is as fast as a single max-
imization of pseudo-likelihood on the complete graph.
This is more clear by a comparison with eq. (15): the up-
dating rules used to maximize the MPF and the pseudo-
likelihood S are very similar, with the first one consist-
ing in neglecting the two denominators 2 cosh(βhi) and
2 cosh(βhj) appearing in the second one, where they act
as normalizations factors. As other methods based on
the pseudo-likelihood, MPF needs to be complemented
with a threshold procedure.
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FIG. 13. Comparison between the log of the execution time
(seconds) needed to find a solution as function of N and β
for a 2D lattice with periodic boundary conditions using (a)
PAMPL and (b) MPF. Each point corresponds to an average
over 10 runs of the algorithm with M = 4000.

Stopping point

Finding a stopping point for this algorithm is not easy.
In particular, even if the error with respect the original
graph decreases quickly, the values of the couplings are
still far from the actual ones and are refined only in later
time steps. In particular, for real application cases where
the actual topology is unknown, one should rely on other
measures of convergence, like for instance δK = ∆K/K,
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FIG. 14. Error ǫ, defined in eq. (9), as a function of N
and β for a 2D ferromagnetic lattice with periodic boundaries
using (a) PAMPL and (b) MPF. Each point corresponds to
an average over 10 runs of the algorithm at M = 4000.

where ∆K is the difference on K computed every epoch
running over the whole dataset. This quantity decreases
during learning but our experiments do not provide a
meaningful value where to stop the iteration. Unsur-
prisingly, parameters like mini-batch size, learning rate,
stopping point are model, size and temperature depen-
dent. In particular at large temperatures fewer iterations
are needed to find satisfying results, as observed in the
case of Fig. 11-12. As discussed above, MPF has to be
complemented with a threshold procedure. In the main
text we consider a RR spin glass with c = 3 while here we
consider a 2D lattice with ferromagnetic interactions and
periodic boundary conditions. In both cases, after ∼ 700
iterations, setting a threshold at |J |= 0.5, both the TPR
and the TNR are very close to 1. On the other hand,
corresponding errors are still large as seen in the main
text in Fig. 6 for the RR case and here in Fig. 14 for the
2D lattice. This is not surprising. In fact, although being
very versatile and fast, it performs a single optimization.


