
1 Two-neutrino oscillations

In the case of two-neutrino mixing between the flavors α and β, we deal with
only one mixing angle θ, such that(

|να(t)〉
|νβ(t)〉

)
=

(
cos θ sin θ
− sin θ cos θ

)(
|ν1(t)〉
|ν2(t)〉

)
, (1)

where νi is the mass eigenstate associated with the mass mi.
The probability that a neutrino produced in the flavor eigenstate α at

the time t = 0 is detected in the same flavor at t is given by

Pα→α =
∣∣〈να(0)|να(t)〉

∣∣2. (2)

From Eq. (1), the state να at t is

|να(t)〉 = cos θ|ν1(t)〉+ sin θ|ν2(t)〉,

and, therefore, the considered amplitude is

〈να(0)|να(t)〉 = cos2 θ〈ν1(0)|ν1(t)〉+ sin2 θ〈ν2(0)|ν2(t)〉
= cos2 θe−iE1t + sin2 θe−iE2t,

because the mass eigenstates are orthonormal, 〈νi(t)|νj(t)〉 = δij, and the
time evolution of the state |νi(t)〉 is given by |νi(t)〉 = e−iEit|νi(0)〉.

Now we are ready to calculate the probability from Eq. (2),

Pα→α = (cos2 θe−iE1t + sin2 θe−iE2t)(cos2 θe+iE1t + sin2 θe+iE2t)

= cos4 θ + sin4 θ + sin2 θ cos2 θ(e−i(E2−E1)t + e+i(E2−E1)t)

= (cos2 θ + sin2 θ)2 − 2 sin2 θ cos2 θ + 2 sin2 θ cos2 θ cos[(E2 − E1)t]

= 1− 2 sin2 θ cos2 θ{1− cos[(E2 − E1)t]}

= 1− 4 sin2 θ cos2 θ sin2 (E2 − E1)t

2

= 1− sin2 2θ sin2 (E2 − E1)t

2
,

In the above equations, we have used the identities 2 cosx = e+ix + e−ix,
2 sin2 x = 1− cos 2x, and sin 2θ = 2 sin θ cos θ.

The phase of the neutrino mass eigenstate |ν1(0)〉 is

tEi = t
√

p2 +m2
i = t|p|

√
1 +m2

i /p
2 ≈ t|p|

(
1 +

m2
i

2p2

)
≈ t|p|+ m2

iL

2Eν
,
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where L is the distance between the neutrino source and the detected event,
and Eν is the neutrino energy. As a consequence,

1

2
(E2 − E1)t =

∆m2L

4Eν
,

with ∆m2 = m2
2 − m2

1. Therefore, the probability that a neutrino of the
flavor α retains its identity is

Pα→α(L,Eν) = 1− sin2 2θ sin2 ∆m2L

4Eν
. (3)

2 Kinematic energy reconstruction

Charged-current (CC) quasielastic (QE) scattering,

ν` + n→ `− + p,

ν̄` + p→ `+ + n,
(4)

is the dominant mechanism of neutrino interactions in the ∼1-GeV energy
region. Can we determine the neutrino energy from the kinematics of the
interaction products?

2.1 Free nucleon at rest

Consider CC QE scattering off a free nucleons at rest. The four-momentum
conservation then reads

k + p = k′ + p′ (5)

where k = (Eν ,k) is the four-momentum of the neutrino that scatters off
the initial nucleon of the four-momentum p = (M,p = 0), with M being its
mass. The interaction produces the charged lepton of the four-momentum
k′ = (E`,k`) and the final nucleon of the four momentum p′ = (Ep′ ,p

′) and
the mass M ′.

Equation (5) gives for p′ the condition

p′ = k + p− k′,

the square of which reads

p′2 = M ′2 = (k + p− k′)2 = k2 + 2k · (p− k′) + (p− k′)2.

As at the considered kinematics, neutrinos can be treated as massless, so

2k · (p− k′) = M ′2 − (p− k′)2.
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This relation can be simplified making use of vanishing momentum of the
initial nucleon,

2EνM − 2EνE` + 2Eν |k`| cos θ = M ′2 −M2 + 2ME` −m2
` ,

where θ and m` are the charged-lepton’s production angle and its mass,
respectively.

As a consequence, the neutrino energy in CC QE scattering off a free nu-
cleon can be exactly determined knowing only the kinematics of the charged
lepton,

Eν =
2ME` +M ′2 −M2 −m2

`

2(M − E` + |k`| cos θ)
. (6)

2.2 Nucleon bound in a nucleus

In the case of CC QE interaction leading to a single nucleon knockout from
a nucleus, the four momentum conservation reads

k + pA = k′ + pA−1 + p′,

with pA = (MA,pA = 0) and pA−1 = (EA−1,pA−1) denoting the four mo-
menta of the initial and final nuclei, respectively.

Similarly as in Sec. 2.1, let us start from the p′ condition,

p′ = k + pA − pA−1 − k′.

Its square gives

p′2 = M ′2 = (k + p− k′)2 = k2 + 2k · (p− k′) + (p− k′)2,

with the short-hand notation p = pA − pA−1 = (Ep,p). Rearranging the
terms, we obtain for massless neutrinos (i.e., when k2 = 0),

2k · (p− k′) = M ′2 − p2 + 2p · k′ − k′2,

and explicitly, with θh being the angle between the vectors p and k,

2Eν(Ep−E`)−2Eν
(
|p| cos θh−|k`| cos θ

)
= M ′2−p2 + 2EpE`−2p ·k`−m2

` .

Therefore, to determine the true value of the neutrino energy in CC QE
single nucleon knockout,

Eν =
2EpE` − 2p · k` +M ′2 − E2

p + p2 −m2
`

2(Ep − |p| cos θh − E` + |k`| cos θ)
, (7)
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one would need to know the three-momenta of the charged lepton and the
residual nucleus, and the energy of the residual nucleus.

In practice, an application of the above formula requires (i) neglecting
the unmeasured recoil momentum pA−1 = −p and (ii) approximating the
energy of the residual nuclear system by a constant or, equivalently, setting
Ep = M − ε. These simplifications lead to the approximation

Erec
ν =

2ME` +M ′2 − (M − ε)2 −m2
`

2(M − ε− E` + |k`| cos θ)
, (8)

which amounts to treating the nucleus as a constant potential in which all
nucleons are at rest, compare Eqs. (6) and (8). Note that the appropriate
value of ε, in general, depends on kinematics [PoS(NUFACT2014)004], and
that the accuracy of this energy reconstruction formula is much worse for the
the processes in which more nucleons are knocked out from the nucleus.

3 Coulomb correction

Consider CC QE interaction of neutrino (antineutrino) with the neutron
(proton) bound in a nucleus. Each charged particle produced in the inter-
action is subject to a modification of its energy in the Coulomb field of the
nucleus. When the proton is treated as a point particle, the absolute value
of its Coulomb energy, VC is equal to that of the charged lepton. What is
the average value of that energy?

3.1 Simple estimate of the Coulomb energy

In general, the Coulomb energy of the charge e inside the nucleus of the
charge Ze and the radius R can be expressed as

VC(r) =
Ze2

4πε0

∫
d3r′

ρch(r′)

|r− r′|
, (9)

with the fine structure constant α = e2/(4πε0) and ρch being the charge
density. For a spherically symmetric nucleus, this expression simplifies to

VC(r) = 4πZα

[
1

r

∫ r

0

dr′ r′2ρch(r′) +

∫ R

r

dr′ r′ρch(r′)

]
. (10)

Proof: Selecting the z axis along the vector r, we can express VC(r) as

VC(r) =
Ze2

4πε0

2π

∫ R

0

dr′ r′2ρch(r′)

∫ +1

−1

d cos θ
1√

r2 + r′2 − 2rr′ cos θ
.
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Using the identity ∫
dx

1√
a+ bx

=
2

b

√
a+ bx,

we obtain∫ +1

−1

d cos θ
1√

r2 + r′2 − 2rr′ cos θ
= − 1

rr′

√
r2 + r′2 − 2rr′ cos θ

∣∣∣+1

−1

=
1

rr′
(
|r + r′| − |r − r′|

)
,

which gives for the potential

VC(r) =
Ze2

2ε0

∫ R

0

dr′ r′2ρch(r′)
1

rr′
(
|r + r′| − |r − r′|

)
= 4πZα

(
1

r

∫ r

0

dr′ r′2ρch(r′) +

∫ R

r

dr′ r′ρch(r′)

)
,

where α = e2/(4πε).
The simplest—but widely used—approach is to treat the nucleus as a

uniformly charged sphere of the charge density ρch = 3/(4πR3). Then

VC(r) =
3Zα

R3

[
r2

3
+
R2

2
− r2

2

]
=

3Zα

R3

[
R2

2
− r2

6

]
=
Zα

2R

[
3− r2

R2

]
, (11)

and the average potential energy is

VC =

∫
d3rVC(r)ρ(r) =

3Zα

2R
− Zα

2R3

3

R3

R5

5
=

6Zα

5R
, (12)

with ρ denoting the point density.
The nuclear radius is customarily expressed as R = rC

3
√
A, with rC being

the reduced Coulomb radius. The latter can be parametrized as

rC = 1.198 + 0.697A−2/3 + 12.994A−5/3 (13)

for a large enough A, see Koning and Delaroche [Nucl. Phys. A 713, 231
(2003)]. To determine the range of validity of this expression, the root-
mean-square radii, being

√
〈r2〉 =

√
3/5R in the uniformly charged sphere

approximation, can be compared with experimental data. Such a comparison
with the data from de Vries et al. [At. Data Nucl. Data Tables 36, 495
(1987)] is presented in Fig. 1 for a broad range of nuclei. This comparison
suggests that the accuracy of Eq. (13) is 5% for 16 ≤ A ≤ 208, and 3% for
20 < A ≤ 40.

For carbon, Eq. (13) gives 3.52 fm, compared with the experimental value
3.18 fm. The corresponding Coulomb energies are 2.9 and 3.3 MeV.
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Figure 1: Comparison of the root-mean-square radii extracted from exper-
imental data for electron scattering with the predictions of the expression
rC
√

3/5 3
√
A, with rC given by Eq. (13), as a function of the mass number A.

3.2 Refined estimate of the Coulomb energy

Applying to Eq. (10) a realistic charge density, one can improve the esti-
mate of the Coulomb potential of the considered nucleus. For all the cases
important for neutrino applications (12

6C, 16
8O, 40

18Ar, 56
26Fe, 208

82Pb), the charge
density in the article of de Vries et al. is available in the form

ρch(r) =
nmax∑
n=1

anj0(nkr), (14)

with the spherical Bessel function j0(x) and k = π/R, R being the cutoff
radius. Then, a simple analytical integration leads to the Coulomb energy
expressed as

VC(r) = 4παZ
∑ an

n2k2

[
j0(nkr)− (−1)n

]
. (15)

Using the point densities unfolded from the charge densities of de Vries et
al. following to the procedure of Kelly [Phys. Rev. C 66, 065203 (2002)], one
can obtain the average Coulomb energies, VC =

∫
d3rVC(r)ρ(r), collected in

Table 1.
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Table 1: Average and center values of Coulomb energy for various nuclei.

nucleus 12
6C 16

8O 40
18Ar 40

20Ca 48
22Ti 56

26Fe 204
82Pb 208

82Pb
VC (MeV) 3.5 4.2 7.3 8.0 8.5 9.6 20.2 20.1
V max
C (MeV) 4.6 5.5 9.6 10.5 11.0 12.4 25.7 25.6

3.3 Coulomb corrections to the cross section

The Coulomb field of nucleus modifies the energies of charged particles and
affects their wave functions. As a consequence, measurable kinematic vari-
ables, such as the energies of charged probe or knocked out proton, differ by
the Coulomb correction from those which enter the energy conservation at
the interaction vertex, and the effect of (de)focusing needs to be accounted
for in calculations of the cross sections.

For electrons, the effect of the nuclear Coulomb potential on the cross
section

dσeA
dE`dΩ

= feA(Eν , ω, |q|)

may be approximated by the EMA′ prescription of Aste and Jourdan [Euro-
phys. Lett. 67, 753 (2004)],

(i) replacing the initial and final electron energy,

Ek → Eeff
k = Ek + VC , (16)

Ek′ → Eeff
k′ = Ek′ + VC , (17)

what in turn changes the momenta

|k| → |keff| =
√

(Ek + VC)2 −m2, (18)

|k′| → |k′eff| =
√

(Ek′ + VC)2 −m2, (19)

(ii) multiplying the cross section by the focusing factor(
|kmax

eff ||k′max
eff |

|keff||k′eff|

)2

. (20)

Note that while this procedure leaves the energy transfer unaltered,

ωeff = Eeff
k − Eeff

k′ = Ek − Ek′ = ω,
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this is not the case for the momentum transfer, the magnitude and direction
of which are affected by the Coulomb field,

qeff = k
|keff|
|k|
− k′
|k′eff|
|k′|

∦ k− k′ = q.

In summary, the (e, e′) cross section corrected for the the Coulomb effects
is

dσeA
dωdΩ

=

(
|kmax

eff ||k′max
eff |

|keff||k′eff|

)2

feA(Eeff
ν , ω, |qeff|). (21)

In CC (anti)neutrino scattering, the probe does not carry the electric
charge and, therefore, accounting for the Coulomb corrections reduces to

(i) replacing the final muon energy and momentum by

E` → E` + sVC and |k′| → |k′eff| =
√

(E` + sVC)−m2. (22)

with s = +1 for neutrinos and −1 for antineutrinos, and

(ii) multiplying the cross section by the focusing factor(
|k′max

eff |
|k′eff|

)2

. (23)

This prescription leads to the CC cross section in the following form

dσCC

dE`dΩ
=

(
|k′max

eff |
|k′eff|

)2

fCC(Eν , ωeff, |qeff|), (24)

with

ωeff = Eν − Eeff
` , (25)

qeff = k− k′eff. (26)

As the difference between the proton and neutron spectral functions in-
creases the difference between antineutrino and neutrino interactions, it needs
to be accounted for in calculations of the cross sections. Moreover, taking
into account final-state interactions in neutrino and antineutrino scattering,
one needs to keep in mind the difference between the proton and neutron
spectrum produced by the Coulomb energy.

In Monte Carlo generators, the cross section is typically calculated as

σCC =

∫
d3k′

E`
· · · =

∫
d|k′|dΩ

|k′|
E`

dσCC

dE`dΩ
. (27)

Note that while the Coulomb effects modify the differential cross section
dσCC/dE`dΩ, they do not affect the factor |k′|/E`.
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4 Point density

In the most general case, the charge density reads

ρch(r) =

∫
d3r′

[
ρ(p)

p (r′)ρ
(p)
ch (r − r′) + ρ(n)

p (r′)ρ
(n)
ch (r − r′)

]
, (28)

where ρ
(N)
p is the point density of nucleons of isospin N (N = p, n) and ρ

(N)
ch

is their charge distribution.
Assuming the scaling Nρ

(n)
p (r) = Zρ

(p)
p (r), we deal with the case of only

one point density

ρp(r) = ρ(p)
p (r) = ρ(n)

p (r)
N

Z
,

and the charge density becomes

ρch(r) =

∫
d3r′ρp(r′)

[
ρ

(p)
ch (r − r′) +

N

Z
ρ

(n)
ch (r − r′)

]
, (29)

Its Fourier transform,

ρch(k) =

∫
d3rρch(r)eik·r

=

∫
d3r′ρp(r′)

∫
d3reik·r

[
ρ

(p)
ch (r − r′) +

N

Z
ρ

(n)
ch (r − r′)

]
=

∫
d3r′ρp(r′)eik·r

′
∫
d3reik·(r−r

′)

[
ρ

(p)
ch (r − r′) +

N

Z
ρ

(n)
ch (r − r′)

]
≡ ρp(k)

[
ρ

(p)
ch (k) +

N

Z
ρ

(n)
ch (k)

]
,

(30)

allows us to find the point density in the momentum space

ρp(k) =
ρch(k)

ρ
(p)
ch (k) + N

Z
ρ

(n)
ch (k)

, (31)

and in the coordinate space

ρp(r) =
1

(2π)3

∫
d3kρp(k)e−ik·r =

1

(2π)3

∫
d3ke−ik·r

ρch(k)

ρ
(p)
ch (k) + N

Z
ρ

(n)
ch (k)

=
4π

(2π)3

∫
dk k2j0(kr)

ρch(k)

ρ
(p)
ch (k) + N

Z
ρ

(n)
ch (k)

.

(32)
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What is ρch(k)? In the article of de Vries et al. is available in the form

ρch(r) =
nmax∑
n=1

anj0(nkr), (33)

with the spherical Bessel function j0(x) and k = π/R, R being the cutoff
radius. Then,

ρch(k) =

∫
d3reik·rρch(r) =

∫
d3rj0(kr)ρch(r) = 4π

∫
dr r2j0(kr)ρch(r)

= 4π

∫
dr r2j0(kr)

nmax∑
n=1

anj0(nπr/R) =
(2π)2

2k2

nmax∑
n=1

anδ
(
k − nπ

R

)
.

In the last step we have used the orthogonality relation∫
dx x2jα(ux)jα(vx) =

π

2v2
δ(u− v),

valid for α ≥ 0.
Returning to the point density,

ρp(r) =

∫
dk j0(kr)

nmax∑
n=1

anδ
(
k − nπ

R

)
ρ

(p)
ch (k) + N

Z
ρ

(n)
ch (k)

=
nmax∑
n=1

anj0(kr)

ρ
(p)
ch (k) + N

Z
ρ

(n)
ch (k)

∣∣∣∣∣
k=nπ

R

.

(34)

In a naive nonrelativistic approximation, ρ
(N)
ch (k) = G

(N)
E (k2), see e.g.

Halzen and Martin, Quarks and leptons (Wiley, New York, 1984).
According to Kelly [Phys. Rev. C 66, 065203 (2002)], more satisfactory

results are obtained from

ρ
(N)
ch (k) = G

(N)
E (Q2)(1 + τ)2,

with k2 = Q2/(1 + τ) and τ = Q2/(4M2), which is equivalent to

ρ
(N)
ch (k) = G

(N)
E

(
k2

1− k2/(4M2)

)(
1− k2

4M2

)−2

.

5 Optical potential

The Dirac equation in the most general form reads

(γµpµ −M − S − γ0V )ψ = 0
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where S and V are the scalar and vector potentials of complex values, re-
spectively. It can be rewritten as

(−γipi +M + S)ψ = γ0(Etot − V )ψ.

To obtain the energy of the particle in the potential, “square” the equation

(γjpj +M + S)(−γipi +M + S)ψ = (γjpj +M + S)γ0(Etot − V )ψ.

The left-hand side gives

(γjpj +M + S)γ0(Etot − V )ψ = (Etot − V )γ0(−γjpj +M + S)ψ

= (Etot − V )γ0γ0(Etot − V )ψ = (Etot − V )2ψ

Introducing the shorthand notation M̃ = M + S = M + SV + iSW , where
SV and SW are the real and the imaginary part of the scalar potential, we
can rewrite the right-hand side as follows

(γjpj + M̃)(−γipi + M̃)ψ = [−γjpjγipi + M̃2]ψ = [−γjpjγipi + M̃2]ψ

= [−γjpjγipi + M̃2]ψ =

[
1

2
(−γjpjγipi − γipiγjpj) + M̃2

]
ψ

= [−gijpjpi + M̃2]ψ = [p2 + M̃2]ψ

Comparing the right- and left-hand side we obtain the relation

(Etot − V )2 = M̃2 + p2,

which can be used to define the (complex) optical potential U by means of
the equation

Ep + U =

√
M̃2 + p2 + V.

The argument of the square root may be cast in the form

M̃2 + p2 = a+ ib

with

a = E2
p + 2MSV + S2

V − S2
W ,

b = 2SW (M + SV ).

Therefore, from the identity

√
a+ ib =

√
1

2

(√
a2 + b2 + a

)
+ i

√
1

2

(√
a2 + b2 − a

)
,
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it follows that the real part of the optical potential is

<U =

√
1

2

√
a2 + b2 +

1

2
a+ VV − Ep,

and the imaginary part equals to

=U =

√
1

2

√
a2 + b2 − 1

2
a+ VW .
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