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Chapter 1

Self-consistent Green’s function approaches

Carlo Barbieri and Arianna Carbone

Abstract We present the fundamental techniques and working equations of many-body
Green’s function theory for calculating ground state properties and the spectral strength.
Green’s function methods closely relate to other polynomial scaling approaches discussed in
chapters 8 and 10. However, here we aim directly at a global view of the many-fermion struc-
ture. We derive the working equations for calculating many-body propagators, using both the
Algebraic Diagrammatic Construction technique and the self-consistent formalism at finite
temperature. Their implementation is discussed, as well as the inclusion of three-nucleon in-
teractions. The self-consistency feature is essential to guarantee thermodynamic consistency.
The pairing and neutron matter models introduced in previous chapters are solved and com-
pared with the other methods in this book.

1.1 Introduction

Ab initio methods that present polynomial scaling with the number of particles have proven
highly useful in reaching finite systems of rather large sizes up to medium mass nuclei [1–3]
and even infinite matter [4–6]. Most approaches of this type that are discussed in previous
chapters aim at the direct evaluation of the ground state energy of the system, where several
other quantities of interest can be addressed in a second stage through the equation of motion
and particle removal or attachment techniques. Here, we will follow a different route and
focus on gaining from the start a global view of the spectral structure of a system of fermions.
Our approach will be that of calculating directly the self-energy (also know as mass operator),
which describes the complete response of a particle embedded in the true ground state of the
system. This not only provides an effective in medium interaction for the nucleon, but it is also
the optical potential for elastic scattering and it yields the spectral information relative to the
attachment and removal of a particle. Once the one body Green’s function has been obtained,
the total energy of the system is calculated, as the final step, by means of appropriate sum
rules [7,8].

Two main approaches have become standard choices for calculations of Green’s functions
in nuclear many-body theory. The Algebraic Diagrammatic Construction (ADC) method, that
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was originally devised for quantum chemistry applications [9, 10], has proven to be optimal
for discrete bases, as it is normally necessary to exploit for finite nuclei. However, this can
also be applied to fermion gases in a box with periodic boundary conditions, which simplifies
the analysis even more thanks to translational invariance. We will focus on the case of infi-
nite nucleonic matter and provide an example of a working numerical code. ADC(n) methods
are part of a larger class of approaches based on intermediate-state representations (ISRs) to
which also the equation-of-motion coupled cluster belongs [11,12]. The other method consists
in solving directly the nucleon-nucleon ladder scattering matrix for dressed particles in the
medium, which can be done effectively in a finite temperature formalism [13,14]. Hence, this
makes possible to study thermodynamic properties of the infinite and liquid matter. For these
studies to be reliable, it is mandatory to ensure the satisfaction of fundamental conservation
laws and to maintain thermodynamic consistency in the infinite size limit. We show here how
to achieve this by preforming fully self-consistent calculations of the Green’s function. In this
context, ‘self-consistency’ means that the input information about the ground state and exci-
tations of the systems no longer depend on any reference state but instead it is taken directly
from the computed correlated wave function (or propagator, in our case). To achieve this,
the computed spectral function is fed back into the working equations and calculations are
repeated until a consistency between input and output is obtained. This approach is referred
to as self-consistent Green’s function (SCGF) method and it is always implemented, partially
or in full, for nuclear structure applications.

Very recent advances in computational applications concern the extension of SCGF theory
to the Gorkov-Nambu formalism for the breaking on particle number symmetry [15–17]. This
allows to treat pairing systematically in systems with degenerate reference states and, there-
fore, to calculate open-shell nuclei directly. As a result, these developments have opened the
possibility of studying large set of semi-magic nuclei that were previously beyond the reach of
ab initio theory. We will not discuss the Gorkov-SCGF method here, but we will focus on the
fundamental features of the standard approaches instead. The interested reader is referred
to recent literature on the topic [16,18–20].

In the process of discussing the relevant working equations of SCGF theory, we will also
deal with applications to the same pairing model and the neutron matter with the Minnesota
potential already discussed in chapters 8 and 9. Together with presenting the most important
steps for their numerical implementations, this book provides two examples of working codes
in FORTRAN and C++ that can solve these models. Results for the self-energy and spectral
functions should serve to gain a deeper understanding of the many-body physics that is em-
bedded in the SCGF method. In discussing this, we will also benchmark the SCGF results
with those obtained in other chapters of this book: coupled cluster (chapter 8), Monte Carlo
(chapter 9) and in-medium similarity renormalization group (chapter 10).

1.2 Many-body Green’s function theory

This chapter will focus on many-body Green’s functions, which are also referred to as propa-
gators. These are defined in the second quantization formalism by assuming the knowledge
of the true ground state |Ψ A

0 〉 of a target system of A nucleons, which is taken to be a vacuum
of excitations. The one-body Green’s function (or propagator) is then defined as [21,22]:

ih̄ gαβ (t− t ′) = 〈Ψ A
0 |T [aα(t)a

†
β
(t ′)]|Ψ A

0 〉 , (1.1)

where T is the time ordering operator, a†
α(t) (aα(t)) are the creation (annihilation) operators

in Heisenberg picture, and greek indices α, β , ... label a complete single particle basis that
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defines our model space. These can be the continuum momentum or coordinate spaces or any
discrete set of single particle states. Note that g(t− t ′) depends only on the time difference
t− t ′ due to time translation invariance. For t > t ′, Eq. (1.1) gives the probability amplitude to
add a particle to |Ψ A

0 〉 in state β at time t ′ and then to let it propagate to reach state α at a
later time t. Vice versa, for t < t ′ a particle is removed from state α at t and added to β at t ′.

In spite of being the simplest type of propagator, the one-body Green’s function does con-
tain a wealth of information regarding single particle behavior inside the many-body system,
one-body observables, the total binding energy, and even elastic nucleon-nucleus scattering.
The propagation of a particle or a hole excitation corresponds to the time evolution of an
intermediate many-body system with A+1 or A−1 particles. One can better understand the
physics information included in Eq. (1.1) from considering the eigenstates |Ψ A+1

n 〉, |Ψ A−1
k 〉 and

eigenvalues EA+1
n , EA−1

k of these intermediate systems. By expanding on these eigenstates and
Fourier transforming from time to frequency, one arrives at the spectral representation of the
one-body Green’s function:

gαβ (ω) =
∫

dτ eiωτ gαβ (τ)

= ∑
n

〈Ψ A
0 |aα |Ψ A+1

n 〉〈Ψ A+1
n |a†

β
|Ψ A

0 〉
h̄ω− (EA+1

n −EA
0 )+ iη

+ ∑
k

〈Ψ A
0 |a†

β
|Ψ A−1

k 〉〈Ψ A−1
k |aα |Ψ A

0 〉
h̄ω− (EA

0 −EA−1
k )− iη

,

≡ ∑
n

(X n
α)
∗X n

β

h̄ω− ε
+
n + iη

+ ∑
k

Yk
α(Yk

β
)∗

h̄ω− ε
−
k − iη

, (1.2)

where the operators a†
α and aα are now in Schördinger picture. Eq. (1.2) was derived by

a number of authors in the 1950s but is usually referred to as the ‘Lehmann’ representa-
tion in many-body physcis [23–25]. For the rest of this chapter (with the only exception of
Appendix 1) we will work in dimensionless h̄ = c = 1 units to avoid carrying over unneces-
sary h̄ terms. From Eq. (1.2), we see that the poles of the Green’s function, ε+n ≡ (EA+1

n −EA
0 )

and ε
−
k ≡ (EA

0 −EA−1
k ), are one-nucleon addition and removal energies, respectively. Note that

these are generically referred to in the literature as “separation” or “quasiparticle” energies
although the first naming should normally refer to transitions involving only (A± 1)-nucleon
ground states. We will use the second convention in the following, unless the two naming
are strictly equivalent. In the last line of Eq. (1.2) we have also introduced short notations
for the spectroscopic amplitudes associated with the addition (X n

α ≡ 〈Ψ A+1
n |a†

α |Ψ A
0 〉) and the

removal (Yk
α ≡ 〈Ψ A−1

k |aα |Ψ A
0 〉) of a particle to and from the initial ground state |Ψ A

0 〉. We will
use the latin letter n to label one-particle excitations and to distinguish them from one-hole
states that are indicated by k instead. This compact form will simplify deriving the working
formalism in the following sections.

The one-body Green’s function (1.2) is completely determined by solving the Dyson equa-
tion:

gαβ (ω) = g(0)
αβ

(ω) + ∑
γδ

g(0)αγ (ω)Σ
?
γδ
(ω)gδβ (ω) (1.3a)

= g(0)
αβ

(ω) + ∑
γδ

gαγ(ω)Σ
?
γδ
(ω)g(0)

δβ
(ω) , (1.3b)

where we have put in evidence that there exists two different conjugate forms of this equa-
tion, corresponding to the first and second lines. In Eqs. (1.3), the unperturbed propagator

g(0)
αβ

(ω) is the initial reference state (usually a mean-field or Hartree-Fock state), while gαβ (ω)

is called the correlated or dressed propagator. The quantity Σ ?
γδ
(ω) is the irreducible self-

energy and it is often referred to as the mass operator. This operator plays a central role
in the GF formalism and can be interpreted as the non-local and energy-dependent poten-
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= + Σ∗

a)

= + Σ∗

b)

Fig. 1.1 Diagrammatic representations of the Dyson equation. The diagram on the left represents Eq. (1.3a),
while its conjugate equation (1.3b) is shown to the right. Single lines with an arrow represent the unperturbed
propagator g(0)(ω) and double lines are the fully dressed propagator g(ω) of Eq. (1.2). Both equations, when
expanded in terms of g(0)(ω), give rise to the same series of diagrams for the correlated propagator.

tial that each fermion feels due to the interactions with the medium. For frequencies ω > 0,
the solution of Eqs. (1.3) yields a continuum spectrum with EA+1

n > EA
0 and the state |Ψ A+1

n 〉
describes the elastic scattering of the additional nucleon off the |Ψ A

0 〉 target. It can be show
that Σ ?(ω) is an exact optical potential for scattering of a particle from the many-body tar-
get [26–28]. The Dyson equation is nonlinear in its solution, g(ω), and thus it corresponds
to an all-orders resummation of diagrams involving the self-energy. The Feynman diagrams
corresponding to both forms of the Dyson equation are shown in Fig. 1.1. In both cases, by
recursively substituting the exact Green’s function (indicated by double lines) that appears
on the right hand side with the whole equation, one finds a unique expansion in terms of the
unperturbed g(0)(ω) and the irreducible self-energy. The solution of Eqs. (1.3) is referred to
as dressed propagators since it formally results by ‘dressing’ the free particle by repeated
interactions with the system (Σ ?(ω)).

A full knowledge of the self-energy Σ ?(ω) (see Eqs. (1.3)) would yield the exact solution
for g(ω) but in practice this has to be approximated somehow. Standard perturbation theory,
expands Σ ?(ω) in a series of terms that depend on the interactions and on the unperturbed
propagator g(0)(ω). However, it is also possible to rearrange the perturbative expansion in di-
agrams that depend only on the exact dressed propagator itself (that is, Σ ? = Σ ?[g(ω)]). Since
any propagator in this diagrammatic expansion is already dressed, one only needs to consider
a smaller set of contributions—the so-called skeleton diagrams. These are diagrams that do
not explicitly include any self-energy insertion, as these are already generated by Eqs. (1.3).
We will discuss these aspects in more detail in Sec. 1.2.2. For the present discussion, we only
need to be aware that the functional dependence of Σ ?[g(ω)] requires an iterative procedure
in which Σ ?(ω) and Eqs. (1.3) are calculated several times until they converge to a unique so-
lution. This approach defines the SCGF method and it is particularly important since it can be
shown that full self-consistency allows to exactly satisfy fundamental symmetries and conser-
vations laws [29, 30]. In practical applications, and especially in finite systems, this scheme
may not be achievable exactly and self-consistency is implemented only partially for the most
important contributions. Normally this is still sufficient to obtain highly accurate results. We
will present suitable approximation schemes to calculate the self-energy in the following sec-
tions. In particular, we will focus on the ADC(n) method that can be applied with discretized
bases in finite and infinite systems in Secs. 1.3 and 1.4. The case of extended systems at finite
temperature is discussed in Sec. 1.5. Before going into the actual approximation schemes, we
need to see how experimental quantities can be calculated once the one-body propagator is
known, as well as to discuss the basic results of perturbation theory.
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Fig. 1.2 Calculated single-particle spectral function for the addition and removal of a neutron to and form
56Ni, from Ref. [31]. The diagonal part, Sr,r(ω), is shown in coordinate space. Energies below the Fermi level EF
correspond to the one-hole spectral function Sh

r,r(ω) which describes the distribution of nucleons in energy and
coordinate space. Integrating over all the quasihole energies yields the matter density distribution, Eq. (1.9).
Energies above EF are for the one-particle spectral function Sp

r,r(ω).

1.2.1 Spectral function and relation to experimental observations

Once the one-body Green’s function is known, it can be used to calculate the total binding
energy and the expectation values of all one-body observables. The attractive feature of the
SCGF approach is that g(ω) describes the one-body dynamics completely. This information
can be recast in the particle and hole spectral functions, which contain the separate responses
for the attachment and removal of a nucleon. They can be obtained directly from Eq. (1.2), as
follows:

Sp
αβ

(ω) = − 1
π

Im gαβ (ω) = ∑
n
(X n

α)
∗X n

β
δ

(
ω− (EA+1

n −EA
0 )
)
, for ω ≥ ε

+
0 ,

Sh
αβ

(ω) =
1
π

Im gαβ (ω) = ∑
k
Yk

α(Yk
β
)∗ δ

(
ω− (EA

0 −EA−1
k )

)
, for ω ≤ ε

−
0 . (1.4)

The diagonal parts of Eqs. (1.4), have a straightforward physical interpretation [21,22]. The
particle part, Sp

αα(ω), is the joint probability of adding a nucleon with quantum numbers
α to the A-body ground state, |Ψ A

0 〉, and then to find the system in a final state with energy
EA+1 =EA

0 +ω. Likewise, Sh
αα(ω) gives the probability of removing a particle from state α while

leaving the nucleus in an eigenstate of energy EA−1 = EA
0 −ω. These are demonstrated in co-

ordinate space in Fig. 1.2 for neutrons around 56Ni. Below the Fermi energy, EF ≡ 1
2 (ε

+
0 + ε

−
0 ),

one can see a single dominant quasihole peak corresponding to the f7/2 orbit. The states from
the sd shell are at lower energies and are instead very fragmented. Just above EF , there are
sharp quasiparticles corresponding to the attachment of a neutron to the remaining p f or-
bits. Finally, for ω > 0, one has neutron-56Ni elastic scattering states. Remarkably, one can
see that dominant quasiparticle peaks persist around the Fermi surface, which confirms the
underlying shell structure outside the 40Ca core for this nucleus.

The existence of isolated dominant peaks as those shown in Fig. 1.2 indicates that the
eigenstates |Ψ A+1

n 〉 and |Ψ A−1
k 〉 are to a very good approximation constructed of a nucleon or

a hole independently orbiting the ground state |Ψ A
0 〉. This is the basic hypothesis at the origin

of the nuclear shell-model. How much a real nucleus deviates from this assumption can be
gauged by the deviations in the values of their spectroscopic factors. These are defined as
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the normalization overlap of the spectroscopic amplitudes for the attachment or removal of a
particle:

SF+
n = ∑

α

|X n
α |2 , SF−k = ∑

α

|Yk
α |2 . (1.5)

The energy distribution of spectroscopic factors is given by

S(ω) = ∑
α

Sp
αα(ω) + ∑

α

Sh
αα(ω)

= ∑
n

SF+
n δ (ω−EA+1

n +EA
0 ) + ∑

n
SF−k δ (ω−EA

0 +EA−1
k ) , (1.6)

where each δ -peak corresponds to eigenstates of a neighboring isotope with A±1 particles.
These quasiparticle energies are directly observed in nucleon addition and removal experi-
ments. Note that the total strength seen in similar experiments results from a convolution of
the spectroscopic amplitudes with the dynamics of the reaction mechanisms. Hence, while
the quasiparticle energies appearing in the poles of Eq. (1.2) are strictly observed, the mag-
nitude of the spectral strength S(ω) only gives a semi-quantitative description of the strength
of the observed cross sections.

Any one-body observable can be calculated via the one-body density matrix ραβ , which is
obtained from gαβ (ω) as follows:

ραβ ≡ 〈Ψ A
0 |a†

β
aα |Ψ A

0 〉 =
∫

ε
−
0

−∞

Sh
αβ

(ω) dω = ∑
k
(Yk

β
)∗Yk

α . (1.7)

The expectation value of a one-body operator, Ô1B, can then be written in terms of the Y
amplitudes as:

〈Ô1B〉= ∑
αβ

O1B
αβ

ρβα = ∑
k

∑
αβ

(Yk
α)
∗ O1B

αβ
Yk

β
. (1.8)

However, evaluating two- and many-nucleon observables requires the knowledge of many-
body propagators. Eq. (1.7) also implies that the density profile of the system can be obtained
by integrating over the hole spectral function in coordinate space (cf. Fig. 1.2):

ρ(r) =
∫

ε
−
0

−∞

Sh
r,r(ω) dω . (1.9)

Likewise, a second sum (or integration) over the coordinate space yields the total number of
particles, ∫

dr
∫

ε
−
0

−∞

Sh
r,r(ω) dω = ∑

α

∫
ε
−
0

−∞

Sh
αα(ω) dω = A . (1.10)

A very special case is the Koltun sum-rule that allows calculating the total energy of the
system by means of the exact one-body propagator alone, g(ω) [7,32]. This relation is exact
for any Hamiltonian containing at most one- and two body interactions. When many-particle
interactions are present, it is necessary to correct for the over countings that arise from these
additional terms [33]. For the specific case in which a three-body interaction Ŵ is included,
the exact relation for the ground state energy is given by the following modified Koltun rule:

EA
0 = ∑

αβ

1
2

∫
ε
−
0

−∞

[Tαβ +ω δαβ ]S
h
βα

(ω) dω − 1
2
〈Ŵ 〉 . (1.11)

This still relies on the use of a one-body propagator but it requires the additional evaluation
of the expectation value of the three-body interaction, 〈Ŵ 〉 (which in principle requires the
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knowledge of more complex Green’s functions). Thankfully, in most cases the total strength
of Ŵ is much smaller than other terms in the Hamiltonian. Thus, one can safely approximate
its expectation value at lowest order, in terms of three correlated density matrices, as

〈Ŵ 〉 ' 1
6 ∑

αβ µγδν

Wαβ µ,γδν ργα ρδβ ρνµ . (1.12)

As a typical example in finite nuclei, the error from this approximation has been estimated not
to exceed 250 keV for the total binding energies for 16O and 24O [34]. However, the accuracy
of Eq. (1.12) is not guaranteed and needs to be verified case by case.

1.2.2 Perturbation expansion of the Green’s function

In order to understand the following sections and to devise appropriate approximations to
the self-energy Σ ?(ω) it is necessary to understand the basic elements of perturbation the-
ory. These will be also fundamental to derive all-order summation schemes leading to non-
perturbative solutions and to discuss the concept of self-consistency. We summarize here the
material needed to understand the following sections, while the full set of Feynman rules is
reviewed in Appendix 1.

We work with a system of A non-relativistic fermions interacting by means of two-body and
three-body interactions. We divide the Hamiltonian into two parts, Ĥ = Ĥ0 + Ĥ1. The unper-
turbed term, Ĥ0 = T̂ + Û , is given by the sum of the kinetic term and an auxiliary one-body
operator Û . Its choice defines the reference state, |ΦA

0 〉, and the corresponding unperturbed
propagator g(0)(ω) that are the starting point for the perturbative expansion1. The perturba-
tive term is then Ĥ1 =−Û +V̂ +Ŵ , where V̂ denotes the two-body interaction operator and Ŵ
is the three-body interaction. In a second-quantized framework, the full Hamiltonian reads:

Ĥ = ∑
α

ε
0
α a†

α aα −∑
αβ

Uαβ a†
α aβ +

1
4 ∑

αγ

βδ

Vαγ,βδ a†
α a†

γ aδ aβ +
1

36 ∑
αγε

βδη

Wαγε,βδη a†
α a†

γ a†
ε aη aδ aβ . (1.13)

In Eq. (1.13) we continue to use greek indices α,β ,γ,. . . to label the single particle basis that
defines the model space. But we make the additional assumption that these are the same
states which diagonalize the unperturbed Hamiltonian, Ĥ0, with eigenvalues ε0

α . This choice
is made in most applications of perturbation theory but it is not strictly necessary here and it
will not affect our discussion in the following sections. The matrix elements of the one-body
operator Û are given by Uαβ . And we work with properly antisymmetrized matrix elements of
the two-body and three-body forces, Vαγ,βδ and Wαγε,βδη .

In time representation, the many-body Green’s functions are defined as the expectation
value of time-ordered products of annihilation and creation operators in the Heisenberg pic-
ture. This is shown by Eq. (1.1) for the single particle propagator. Every Green’s function
can be expanded in a perturbation series in powers of Ĥ1. For the one-body propagator this
reads [22,35]:

gαβ (tα − tβ ) = (−i)
∞

∑
n=0

(−i)n 1
n!

∫
dt1 . . .

∫
dtn〈ΦA

0 |T [ĤI
1(t1) . . . Ĥ

I
1(tn)a

I
α(tα)a

I
β

†
(tβ )]|ΦA

0 〉conn , (1.14)

1 A typical choice in nuclear physics would be a Slater determinant such as the solution of the Hartree-Fock
problem or a set of single-particle harmonic oscillator wave functions.
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where ĤI
1(t), aI

α(t) and aI
β

†
(t) are now intended as operators in the interaction picture with

respect to H0. The subscript “conn” implies that only connected diagrams have to be con-
sidered when performing the Wick contractions of the time-ordered product T . Each Wick
contraction generates an uncorrelated single particle propagator, g(0)(ω), which is associated
with the system governed by the Hamiltonian H0. At order n = 0, the expansion of Eq. (1.14)
simply gives g(0)(ω). H1 contains contributions from one-body, two-body and three-body inter-
actions that come from the last three terms on the right hand side of Eq. (1.13). Thus, for
n ≥ 1 the expansion involves terms with individual contributions of each force, or combina-
tions of them, that are linked by uncorrelated propagators. To each term in the expansion
there corresponds a Feynman diagram that gives an intuitive picture of the physical process
accounted by its contribution. The full set of Feynman diagrammatic rules that stems out of
Eq. (1.14) in the presence of three-body interactions is detailed in Appendix 1.

A first reorganization of the contributions generated by Eq. (1.14) is obtained by consider-
ing one-particle reducible diagrams, that is diagrams that can be disconnected by cutting a
single fermionic line. In general, the reducible diagrams generated by expansion (1.14) will
always have separate structures that are linked together by only one g(0)(ω) line. These are
the same class of diagrams that are created implicitly in the all-orders resummation of the
Dyson equation (1.3). Thus, the irreducible self-energy Σ ?(ω) is defined as the kernel that
collects all the one-particle irreducible (1PI) diagrams (with the external legs stripped off).
As already discussed above, Σ ?(ω) plays the role of an effective potential that is seen by a
nucleon inside the system. It splits in static and frequency dependent terms:

Σ
?
αβ

(ω) = −Uαβ + Σ
(∞)
αβ

+ Σ̃αβ (ω) , (1.15)

where we have separated Û since this is auxiliary defined and it eventually cancels out when
solving the Dyson equation. The term Σ (∞) plays the role of the static mean-field that a nucleon
feels due to the average interactions will all other particles in the system. The frequency-
dependent part, Σ̃(ω), describes the effects of dynamical excitations of the many-body state
that are induced by the nucleon itself. In general, this means the propagation of (complex)
intermediate excitations and therefore it must have a Lehmann representation analogous to
that of Eq. (1.2). For very large energies (ω→±∞) the poles of such Lehmann representation
become vanishingly small and one is left with just Σ (∞) and the auxiliary potential Û .

A further level of simplification in the self-energy expansion can be obtained if unperturbed
propagators, g(0)(ω), in the internal fermionic lines are replaced by dressed Green’s functions,
g(ω). This choice further restricts the set of diagrams to the so-called skeleton diagrams [22],
which are defined as 1PI diagrams that do not contain any portion that can be disconnected
by cutting any two fermion lines at different points. These portions would correspond to
self-energy insertions, which are already re-summed into the dressed propagator g(ω) by
Eq. (1.3). The SCGF approach is precisely based on expressing the irreducible self-energy
in terms of such skeleton diagrams with dressed propagators. The SCGF framework offers
great advantages. First, it is intrinsically non-perturbative and completely independent from
any choice of the reference state and auxiliary one-body potential. This is so because Σ ?(ω)

no longer depends on g(0)(ω) and Û always drops out of the Dyson equation (see Eq. (1.45)
below). Second, many-body correlations are expanded directly in terms of single particle ex-
citations of the true propagator, which are generally closer to the exact solution than those
associated with the unperturbed state, |ΦA

0 〉. Third, given an appropriate truncation of self-
energy, if a full SCGF calculation is possible then it automatically satisfies the basic conser-
vation laws of particle number, angular momentum, etc... [22,29,30]. Finally, the number of
diagrams to be considered is vastly reduced to 1PI skeletons one. However, this is not always
a simplification since a dressed propagator contains a very large number of poles, which can
be much more difficult to deal with than for the corresponding uncorrelated g(0)(ω).
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+ + 1
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=

+=
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Fig. 1.3 Graphical representation of the effective one-body interaction of Eq. (1.17a), top row, and the effec-
tive two-body interaction (1.17b), bottom row. Dashed lines represent the one-, two,- and three-body interac-
tions entering Eq. (1.13) and wavy lines are the effective operators Ũ and Ṽ .

If three- or many-body forces are included in the Hamiltonian, the number of Feynman
diagrams that need to be considered at a given order increases very rapidly. In this case it
becomes very useful and instructive to restrict the attention to an even smaller class of di-
agrams that are interaction-irreducible [33]. An interaction vertex is said to be reducible if
the whole diagram can be disconnected in two parts by cutting the vertex itself. In general,
this happens for an m-body interaction when there is a smaller number of n lines (n < m) that
leave the interaction, may interact only among themselves, and eventually all return to it.
The net outcome is that one is left with a (m− n)-body operator that results from the aver-
age interactions with other n-spectator nucleons. This plays the role of a system dependent
effective force that is irreducible. Fig. 1.3 shows diagrammatically how V̂ and Ŵ can be re-
duced to one- and two-body effective interactions in this way. Hence, for a system with up to
three-body forces, we define an effective Hamiltonian

H̃1 = Ũ +Ṽ +Ŵ , (1.16)

where Ũ and Ṽ are the effective interaction operators. The diagrammatic expansion aris-
ing from Eq. (1.14) with the effective Hamiltonian H̃1 is formed only of (1PI, skeleton)
interaction-irreducible diagrams. Note that the three-body interaction, Ŵ , remains the same
as in Eq. (1.13) but enters only diagrams as an interaction-irreducible three-body force. The
explicit expressions for the one-body and two-body effective interaction operators can be
obtained form the Feynman diagrams of Fig. 1.3 and they are given by:

Ũαβ = −Uαβ + ∑
δγ

Vαγ,βδ ρδγ +
1
4 ∑

µνγδ

Wαµν ,βγδ Γγδ ,µν , (1.17a)

Ṽαβ ,γδ = Vαβ ,γδ + ∑
µν

Wαβ µ,γδν ρνµ . (1.17b)

where we used the reduced two-body density matrix Γ , which can be computed from the
exact two-body Green’s function:

Γγδ ,µν = lim
τ→0−

−iGII
γδ ,µν

(τ) = 〈Ψ A
0 |a†

ν a†
µ aγ aδ |Ψ A

0 〉 . (1.18)

The effective Hamiltonian of Eq. (1.16) not only regroups Feynman diagrams in a more
efficient way, but also defines the effective one-body and two-body terms from higher order
interactions. As long as interaction-irreducible diagrams are used together with the effective
Hamiltonian, H̃1, this approach provides a systematic way to incorporate many-body forces
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α

γ

µ

β

ν

δ

λ

σ
ω

+
ω
2
−

ω
1

ω1 ω2

a) b)

Fig. 1.4 Second-order interaction-irreducible contributions to the self-energy arising from both two- and
three-nucleon forces. The diagram depending on the effective two-body interactions (left) also shows the
indices and labels that are used for calculating its contribution in Example 11.2.

in the calculations and to generate effective in-medium interactions. More importantly, the
formalism is such that all symmetry factors are guaranteed to be correct and no diagram is
over-counted [33]. Eqs. (1.17) can be seen as a generalization of the normal ordering of the
Hamiltonian with respect to the reference state |ΦA

0 〉 discussed in chapter 8. However, these
contractions go beyond normal ordering because they are performed with respect to the
exact correlated density matrices. To some extent, one can intuitively think of the effective
Hamiltonian H̃1 as being ordered with respect to the interacting many-body ground-state
|Ψ A

0 〉, rather than the non-interacting |ΦA
0 〉.

Since the static self-energy does not propagate any intermediate excitations, it can only re-
ceive contribution when the incoming and outgoing lines of a Feynman diagram are attached
to the same interaction vertex. Thus, by definition, Σ (∞) must include the one body term in Ĥ1
plus any higher order interaction that are reduced to effective one-body interactions, hence:

Ũαβ = −Uαβ + Σ
(∞)
αβ

, (1.19)

which defines Σ (∞) by comparison with Eq. (1.17a). The two terms that contribute to Σ (∞)

represent extensions of the Hartree-Fock (HF) potentials to correlated ground states. The
correlated Hartree-Fock potential from V̂ is the only effective operator when just two-body
forces are present. In this case there is very little gain in using the concept of the effective
Hamiltonian (1.16). However, with three-body interactions, additional effective interaction
terms appear in both Ũ and Ṽ . From Eq. (1.19) we see that the perturbative SCGF expan-
sion of the H̃1 Hamiltonian has only one (1PI, skeleton and interaction-irreducible) term at
first order. The first contributions to Σ̃(ω) appear at second order with the two diagrams in
Fig. 1.4. Expanding with respect to Ĥ1, there would have been five diagrams instead of only
the two interaction-irreducible ones shown in Fig. 1.4. These diagrams indeed have a proper
Lehmann representation (see Example 11.2 and Exercise 11.2) and propagate intermediate
state configurations (ISCs) of type 2-particle 1-hole (2p1h), 2h1p, 3p2h, etc... At third order,
H̃1 generates 17 SCGF diagrams two of which contain only two-body interactions. The sim-
plest of these, that involve at most 2p1h and 2h1p ISCs, are shown in Fig. 1.5. All interaction-
irreducible contributions to the proper self-energy up to third order in perturbation theory
are discussed in details in Ref. [33].

Example 11.1. Calculate the Feynman-Galitskii propagator, GII, f (τ), that corresponds to the
propagation of two particles or two holes that do not interact with each other.

This is the lowest order approximation to the two-times and two-body propagator which
evolves two particle from states α and β to states γ and δ after a time τ > 0, or two holes
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from γ and δ to α and β when τ < 0. By applying the perturbative expansion equivalent to
Eq. (1.14) at order n = 0, we find:

GII (0)
αβ ,γδ

(τ) = −i〈ΦA
0 |T [aI

β
(τ)aI

α(τ)aI
γ

†
(0)aI

δ

†
(0) ]|ΦA

0 〉

= ig(0)αγ (τ) g(0)
βδ

(τ) − ig(0)
αδ

(τ) g(0)
βγ
(τ) ≡ GII (0), f

αβ ,γδ
(τ)−GII (0), f

αβ ,δγ
(τ) . (1.20)

The Feynman-Galitskii propagator is precisely defined as the non antisymmetrized part of
Eq. (1.20). We now transform this to frequency space and apply the Feynman rules of Ap-
pendix 1 to calculate the GII, f for the more general case of two dressed propagator lines:

GII, f
αβ ,γδ

(ω) =
∫

dτ eiωτ GII, f
αβ ,γδ

(τ) = (−i)
∫ dω1

2π
igαγ(ω−ω1) igβδ (ω1) (1.21)

= −
∫ dω1

2πi

{
(X n1

α )∗X n1
γ

ω−ω1− ε
+
n1 + iη

+
Yk1

α (Yk1
γ )∗

ω−ω1− ε
−
k1
− iη

} (X n2
β
)∗X n2

δ

ω1− ε
+
n2 + iη

+
Yk2

β
(Yk2

δ
)∗

ω1− ε
−
k2
− iη

 ,

where we have used the convention that repeated indices are summed over. The integral
in the above equation can be performed with the Cauchy theorem by closing an arch on
either the positive or the negative imaginary half planes. Hence, contributions where all the
poles are on the same side of the real axis cancel out. Extracting the residues of the other
contributions leads to the following result:

GII, f
αβ ,γδ

(ω) = ∑
n1,n2

(X n1
α X n2

β
)∗X n1

γ X n2
δ

ω− (ε+n1 + ε
+
n2)+ iη

− ∑
k1,k2

Yk1
α Yk2

β
(Yk1

γ Yk2
δ
)∗

ω− (ε−k1
+ ε
−
k2
)− iη

. (1.22)

Exercise 11.1. Calculate the contribution of the three-body force Ŵ to the effective one body
potential, in the approximation of two dressed but non interacting spectator nucleons.

Solution. This is the last term in Fig. 1.3a) and Eq. (1.17a) but with GII(τ) approximated
by two independent fermion lines, as for the dressed Feynman-Galitskii propagator. Using
Eq. (1.18) and re-expressing the second line of (1.20) in terms of g(τ), we arrive at:

Ũ (W )
αβ

=
1
2 ∑

µνγδ

Wαµν ,βγδ ργµ ρδν . (1.23)

Example 11.2. Calculate the expression for the second-order contribution to Σ ?(ω) from
two-nucleon interactions only.

This is the diagram of Fig. 1.4a). By applying the Feynman rules of Appendix 1 we have:

Σ
(2,2N)
αβ

(ω) = − (i)2

2

∫ dω1

2π

dω2

2π
Vασ ,γδ gγµ(ω +ω2−ω1)gδν(ω1)gλσ (ω2)Vµν ,βλ

= +
1
2

∫ dω2

2πi
Vασ ,γδ GII, f

γδ ,µν
(ω +ω2)gλσ (ω2)Vµν ,βλ

=
1
2

∫ dω2

2πi
Vασ ,γδ

{
(X n1

γ X n2
δ
)∗X n1

µ X n2
ν

ω +ω2− (ε+n1 + ε
+
n2)+ iη

− Yk1
γ Yk2

δ
(Yk1

µ Yk2
ν )∗

ω +ω2− (ε−k1
+ ε
−
k2
)− iη

}

×
{

(X n3
λ
)∗X n3

σ

ω2− ε
+
n3 + iη

+
Yk3

λ
(Yk3

σ )∗

ω2− ε
−
k3
− iη

}
Vµν ,βλ , (1.24)
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where we have used the two-body interaction V̂ , but it could have been equally calculated
with the effective interaction Ṽ . Note that the integration over ω1 is exactly the same as in
Eq. (1.21). Thus, we can directly substitute the expression for the Feynman-Galitskii propa-
gator (1.22) in the last two lines above. By performing the last Cauchy integral we find that
only two out of four possible terms survive. The final result for the second-order irreducible
self-energy is:

Σ
(2,2N)
αβ

(ω) =
1
2

Vασ ,γδ

 ∑
n1,n2

k3

(X n1
γ X n2

δ
Yk3

σ )∗X n1
µ X n2

ν Yk3
λ

ω− (ε+n1 + ε
+
n2 − ε

−
k3
)+ iη

+ ∑
k1,k2n3

Yk1
γ Yk2

δ
X n3

σ (Yk1
µ Yk2

ν X n3
λ
)∗

ω− (ε−k1
+ ε
−
k2
− ε

+
n3)− iη

Vµν ,βλ ,

(1.25)
where repeated greek indices are summed over implicitly but we show the explicit summation
over the poles corresponding to 2p1h and 2h1p ISCs.

Exercise 11.2. Calculate the expression for the other second-order contribution to Σ ?(ω)

arising from three-nucleon interactions (diagram of Fig. 1.4b). Show that this contains ISCs
of 3p2h and 3h2p.

Solution. Upon performing the four frequency integrals, one obtains:

Σ
(2,3N)
αβ

(ω) =
1

12
Wαγδ ,µνλ

 ∑
n1,n2,n3

k4,k5

(X n1
µ X n2

ν X n3
λ
Yk4

γ Yk5
δ
)∗X n1

µ ′ X
n2
ν ′ X

n3
λ ′ Y

k4
γ ′ Y

k5
δ ′

ω− (ε+n1 + ε
+
n2 + ε

+
n3 − ε

−
k4
− ε
−
k5
)+ iη

+ ∑
k1,k2,k3n4,n5

Yk1
µ Yk2

ν Yk3
λ
X n4

γ X n5
δ

(Yk1
µ ′Y

k2
ν ′ Y

k3
λ ′X

n4
γ ′ X

n5
δ ′ )
∗

ω− (ε−k1
+ ε
−
k2
+ ε
−
k3
− ε

+
n4 − ε

+
n5)− iη

Wµ ′ν ′λ ′,βγ ′δ ′ . (1.26)

1.3 The Algebraic Diagrammatic Construction method

The most general form of the irreducible self-energy is given by Eq. (1.15). The Σ (∞) is defined
by the mean-field diagrams of Fig. 1.3a) and Eq. (1.17a), while Σ̃(ω) has a Lehmann represen-
tation as seen in the examples of Eqs. (1.25) and (1.26). Similarly to the case of a propagator,
the pole structure of the energy-dependent part is dictated by the principle of causality with
the correct boundary conditions coded by the ±iη terms in the denominators. This implies a
dispersion relation that can link the real and imaginary parts of the self-energy [22,26]. Cor-
respondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and 2h1p character
or more complex) imposes the separable structure of the residues. In this section we consider
the case of a finite system, for which it is useful to use a discretized single particle basis {α}
as the model space. From now on we will use the Einstein convention that repeated indices
(n, k, α...) are summed over even if not explicitly stated. Thus, the above constraints impose
the following analytical form the self-energy operator:

Σ
(?)
αβ

(ω) =−Uαβ + Σ
(∞)
αβ

+ M†
α,r

[
1

ω− (E>+C)+ iη

]
r,r′

Mr′,β + Nα,s

[
1

ω− (E<+D)− iη

]
s,s′

N†
s′,β ,

(1.27)
where, here and in the following, ω and ±iη are to be intended as multiplication operators
(that is, with matrix elements [ω + iη ]s,s′ = (ω + iη)δs,s′) and the fraction means a matrix inver-
sion. In Eq. (1.27), the E> and E< are the unperturbed energies for the forward and backward
ISCs and r and s are collective indices that label sets of configurations beyond single particle
structure. Specifically, r is for particle addition and will label 2p1h, 3p2h, 4p3h, ... states, in
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a) b) c)

Fig. 1.5 The three simplest skeleton and interaction-irreducible diagrams contributing to the self-energy at
third order. All these terms involve intermediate state configurations of at most 2p1h and 2h1p. The first two
contain only two-nucleon interactions and are the first terms in the resummation of ladders [diagram a)] and
rings [diagram b)]. The diagram c) is the first contribution containing an irreducible three-nucleon interaction.
All the remaining 14 diagrams at third order require explicit three-body interactions and ISCs with 3p2h and
3h2p excitations [33,36].

the general case. Likewise, s is for particle removal and we will use it to label 2h1p states
(or higher configurations). However, for the approximations presented in this chapter and for
our discussion below we will only be limited to 2p1h and 2h1p ISCs.

The expansion of the self-energy at second order in perturbation theory trivially satisfies
Eq. (1.27). In the results of Eq. (1.25), the sums over r and s can be taken to run over ordered
configurations r ≡ {n1 < n2,k3} and s ≡ {k1 < k2,n3}. Because of the Pauli principle, the half
residues of each pole are antisymmetric with respect to exchanging two quasiparticle or
two quasihole indices. Therefore the constraints n1 < n2 and k1 < k2 can be imposed to avoid
counting the same configurations twice. Thus, we can identify the expressions for the residues
and poles as follows:

Mr,α = X n1
µ X n2

ν Yk3
λ

Vµν ,αλ (1.28a)

E>
r,r′ = diag

(
ε
+
n1
+ ε

+
n2
− ε
−
k3

)
(1.28b)

Cr,r′ = 0 (1.28c)

and

Nα,s =Vαλ ,µν Yk1
µ Yk2

ν X n3
λ

(1.29a)

E<
s,s′ = diag

(
ε
−
k1
+ ε
−
k2
− ε

+
n3

)
(1.29b)

Ds,s′ = 0 , (1.29c)

where the factor 1/2 from Eq. (1.25) disappears because we restricted the sums to triplets of
indices where n1 < n2 and k1 < k2. As we will discuss in the next section, Eqs. (1.28) and (1.29)
define the algebraic diagrammatic method at second order [ADC(2)].

Unfortunately, Σ ?(ω) loses its analytical form of Eq. (1.27) as soon as one moves to higher
orders in perturbation theory. To demonstrate this, let us calculate the contribution of the
third-order ‘ladder’ diagram of Fig. 1.5a). By exploiting the Feynman rules and Eq. (1.21) we
obtain:

Σ
(3,ld)
αβ

(ω) = − i3

4

∫ dω1

2π

∫ dω2

2π

∫ dω3

2π
Vασ ,γδ gγγ ′(ω +ω3−ω1)gδδ ′(ω1)Vγ ′δ ′,µ ′ν ′

× gµ ′µ(ω +ω3−ω2)gν ′ν(ω2)Vµν ,βλ gλσ (ω3)
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=
1
4

∫ dω3

2πi
Vασ ,γδ GII, f

γδ ,γ ′δ ′(ω +ω3)Vγ ′δ ′,µ ′ν ′G
II, f
µ ′ν ′,µν

(ω +ω3)Vµν ,βλ gλσ (ω3)

=
1
4

∫ dω3

2πi
Vασ ,γδ

 (X n1
γ X n2

δ
)∗X n1

γ ′ X
n2
δ ′

ω +ω3− (ε+n1 + ε
+
n2)+ iη

−
Yk1

γ Yk2
δ
(Yk1

γ ′ Y
k2
δ ′ )
∗

ω +ω3− (ε−k1
+ ε
−
k2
)− iη


× Vγ ′δ ′,µ ′ν ′

 (X n4
µ ′ X

n5
ν ′ )
∗X n4

µ X n5
ν

ω +ω3− (ε+n4 + ε
+
n5)+ iη

−
Yk4

µ ′Y
k5
ν ′ (Y

k4
µ Yk5

ν )∗

ω +ω3− (ε−k4
+ ε
−
k5
)− iη


×Vµν ,βλ

{
(X n3

λ
)∗X n3

σ

ω3− ε
+
n3 + iη

+
Yk3

λ
(Yk3

σ )∗

ω3− ε
−
k3
− iη

}
. (1.30)

Performing the Cauchy integrals, only six terms out of the eight combinations of poles survive.
To simplify the discussion we will focus on the three integrals that contribute to the forward
propagation of the self-energy (third term on the r.h.s. of (1.27)). This is done by retaining
only the poles (ω3− ε

−
k3
− iη)−1 in the last propagator of Eq. (1.30), which lie above the real

axis with respect to the integrand ω3. Thus, we have:

Σ
(ld,>)
αβ

(ω) =
1
4

∫ dω3

2πi
Vασ ,γδ

− Yk1
γ Yk2

δ
(Yk1

γ ′ Y
k2
δ ′ )
∗

ω +ω3− (ε−k1
+ ε
−
k2
)− iη


× Vγ ′δ ′,µ ′ν ′

{
(X n4

µ ′ X
n5
ν ′ )
∗X n4

µ X n5
ν

ω +ω3− (ε+n4 + ε
+
n5)+ iη

}
Vµν ,βλ

{
Yk3

λ
(Yk3

σ )∗

ω3− ε
−
k3
− iη

}

+
1
4

∫ dω3

2πi
Vασ ,γδ

{
(X n1

γ X n2
δ
)∗X n1

γ ′ X
n2
δ ′

ω +ω3− (ε+n1 + ε
+
n2)+ iη

}

× Vγ ′δ ′,µ ′ν ′

− Yk4
µ ′Y

k5
ν ′ (Y

k4
µ Yk5

ν )∗

ω +ω3− (ε−k4
+ ε
−
k5
)− iη

Vµν ,βλ

{
Yk3

λ
(Yk3

σ )∗

ω3− ε
−
k3
− iη

}

+
1
4

∫ dω3

2πi
Vασ ,γδ

{
(X n1

γ X n2
δ
)∗X n1

γ ′ X
n2
δ ′

ω +ω3− (ε+n1 + ε
+
n2)+ iη

}

× Vγ ′δ ′,µ ′ν ′

{
(X n4

µ ′ X
n5
ν ′ )
∗X n4

µ X n5
ν

ω +ω3− (ε+n4 + ε
+
n5)+ iη

}
Vµν ,βλ

{
Yk3

λ
(Yk3

σ )∗

ω3− ε
−
k3
− iη

}

=

1
2Vασ ,γδ Yk1

γ Yk2
δ

(Yk1
γ ′ Y

k2
δ ′ )
∗ Vγ ′δ ′,µ ′ν ′ (X n4

µ ′ X
n5
ν ′ Y

k3
σ )∗

[ε−k1
+ ε
−
k2
− ε

+
n4 − ε

+
n5 ]

1
2

X n4
µ X n5

ν Yk3
λ

ω− (ε+n4 + ε
+
n5 − ε

−
k3
)+ iη

Vµν ,βλ

+Vασ ,γδ

(X n1
γ X n2

δ
Yk3

σ )∗

ω− (ε+n1 + ε
+
n2 − ε

−
k3
)+ iη

1
2

Yk3
λ
X n1

γ ′ X
n2
δ ′ Vγ ′δ ′,µ ′ν ′ Yk4

µ ′Y
k5
ν ′ (Y

k4
µ Yk5

ν )∗ 1
2Vµν ,βλ

[ε−k4
+ ε
−
k5
− ε

+
n1 − ε

+
n2 ]

+
Vασ ,γδ (X n1

γ X n2
δ
Yk3

σ )∗

ω− (ε+n1 + ε
+
n2 − ε

−
k3
)+ iη

1
2
X n1

γ ′ X
n2
δ ′ Vγ ′δ ′,µ ′ν ′ (X n4

µ ′ X
n5
ν ′ )
∗ 1

2
X n4

µ X n5
ν Yk3

λ
Vµν ,βλ

ω− (ε+n4 + ε
+
n5 − ε

−
k3
)+ iη

≡ M(2,ld)† 1
ω−E>+ iη

M(1)

+ M(1)† 1
ω−E>+ iη

M(2,ld)

+ M(1)† 1
ω−E>+ iη

C(ld) 1
ω−E>+ iη

M(1) , (1.31)
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where M(1) and E> are the same as in Eqs. (1.28) and the factors 1/2 are again absorbed by
summing over the ordered configurations for r and r′. The 2p1h ladder interaction C(ld) is at
first order in V , while the coupling matrix M(2,ld) is at second order. These can be read from
the previous lines of Eq. (1.31) and turn out to be (showing all summations explicitly):

M(2,ld)
r,α = ∑

k4,k5

∑
σ ,ζ ,γ,δ
µ,ν ,λ

X n1
γ X n2

δ
Vγδ ,σζ Yk4

σ Yk5
ζ
(Yk4

µ Yk5
ν )∗Yk3

λ

[ε−k4
+ ε
−
k5
− ε

+
n1 − ε

+
n2 ]

1
2

Vµν ,αλ

C(ld)
r,r′ = ∑

α,β ,γ,δ

X n1
α X n2

β
Vαβ ,γδ (X n′1

γ X n′2
δ
)∗ δk3,k′3

. (1.32)

Eq. (1.31) clearly breaks the known Lehmann representation for the self-energy and would
even lead to inconsistent results unless its contribution is very small compared to the second-
order contribution of Eq. (1.25). That is, Eq. (1.31) would invalidate the perturbative expan-
sion unless V is small. Therefore, we need to identify proper corrections that allow to retain
these third order contributions but at the same time let us recover the correct analytical
form (1.27). For the first two terms on the right hand side of Eq. (1.31), this issue can be
easily solved by remembering that the corresponding diagram from Σ (2)(ω) (see Eq. (1.25))
is to be included. If then one adds an extra term that is quadratic in M(2,ld), this leads to:

Σ
(2)(ω)+Σ

(3,ld)(ω)+M(2,ld)† 1
ω−E>+ iη

M(2,ld) −→
[
M(1)+M(2,ld)

]† 1
ω−E>+ iη

[
M(1)+M(2,ld)

]
,

(1.33)
which resolves the issue of obtaining the residues in separable form. Note that this new
correction is just one specific Goldstone diagram among the many that contribute to the self-
energy at fourth order. On the other hand, adding all of the fourth-order diagrams would
lead to new terms that break the Lehmann representation themselves and that in turn would
call for the inclusions of selected Goldstone terms at even higher orders. In other words, we
have achieved to recover the structure of Eq. (1.27) but at the price of giving up a systematic
perturbative expansion that is complete at each order in Ṽ . Given that the Lehmann repre-
sentation is dictated by physical properties, this is a more satisfactory rearrangement of the
perturbation series.

The last term in Eq. (1.31) is more tricky to correct since it contains second-order poles as
(ω−E− iη)−2, which cannot be canceled by single contributions at higher order. Instead, we
are forced to perform a non-perturbative resummation of Goldstone diagrams to all orders
that results in a geometric series. This is done by considering the relation

1
A−B

=
1
A

+
1
A

B
1

A−B
=

1
A

+
1
A

B
1
A

+
1
A

B
1
A

B
1
A

+
1
A

B
1
A

B
1
A

B
1
A

+ . . . (1.34)

for two operators A and B. If we chose A≡ω−E>+ iη and B≡C(ld), the first and second term
on the right hand side can then be identified respectively with the contribution from Σ (2)(ω)

and the last term of Eq. (1.31). Also in this case, all perturbative terms up to third order have
been kept unchanged but we are forced to select a series of Goldstone diagrams up to infinite
order.

If then one adds an extra term that is quadratic in M(2,ld), this lead to:

Σ
(2)(ω) + Σ

(3,ld)(ω) +
terms beyond

3rd order
−→

[
M(1)+M(2,ld)

]† 1
ω−E>−C(ld)+ iη

[
M(1)+M(2,ld)

]
,

(1.35)
which now contains all the perturbation theory terms at second (1.25) and third order (1.31)
while preserving the expected analytical form for Σ̃(ω).
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It can be shown that the summation implicit in Eq. (1.35) is equivalent to a full resummation
of two-particle ladder diagrams in the Tamn-Dancoff approximation (TDA) [37]. In this sum
the remaining quasi hole state appearing in the 2p1h ISC remains uncoupled from the ladder
series, as it can be seen in Fig. 1.5a), which is the first term in the series. Likewise, one would
find that the remaining backward-going terms in Eq. (1.30) would lead to resumming the two-
hole TDA ladders within the 2h1p configurations. Instead, diagram in Fig. 1.5b) involves a
resummation of ph ring diagrams. Extensions of these series to random-phase approximation
(RPA) is also possible, this would introduce a larger set of high-order Goldstone diagrams but
it would not be required to enforce consistency with perturbation theory at third order.

Exercise 11.3. Complete the calculation of Eq. (1.30) and derive the remaining corrections
to the 2h1p interaction D(ld) and the 1h-2h1p coupling term N(2,ld).

1.3.1 The ADC(n) approach and working equations at third order

The procedure discussed above to devise reliable approximations for the self-energy is at
the heart of the ADC method, originally introduced by J. Schirmer and collaborators [9,10].
This approach generates a hierarchy of approximations of increasing accuracy such that, at
a given order n, the ADC(n) equations will maintain the analytic form of Eq. (1.27) and will be
consistent with perturbation theory up to order n. Note that this does not mean that ADC(n) is
a perturbative truncation but that it must contain at least all the Feynman diagrams for Σ ?(ω)

up to order n, among higher terms. In fact, we will see below that for n> 2 it always involve an
infinite resummation of diagrams (see also Eqs. (1.34) and (1.35)). To implement this scheme
for the dynamic self-energy, Σ̃(ω), we expand its Lehmann representation in powers of the
perturbation interaction Ĥ1 (or, equivalently, H̃1). The interaction matrices C and D appearing
in the denominators of Eq. (1.27) can only be of first order in either Û , V̂ or Ŵ . However, the
coupling matrices can contain terms of any order:

M =M(1)+M(2)+M(3)+ . . .

N =N(1)+N(2)+N(3)+ . . . (1.36)

Using Eqs. (1.34) and (1.36) one finds the following expansion for Eq. (1.27):

Σ
?(ω) = −Û + Σ

(∞)

+ M(1)† 1
ω−E>+ iη

M(1)+N(1) 1
ω−E<− iη

N(1)†

+ M(2)† 1
ω−E>+ iη

M(1)+M(1)† 1
ω−E>+ iη

M(2)+M(1)† 1
ω−E>+ iη

C
1

ω−E>+ iη
M(1)

+ N(2) 1
ω−E<− iη

N(1)† +N(1) 1
ω−E<− iη

N(2)† +N(1) 1
ω−E<− iη

D
1

ω−E<− iη
N(1)†

+ O(Ĥ4
1 ) , (1.37)

where all terms up to third order in Ĥ1 are shown explicitly. The ADC procedure is then to
simply calculate all possible diagrams up to order n. By comparing them to Eq. (1.37), one
then reads the minimum expressions for the coupling and interaction matrices, M, N, C and
D that are needed to retain all the n-order diagrams for Σ̃(ω). Correspondingly, the energy-
independent self-energy Σ (∞) needs to be computed at least up to order n as well. Note that
the dynamic part of the self-energy, which propagates ISCs, appears only starting from second
order. This is so because any such diagram needs at least one perturbing interaction V to gen-
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erate an ISC and a second one to annihilate it back to a single particle state. In general, if the
Hamiltonian contains up to m-body forces and i is an integer, then the ADC(2i) and ADC(2i+1)
will require ISCs up to (k+1)-particle–k-hole and (k+1)-hole–k-particle, where k=(m-1)*i. Thus,
with two-nucleon forces ADC(2) and ADC(3) include 2p1h and 2h1p states, ADC(4) and
ADC(5) need up to 3p2h and 2h3p states, and so on. However, the full ADC(2/3) sets with
three-nucleon forces already includes 3p2h and 3h2p configurations [36].

At first order, ADC(1) requires to only calculate diagram(s) that contribute to Ũ =−Û+Σ (∞),
see Fig. 1.3a), and thus the scheme reduces to Hartree-Fock theory. At second order and
with at most two-body interactions, there is only one diagram contributing to Σ̃(ω) which is
already in the proper Lehmann form. Hence, Eqs. (1.25), (1.28) and (1.29) fully define the
ADC(2) approximation. In this case, Σ (∞) also requires a second-order non-skeleton term.

Higher order cases are more complicated. For a two-body Hamiltonian, the only skeleton
diagrams at third order are the ladder and ring diagrams shown in Figs. 1.5a) and 1.5b).
As long as one works with a Hartree-Fock reference state or a fully self-consistent (dressed)
propagators, no other diagram is needed because the additional non-skeleton terms either
vanish or must not be included (see Exercise 11.5). In these cases, one obtains the following
working expressions the for the ADC(3) approximation:

Mr,α = X n1
µ X n2

ν Yk3
λ

Vµν ,αλ +
X n1

γ X n2
δ

Vγδ ,σζ Yk4
σ Yk5

ζ

2 [ε−k4
+ ε
−
k5
− ε

+
n1 − ε

+
n2 ]

(Yk4
µ Yk5

ν )∗Yk3
λ

Vµν ,αλ (1.38a)

+
X n2

ρ Yk3
σ Vρδ ,σγYk5

γ X n6
δ

[ε−k3
− ε

+
n2 + ε

−
k5
− ε

+
n6 ]

(Yk5
ν X n6

λ
)∗X n1

µ Vµν ,αλ −
X n1

ρ Yk3
σ Vρδ ,σγYk5

γ X n6
δ

[ε−k3
− ε

+
n1 + ε

−
k5
− ε

+
n6 ]

(Yk5
ν X n6

λ
)∗X n2

µ Vµν ,αλ

E>
r,r′ = diag

(
ε
+
n1
+ ε

+
n2
− ε
−
k3

)
(1.38b)

Cr,r′ = X n1
α X n2

β
Vαβ ,γδ (X n′1

γ X n′2
δ
)∗ δk3,k′3

+X n1
α Yk3

β
Vαδ ,βγ (X n′1

γ Yk′3
δ
)∗ δn2,n′2

−X n2
α Yk3

β
Vαδ ,βγ (X n′1

γ Yk′3
δ
)∗ δn1,n′2

(1.38c)

−X n1
α Yk3

β
Vαδ ,βγ (X n′2

γ Yk′3
δ
)∗ δn2,n′1

+X n2
α Yk3

β
Vαδ ,βγ (X n′2

γ Yk′3
δ
)∗ δn1,n′1

and

Nα,s =Vαλ ,µν Yk1
µ Yk2

ν X n3
λ

+ Vαλ ,µν X n3
λ

(X n7
µ X n8

ν )∗
X n7

γ X n8
δ

Vγδ ,σρYk1
σ Yk2

ρ

2 [ε−k1
+ ε
−
k2
− ε

+
n7 − ε

+
n8 ]

(1.39a)

+Vαλ ,µν Yk1
µ (X n5

ν Yk6
λ
)∗
X n5

γ Yk6
δ

Vγρ,δσYk2
σ X n3

ρ

[ε−k2
− ε

+
n3 + ε

−
k6
− ε

+
n5 ]
−Vαλ ,µν Yk2

µ (X n5
ν Yk6

λ
)∗
X n5

γ Yk6
δ

Vγρ,δσYk1
σ X n3

ρ

[ε−k1
− ε

+
n3 + ε

−
k6
− ε

+
n5 ]

E<
s,s′ = diag

(
ε
−
k1
+ ε
−
k2
− ε

+
n3

)
(1.39b)

Ds,s′ = − (Yk1
α Yk2

β
)∗Vαβ ,γδ Yk′1

γ Yk′2
δ

δn3,n′3

− (Yk1
α X n3

β
)∗Vαδ ,βγ Yk′1

γ X n′3
δ

δk2,k′2
+(Yk2

α X n3
β
)∗Vαδ ,βγ Yk′1

γ X n′3
δ

δk1,k′2
(1.39c)

+(Yk1
α X n3

β
)∗Vαδ ,βγ Yk′2

γ X n′3
δ

δk2,k′1
− (Yk2

α X n3
β
)∗Vαδ ,βγ Yk′2

γ X n′3
δ

δk1,k′1
,
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a) b)

c) d)

Fig. 1.6 Self-energy insertion diagrams that appear, at third order, in the perturbative expansion for Σ̃(ω)
with two- and three-nucleon interactions. These non-skeleton diagrams need to be considered when the refer-
ence propagators are not self-consistent. Diagrams a) and b) involve only one- and two-body interactions and
results from self-energy insertion into the diagram of Fig. 1.4a). With the inclusion of three-nucleon interac-
tions, the diagrams c) and d) arise from the one of Fig. 1.4b). When a Hartree-Fock reference state is used all
these contributions cancel out (see Exercise 11.5).

where only ordered configurations r={n1 < n2,k3} and s={k1 < k2,n3} need to be considered,
in accordance with the Pauli principle. Note that these equations apply to the case of two-
body interactions but they remain unchanged for an effective operator Ṽ that is derived from
three-body forces. However the full inclusion of Ŵ would require the inclusion of the dia-
gram of Fig. 1.4b) at the ADC(2) level and several other interaction-irreducible diagrams for
ADC(3). The non-skeleton contributions to Σ̃(ω) that arise at third order when the reference
propagator is not dressed are shown in Fig. 1.6. The case of three-nucleon forces is discussed
in full detail in Ref. [36].

To remain consistent with the ADC(n) formulation, the static self-energy Σ (∞) must also be
computed at least to the same order n. However, this involves a large number of non-skeleton
diagrams when self-consistency is not implemented. In practice, it is relatively inexpensive to
compute it directly from dressed propagators, as given by (1.17a) and therefore if can be it-
erated to self-consistency. This prescription, in which Σ̃(ω) is calculated from an unperturbed
reference state g0)(ω) but Σ (∞) is obtained self-consistently, is often used in nuclear physics
applications and we refer to it as the sc0 approximation [19]. When dealing with the Coulomb
force in molecular systems, the dynamic self-energy can be simply calculated in terms of a
Hartree-Fock reference state. In nuclear physics, a Hartree-Fock reference state is adequate
only if the chosen Hamiltonian is particularly soft. Otherwise, it is necessary to optimize the
reference state by choosing a Ĥ0 and g0)(ω) that better represent the correlated single parti-
cle energies in the dressed propagator. In all cases, at least the sc0 approach to Σ (∞) is always
required when computing finite nuclei and infinite nucleonic matter.

The standard ADC(n) prescription is to identify the minimal matrices M, N, C and D that
make the self-energy consistent with perturbation theory up to order n. However, other inter-
mediate approximations are also possible and have been exploited in the past. The so-called
2p1h-TDA method is an extension of the second order scheme of Eqs. (1.28) and (1.29) where
the matrices C and D are calculated at first order instead, as given by Eqs. (1.38c) and (1.39c).
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As a rule of thumb, the ADC(2) approximation yields roughly 90% of the total correlation en-
ergy in most applications, while the ADC(3) can account for about 99% of it—hence, with a 1%
error in binding energies. The 2p1h-TDA contains the ADC(2) in full but it further resums the
full set of two-particle (pp), two-holes (hh) and particle-hole (ph) diagrams. This can result in a
sensible improvement in the accuracy of binding energies but without the price of computing
corrections to the M and N coupling matrices. Nevertheless, the 2p1h-TDA misses the second
order terms from Eqs. (1.36) that are known to contribute strongly to quasiparticle energies.
As a consequence the one nucleon addition and separation energies (or, equivalently, ioniza-
tion potentials and electron affinities in molecules) would be predicted poorly in 2p1h-TDA
and in general they require full ADC(3) calculations [38]. In nuclear physics applications, the
description of collective excitations often requires that particle-hole configurations are diag-
onalized at least in the RPA scheme. While this is similar to the TDA all-order summations
included in 2p1h-TDA and in ADC(3), extra ground state correlations effects from the RPA
series are deemed important to reproduce collective modes typical of nuclear systems [37].
To account for these effects on needs to separate the partial summations in the pp, hh and ph
channels, substitute them with equivalent RPA series and recouple these through a Faddeev-
like expansion, in order to eventually reconstruct the self-energy [39–42]. The Faddeev-RPA
(FRPA) method contains the ADC(3) in full but it also generates additional ground state corre-
lation terms that are induced by the RPA summation and are at fourth and higher order in the
perturbative expansion of the self-energy. The working implementation of the FRPA approach
has been formulated in Refs. [40,43,44].

Another important extension of the ADC(3) framework comes from the realization that
Eqs. (1.36) still imply a perturbative truncation for M and N. This causes the energy denom-
inators in Eqs. (1.38a) and (1.39a) to become unstable if the system is close to being degen-
erate. The way out from this situation is again to perform an all-orders summation. Since the
coupling matrices correspond to specific energy-independent parts of Goldstone diagrams,
they can be resummed in the same way as for the coupled cluster (CC) technique [45]. We
show this for the second term on the right hand side of (1.38a), which can be rewritten as
follows:

X n1
γ X n2

δ
Vγδ ,σζ Yk4

σ Yk5
ζ
(Yk4

µ Yk5
ν )∗Yk3

λ

2 [ε−k4
+ ε
−
k5
− ε

+
n1 − ε

+
n2 ]

Vµν ,αλ −→ 1
2

t(0)n1 n2
k4 k5

(Yk4
µ Yk5

ν )∗Yk3
λ

Vµν ,αλ , (1.40)

where the amplitude

t(0)n1 n2
k4 k5
≡
X n1

γ X n2
δ

Vγδ ,σζ Yk4
σ Yk5

ζ

ε
−
k4
+ ε
−
k5
− ε

+
n1 − ε

+
n2

(1.41)

generalizes the zeroth approximation to the CC operator T̂2 (see Sec. 8.7 or Ref. [46]). In case
of a dressed propagator, the spectroscopic amplitudes X (Y) account for the fragmentation of
single particle strength. However, for a standard mean-field reference, they simply select the
particle (hole) reference orbits and t(0) is exactly the same as for the CC approach. In order
to mitigate effects of the perturbative truncation in Eqs. (1.38a) and (1.39a) (and to resum
the 2p-2h ISCs) one simply substitutes t(0) with the corresponding CC solution. In general,
when t is computed using the CC doubles (CCD) approach we refer to the whole self-energy
as being in the ADC(3)-D approximation, when t is obtained by resumming both singles and
doubles (CCSD) it will give the ADC(3)-SD approximation, and so on. In Sec. 1.3.3, we will
see a case when these corrections are important.

The working equations for the self-energy at the ADC(4) level and beyond are discussed in
Ref. [10].
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Exercise 11.4. Calculate the ladder and ring diagrams in Fig. 1.5 and prove Eqs. (1.38)
and (1.39) in full. [Hint: for the ring diagrams it is simpler to first perform integrations for
the free polarization propagator, Π

f
αβ ,γδ

(ω) =
∫ dω1

2πi gαγ(ω +ω1)gδβ (ω1), which describes non
interacting particle-hole states.]

Exercise 11.5. In case of a reference propagator that is not fully self-consistent, it is neces-
sary to also include non-skeleton diagrams. For Σ̃(ω) these first appear at third order with
the diagrams shown in Fig. 1.6). Calculate the expressions for diagrams in a) and b), then:

• Deduct the corresponding corrections to Eqs. (1.38) and (1.39). These will be the complete
ADC(3) working equations.

• Show that they cancel out exactly if the reference propagator is of Hartree-Fock type.
Hence these corrections do not need to be taken into account even tough the Hartree-Fock
reference state is not a dressed—and fully self-consistent—input in this case.

[Hint: In Hartee-Fock theory, the static self-energy Σ (∞) reduces to the Hartree-Fock potential.
The reference state in this case is given by Ĥ0 = T̂ + ÛHF ≡ ĤHF , which is also the Hartree-
Fock Hamiltonian. Additionally, in the notation of Eqs. (1.42) below, the (orthogonal) single
particle wave functions are the solutions of {T +Σ HF}Z i = ε iZ i.]

1.3.2 Solving the Dyson equation

Once we have a suitable approximation to the self-energy, it is necessary to solve the Dyson
equation (1.3) to obtain the single particle propagator, the associated observables and the
spectral function. The latter will also yield spectroscopic amplitudes and their spectroscopic
factor for the addition and removal of a nucleon form the correlated state |Ψ A

0 〉. In doing this,
Eqs. (1.3) take the form of a one-body Schrödinger equation for the scattering of a particle
or a hole inside the medium. Given that all the Cauchy integrals associated with Feynman
diagrams have been carried out, we can safely take the limit ±iη → 0 in all denominators
for simplicity. The same equation applies to states both above and below the Fermi surface.
Thus, it is convenient to take a general index i and using εi and Z i to label energies and
spectroscopic amplitudes for all quasiparticle and quasihole states. Specifically,

εi −→


ε+n for i=n, particle,

ε
−
k for i=k, hole,

and Z i
α −→


(X n

α)
∗ for i=n, particle,

Yk
α for i=k, hole.

(1.42)

In order to extract the solution for the pole i in the Lehmann representation, we extract
the corresponding residue on both the left and right hand side of Eq. (1.3a):

lim
ω→εi

(ω− εi)
{

gαβ (ω) = g(0)
αβ

(ω)+g(0)αγ (ω)Σ ?
γδ
(ω)gδβ (ω)

}
, (1.43)

which gives

Z i
α(Z i

β
)∗ = g(0)αγ (ω)Σ ?

γδ
(ω)Z i

δ
(Z i

β
)∗
∣∣∣
ω=εi

. (1.44)

By dividing out (Z i
β
)∗ and using the fact that [g(0)(ω)]−1 = ω− Ĥ0 we finally obtain the eigen-

value equation

εiZ i
α =

{
T̂ +Û +Σ

?(ω)
}

α δ

Z i
δ

∣∣∣
ω=εi

=

{
T̂ +Σ

(∞)+M† 1
ω−E>−C+ iη

M+N
1

ω−E<−D− iη
N†
}

α δ

Z i
δ

∣∣∣∣
ω=εi

, (1.45)
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where the potential Û defining the unperturbed state completely cancels out. From here we
see that the true irreducible self-energy Σ (∞) + Σ̃(ω) acts as a non-local and energy depen-
dent potential that accounts for the motion of both particles and holes inside the system
and for their coupling intermediate excitations. At positive energies (ω > 0) this equation
describes the elastic scattering of a nucleon off the |Ψ A

0 〉 ground state and the self-energy
can be identified with a fully microscopic optical potential [27,28,47]. In this case the spec-
troscopic amplitudes Z i correspond to scattering wave functions with the usual asymptotic
normalization. Instead, at ω < 0, Eq. (1.45) describes the transition to states of |Ψ A±1

i 〉 with
bound amplitudes. The norm of each Z i gives the corresponding spectroscopic factor and it
is obtained as

SFi = ∑
α

|Z i
α |2 =

1

1− (Z i
β )
∗ d Σ?

βγ
(ω)

d ω

∣∣∣∣
ω=εi

Z i
γ

, (1.46)

where Z i ≡ Z i/
√

SFi is the spectroscopic amplitude normalized to 1.
Equations (1.45) and (1.46) are the central equations of the Green’s function formalism and

show how the single-particle propagator is the solution of an effective one-body Schrödinger
equation for a nucleon or a hole propagating inside the correlated system. The energy depen-
dence of Σ ?(ω) and its non-locality are a consequence of the underlying many-body dynamics.
Eq. (1.46) also shows that the reduction of spectral strength commonly observed in correlated
systems arises from the dispersion properties of the self-energy.

In spite of its beauty, Eq. (1.45) is also the worst starting point to solve the Dyson equa-
tion in a discretized finite basis. Unless one is interested in just a few solutions near the
Fermi surface or the model space is extremely small, this approach will require high compu-
tational times due to the large amounts of diagonalizations required to extract the correct
eigenvalues. The reason is that root-finding algorithms are needed to match the eigenvalues
εi with the argument of Σ ?(εi), but simple searching algorithms may miss a large amount of
solutions. The consequences of missing a large portion of spectral strength are that wrong
results would be obtained for the ground state observables computed as in Sec. 1.2.1. This
can also deteriorate the self-consistency already at the level of the static self-energy, Σ (∞) = Ũ .
If Eq. (1.45) must be used, it is possible to gather all the necessary solutions by starting from
extremely fine energy meshes to be sure that all eigenvalues are bracketed first. However,
this easily becomes suicidal in terms of the increase of computing time. We discuss here a
different approach that is not affected by these problems and that will also give some further
insight into the physics content of the Dyson equation.

First, for each solution of the Dyson equation we define two new vectorsW i and V i which
live in the ISCs space as follows:

[ω−E>−C]r,r′W i
r′ ≡ Mr,δ Zi

δ
,

[ω−E<−D]s,s′ V i
s′ ≡ N†

s,δ Zi
δ
, (1.47)

where we have let iη → 0 as this is no longer needed in a finite and discretized basis. With
these definitions, Eq. (1.45) is easily rearranged into a single eigenvalue problem of larger
dimensions but where the corresponding matrix is energy independent:

T̂ +Σ (∞) M† N

M E>+C

N† E<+D



Z i

W i

V i

=


Z i

W i

V i

εi (1.48)

and the normalization condition (1.46) becomes
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∑
α

|Z i
α |2 +∑

r
|W i

r|2 +∑
s
|V i

s|2 = 1 . (1.49)

The advantage of this approach is that it linearizes the Dyson equation and yields all solu-
tions in one single diagonalization. Although the dimension of the Dyson matrix in Eq. (1.48)
is much larger than a one-body Schrödinger problem and that it requires a substantial amount
of memory storage, it typically provides the full spectral strength 100 times faster than using
Eq. (1.45) directly. Furthermore, it is possible to reduce the dimensionality of the eigen-
value problem by projecting matrices [E>+C] and [E<+D] (separately!) onto smaller Lanc-
zos/Krylov subspaces [19,48]. In this way one reduces the number of poles of g(ω) far away
from the Fermi surface—where only their average is physically meaningful—but conserves
the overall strength needed to compute ground state observables.

Eq. (1.48) also puts in evidence how the Dyson equation is very closely related to a con-
figuration interaction (CI) approach. For solutions (ε+n ,X n) in the single particle spectrum,
the eigenstates of |Ψ A+1

n 〉 are expanded in terms of 1p configurations (from the T̂ +Σ (∞) sec-
tor) and 2p1h or larger configurations, which is evident from the matrix C, in Eq. (1.38c).
However, additional 2h1p configurations are included through matrix D. This is in spirit very
similar to how ground state correlations are included in the random phase approximation
approach [37]. Furthermore, the matrices that couples these subspaces are the same as in
CI only at first order (M(1) and N(1)). The eigenstates of Eq. (1.48) will approach the exact
solution as the approximation of the self-energy is systematically improved. Similarly, the
propagation of hole states that correspond to the eigenstates of |Ψ A−1

k 〉 are obtained in a CI
fashion. Eq. (1.49) is then the natural normalization condition for the CI expansion and shows
that the spectroscopic amplitudes are the projection of more complex many-body wave func-
tions onto a single-particle space.

Exercise 11.6. Perform a Taylor expansion of the propagator g(ω) at zeroth order around a
given pole ε

±
i . Then, use this and the conjugate Dyson equation (1.3b) to obtain the normal-

ization condition for spectroscopic factors given in Eq. (1.46).

Exercise 11.7. Based on the definitions of vectors W i and V i, Eqs. (1.47), show that (1.46)
and (1.49) are equivalent.

1.3.3 A simple pairing model

As a first demonstration of the ADC formalism, we consider the pairing Hamiltonian already
discussed in chapter 8. This is a system of four spin-1/2 fermions in a 4-level model space that
interact through a pairing force:

Ĥ = Ĥ0 +V̂ = ξ

4

∑
p=1

∑
σ=+,−

(p−1)a†
pσ apσ −

g
2

4

∑
p,q=1

a†
p+a†

p−aq−aq+ . (1.50)

In spite of its simplicity, this model poses a particularly difficult test for many-body ap-
proximations based on ISRs because the Hamiltonian (1.50) does not allow for admixtures
of leading order excitations, that is of the particle-hole type. The ground state contains only
2p2h and higher excitations. Correspondingly, the pairing interactions V̂ cannot couple parti-
cle states to 2p1h configurations, neither hole states with 2h1p ones. This is obvious looking
at the leading terms, Eqs. (1.28a) and (1.29a), that would involve interactions between a
particle and a hole (which cannot be connected by pairing) but it applies to the full ADC(3)
couplings (1.38a) and (1.39a) as well. It follows that the spectra for particle attachment and
removal are dominated by 3p2h and 3h2p ISCs. These are partially included in the Dyson
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Fig. 1.7 Correlation energy for the pairing Hamiltonian of Eq. (1.50) as a function of the coupling g, obtained
for different ADC(n) approximations to the self-energy and in the sc0 scheme. The dotted, dot-dashed, short
dashed and full lines are all obtained from the HF reference of Eq. (1.52) and show successive approximations
of the ADC(n) hierarchy [respectively: ADC(2), 2p1h-TDA, ADC(3) and ADC(3)-D]. The long dashed line is the
same ADC(3) truncation but based on the unperturbed reference propagator of Eq. (1.51). The purple line
shows the exact result calculated from a full configuration interaction diagonalization.

equation by couplings between particles and backward going, 2h1p, terms in the self-energy
(or between holes and the forward 2p1h terms). However, a complete account of them would
require many-body truncations at the ADC(4) level and higher. Remarkably, it is still possible
to reach rather accurate results as demonstrated by Figs. 1.7 and 1.8.

The unperturbed propagator, associated with the Ĥ0 term of Eq. (1.50), is given by

g(0)pσp ,qσq(ω) = δpqδσp σq

{
∑

n=3,4

δn p

ω− ε
(0)
n + iη

+ ∑
k=1,2

δk p

ω− ε
(0)
k − iη

}
(1.51)

where ε
(0)
p = ξ (p− 1) are the unperturbed single particle energies and the gap at the Fermi

surface is E(0)
ph = ε

(0)
3 − ε

(0)
2 = ξ . For this particular model, the unperturbed state is also the

same state that solves the HF equations. Thus, the HF propagator is written exactly in the
same way but with only a shift in the single particle energies of the hole states (see also
Section 8.7.4 and Tab.8.11 of Ref. [46]):

gHF
pσp ,qσq(ω) = δpqδσp σq

{
∑

n=3,4

δn p

ω− εHF
n + iη

+ ∑
k=1,2

δk p

ω− εHF
k − iη

}
(1.52)

where

ε
HF
p =


ξ (p−1) , for p = 3,4

ξ (p−1)−g/2 , for p = 1,2
(1.53)
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Fig. 1.8 Correlation energy for the pairing Hamiltonian of Eq. (1.50) as a function of the coupling g, for differ-
ent many-body methods discussed in this book. The purple line is the exact results from configuration inter-
action theory. The results for second-order perturbation theory (MBPT2), for IMSRG(2), for the CC-corrected
ADC(3)-D and for the standard CC with doubles (CCD) are compared. See also Section 10.3.6 of Ref. [49] for
higher truncations of MBPT.

and the particle-hole gap now depends on the coupling constant, EHF
ph = εHF

3 − εHF
2 = ξ +g/2.

One may chose either of these propagators as the reference state for calculating the ADC(n)
self-energy. However, g(0)(ω) will also require additional corrections terms for the interac-
tions matrices C and D, as seen in Exercise 11.5. In practice, these corrections are already
included in the shifts of Eq. (1.53) and the HF reference is normally a better starting point
for calculating the self-energy.

We now set ξ = 1 and perform calculations at different levels of approximations in the
ADC(n) approach, by using the gHF(ω) as reference (except when indicated) and by calcu-
lating Σ (∞) self-consistently in the sc0 scheme. After solving the Dyson equation, we extract
the ground state energy from the Koltun sum rule (1.11) and calculate the correlation en-
ergy ∆E = Eg.s.− (2ξ − g). The result of the ADC(2) equations (1.28) and (1.29) is shown by
the dotted line in Fig. 1.7. The 2p1h-TDA approximation improves upon this by using the
interaction matrices from Eqs. (1.38c) and (1.39c), which resums infinite ladders of 2p and
2h states. However, this brings only a very small improvement to this system. The ADC(3)
approximation gives better results and it is shown for both the g(0)(ω) and gHF(ω) choices of
the reference state with long dashed and short dashed lines, respectively. Remarkably, these
results depend strongly on the reference state and are much closer to the exact solution for
the g(0)(ω) case, which would have been expected to be a poorer choice. Furthermore, gHF(ω)

behaves erratically for negative values of g, corresponding to a repulsive pairing interaction
V̂ . These two calculations differ only in the single particle energies used to calculate the
coupling matrices M and N. Such behavior is simply explained by the dependence of EHF

ph on
g, which can make the denominator in Eqs. (1.38c) and (1.39c) very small and causes the
breakdown of the perturbation expansion (1.36). To resolved his problem we substitute the
t(0) of Eq. (1.41) with the converged solution from the CCD equations. The resulting ADC(3)-
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D is now completely independent of the choice between the two reference states and it also
reproduces the exact result closely. This is shown by the two solid lines in Fig. 1.7.

Fig. 1.8 compares the ADC approach with CC, in-medium similarity renormalization
group (IMSRG) and second-order perturbation theory. The ADC(3)-D, the two-body trunca-
tion of IMSRG (IMSRG(2), see chapter 10)) and the CC methods perform similarly at g < 0,
where they are all close to the exact solution all the way to g≈−1.3. For smaller values of the
coupling the CCD iterations stop converging. At large positive values of g (corresponding to
attractive pairing) the various approaches eventually deviate from the exact result but with
CCD being slightly better. Clearly the full ADC(3)-D is a more complex calculation than CCD
but leads to similar results for the binding energy. On the other hand, this does not only yield
the ground state energy but also the whole spectral function for the addition and removal of
a particle is generated when solving the Dyson equation (1.45) or (1.48). The next section
will demonstrate examples of the self-energy and the spectral distribution obtained when
calculating the single particle propagator.

The FORTRAN code that generated these results is available online at https://github.
com/ManyBodyPhysics/LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/
Pair_Model. We do not examine this code here but we will give a detailed discussion of how
to structure a complex ADC(n) code for infinite matter computations in the next section.

1.4 Numerical solutions for infinite matter

In this section we discuss how to implement the calculation of the self-energy and the sin-
gle particle propagator in the ADC(n) formalism. We will demonstrate this for the case of
infinite nucleonic matter and use our results to discuss general features of the spectral
function. A general code that can solve for both symmetric and pure neutron matter up to
ADC(3) is provided with this chapter at the URL https://github.com/ManyBodyPhysics/
LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/Inf_Matter. We will
use the C++ programming language and will refer to this code for describing the technical
details of the implementation. We then show results based on the Minnesota nuclear poten-
tial from Ref. [50]. This is a very simplified model of the nuclear interaction that allows for
an easy implementation. On the other hand, it still retains some physical properties of the
nuclear Hamiltonian that will allow us to discuss the basic features of the spectral function
of nucleonic matter (and of infinite fermionic systems in general). The reader interested in
these physics aspects could refer directly to Sec. 1.4.2.

1.4.1 Computational details for ADC(n)

The first fundamental step to set up a SCGF computation is the choice of the model space.
For infinite matter, translational invariance imposes that the Dyson equation is diagonal in
momentum and therefore it becomes much easier to solve the problem in momentum space.
However, there remain two possible choices for how to encode single particle degrees of free-
dom. The first one is to subdivide the infinite space in boxes of finite size and to impose peri-
odic boundary conditions (see also chapter 8). In this way, the number of fermions included in
each box is finite and determined by the particle density of the system. The resulting model
space is naturally expressed by a set of discretized single particle states and one solves the
working equations in the form of Eqs. (1.38), (1.39) and (1.48). This path requires the same
technical steps needed to calculate finite systems in a box. Numerical results then need to

https://github.com/ManyBodyPhysics/LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/Pair_Model
https://github.com/ManyBodyPhysics/LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/Pair_Model
https://github.com/ManyBodyPhysics/LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/Pair_Model
https://github.com/ManyBodyPhysics/LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/Inf_Matter
https://github.com/ManyBodyPhysics/LectureNotesPhysics/blob/master/doc/src/Chapter11-programs/Inf_Matter
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be converged with respect to the truncation of the k-space (and, for an infinite system, with
respect to the number of nucleons inside each periodic box). We will follow this approach for
the present computational project. The other approach is to retain the full momentum space
and write the SCGF equations already in the full thermodynamic limit. This choice is best
suited to solve the Dyson equation at finite temperatures and in a full SCGF fashion and will
be discussed further in Sec. 1.5.

Construction of the model space. For simplicity, we assume a total number A of nucleons
in each (cubic) periodic box. For boxes of length L, the density and the Fermi momentum are
expressed, respectively as (h̄=1):

ρ =
A
L

and pF =
3

√
6π2ρ

νd
, (1.54)

where the degeneracy νd is twice the number of different spin- 1
2 fermions and the basis states

are defined by the cartesian quantum numbers nx, ny, nz= 0, 1, 2... with momentum

p =
2π

L

 nx

ny

nz

 . (1.55)

The kinetic energies, and hence the unperturbed single particle energies, will depend on |p|2
and hence the values of Nsq = n2

x +n2
y +n2

z define a set of separate shells. Since we need closed
shell reference states, only certain values for the number of nucleons in each box, A, are
possible. The size of the model space is given by Nmax

sq = max{n2
x +n2

y +n2
z}. The construction of

the single particle model space is then straightforward. We will do it constructing a specific
class with pointers to arrays for each relevant quantum number and additional arrays for the
kinetic energies or any other useful quantity associated with each state.

class SpBasisK {

public:
int SpNmax, SpNAlloc; // total number of s.p. states and allocated space
int *nx, *ny, *nz, *spin; // quantum numbers
double *e_kin; // kinetic energy

double Lbox; // side length of the periodic box
int N_holes; // number of nucleons in a box (# of occupied states)

// grouping s.p. states of equal symmetry
int N_grps; // number of different groups
int *gr_mlt, *gr_rep;

// functions
public:
void Build_sp_basis(int, double, int);

int Build_groups_table(void );

};

The constructor for the model space will be necessary to order the basis with increasing
values of Nsq, so that the orbits corresponding to the A hole states come first. This becomes
useful later to construct ISCs. We first count the total number of possible (nx,ny,nz) configu-
rations. Once it is known how many single particle k states there are, we can allocate arrays
in memory to store the relevant quantum numbers of each of them:
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const double PI = 3.141592653589793;
const double hbarc = 197.326968; // [MeV*fm]
const double NUCLEONmass = 939.565; // [MeV]

void SpBasisK::Build_sp_basis(int Nsq_max, double Lbox, int A) {

int imax = int( sqrt(double Nsq_max) + 1 ); // max value of |n_x|, |n_y| or |n_z|

int i_count = 0; // counts the number of basis states:
for (int ix=-imax; ix<=imax; ++ix)
for (int iy=-imax; iy<=imax; ++iy)
for (int iz=-imax; iz<=imax; ++iz)
if (ix*ix + iy*iy + iz*iz <= Nsq_max) ++i_count;

SpNAlloc = 2 * i_count; // 2 is the spin-1/2 degeneracy; we assume PNM here

cout << "\n Allocating space for "<< SpNAlloc << " sp states... \n";

nx = new int[SpNAlloc]; // Allocate basis' arrays
ny = new int[SpNAlloc];
nz = new int[SpNAlloc];
spin = new int[SpNAlloc];
e_kin = new double[SpNAlloc];

double xek;

cout << "\n Single particle basis:\n ----------------------";
cout << "\n orbit n_x n_y n_z Nsq E_kin\n";

i_count = 0;
for (int isq=0; isq<=Nsq_max; ++isq) {
for (int ix=-imax; ix<=imax; ++ix)
for (int iy=-imax; iy<=imax; ++iy)
for (int iz=-imax; iz<=imax; ++iz) {
if ((ix*ix + iy*iy + iz*iz) != isq) continue;

xek = double(isq) * pow((hbarc * 2.0 * PI / Lbox), 2.0) / 2.0 / NUCLEONmass;
cout <<i_count <<" " <<ix <<" " <<iy <<" " <<iz <<" " <<isq <<" " <<xek <<endl;

for (int is=-1; is<2; is+=2) {
nx[i_count] = ix;
ny[i_count] = iy;
nz[i_count] = iz;
spin[i_count] = is;
e_kin[i_count] = xek;
++i_count;

}

} // end of ix, iy, iz loop
} // end of isq loop
SpNmax = i_count;

this->N_holes = A; // very important! Must set the # of occupied states

return;}

Construction of the ISCs. Due to translational invariance the Dyson equation (1.3) sep-
arates in a set of uncoupled equations for each values of {pi,si

z} in the model space (where sz
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is the spin projection and i labels the basis states):

g(pi,si
z;ω) = g(0)(pi,si

z;ω)+g(0)(pi,si
z;ω)Σ

?(pi,si
z;ω)g(pi,si

z;ω) . (1.56)

This diagonal equation can be formally inverted as shown in Eqs. (1.83) and (1.86) below.
However, we will solve for all of its eigenstates instead and this is better done by diagonalizing
Eq. (1.48). For each state i, we need to generate tables for the relevant 2p1h and 2h1p ISCs
and then calculate the elements of the Dyson matrix. One can build a class whose objects
are associated to a particular orbit of the given model space and then construct the ISCs in
accordance with the conservation of momentum and other symmetries of the Hamiltonian,
which are implicit in the matrix elements for the coupling (M and N) and interaction (C and
D) matrices. Schematically, looking only at the 2p1h configurations for simplicity, this will be:

class ADC3BasisK {

public:
int *Bas_2p1h, *Bas_2h1p; // pointers to 2p1h/2h1p bases
int Nbas_2p1h, Nbas_2h1p; // dimensions of the 2p1h/2h1p bases

int iSpLoc; // {p,s_z} state in the s.p. basis associated with the 2p1h/2h1p
SpBasisK *SpBasLoc;

// functions
public:
void Build_2p1h_basis(SpBasisK*, int );

};

void ADC3BasisK::Build_2p1h_basis(SpBasisK *InBasis, int isp) {

this->SpBasLoc = InBasis; // keep track of the basis and the s.p. states associated
this->iSpLoc = isp; // to this 2p1h ICSs, for use by other functions

Nbas_2p1h = ... ; // must compute the number of expected 2p1h configurations

if (NULL != Bas_2p1h) delete [] Bas_2p1h;
this->Bas_2p1h = new int[3*(Nbas_2p1h)]; // need 3 indices for each config (n1, n2, k3)

int k3_x, k3_y, k3_z, k3_sp;

i_count = 0;
for (int n1=SpBasLoc->N_holes; n1<SpBasLoc->SpNmax; ++n1) {
for (int n2=n1+1; n2<SpBasLoc->SpNmax; ++n2) { // n1 < n2 due to Pauli

// expected q.#s for 3rd index (k3), imposed by the Hamiltonian's symmetries:
k3_x = SpBasLoc->nx[n1] + SpBasLoc->nx[n2] - SpBasLoc->nx[isp];
k3_y = SpBasLoc->ny[n1] + SpBasLoc->ny[n2] - SpBasLoc->ny[isp];
k3_z = SpBasLoc->nz[n1] + SpBasLoc->nz[n2] - SpBasLoc->nz[isp];
k3_sp = SpBasLoc->spin[n1] + SpBasLoc->spin[n2] - SpBasLoc->spin[isp];

for (int k3=0; k3<SpBasLoc->N_holes; ++k3) {
if ( (k3_x != SpBasLoc->nx[k3]) || (k3_y != SpBasLoc->ny[k3] ) ||

(k3_z != SpBasLoc->nz[k3]) || (k3_sp != SpBasLoc->spin[k3]) ) continue;

this->Bas_2p1h[3*i_count ] = n1;
this->Bas_2p1h[3*i_count + 1] = n2;
this->Bas_2p1h[3*i_count + 2] = k3;
++i_count;

} // end k3 loop
} // end n2 loop



1 Self-consistent Green’s function approaches 29

} // end n1 loop
if (i_count > Nbas_2p1h) {/* This is a trouble */} else {Nbas_2p1h = i_count;}

return;}

Spectral representation. Both the propagator and the self-energy have spectral repre-
sentations in terms of poles, with residues in separable form. Hence, we can devise a general
class that could store both objects. Specifically, by using the conservation of spin and the fact
that the propagator is diagonal in momentum space, one can write the Lehmann representa-
tion (1.2) as

g(pi,si
z;ω) = ∑

n

Sp(pi,si
z;ε

pi+
n )

ω− ε
pi+
n + iΓ

+ ∑
k

Sh(pi,si
z;ε

pi−
k )

ω− ε
pi−
k − iΓ

, (1.57)

where Sp(h)(pi,si
z;ω) are the particle and hole parts of the spectral function (see Eqs. (1.4)).

Hence, it is simpler and more efficient to store the full residues rather than separate
spectroscopic amplitudes. The self-energy can be casted in the same simple pole struc-
ture by diagonalizing the interactions matrices. Assuming that UC (E>+C)U†

C = diag(λ r
C) and

UD (E<+D)U†
D = diag(λ q

D), with λC,D being the eigenvalues, we rewrite Eq. (1.27) as follows:

Σ
?(pi,si

z;ω) = Σ
(∞)(pi,si

z) + ∑
r

|M̃r ;pi,si
z
|2

ω−λ r
C + iΓ

+ ∑
q

|Ñpi,si
z ;q|2

ω−λ
q
D− iΓ

, (1.58)

where M̃ = UCM and Ñ = NU†
D. A full pre-diagonalization of the interaction matrices C and

D is not needed to construct the Dyson matrix. Thus, storing the self-energy in the form of
Eq. (1.58) is worth only if self-energy is to be calculated for specific values of its arguments
(for example to plot it). However, in most cases, a reduction of these matrices through a
Lanczos algorithm is still necessary to reduce the dimensionality of the problem, as discussed
below here. The resulting tridiagonal matrices can be accommodated in the same structure
as for the propagator by simply adding an extra array for the sub-diagonal elements. Thus,
the class for the Lehmann representation has the following structure:

class SpctDist {

public:
SpBasisK *SpBasLoc; // associated s.p. basis

int N_LEH_ALLOC; // number of Lehmann representations to store

int *N_fw_pls, *N_bk_pls, *N_PLS_ALLOC;
double **ek_fw, **ek_bk; // - poles of the propagator/self-energy
double **eb_fw, **eb_bk; // - eb_xx Lanczos subdiagonal for storing self-energy
double **Sk_fw, **Sk_bk; // - this is the FULL residue (not the amplitude X,Y)
double *Sig_inf; // static self-energy

// functions
public:
SpctDist(SpBasisK* ); // constructor
int add_k_channel(int, int, double*, double*, int, double*, double*,

double in_Sig_inf=0.0, double *B_fw_in=NULL, double *B_bk_in=NULL);
};

void SpctDist::SpctDist(SpBasisK *InBasis ) {
//
// Use constructor to initialize the object with a table
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// of pointers for all basis states

this->SpBasLoc = InBasis; // keeps track of the associated model space

N_LEH_ALLOC = this->SpBasLoc->SpNmax;

Sig_inf = new double[N_LEH_ALLOC];

N_fw_pls = new int[N_LEH_ALLOC]; N_bk_pls = new int[N_LEH_ALLOC];
N_PLS_ALLOC = new int[N_LEH_ALLOC];
ek_fw = new double*[N_LEH_ALLOC]; ek_bk = new double*[N_LEH_ALLOC];
Sk_fw = new double*[N_LEH_ALLOC]; Sk_bk = new double*[N_LEH_ALLOC];
eb_fw = new double*[N_LEH_ALLOC]; eb_bk = new double*[N_LEH_ALLOC];

for (int isp=0; isp<N_LEH_ALLOC; ++isp) {
Sig_inf[isp] = 0.0;

N_fw_pls [isp] = -100; N_bk_pls [isp] = -100;
N_PLS_ALLOC[isp] = -100;
ek_fw[isp] = NULL; ek_bk[isp] = NULL;
Sk_fw[isp] = NULL; Sk_bk[isp] = NULL;
eb_fw[isp] = NULL; eb_bk[isp] = NULL;

}

return;}

void SpctDist::add_k_channel(int i_Leh, int N_fw_in, double *A_fw_in, double *E_fw_in,
int N_bk_in, double *A_bk_in, double *E_bk_in,
double in_Sig_inf /*=0.0*/,
double *B_fw_in/*=NULL*/, double *B_bk_in/*=NULL*/){

//
// This function is to load and store the spectral representation of a s.p. propagator
// or a self-energy, if the additional array for the subdiagonal elements the self-energy
// are not provided, they are set automatically to zero.

// Allocate memory for the basis' state i_Leh; only one array is allocate for both hole
// and particle poles, the xx_fw[] arrays will just point to where the particles begin
N_PLS_ALLOC[i_Leh] = N_bk_in + N_fw_in;
ek_bk[i_Leh] = new double[N_PLS_ALLOC[i_Leh]]; ek_fw[i_Leh] = ek_bk[i_Leh] + N_bk_in;
eb_bk[i_Leh] = new double[N_PLS_ALLOC[i_Leh]]; eb_fw[i_Leh] = eb_bk[i_Leh] + N_bk_in;
Sk_bk[i_Leh] = new double[N_PLS_ALLOC[i_Leh]]; Sk_fw[i_Leh] = Sk_bk[i_Leh] + N_bk_in;

// store hole poles
N_bk_pls[i_Leh] = N_bk_in;
for (int ibk=0; ibk<N_bk_in; ++ibk) {
ek_bk[i_Leh][ibk] = E_bk_in[ibk];
Sk_bk[i_Leh][ibk] = A_bk_in[ibk];
eb_bk[i_Leh][ibk] = 0.0;
if (NULL != B_bk_in) eb_bk[i_Leh][ibk] = B_bk_in[ibk];

}

// store particle pole
N_fw_pls[i_Leh] = N_fw_in;
for (int ifw=0; ifw<N_fw_in; ++ifw) {
ek_fw[i_Leh][ifw] = E_fw_in[ifw];
Sk_fw[i_Leh][ifw] = A_fw_in[ifw];
eb_fw[i_Leh][ifw] = 0.0;
if (NULL != B_fw_in) eb_fw[i_Leh][ifw] = B_fw_in[ifw];

}
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Sig_inf[i_Leh] = in_Sig_inf; // stores the static self-energy; == 0.0 if default

return;}

The above classes simplify the calculation of quantities related to SCGF. For example, let us
assume a function, Vpotential(ia,ib,ic,id), that returns the matrix elements of the two-
body interaction. The ADC(2) coupling matrix (1.28a) could be calculated using the following
code:

// Configurations for s.p. state iL:
ADC3BasisK ISC2p1h(); ISC2p1h.Build_2p1h_basis(SpBasis, iL);

// Array to store the coupling matrix M:
double M_rp = new double[ISC2p1h.Nbas_2p1h];

for (int ir = 0; ir<ISC2p1h.Nbas_2p1h; ++ir) {
// no need to loop over s.p. states since we are diagonal in the channel ia

// Single particle states for the ir-th 2p1h configuration:
im = Bas_2p1h[3*ir ];
iv = Bas_2p1h[3*ir + 1 ];
iL = Bas_2p1h[3*ir + 2 ];

// Apply Eq. (11.28a) [a HF ref. state is assumed here... X=Y=1]
M_rp[ir] = V_potential(im,iv,ia,iL);

}

Likewise, the correlated HF diagram that contributes to Σ (∞) [second term on the right
hand side of Eq. (1.17a)] could be obtained as follows:

// To calculate the HF potential (V_HF) between states ia and ib we do:

double Sh, Vhf_ab;
int nHoles;
SpBasisK *Bas = ; // point to some object containing the model space
SpctDist SpProp(Bas); // sp propagator, contains spectral distribution of every (p_i,s_z)

Vhf_ab = 0.0;
for (ic = 0; ic<Bas->SpNmax; ++ic) {
nHoles = SpProp.N_bk_poles[ic];
Sh = 0.0;
for (int k=0; k<nHoles; ++k) Sh += SpProp[ic].Sh[k];
Vhf_ab += V_potential(ia,ic,ib,ic) * Sh;
}

Reducing the computational load. Practical applications often require rather large
model spaces to achieve convergence. This poses a major hindrance since the number of
ISCs can grow very fast with the size of the space. The strongest constraint comes from
2p1h configurations (that is, the dimension of the C matrix), which increases quadratically
with the number of unoccupied states and linearly with the number of occupied ones. As a
consequence, it is almost never possible to attempt a fully self-consistent calculations of the
dynamic self-energy because these would be based on the huge number of poles in Eqs. (1.2)
or (1.57). In fact, the dimensionality wall not only prohibits going beyond a sc0 calculation but
the dimensions of the Dyson matrix can become prohibitive even for a mean-field reference
state and models spaces of moderate size.

As already mentioned in Sec. 1.3.2, the way out from this situation is to substitute the
denominators in the Lehmann representation of the self-energy (1.58) with a much smaller
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numbers of effective poles. This is done by projecting the sub-matrices E>+C and E<+D onto
Krylov spaces of much smaller dimensions by using a Lanczos algorithm (or Block Lanczos, in
the general case when the self-energy is not diagonal in pi) [51]. This approach is usually more
efficient if the vectors corresponding to the columns of M and N† are taken as the pivots. For
example, if L is the Nred×N2p1h matrix that projects from the full space of 2p1h configurations
to the Krylov space of dimension Nred (<< N2p1h), then the third term on the right hand side of
Eq. (1.27) is modified as follows:

M† 1
ω− [E>+C]+ iη

M −→ M†L† 1
ω− L[E>+C]L† + iη

LM (1.59)

and similarly for the 2h1p sector. In most cases, a number of Lanczos vectors between
Nred = 50 and 300 is sufficient, depending on model space size and the accuracy required.
The reason for choosing a Krylov type of projection to reduce the dimensionality of the Dyson
eigenvalue problem is that this allows to preserve two crucial properties of the spectral dis-
tribution of Σ ?(ω). First, the lowest 2Nred moments of the spectral distribution are conserved,
which guarantees to reproduce well the average spectral function at medium and large ener-
gies. Second, the eigenvectors at the extremes of the (2p1h or the 2h1p) spectrum converge
first in the Lanczos algorithm. This implies that the self-energy and the particle attachment
or removal distributions converge fast to the exact one near the Fermi energy. For this reason
it is crucial that both the E>+C and E<+D matrices are projected and that they are handled
separately. See eRef. [19] for details of the implementation in the SCGF approach.

In addition to the dimensions problem, one also needs to diagonalize Eq. (1.48) for each
separate channel (pi, si

z) in the basis. On the other hand, some single particle states are equiv-
alent. For example, the momentum states with nx=3, ny=2 and nz=1 is the same as nx=2, ny=-3
and nz=1 except for a rotation around the z-axis. Likewise, nx=3, ny=2 and nz=-1 differs only
by a parity inversion. The diagonalization of each of these channel would yield exactly the
same results and needs to be performed only once. The obvious procedure is that of grouping
the model space states according to the same symmetries of the Hamiltonian. In this way,
Eq. (1.48) is typically solved a few tens of times even when the model space is two orders
of magnitude larger. For an Hamiltonian that is invariant under rotation, parity inversion
and spin flipping, the algorithm to separate the basis in groups of the same symmetry is as
follows:

int SpBasisK::Build_groups_table(void ) {

int AbsN_mx = ... // Maximum absolute value of n_x, n_y or n_z

int N_ALLOC_GRPS = ... //Max number of different groups expected

gr_rep = new int[N_ALLOC_GRPS]; // for each group, keep track of a representative state
gr_mlt = new int[N_ALLOC_GRPS]; // number of basis states belonging to a group

int i_mult, i_rep, n1, n2, n3, itmp;

int count=0;
for (int i1=0; i1<=AbsN_mx; ++i1)
for (int i2=i1; i2<=AbsN_mx; ++i2)
for (int i3=i2; i3<=AbsN_mx; ++i3) {

i_mult = 0;
i_rep = -100;
for (int isp=0; isp<this->SpNmax; ++isp) {

n1 = abs(nx[isp]); n2 = abs(ny[isp]); n3 = abs(nz[isp]);
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if (n1 > n2) {itmp=n1; n1=n2; n2=itmp;} // order the q.#s of the orbit isp in
if (n1 > n3) {itmp=n1; n1=n3; n3=itmp;} // increasing values, according
if (n2 > n3) {itmp=n2; n2=n3; n3=itmp;} // to i1 < i2 < i3

if ((n1==i1) && (n2==i2) && (n3==i3)) {
++i_mult;
if (i_rep < 0) i_rep = isp;

}

} // end loop over isp

if (i_rep >= 0) {
gr_mlt[count] = i_mult;
gr_rep[count] = i_rep;
++count;

}

}

this->N_grps = count;

cout << "\n\n A total of " << N_grps << " independent groups of single particle basis \n";
cout << "states has been found. All states within one group are equivalent \n";
cout << "under rotation, spin and/or parity inversion.\n";

return N_grps;}

1.4.2 Spectral function in pure neutron and symmetric nuclear
matter

We test the ADC approach for pure neutron matter (PNM) and symmetric nuclear matter
(SNM) using the Minnesota nuclear force [50]. This is a simple semi-realistic potential that
contains only central terms, for different spin and isospin, but no tensor force. It has often
been used in structure studies of light neutron-rich nuclei, although it fails to predict any
saturation of infinite nuclear matter up to very high densities. Nevertheless, it is a good toy
model for describing certain salient features of nucleonic matter and of quantum liquids in
general. In pure neutron matter, we computed A=N=66 neutrons in a model space truncated
at Nmax

sq =36, which is enough to converge the total energy per particle. For symmetric nuclear
matter, we fill the same unperturbed orbits with Z=66 protons and N=66 neutron. Thus, we
have a total of A=132 nucleons and truncate the model space at Nmax

sq =26. This requires up to
30 Gb of memory but it is still small enough to be computed on a high-end desktop. In both
cases, the Dyson equation is solved for each value of the momentum pi as discussed above. We
retained Nred=300 Lanczos vectors in every channel, which is even more than necessary for
converging the binding energies and spectral functions with respect to the Krylov projection.

Total energies per particle are shown in Fig. 1.9, for the reference state (which is HF) and
for different approximations that show the convergence with respect to the many-body trun-
cation: in order ADC(2), 2p1h-TDA and ADC(3). These plots already demonstrate one general
feature of infinite nucleonic matter: PNM is relatively weakly correlated and may allow for
solutions in MBPT, while SNM is more correlated and requires more sophisticated all-orders
methods. The correlations energy with respect to the HF reference, Ecorr. = Eg.s.−EHF , varies
between 0.5 and 2 MeV for neutrons but it is twice as much (≈4 MeV) for symmetric matter
and independent of the density (note the different scales in the two panels). Furthermore, the
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Fig. 1.9 Equation of state for PNM (left) and SNM (right) as predicted by the Minnesota two-nucleon interac-
tion. Different curves show results for different ADC approximations. The ADC(2) (filled squares), 2p1h-TDA
(dot-dashed line) and full ADC(3) (full lines) are calculated using a Hartree-Fock reference state and unper-
turbed single particle energies.

ADC(2) energies for PNM are already very close to the full ADC(3) results, showing that the
calculation is extremely well converged. In SNM, the situation is different and truncations
beyond the second order contribute to the calculated correlation energy. The difference be-
tween 2p1h-TDA and the ADC(3) is always about 300 keV/A and the trend shows convergence
with respect to the many-body truncation.

The resulting spectral functions from ADC(3) are shown in Fig. 1.10 and compared to the
unperturbed (HF) reference state. Since we are working in a discrete basis, the results are
given for the cartesian momenta pi and only discrete quasiparticle energies are obtained
from Eq. (1.48) [also compare Eqs. (1.4) and (1.57)]. In order to give a clearer visualization of
the spectral distribution, we fold each state along the energy axis with Lorentzians of width
Γ =1.2 MeV near the Fermi energy and Γ =7 MeV otherwise. The corresponding expression of
the spectral function in the HF approximation has no fragmentation and displays only isolated
δ -peaks for each momenta:

SHF(p,sz; ω) = Sh,HF(p,sz; ω)+Sp,HF(p,sz; ω) = δ

(
ω− ε

HF(p)
)
, (1.60)

where εHF(p) = p2

2m + vHF(p) are the HF single particle energies. Eq. (1.60) is plotted as sep-
arate spikes in Fig. 1.10, with their height taken to be the same as for the (normalized)
Lorentzians near the Fermi surface. Thus, the unperturbed spectral function can be visually
compared to the fragmented distribution plotted for the ADC(3).

Fig. 1.10 shows all the general characteristics of the spectral distribution for infinite sys-
tems. At the HF level, each nucleon has an energy spectrum εHF(p) that follows the parabolic
trend of its kinetic energy but it is otherwise shifted in energy due to the mean-field HF
potential. The density ρ determines the momentum pF of the last occupied state according

to Eq. (1.54), which in turn sets the Fermi energy, E(HF)
F = εHF(pF). When correlations are

included the spectrum becomes fragmented. Again, it is seen that PNM (top panel) is only
weakly correlated and the quasiparticle peaks are almost unchanged near the Fermi sur-
face. Only deeply bound neutrons, at the smallest momenta, are sensibly fragmented. On the
other hand, the correlated spectral function of SNM is much more fragmented, some particle
strength is visible for small momenta p < pF and likewise there is a small occupation of states
with p > pF . Integrating S(p,sz; ω) over the energy interval ]−∞,EF ] yields the momentum dis-
tribution (per unit volume), while further integrating over momenta gives the total nucleon
density ρ (see Eq. (1.10)).
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Fig. 1.10 Spectral function of PNM (top) and SNM (bottom) at nominal saturation density (ρ = 0.16 fm−3) from
ADC(3). The correlated strength distribution is folded with Lorentzians along the energy axis. The isolated
vertical lines mark the unperturbed HF spectrum and are normalized to the same height assumed for the
Lorentzians, so that a visual comparison with the correlated distribution is meaningful. The thick line at
constant ω marks the Fermi energy, EF , for the correlated ADC(3) results, which separates the quasihole from
the quasiparticle spectrum.

The real and imaginary parts of the self-energy, Σ ?(p,sz; ω), are shown in Figs. 1.11 and
1.12 for values of the momentum pi both below and above pF . Also in this plots, the discrete
energy poles are folded by taking a finite value of Γ in Eq. (1.58), which correspond to using
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Fig. 1.11 Real part of the nuclear self-energy, Re Σ(p,ω), of PNM (left) and SNM (right) at nominal satu-
ration density (ρ = 0.16 fm−3), obtained from ADC(3). The Fermi momentum is kF =1.68 fm−1 for PNM and
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Fig. 1.12 Imaginary part of the nuclear self-energy, ImΣ(p,ω), of PNM (left) and SNM (right) at nominal
saturation density (ρ = 0.16 fm−3), as calculated from ADC(3). The Fermi momentum is kF =1.68 fm−1 for PNM
and kF =1.33 fm−1 for SNM. Fixed momenta of p = 0 fm−1, at p≈ 0.87pF and p≈ 1.42pF are shown.

finite width Lorentzians for the imaginary part. In Fig. 1.11, bot PNM and SNM have a simi-
lar dependence on momentum that comes form the kinetic energy term in Σ (∞)(p) but there
is more attraction in the second case. This is due to the additional attractive force between
protons and neutrons, which makes SNM bound. Superimposed to this trend is the energy de-
pendence coming form the coupling to ISCs, which fragments and spreads the single particle
strength over different energies. The imaginary part of the self-energy encodes the strength
of the absorption effects that mix single particle degrees of freedom to ISCs ones. Thus, it
is also directly connected to the mean free path of nucleons in the system [52]. This term is
always positive (negative) for energies below (above) the fermi surface. For pi ≈ 0 the absorp-
tion is strongest at low energies. As one increases p, this becomes weak in the energy region
of hole states and much more stronger correlations are seen for quasiparticle energies and
momenta outside the Fermi sea. Once again the PNM panel shows weak and more isolated
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Fig. 1.13 Total correlation energy for pure neutron matter obtained from the CCD, the configuration interac-
tion Monte Carlo (CIMC) and the ADC(3)-sc0 methods that are presented in this book. See also Section 10.3.7
of Ref. [49] for results based on the IMSRG(2) approach.

peaks, while SNM is characterized by stronger fragmentation and absorption (hence, a more
collective behavior).

Most of the qualitative features of these self-energies and of the spectral functions just
shown are general to extended correlated fermion systems and are also seen, for example,
in the electron gas or liquid 3He. It is interesting to compare the plots of Fig. 1.10 to the
analogous distribution of a finite system, like the one shown in Fig. 1.2. In the latter case, the
spectral function displays orbits form the shell structure rather than peaks distributed ac-
cording to kinetic energy. In all cases, correlations alter the simple mean-field view. However,
the strength near the Fermi energy tends to remain dominated by single particle structures
because of the low density of ISCs (2p1h, 2h1p and beyond) in that region.

Figure 1.13 compares the results for PNM with the coupled cluster and Monte Carlo meth-
ods introduced in previous chapters. Note that we show correlation energies, rather than
the total energy per particle, to amplify differences among many-body methods. The largest
discrepancy is at the lowest density and amounts to ≈50 keV/A. This is 10% of the correlation
energy but less than 0.5% of the total energy. At larger densities, all methods agree to higher
accuracy. It is interesting to see that ADC(3) initially follows configuration interaction Monte
Carlo (CIMC) and then shifts to being closer to CCD as the density increases.

1.5 Self-consistent Green’s functions at finite temperature in the
thermodynamic limit

We now concentrate on the study of infinite systems at finite temperature and will set our-
selves in the thermodynamic limit, that is number of particles N and volume V going to infinity
with density ρ = N/V kept constant. The many-body SCGF approach at finite temperature is
particularly suited for this kind of study because, for appropriate approximations of the self-
energy, it is thermodynamically consistent: a quantity calculated from the microscopic point
of view yields the same result as the thermodynamical macroscopic quantity [30]. This con-
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sistency is strictly related to the fact that a fully dressed propagator, obtained via iterative
solution of Dyson’s equation, Eqs. (1.3), is used in the calculation of the partition function in
the Luttinger-Ward formalism [53], from which one extracts the thermodynamical properties
of the system. Furthermore, it can be demonstrated that this method fulfills the Hugenholtz
van-Hove theorem [54], and this once again relates to the fact that the conservation laws of
particle number, momentum and energy are preserved in this kind of approximation [29,30].

We will show in this section how to calculate the self-consistent propagator in the lad-
der approximation, a specific approximation for the self-energy Σ ?(ω) where particle-particle
and hole-hole intermediate scattering states are resummed to all orders in the so called in-
medium T -matrix. We will be working with the effective Hamiltonian of Eq. (1.16), considering
the two-body averaged three-body force that enters Ũ as given in Eq. (1.23), and disregard-
ing all irreducible three-body terms. The Koltun sum rule of Eq. (1.11) is then used to obtain
the total energy of the many-body system. The great advantage of working at finite temper-
ature is that the appearance of pairing when considering hole-hole intermediate states is
washed out by thermal effects [55]. Note that a different possibility is to account for pairing
by implementing analogous calculations but in a formalism with both normal and anomalous
propagators (as done in Gorkov theory) [56,57]. Recently, an improved treatment of pairing in
the SCGF method when going to zero temperature has been presented in Ref. [58]. Within the
Luttinger-Ward formalism at finite temperatures, the entropy can then be calculated via the
knowledge of the self-consistent propagator, and from the entropy all other thermodynamical
quantities are accessible. We will not treat here the calculation of the entropy, for a detailed
description we refer the reader to Chapter 3 of Ref. [14].

In the next section, we will give a few hints on the theoretical formalism and then sketch
in the following section the working equations necessary to perform the numerical imple-
mentation. The full self-consistent numerical calculation considering the complete off-shell
properties of the system and considering fully microscopic potentials was performed by the
Gent [59], the Tübingen and Barcelona [4,13,60–63] and the Cracow groups [64–67].

1.5.1 Finite-temperature Green’s function formalism

In a similar way to Sec. 1.2, we start by defining the one-body Green’s function, however this
time as a statistical average in the grand-canonical ensemble:

ig(xt,x′t ′) = Tr{ρ̂T [ψ̂(xt)ψ̂†(x′t ′)]} ; (1.61)

here T describes the Wick time-ordered product of the quantum field operators for the cre-
ation, ψ̂†(x′t ′), and destruction, ψ̂(xt), of a single-particle state in the Heisenberg picture.
The field operators are related to the operators of creation and destruction, i.e. a†

α and aα ,
via ψ̂†(x′) = ∑α ψα(x)†a†

α and ψ̂(x) = ∑α ψα(x)aα , where the coefficients are the single-particle
wave functions of state α and the sum is over the complete basis set of single-particle quan-
tum numbers. The statistical factor ρ̂ is defined by:

ρ̂ =
1
Z

e−β (Ĥ−µN̂) , (1.62)

where β=1/T is the inverse temperature, µ is the chemical potential and Z is the grand-
partition function

Z = Tre−β (Ĥ−µN̂) , (1.63)

with Ĥ the Hamiltonian given in Eq. (1.13), and N̂ the particle number operator. The trace
in Eq. (1.63) is to be taken over a full set of energy and particle number eigenstates of the
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system. The two possible time-ordering products in Eq. (1.61) are given by:

T [ψ̂(xt)ψ̂†(x′t ′)] =

{
ψ̂(xt)ψ̂†(x′t ′), t > t ′

−ψ̂†(x′t ′)ψ̂(xt), t ′ > t .
(1.64)

The first time-ordered product in Eq. (1.64) describes the creation of a particle state at time t ′

with position x′, and the destruction of the propagated particle state at time t with position x.
Analogously, the second time-ordered product describes the destruction of a particle state, or
creation of a hole state, at time t with position x, and the destruction of the propagated hole
state at time t ′ with position x′. Using Eq. (1.64) one can define the correlation functions:

ig>(xt,x′t ′) = Tr{ρ̂[ψ̂(xt)ψ̂†(x′t ′)]} (1.65)

ig<(xt,x′t ′) = −Tr{ρ̂[ψ̂†(x′t ′)ψ̂(xt)]} . (1.66)

Depending on the specific time ordering, the Green’s function defined in Eq. (1.61) corre-
sponds to one correlation function or the other, i.e. either to Eq. (1.65) or to Eq. (1.66). It
is also useful to define the retarded propagator; this is that part of the one-body Green’s
function which is related only to the causal propagation of events, i.e. forward in time:

gR(xt,x′t ′) = θ(t− t ′)[g>(xt,x′t ′)−g<(xt,x′t ′)] . (1.67)

In the following we will be dealing with the imaginary time domain, also known as Mat-
subara formalism to solve for the Green’s function. One could equivalently well work in the
real-time domain and reach the same result [67]. The quantum field operators of creation and
destruction in Heisenberg picture

ψ̂
(†)(xt) = eiĤt

ψ̂
(†)(x0)e−iĤt (1.68)

carry a resemblance between the thermal weight factor eβ Ĥ and the time evolution operator

eiĤt when considering the imaginary time domain t =−iβ . If one includes the expression (1.68)
in the definition of the correlation functions, Eqs. (1.65) and (1.66), it can be proved that
for a certain imaginary time domain there is absolute convergence of the two expressions,
specifically in the intervals −iβ < t − t ′ < 0 for g> and 0 < t − t ′ < iβ for g<. Furthermore, it
can be shown that the two correlation functions are related to one another at one of their
imaginary time boundaries, providing the important relation:

g<(x, t = 0;x′, t ′) = eβ µ g>(x, t =−iβ ;x′, t ′) . (1.69)

Thanks to the invariance under space translation of an infinite system and to time transla-
tional invariance, the Green’s function only depends on the differences r = x−x′ and τ = t− t ′.
Consequently, by exploiting the quasi-periodicity relation of the Green’s function along the
imaginary time axis given in Eq. (1.69), one can write a discrete Fourier representation for
the one-body Green’s function in the frequency domain:

g(r,τ) =
∫ d3 p

(2π)3 eipr 1
−iβ ∑

ν

e−izν τ g(p,zν) , (1.70)

where zν = πν

−iβ + µ are the Matsubara frequencies for odd integers ν = ±1,±3,±5, ... The
Fourier coefficients are then given by the inverse transformation:

g(p,zν) =
∫

d3r
∫ −iβ

0
dτ e−ipr+izν τ g(r,τ) . (1.71)
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These coefficients are evaluated for an infinite set of complex frequencies zν , corresponding
to the imaginary time domain, however one would like to understand the properties of the
physical propagator, i.e. in the real time and frequencies domain. To do so let’s go back to the
expressions of the correlation functions, Eqs. (1.65) and (1.66), and write down their Fourier
transform:

g>(p,ω) = i
∫

d3r
∫ +∞

−∞

dτ e−ipr+iωτ g>(r,τ) , (1.72)

g<(p,ω) = −i
∫

d3r
∫ +∞

−∞

dτ e−ipr+iωτ g<(r,τ) . (1.73)

These two quantities now define the spectral probability to attach or remove a particle with
an energy ω and momentum p to or from the many-body system (we omit for simplicity the
spin and isospin quantum numbers). The sum of these two functions is a positive quantity and
yields the spectral function at finite temperatures:

A(p,ω) = g>(p,ω)+g<(p,ω) . (1.74)

An important feature of the spectral function is that it fulfills the sum rule∫ +∞

−∞

dω

2π
A(p,ω) = 1 , (1.75)

which is consistent with the interpretation of A(p,ω) as a probability of leaving the system in
a state of energy ω by either adding or removing a nucleon of momenutm p. Below, we show
how A(p,ω) relates to its zero temperature counterpart, Eqs. (1.4).

Using Eq. (1.69) in Eqs.(1.72) and (1.73), we can write the Fourier transform of the peri-
odicity condition

g>(p,ω) = eβ (ω−µ)g<(p,ω) , (1.76)

and considering the definition of the spectral function, we can write the correlation functions
in momentum and frequency as:

g<(p,ω) = f (ω)A(p,ω) , (1.77)

g>(p,ω) = [1− f (ω)]A(p,ω) , (1.78)

where f (ω) = 1
eβ (ω−µ)+1

is the Fermi-Dirac distribution function. These expressions show that,
once the spectral function is known, it is easy to access the correlation functions. A similar
relation can be found between the spectral function and the Fourier coefficients of Eq. (1.71):

g(p,zν) =
∫ +∞

−∞

dω ′

2π

A(p,ω ′)
zν −ω ′

. (1.79)

The previous expression is performed for a given infinite set of Matsubara frequencies in the
complex plane. However we would like to extend this to the entire complex plane, especially
close to the real axis, which corresponds to physical frequencies. It can be demonstrated
that this analytical continuation is possible and one can safely replace zν → z, where z is a
continuous energy variable in the complex plane [29]. Eq. (1.79) then relates the Green’s
function g(p,z) in the complex plane to the spectral function A(p,ω) and is referred to as
the spectral decomposition of the single-particle propagator. Similarly, one could write the
real-time Fourier transform for the retarded propagator defined in Eq. (1.67):

gR(p,ω) =
∫ +∞

−∞

dω ′

2π

A(p,ω ′)
ω+−ω ′

, (1.80)



1 Self-consistent Green’s function approaches 41

with ω+ = ω + iη. This quantity is equal to evaluating the Green’s function slightly above the
real axis, i.e. gR(p,ω) = g(p,ω+). This equality is of fundamental importance. In fact, it tells
us that, by knowledge of the spectral function, there exists a Green’s function g(p,z) which
corresponds both to the Green’s function at the Matsubara frequencies, z = zν , and also to
the retarded propagator for frequencies slightly above the real axis, z = ω + iη. This means
that the information carried by the coefficients in Eq. (1.79) can be analytically continued to
the real axis, and so to a physical propagator. Furthermore, exploiting the Plemelj identity,

1
ω± iη

=
P
ω
∓ iπδ (ω) , (1.81)

one can separate the real and imaginary part of the propagator in Eq. (1.80), and it can be
checked that the imaginary part of the retarded propagator is proportional to the spectral
function:

A(p,ω) =−2Img(p,ω+) . (1.82)

Furthermore, the Dyson equation given in Eq. (1.3) can be rewritten in an algebraic form as
follows:

g(p,ω+) =
1

[g(0)(p,ω+)]−1−Σ ?(p,ω+)
, (1.83)

and combining Eq. (1.83) with Eq. (1.82), one can express the spectral function as:

A(p,ω) =
−2ImΣ ?(p,ω+)

[ω− p2

2m −ReΣ ?(p,ω)]2 +[ImΣ?(p,ω+)]2
. (1.84)

The numerical calculation that one has to perform requires self-consistency between Eq.(1.84)
and an appropriate approximation for Σ ?(p,ω). Self-consistency is achieved once the spectral
function inserted in the calculation of the irreducible self-energy is equal to the one obtained
by solving Eq. (1.84).

Before going on, it is interesting to point out that in the limit of zero temperature, the
spectral decomposition of the one-body propagator given in Eq. (1.79) can be separated into
two pieces:

g(p,ω) =
∫

∞

εF

dω
′ Sp(p,ω ′)
ω−ω ′+ iη

+
∫

εF

−∞

dω
′ Sh(p,ω ′)
ω−ω ′− iη

, (1.85)

The Sp(p,ω) and Sh(p,ω) correspond to the particle and hole spectral functions, which were
already introduced in Eqs. (1.4). Notice however that, unlike in Eqs. (1.4), we have one single
Fermi energy εF (εF = ε

+
0 = ε

−
0 ) in the integrals domain because the gap disappears in an

infinite gas or a normal Fermi liquid. In an uncorrelated system, this energy defines the
last filled level and hence corresponds to the energy needed to remove a particle from the
many-body ground state. In the case of an interacting system, not in the superfluid nor in the
superconducting phase, εF equals the chemical potential µ, and corresponds to the minimum
energy necessary to add or remove a particle to/from the many-body system. Consequently,
the expression for the spectral function given in Eq. (1.84) can be divided into two parts:

Sp(p,ω) = − 1
π

ImΣ ?(p,ω)

(ω− p2

2m −ReΣ ?(p,ω))2 +(ImΣ?(p,ω))2
ω > εF , (1.86a)

Sh(p,ω) =
1
π

ImΣ ?(p,ω)

(ω− p2

2m −ReΣ ?(p,ω))2 +(ImΣ?(p,ω))2
ω < εF , (1.86b)

resembling the structure of Eqs. (1.4).

With all the basic formalism in place, we still need to devise a proper conserving approx-
imation to the self-energy Σ ?(p,ω). For applications to infinite nucleonic matter this is done
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by summing infinite ladders of two-particle and two-hole configurations inside the medium.
Hence, the first two diagram of this expansion are those of Figs. 1.4a) and 1.5a). This approx-
imation is analogous to the series generated in Eq. (1.35) and Exercise 11.3 except that it is
resummed in the RPA way2. In the next subsection we will sketch the main steps that have to
be taken to perform the numerical implementation of SCGF calculations at finite temperature
and introduce the working equations of the ladder expansion of the self-energy along the way.

1.5.2 Numerical implementation of the ladder approximation

Figure 1.14 shows the iterative scheme that needs to be implemented numerically for self-
consistent calculations. This is for the case of both two-body and three-body forces, when
working with the Hamiltonian H̃1 of Eq. (1.16) and disregarding irreducible three-body terms.
The fundamental quantities that one has to compute are the non-interacting two-body Green’s
function, the in-medium T -matrix and the irreducible self-energy, which are depicted in the
three light blue boxes with their respective Feynman diagrams. The diagrams are a direct way
to write down the complicated mathematical expressions that one has to solve numerically
(see Appendix 1 for the T=0 case). The one-body and two-body effective nuclear potentials
are depicted in the central orange boxes. These are similar to the contributions given in
Fig. 1.3, except for the one-body effective potential in which the first term is zero for infinite
matter and the last term where we approximate the contribution of the three-nucleon force by
averaging only with two independent correlated density matrices. Fig. 1.14 shows the correct
multiplying factor, as in Eq. (1.23) [6, 68]. As can be seen from this scheme, all quantities
in blue or orange boxes are fed with the spectral function, the left red box, which is then
computed iteratively by solving Dyson’s equation, in the form of Eq. (1.84), until convergence.
The criteria for reaching self-consistency is usually to compare the chemical potentials of two
consecutive iterations, which is computed using A(p,ω).

For clarity, we will distinguish between the wording calculation and iteration: we will refer
to calculation as the whole set of several iterations necessary to get to a converged result
for the spectral function, so Fig. 1.14 depicts exactly one iteration. For a more in depth
explanation of the numerical details the reader can refer to Refs. [13,14].

Each calculation is performed at a specific density ρ and temperature T of the system.
One starts the first iteration with a guess of the spectral function, which is given in terms
of the imaginary, ImΣ ?(p,ω), and real, ReΣ ?(p,ω), parts of the irreducible self-energy. When
possible, it is convenient to start with a converged solution for these quantities at different
values of ρ and T.

• Numerical tips for the (p,ω) meshes: The mesh of the single-particle momentum p for
the self-energy is adjusted during the first iteration to be more dense around the Fermi
momentum pF corresponding to the specific density considered: Np = 70 mesh points are
enough, considering linear meshes at low momentum and around the Fermi momentum,
and a logarithmic mesh for the tail all the way up to a value ∼ 10pF. The mesh in the single-
particle energy ω has to be very dense because of the complicated features of the spectral
function, especially near the quasiparticle peak. Storing a dense mesh at each iteration is
demanding in terms of memory; for this reason one saves separately the imaginary and real
part in a dilute linear mesh, typically of Nω ≈ 6000 points in the interval [-2000:15000] MeV.

2 Note that particle-hole summations, corresponding to the ring diagram of Fig. 1.5b), represent a formidable
task in nucleonic matter and have been almost always disregarded in SCGF studies of infinite matter. This in
contrast to Green’s function studies of the electron gas and solid state materials, where rings are necessary
to screen the Coulomb interaction while ladders can often be neglected.
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Fig. 1.14 The structure of a ladder SCGF calculation including both two-body and three-body forces through
the definition of effective interactions (see text for details). Each quantity is also represented via the corre-
sponding Feynman diagram.

This is interpolated during the iterations to denser meshes of Nω ≈ 30000 points, in order to
have a good description of the spectral function in the energy domain. However, the mesh
in energy is adjusted in different ways during the iteration according to the specific quan-
tities that one has to calculate (two-body propagator, T -matrix, etc.) as it will be explained
later on.

We will now enumerate the steps to perform a complete iteration.

1. Given a previously computed self-energy, the first step is to extract the corresponding
single particle spectrum, which describes the centroid position of quasiparticle peaks for
each momentum:

ε(p) =
p2

2m
+ReΣ(p,ε(p)) , (1.87)

which will be used throughout the new iteration.

2. The density ρ, temperature T and spectral function A(p,ω) are the inputs to calculate the
next fundamental quantity: the chemical potential µ. This is obtained from the sum rule for
the density:

ρ = νd

∫ dp
2π3

∫ +∞

−∞

dω

2π
A(p,ω) f (ω,µ) , (1.88)
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where νd is the degeneracy of the system (νd=2 for pure neutron and νd=4 for isospin sym-
metric matter), the temperature enters through the Fermi-Dirac function, f (ω,µ), and we
have also made explicit its dependence on µ.

• Numerical tips for the µ mesh: One chooses a sample mesh of chemical potentials µ to
insert in f (ω,µ) and then solves Eq. (1.88). For each point µ one gets a value of density
ρ. Parametrizing ρ as a function of µ, one can then find the value of µ which corresponds
to the correct density of the system. The mesh of µ can be initially distributed around the
value of the single-particle spectrum calculated at pF (in the case of a zero temperature
calculation the relation ε(pF) = µ holds), and then adjust the mesh testing if the limits
include the value of the external density.

It must be noted that both the single-particle spectrum ε(p) and the spectral function A(p,ω)

that enter Eq. (1.88) come from a previous iteration that was based on a different value of µ.
In this sense, the old value of the chemical potential is implicitly carried over throughout the
new iteration. However, these will end up coinciding when self-consistency is reached at the
end of the calculation.

3. At this point the imaginary part of the non-interacting two-body Green’s function can be
computed. The lowest order approximation of the two-body propagator corresponds to the
independent propagation of two fully dressed particles and was discussed in Example 11.1
for the case of zero temperature. This includes two terms, a direct and an exchange one, as
depicted diagrammatically in Fig. 1.14. Since we are working with dressed propagators we
should refer to Eqs. (1.21) and (1.22), however both the direct and exchange terms must be
included in our GII, f

pphh. The imaginary part of this quantity extended to finite temperatures
reads:

ImGII, f
pphh(Ω+;p,p′) =−1

2

∫ +∞

−∞

dω

2π
A(p,ω)A(p′,Ω −ω)[1− f (ω)− f (Ω −ω)] . (1.89)

where Ω+ is the sum of the energies of the two particles close to the real axis. This expression
is derived from a sum over Matsubara frequencies of a function with a double pole on the
real-energy axis via use of the Cauchy theorem [14].

• Numerical tips for the ω mesh: The integrand of Eq. (1.89) will be particularly hard to
resolve in regions where the two spectral functions are peaked, at energies where ω ∼ ε(p)
and ω ∼Ω−ε(p′). It can be shown that a convenient variable change makes these energies
independent of the momenta p and p′, so that one is safe with defining an energy mesh
accurately distributed around only two specific points (see Ref. [14] for details). To obtain
the spectral function in this specific mesh one interpolates the imaginary and real self-
energies to this mesh and then uses Eq. (1.84).

4. From the imaginary part it is then possible to obtain the real-part of the non-interacting
two-body Green’s function via a dispersion relation:

ReGII, f
pphh(Ω ;p,p′) =−P

∫ +∞

−∞

dΩ ′

π

ImGII, f
pphh(Ω

′
+;p,p′)

Ω −Ω ′
. (1.90)

5. In practice, GII, f
pphh has to be averaged over angles. This is necessary to circumvent the

coupling of partial waves with different total angular momentum J which appear in GII, f
pphh. The

average is performed over the angle formed by the center of mass momentum P = p+p′ and
the relative momentum of the two nucleons k = (p−p′)/2. This strategy will facilitate solving
the in-medium T -matrix equations to evaluate the effective interaction in the medium. The
average reads:
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GII, f
pp,hh(Ω+;P,k) =

1
2

∫ +1

−1
dcosθ GII, f

pp,hh(Ω+; |P/2+k|, |P/2−k|) . (1.91)

6. The two-body propagator together with the nuclear potential are then used to obtain the
in-medium T -matrix. The exact equation for this is of Lippmann-Schwinger type:

〈k′|T (Ω+,P)|k〉= 〈k′|Ṽ |k〉+
∫

dk1〈k′|Ṽ |k1〉GII, f
pp,hh(Ω+;P,k1)〈k1|T (Ω+;P)|k〉 . (1.92)

As explained previously, this is a ladder resummation of particle-particle and hole-hole dia-
grams, this differs with respect to the Brueckner G-matrix presented in Chapter 8 because it
includes hole-hole diagrams and considers the full off-shell description of the spectral func-
tion (that is, the dressed propagator). As seen from Fig. 1.14, the potential to be included is
the sum of a bare two-body potential and an averaged three-body one. Details on the numer-
ical solution for the averaged three-body force are given in the next section, while working
equations for three-nucleon chiral forces are reported in Appendix 2.

Here, we make an approximation and substitute the two-body propagator with its angle-
averaged version (1.91). Since the latter depends only on the magnitudes of momenta P
and k, our Eq. (1.92) reduces to a one dimensional integral and decouples in total angular
momentum, spin and isospin:

〈k′|T J ST (Ω+,P)|k〉= 〈k′|Ṽ J ST |k〉+
∫

∞

0
dk1 k1

2 〈k′|Ṽ J ST |k1〉GII, f
pp,hh(Ω+;P,k1)〈k1|T J ST (Ω+;P)|k〉 .

(1.93)
Going beyond Eq. 1.91 with fully dressed (off shell) propagators is extremely diffcult and,
to our knowledge, there is no available implementation of SCGF that can treat Eq. (1.92)
exactly. However, estimates in Brueckner-type calculations suggests that the error introduced
by the angle averaging is small [69,70]. Eq. 1.93 is a one dimensional integral equation for
each allowed combination of J, S, T and has at most two coupled values of L, due to the
tensor component of the nuclear interaction. It must be noted that the nuclear interaction Ṽ
considered in Eq. (1.92) is the effective two-body operator given in Eq. (1.17b). By means of
a discretization procedure, the equation for the T -matrix is converted into a complex matrix
equation which can be solved via standard numerical techniques [14]. A matrix inversion has
to be performed to solve this equation. This can be quite demanding if the dimension of the
matrix is large.

• Numerical tips for the k1 and Ω mesh: It is important to sample in a correct manner the
number of integration mesh points without loosing physical information. This is achieved
by sampling conveniently the region where GII, f

pp,hh is maximum in the relative momentum

k1 (for Ω > 0 this is close to the pole k1 =
√

mΩ ) and the high relative momentum region,
where GII, f

pp,hh might not be negligible due to correlations. Furthermore the T -matrix has a
node for Ω = 2µ, so an accurate mesh for the bosonic energies around this value is needed
for the computation of the self-energy at the next steps.

At low temperatures, the appearance of bound states signals the onset of the pairing insta-
bility. This would directly appear as a pole in the matrix which has to be inverted to solve
the Lippmann-Schwinger equation, for P = 0 and Ω = 2µ [71]. However, this should be seen
only below a critical temperature which is around Tc ∼ 4 MeV. For this reason, calculations
should not go below this border line in temperature. Especially in the case of symmetric nu-
clear matter, convergence starts to become slow and difficult to control when approaching
this temperature and for increasing densities. This is due to the neutron-proton pairing in
the coupled 3S1−3 D1 channel. In pure neutron matter, where this channel is not available,
convergence is good for higher densities, and even for lower temperatures.



46 Carlo Barbieri and Arianna Carbone

7. The remaining step in the SCGF method is the computation of the self-energy from the
T -matrix. The first quantity to be obtained is the imaginary part of the self-energy:

ImΣ
?(p,ω+) =

∫ dp′

(2π)3

∫ +∞

−∞

dω ′

2π
〈pp′|ImT (ω++ω

′,P)|pp′〉A(p′,ω ′)[ f (ω ′)+b(ω +ω
′)] , (1.94)

where b(Ω) = 1
eβ (Ω−2µ)−1

is the Bose function. We recall that the expression (1.94) is also ob-
tained from a summation over Matsubara frequencies of a function with two poles on the real
energy axis [14].

• Numerical tips for the p′ and ω ′ meshes: A momenta and energy integrals have to be
performed, taking special care for the pole in energy of the Bose function b(Ω). This pole
is canceled by the node we had previously mentioned in the T -matrix, for this reason it
comes in hand that we had already defined a convenient mesh for Ω around the node.

8. The real part of the self-energy is then obtained from its imaginary part by means of the
dispersion relation:

ReΣ
?(p,ω) = Σ

(∞)(p)−P
∫ +∞

−∞

dω ′

π

ImΣ ?(p,ω ′+)
ω−ω ′

. (1.95)

The Σ (∞) is the correlated Hartree-Fock part of the single-particle self-energy that is defined
by Eqs. (1.17a) and (1.19). We now approximate this according to Eq. (1.23), where the three-
body interaction is averaged over two non interacting particles. This can be explicitly written
as:

Σ
(∞)(p) =

∫ dp′

(2π)3 n(p′)
[
〈pp′|V 2NF|pp′〉+ 1

2
〈pp′|Ṽ 3NF|pp′〉

]
, (1.96)

where V 2NF and Ṽ 3NF correspond respectively to the first and second terms in Eq. (1.17b).
Ṽ 3NF is a one-body averaged three-nucleon force, detailed description on how to calculate this
quantity and the momentum distribution n(p), together with an additional numerical sample
code, are given in Sec. 1.5.3.

Finally, the spectral function can be obtained via Eq. (1.84) and the procedure starts again
from step 1. until a consistent result is achieved for the chemical potential. It must be kept
in mind that, according to the mesh points in which the spectral function is needed, the
interpolation is done on the imaginary and real part of the self-energy, and not directly on
the spectral function. This is done in order to avoid incorrect samplings of the structure of
the spectral function which could induce numerical inaccuracies. We must point out that the
energy mesh for the evaluation of the spectral function must be accurate enough to reproduce
not only the quasiparticle peak region but also the low and high-energy tails that characterize
the spectral function (especially for large momenta in the case of hard interactions).

To calculate the total energy of the system, we make use of the modified Koltun sum rule
given in Eq. (1.11). Consequently we need to evaluate the expectation value of the three-body
operator 〈Ŵ 〉. As already stated in Sec. 1.2.1, we approximate this expectation value to its
first-order term, which in infinite matter corresponds to the integral over three independent
but fully correlated momentum distributions n(p). The integral to be evaluated is given by the
expression:

〈Ŵ 〉 ' νd

ρ

1
6

∫ dp
(2π)3

∫ dp′

(2π)3 n(p)n(p′)〈pp′|Ṽ 3NF|pp′〉 , (1.97)

with νd the degeneracy of the system and the averaged three-body force, Ṽ 3NF, is discussed
in the next section. Once Ṽ 3NF is known, the total energy per nucleon of the system can be
calculated via the modified Koltun sum rule:
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E
A
=

νd

ρ

∫ dp
(2π)3

∫ dω

2π

1
2

{ p2

2m
+ω

}
A(p,ω) f (ω)− 1

2
〈Ŵ 〉 , (1.98)

which is equivalent to Eq. (1.11).

1.5.3 Averaged three-body forces: numerical details.

The inclusion of one-body averaged three-nucleon forces Ṽ 3NF enters the calculations pre-
sented in the previous section through Eqs. (1.92), (1.96) and (1.97). Its computation requires
traces over the spin and isospin quantum numbers of the averaged particle, in this case the
third particle, and an integration over its momentum p3:

〈p′1p′2|Ṽ 3NF|p1p2〉A = Trσ3Trτ3

∫ dp3

(2π)3 n(p3)〈p′1p′2p3|W 3NF(1−P13−P23)|p1p2p3〉A12 , (1.99)

where pi are single-particle momenta of particles i = 1,2,3 and W 3NF is the third term on
the right hand side of Eq. (1.13); we have omitted the spin/isospin indices in the potential
matrix elements for simplicity. The ket on the right hand side of Eq. (1.99) is antisymmetrized
only with respect to particles 1 and 2, i.e. A12 = (1−P12)/2; this part is not affected by the
averaging procedure over the third particle. Pi j = (1+σσσ i ·σσσ j)(1+ τττ i · τττ j)/4 is the permutation
operator of momentum and spin/isospin quantum numbers of particles i and j. The momentum
distribution that appears in Eq. (1.99) can be obtained directly from the spectral function, via
the relation:

n(p) =
∫ +∞

−∞

dω

2π
A(p,ω) f (ω) (1.100)

Let us give some details on the numerical implementation of Eq. (1.99) with regards to
the mesh for the internal momentum p3 and the calculation of the distribution n(p3) via
Eq. (1.100):

• We start with the definition of the mesh necessary to calculate the integral over the in-
ternal momenta p3. Considering that in the integral we deal with a dressed distribution
function n(p3), which may have populated states at high momentum, we need to cover mo-
menta up to a certain high value in which it is sure that the n(p3) has reached zero. One
may choose to compose this of an arbitrary number imesh of Gauss-Legendre meshes (in
the example shown below, imesh=4), with each mesh spanning a region of width 2/3pF.
This width is chosen to cover accurately the behavior of the distribution function below,
across and above the Fermi momentum pF. Finally, high-momentum points are included
through a tangential mesh. We have 100 points in the Gauss-Legendre meshes, and 50 in
the tangential one.

• One then needs to calculate the momentum distribution function by means of Eq. (1.100).
To do so, we extract the spectral function on the fly, from the self-energy of the previous
iterative step. The values of the imaginary and real part of the self-energy are stored at
each iteration for different points in the momentum and energy space: for the momentum
we typically have Np = 70 mesh points with values ranging from 0 to 3000 MeV/c; for the
energy, it is sufficient to cover a smaller range of values than the one actually stored, but
a much finer mesh is useful to simplify the integrations. We perform a spline interpola-
tion of the stored energy values of the imaginary and real parts of the self-energy to a
fine linear energy mesh of Nω,spline = 30000 in the interval of ≈[-2000:5000] MeV. These
values are used to calculate the spectral function (see Eq. (1.84)) necessary to evaluate
Eq. (1.100) correctly: with the fine energy mesh this integration is easily performed across
the quasiparticle peak via the trapezoidal rule. Finally, one can linearly interpolate the val-
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ues obtained for n(p) to the mesh of p3 in order to perform the integration of the averaged
force, Eq. (1.99). In doing this, the values of n(p3) outside the range of the original Np = 70
mesh are set to zero.

Here we show a simple Fortran code to perform the previous two steps (gauss() is a standard
routine to generate a gauss-legendre mesh; splin() and splin2() are used to perform spline
interpolations; linint() performs linear interpolations):

! ... MOMENTA MESH FOR INTEGRALS OVER MOMENTUM DISTRIBUTION

write(*,*) "Correlated distribution function for averaged 3BF integration"

! choose number of mesh regions for momenta p3, (imesh-1) gauss set + 1 tangent set for
farther points

imesh = 4

! choose number of points for gauss and tangent sets
Np1=100 ! gauss
Np2=50 !tangent
Np3=(imesh-1)*Np1+Np2 ! total number of mesh points

itmp = MAX(Np1,Np2) ! for the auxiliary arrays always allocate the largest between Np1
and Np2

ALLOCATE(xp3(Np3),wp3(Np3))
ALLOCATE(xaux( itmp ),waux( itmp ))

! initialize variables
xp3=0d0
wp3=0d0

! first mesh point
pin = 0d0

do im = 1, imesh-1 ! loop over linear regions

! reset auxiliary variables at each region
xaux=0d0
waux=0d0

pfin = im*(2d0/3d0)*pF ! set final point of mesh region according to Fermi momentum pF

! ... gaussian set of points for momenta p3 from pin to pfin
call gauss(pin,pfin,Np1,xaux,waux)

! copy points to final vector for mesh p3
do ip3=1,Np1

xp3(ip3+(im-1)*Np1)= xaux(ip3)
wp3(ip3+(im-1)*Np1)= waux(ip3)

enddo

pin = pfin ! set last point of previous region to first point of next region
enddo

! ... create the tangent set for higher momenta
call gauss(0d0,1d0,Np2,xaux,waux) ! gauss set [0,1] to be mapped to the interval

[pin,+infinity]

c=10d0*pF/tan(pi/2.d0*xaux(Np2))
do ip3=1,Np2

xp3(ip3+(im-1)*Np1)=c*tan(pi/2.d0*xaux(ip3))+pin
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xxw=cos(pi/2.d0*xaux(ip3))
xxw=xxw*xxw
wp3(ip3+(im-1)*Np1)=pi/2.d0*c/xxw*waux(ip3)

enddo

! ... obtaining correlated momentum distribution

! ... FINE ENERGY MESH WHERE CALCULATIONS ARE DONE
! ... allocate energy mesh for calculation of momentum distribution
N_fine=30000
ALLOCATE(xmom(N_fine))
ALLOCATE(xmp(Np))

wi=-2000.d0 !MeV initial energy for spectral function
wf=5000.d0 !MeV final energy for spectral function
dw=(wf-wi)/dble(N_fine-1)

! ... LOOP OVER PMESH
do ip=1,Np ! this is the mesh of stored momenta (usually Np ~ 70)

edp=xpmesh(ip)**2/(2.d0*xmass) ! kinetic spectrum

do iw=1,Nwac
auxre(iw)=xreal_sigma(ip,iw) ! real part of self-energy
auxim(iw)=ximag_sigma(ip,iw) !imaginary part of self-energy

enddo

! obtain derivatives of the self-energy for later splines
call spline(w_actual,auxim,Nwac,yspl,yspl,d2im)
call spline(w_actual,auxre,Nwac,yspl,yspl,d2re)

! ... LOOP OVER WFINE
do iif=1,N_fine

w_fine = wi + dble(iif-1)*dw
wfine(iif)=w_fine
fdfine=fermi(t,xmu,w_fine) !Fermi-Dirac distribution

! .. Spline interpolation in fine energy mesh
call splin2(w_actual,auxim,d2im,Nwac,w_fine,ximsig)
call splin2(w_actual,auxre,d2re,Nwac,w_fine,xresig)

! ... Spectral function
sf=-ximsig/( (w_fine - edp - xresig)**2 + ximsig**2 )/pi

! ... momentum distribution
xmom(iif)=sf*fdfine

enddo ! END LOOP OVER WFINE

! performs the integration over energy (trapezoidal rule)
call trapz(w_fine,xmom,N_fine,mom)
xmp(ip)=mom

enddo ! END LOOP OVER MOMENTA

! ... interpolation of momentum distribution to mesh xp3 for integrals
call linint(xpmesh,xmp,Np,xp3,xnp3,Np3)

! ... set the extrapolated values of n(p) to zero, mesh points xp3 beyond initial mesh
xpmesh
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do ip3=1,Np3
xnp0=xp3(ip3)
if(xnp0.gt.xpmesh(Np)) xnp3(ip3)=0d0
if(xnp0.lt.0d0) xnp3(ip3)=0d0

enddo

DEALLOCATE(xaux,waux,xmom,xmp)

Note that the chemical potential µ enters the calculation of the averaged three-body force,
via the Fermi-Dirac function in the expression for momentum distribution, Eq. (1.100). For
this reason it is best to compute Eq. (1.99) after step 2 of the iterative procedure presented
in the previous section. For further details on including three-body forces in a SCGF infinite
matter calculation we refer the reader to Ref. [72].

1.6 Concluding remarks

This chapter concludes an overview of the major methods based on Fock space, which are
covered in chapters 8, 10 and 11 of this book. All these approaches have the common feature
that their computing requirements scale only polynomially with the increase of particle num-
ber. This feature has permitted to push ab initio studies of atomic nuclei up to medium-mass
isotopes: a progress that would have seemed unthinkable until just a decade ago.

Here, we have focused on many-body Green’s function theory, which is arguably the most
complex of these formalisms but it has the advantage of providing a unique and global view
of the many-particle structure and dynamics. The spectral function is extracted directly from
the physics information contained in the one-body Green’s function and gives an intuitive un-
derstanding of correlations (that is, features that go beyond a simple mean-field description)
of the system. Besides, expectation values of observables can be calculated easily, including
binding energies. The formalism of SCGF is so vast that even a dedicated monograph would
not be able to cover it in full. In this chapter, we have focused on presenting the two most
important techniques that are currently used in modern ab initio nuclear theory. In the first
case, the Algebraic Diagrammatic Construction method proves to be particularly suited for
the study of finite nuclei, but can as well be applied to infinite matter, as was demonstrated in
this chapter. In the second case, we looked at how one can solve the Dyson equation directly
in momentum space for extended systems. The latter is an important aspect since the for-
malism allows to construct a fully-dressed propagator at finite temperature, which grants the
method to be thermodynamically consistent, preserving all the fundamental laws of conser-
vation. For these cases we also discussed the most relevant steps and knowhow necessary for
implementing SCGF calculations. Furthermore, we provided working numerical codes that
can solve the same toy models used as examples throughout this book: a four-level pairing
Hamiltonian and neutron matter with a Minnesota force. While these applications are simple,
the codes we provide already contain the most crucial elements and could be easily extended
to real applications (in nuclear physics and other fields too!). We hope this chapter can be the
starting point for readers interested in working with many-body Green’s functions, starting
from the sample codes presented and making use of numerous tips provided for the numerical
solutions.

What we did not touch upon, due to lack of space, are the most advanced techniques that
have been introduced in recent years or that are still under development. Improving accuracy
in calculating open shell isotopes, describing excited spectra, accessing deformed nuclei and
describing pairing and superfluidity at finite temperatures are some among the compelling
challenges that are to be addressed and that will be crucial to the study of exotic nuclei at
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future radioactive beam facilities. Likewise, the methods described in this chapter can be
extended to novel applications in nuclear physics, besides the structure and reactions with
unstable nuclei. Examples are: understanding the response to electroweak probes and the
interaction of high energy neutrinos with matter; the spectral function (and hence the indi-
vidual behavior) of hyperons in finite nuclei and neutron star matter; how thermodynamic
properties of nuclear matter impact stellar evolution. With still much room for further de-
velopment, Fock space methods, and the SCGF approach in particular, are possibly the most
promising frontier for advancing first principle computations on large and complex nuclei. All
in all, this is an exciting time not only for computational nuclear physics itself but also for the
quest of an accurate understanding of nuclear structure and related topics.

Acknowledgements We thank O. Benhar, A. Cipollone, W. H. Dickhoff, C. Drischler, T. Duguet, K. Hebeler, M.
Hjorth-Jensen, J. W. Holt, A. Lovato, G. Martínez-Pinedo, H. Müther, P. Navrátil, A. Polls, A. Rios, J. Schirmer,
A. Schwenk, V. Somà and D. Van Neck for several fruitful collaborations and enlightening discussions over
the years. This work was supported by the UK Science and Technology Facilities Council (STFC) under Grant
No. ST/L005743/1, the Deutsche Forschungsgemeinschaft through Grant SFB 1245 and by the Alexander von
Humboldt Foundation through a Humboldt Research Fellowship for Postdoctoral Researchers.

Appendix 1: Feynman rules for the one-body propagator and the
self-energy

We present the Feynman rules associated with the diagrams arising in the perturbative ex-
pansion of Eq. (1.14) at zero temperature. The rules are given both in time and energy for-
mulation and a specific example is given at the end. We provide the general rules for p-body
propagators. These arise from a trivial generalization of the perturbative expansion of the
one-body propagator in Eq. (1.14) [33]. At kth order in perturbation theory, any contribution
from the time-ordered product in Eq. (1.14), or its generalization, is represented by a diagram
with 2p external lines and k interaction lines (called vertices), all connected by means of ori-
ented fermion lines. These fermion lines arise from contractions between annihilation and
creation operators. In the following we will explicitly include the h̄ factors. Applying the Wick
theorem to the terms at each order of the above expansion results in the following Feynman
rules. At order k in the perturbation series:

Rule 1: Draw all, topologically distinct and connected diagrams with k vertices, p incoming
and p outgoing external lines, using directed arrows. Each vertex representing a n-body
interaction must have n incoming and n outgoing lines. For diagrams describing interaction
kernels the external lines are not present.

Rule 2: Each oriented fermion line represents a Wick contraction, leading to the unper-

turbed propagator ih̄g(0)
αβ

(tα − tβ ) [or ih̄g(0)
αβ

(ωi)]. In time formulation, the tα and tβ label the
times of the vertices respectively at the end and at the beginning of the line. In energy
formulation, ωi denotes the energy carried by the propagator along its oriented line.

Rule 3: Each fermion line starting from and ending at the same vertex is an equal-time

propagator and contributes: −ih̄g(0)
αβ

(0−) = ρ
(0)
αβ

.

Rule 4: For each one-body, two-body or three-body vertex, write down a factor i
h̄Uαβ ,

− i
h̄Vαγ,βδ or − i

h̄Wαγξ ,βδθ , respectively. For effective interactions, the factors are − i
h̄Ũαβ ,

− i
h̄Ṽαγ,βδ .

When propagator renormalization is considered, only skeleton diagrams are used in the ex-

pansion. In that case, the previous rules apply with the substitution ih̄g(0)
αβ
→ ih̄gαβ . Further-

more, note that Rule 3 generates interaction-reducible diagrams and therefore it is not en-
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countered when working with the effective Hamiltonian (1.16). However, the correlated den-
sity matrix ραβ enters the calculations of Ũ and Ṽ through Eqs. (1.17).

Rule 5: Include a factor (−1)L where L is the number of closed fermion loops. This sign
comes from the odd permutation of operators needed to create a loop. The loops of a
single propagator are already accounted for by Rule 3 and must not be included in the
count for L.

Rule 6: For a diagram representing a 2p-point Green’s function, add a factor (−i/h̄),
whereas for a 2p-point interaction kernel without external lines (such as Σ ?(ω)) add a
factor ih̄.

The next two rules require a distinction between the time and the energy representations. In
the time representation:

Rule 7: Assign a time to each interaction vertex. All the fermion lines connected to the same
vertex i share the same time, ti.

Rule 8: Sum over all the internal quantum numbers and integrate over all internal times
from −∞ to +∞.

Alternatively, in energy representation:

Rule 7’: Label each fermion line with an energy ωi, under the constraint that the total in-
coming energy equals the total outgoing energy at each interaction vertex, ∑i ω in

i = ∑i ωout
i .

Rule 8’: Sum over all the internal quantum numbers and integrate over each independent
internal energy, with an extra factor 1

2π
, i.e.

∫ +∞

−∞

dωi
2π

.

Each diagram is then multiplied by a combinatorial factor S that originates from the number
of equivalent Wick contractions that lead to it. This symmetry factor represents the order of
the symmetry group for one specific diagram or, in other words, the order of the permutation
group of both open and closed lines, once the vertices are fixed. Its structure, assuming only
2BFs and 3BFs, is the following :

S =
1
k!

1
[(2!)2]q[(3!)2]k−q

(
k
q

)
C = ∏

i
Si . (1.101)

Here, k represents the order of expansion. q (k− q) denotes the number of two-body (three-
body) vertices in the diagram. The binomial factor counts the number of terms in the expan-
sion (V̂ +Ŵ )k that have q factors of V̂ and k−q factors of Ŵ . Finally, C is the overall number of
distinct contractions and reflects the symmetries of the diagram. Stating general rules to find
C is not simple. For example, explicit simple rules valid for the well-known λφ 4 scalar theory
are still an object of debate [73]. An explicit calculation for C has to be carried out diagram
by diagram [73]. Eq. (1.101) can normally be factorized in a product factors Si, each due to
a particular symmetry of the diagram. In the following, we list a series of specific examples
which is, by all means, not exhaustive.

Rule 9: For each group of n symmetric lines, or symmetric groups-of-lines as defined below,
multiply by a symmetry factor Si=

1
n! . The overall symmetry factor of the diagram will be

S = ∏i Si. Possible cases include:

(i) Equivalent lines. n equally-oriented fermion lines are said to be equivalent if they start
from the same initial vertex and end on the same final vertex.

(ii) Symmetric and interacting lines. n equally-oriented fermion lines that start from the
same initial vertex and end on the same final vertex, but are linked via an interaction
vertex to one or more close fermion line blocks. The factor arises as long as the diagram is
invariant under the permutation of the two blocks.
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(iii) Equivalent groups of lines. These are blocks of interacting lines (e.g. series of bubbles)
that are equal to each other: they all start from the same initial vertex and end on the same
final vertex.

Rule 9(i) is the most well-known case and applies, for instance, to the two second-order
diagrams of Fig. 1.4. Diagram a) in Fig. 1.4 has 2 upward-going equivalent lines and requires
a symmetry factor Se=

1
2! . In contrast, diagram b) in Fig. 1.4 has 3 upward-going equivalent

lines and 2 downward-going equivalent lines, that give a factor Se=
1

2!3! =
1
12 . For an extended

explanation on how to calculate this combinatorial factor and examples for rules 9(ii) and
9(iii) we refer to Ref. [33].

As an example of the application of the above Feynman rules, we give here the formulae for
diagram c) in Fig. 1.5. There are two sets of upward-going equivalent lines, which contribute
to a symmetry factor Se =

1
22 . Considering the overall factor of Eq. (1.101) and the presence

of one closed fermion loop, one finds:

Σ
(c)
αβ

(ω) =− (ih̄)4

4

∫ dω1

2π
· · ·
∫ dω4

2π
∑

γδνµελ

ξ ηθστχ

Ṽαγ,δν g(0)
δ µ

(ω1)g(0)νε (ω2)Wµελ ,ξ ηθ g(0)
ξ σ

(ω3)g(0)ητ (ω4)

×g(0)
θγ
(ω1 +ω2−ω) Ṽστ,β χ g(0)

χλ
(ω3 +ω4−ω) . (1.102)

Appendix 2: Chiral next-to-next-to-leading order three-nucleon forces

We report the working equations that result from performing analytically the average of
Eq. (1.99) in the specific case of leading order three-nucleon forces, i.e. next-to-next-to-
leading order (NNLO), in the chiral effective filed theory expansion [74, 75]. At NNLO we
have a two-pion exchange (TPE), one-pion exchange (OPE) and a contact three-nucleon forces
(3NF), given respectively by the following expressions:

W 3NF
TPE = ∑

i6= j 6=k

g2
A

8F4
π

(σσσ i ·qi)(σσσ j ·q j)

(q2
i +M2

π)(q2
j +M2

π)
Fαβ

i jk τ
α
i τ

β

j , (1.103)

W 3NF
OPE = − ∑

i6= j 6=k

cDgA

8F4
π Λχ

σσσ j ·q j

q2
j +M2

π

(τττ i · τττ j)(σσσ i ·q j) , (1.104)

W 3NF
cont = ∑

j 6=k

cE

2F4
π Λχ

τττ j · τττk , (1.105)

where the pi are the initial and p′i are the final single-particle momenta of the ith nucleon
(i = 1,2,3), the qi = p′i−pi are the transferred momenta and σi and τi are the sipn and isospin
matrices. The physical constants appearing in these expressions are the axial-vector cou-
pling constant gA, the average pion mass Mπ , the weak pion decay constant Fπ and the chiral

symmetry breaking constant Λχ ∼700 MeV. The quantity Fαβ

i jk in the TPE contribution (1.103)
is

Fαβ

i jk = δ
αβ [−4M2

π c1 +2c3qi ·q j]+∑
γ

c4ε
αβγ

τ
γ

k σσσ k · [qi×q j] . (1.106)

The force is regularized with a function that in Jacobi momenta reads:

f (p1,p2,p3) = f (p,q) = exp
[
− (p2 +3q2/4)

Λ 2
3NF

]n

, (1.107)
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where p = (p1−p2)/2 and q = 2/3(p3− (p1 +p2)/2) are identified only in this expression as the
Jacobi momenta. Λ3NF defines the cutoff value applied to the 3NF in order to obtain a three-
body contribution which dies down similarly to the two-body part one. The regulator function
is applied both on incoming (p,q) and outgoing (p′,q′) Jacobi momenta. In present numerical
calculations, the approximation of P≡ p1+p2 = 0 is used to facilitate the solution of equations.
The averaged terms presented in the following are calculated only for equal relative incoming
and outgoing momentum, i.e. k = k′ with k = |p1−p2|/2 and k′ = |p′1−p′2|/2; an extrapolation is
then applied to obtain the off-diagonal potential matrix elements [6]. Given these conditions,
the regulator on incoming and outgoing momenta can be defined as a function of f (k, p3).

Symmetric Nuclear Matter. Let’s start with the isospin-symmetric case of nuclear mat-
ter. Evaluating Eq. (1.99) for the TPE term of Eq. (1.103) leads to three contracted in-medium
two-body interactions.

TPE-1: The first term is an isovector tensor term, this corresponds to a 1π exchange contri-
bution with an in-medium pion propagator:

Ṽ 3NF
TPE−1 =

gA ρ f

2F4
π

(σσσ1 ·q)(σσσ2 ·q)
[q2 +M2

π ]
2 τττ1 · τττ2[2c1M2

π + c3 q2] . (1.108)

ρ f defines the integral of the correlated momentum distribution function weighed by the
regulator function f (k, p3)

ρ f

νd
=
∫ dp3

(2π)3 n(p3) f (k, p3) , (1.109)

where νd is the degeneracy of the system, νd = 2 for pure neutron matter and νd = 4 in the
isospin symmetric case. If the regulator function included in Eq. (1.109) were not dependent
on the internal integrated momentum p3, the integral would reduce to the value of the total
density of the system, ρ, divided by the degeneracy and multiplied by an external regulator
function.

TPE-2: The second term is also a tensor contribution to the in-medium nucleon-nucleon in-
teraction. It adds up to the previous term. This term includes vertex corrections to the 1π

exchange due to the presence of the nuclear medium:

Ṽ 3NF
TPE−2 =

g2
A

8π2F4
π

(σσσ1 ·q)(σσσ2 ·q)
q2 +M2

π

τττ1 · τττ2

×
{
−4c1M2

π [Γ1(k)+Γ0(k)]− (c3 + c4)
[
q2(Γ0(k)+2Γ1(k)+Γ3(k))+4Γ2(k)

]
+4c4I(k)

}
.

(1.110)

We have introduced the functions Γi(k) (i=0-3) and I(k), which are integrals over a single pion
propagator:

Γ0(k) =
∫ dp3

2π
n(p3)

1
[k+p3]2 +M2

π

f (k, p3) , (1.111)

Γ1(k) =
1
k2

∫ dp3

2π
n(p3)

k ·p3

[k+p3]2 +M2
π

f (k, p3) , (1.112)

Γ2(k) =
1

2k2

∫ dp3

2π
n(p3)

p2
3k2− (k ·p3)

2

[k+p3]2 +M2
π

f (k, p3) , (1.113)

Γ3(k) =
1

2k4

∫ dp3

2π
n(p3)

3(k ·p3)
2− p2

3k2

[k+p3]2 +M2
π

f (k, p3) , (1.114)

I(k) =
∫ dp3

2π
n(p3)

[p3±k]2

[p3 +k]2 +M2
π

f (k, p3) . (1.115)
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TPE-3: The last TPE contracted term includes in-medium effects for a 2π exchange two-body
term:

Ṽ 3NF
TPE−3 =

g2
A

16π2F4
π

{
−12c1M2

π

[
2Γ0(k)−G0(k,q)(2M2

π +q2)
]

−c3
[
12π

2
ρ f −12(2M2

π +q2)Γ0(k)− 6q2
Γ1(k)+3(2M2

π +q2)2G0(k,q)
]

+4c4τττ1 · τττ2
[
(σσσ1 ·σσσ2)q2− (σσσ1 ·q)(σσσ2 ·q)

]
G2(k,q)

−(3c3 + c4τττ1 · τττ2) i(σσσ1 +σσσ2) · (q×k)
×
[
2Γ0(k)+2Γ1(k)− (2M2

π +q2)G0(k,q)+2G1(k,q)
]

−12c1M2
π i(σσσ1 +σσσ2) · (q×k)

[
G0(k,q)+2G1(k,q)

]
+4c4τττ1 · τττ2σσσ1 · (q×k)σσσ2 · (q×k)

[
G0(k,q)+4G1(k,q)+4G3(k,q)

]}
. (1.116)

Here we have introduced the function G0(k,q), which is an integral over the product of two
different pion propagators and defined as follows:

G0,?,??(k,q) =
∫ dp3

2π
n(p3)

{p0
3, p2

3, p4
3}[

[k+q+p3]2 +M2
π

][
[p3 +k]2 +M2

π

] f (k, p3) , (1.117)

where the subscripts 0, ? and ?? refer respectively to the powers p0
3, p2

3 and p4
3 in the nu-

merator. The functions G?(k,q) and G??(k,q) have been introduced to define the remaining
functions, G1(k,q), G2(k,q) and G3(k,q):

G1(k,q) =
Γ0(k)− (M2

π + k2)G0(k,q)−G?(k,q)
4k2−q2 , (1.118)

G1?(k,q) =
3Γ2(k)+ k2Γ3(k)− (M2

π + k2)G?(k,q)−G??(k,q)
4k2−q2 , (1.119)

G2(k,q) = (M2
π + k2)G1(k,q)+G?(k,q)+G1?(k,q) , (1.120)

G3(k,q) =
Γ1(k)/2−2(M2

π + k2)G1(k,q)−2G1?(k,q)−G?(k,q)
4k2−q2 . (1.121)

Note that G1?(k,q) is needed only to define G2(k,q) and G3(k,q).

Integrating Eq. (1.99) for the OPE 3NF term, given in Eq. (1.104), leads to two contribu-
tions.

OPE-1: The first one is a tensor contribution which defines a vertex correction to a 1π ex-
change nucleon-nucleon term. It is proportional to the quantity ρ f , similar to what was ob-
tained for the TPE 3NF contracted term Ṽ 3NF

TPE−1 (see Eq. (1.108)):

Ṽ 3NF
OPE−1 = −

cD gA ρ f

8F4
π Λχ

(σσσ1 ·q)(σσσ2 ·q)
q2 +M2

π

(τττ1 · τττ2) . (1.122)

As for the Ṽ 3NF
TPE−1 term, Ṽ 3NF

OPE−1 is an isovector tensor term.

OPE-2: The second term derived from the 3NF OPE defines a vertex correction to the short-
range contact nucleon-nucleon interaction. It reads:
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Ṽ 3NF
OPE−2 =

cDgA

16π2F4
π Λχ

{(
Γ0(k)+2Γ1(k)+Γ3(k)

)[
σσσ1 ·σσσ2

(
2k2− q2

2

)
+ (σσσ1 ·qσσσ2 ·q)

(
1− 2k2

q2

)
− 2

q2 σσσ1 · (q×k)σσσ2 · (q×k)
1
q2

]
(τττ1 · τττ2)

+ 2Γ2(k)(σσσ1 ·σσσ2)(τττ1 · τττ2) + 6I(k)
}
. (1.123)

Exercise 11.8. Compute Eq. (1.99) for the contact term given in Eq. (1.105). Demonstrate
that it yields a scalar central contribution to the in-medium nucleon-nucleon interaction pro-
portional to ρ f with formal expression:

Ṽ 3NF
cont =− 3cEρ f

2F4
π Λχ

. (1.124)

Pure Neutron Matter. In the case of pure neutron matter, the evaluation of Eq. (1.99) is
simplified. In fact, the trace over isospin is trivial because pairs of neutrons can only be in
total isospin T = 1, thus τττ1 · τττ2 = 1. Consequently the exchange operators reduces only to the
momentum and spin part. In operator form it reads:

Pi j =
1+σσσ i ·σσσ j

2
. (1.125)

Furthermore it can also be proved that for a non-local regulator, such as Eq. (1.107), the
3NF terms proportional to c4, cD and cE vanish [76,77]. Therefore the only non zero density-
dependent contributions in neutron matter are those containing the low-energy constants c1
and c3 in Eq. (1.103). All of their expressions seen from above remain valid except for the
change in the trace over isospin indices. It follows that the density-dependent interacting
terms obtained in neutron matter will only differ with respect to the symmetric case ones by
different prefactors.

In order to obtain the correct degeneracy for neutron matter, i.e. νd = 2, we need to replace
ρ f → 2ρ f in the Ṽ 3NF

TPE−1 contribution of Eq. (1.108) and the Ṽ 3NF
TPE−3 contribution of Eq. (1.116),

(see also Eq. (1.109)). The isovector tensor terms Ṽ 3NF
TPE−1 and Ṽ 3NF

TPE−2, given in Eqs. (1.108)
and (1.110) must then change prefactor according to:

Ṽ 3NF
TPE−1 : τττ1 · τττ2→

1
2

τττ1 · τττ2 , (1.126)

Ṽ 3NF
TPE−2 : τττ1 · τττ2→

1
4
(τττ1 · τττ2−2) . (1.127)

The isoscalar part of the density-dependent potential appearing in Ṽ 3NF
TPE−3, which contributes

to both a central and spin-orbit terms, must change prefactor according to:

Ṽ 3NF
TPE−3 : 1→ 1

3
. (1.128)
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