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I. THE TWO-NUCLEON SYSTEM

Neglecting a ∼ 1‰ mass difference, proton and neutron
can be viewed as two states of the same spin 1/2 particle,
the nucleon (N), specified by an additional quantum number
dubbed isospin.

In the absence of interactions, the nucleon is described by
the equation of motion derived from the Lagrangian density

L0 = ψ̄N

(
iγµ∂µ − m

)
ψN . (1)

where the γµ are Dirac’s matrices satisfying {γµ, γµ} = 2gµν ,
gµnu being the metric tensor of Minkowski space, and the field
ψN is conveniently written in the form

ψN =

(
ψp

ψn

)
, (2)

with ψp and ψn being the spinor fields associated with the
proton and the neutron, respectively.

The lagrangian density of Eq.(1) is invariant under the SU(2)
global phase transformation

U = eiαjτj , (3)

where the α j are constants, the τj are Pauli matrices acting in
isospin space and a sum over the index j is understood. Proton
and neutron correspond to isospin projections +1/2 and −1/2,
respectively.

Proton-proton and neutron-neutron pairs always have total
isospin T=1 whereas a proton-neutron pair may have either
T = 0 or T = 1. The two-nucleon isospin states |T,T3〉 can
be can be written in terms of proton and neutron degrees of
freedom as

|1, 1〉 = |pp〉

|1, 0〉 =
1
√

2
( |pn〉 + |np〉)

|1,−1〉 = |nn〉

|0, 0〉 =
1
√

2
( |pn〉 − |np〉) .

Isospin invariance implies that the interaction between two
nucleons coupled to total spin S depends on their total isospin
T , but not on its projection T3. For example, the force acting
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between two protons with total spin S = 0 is the same as that
acting between a proton and a neutron with spins and isospins
coupled to S = 0 and T = 1.
There is only one observed nucleon-nucleon (NN) bound

state, the nucleus of deuterium, or deuteron (2H), consisting
of a proton and a neutron with total spin and isospin S = 1 and
T = 0, respectively. This is itself a clear manifestation of the
fact that nuclear forces are strongly spin-isospin dependent.
Another important piece of information is inferred from the

observation that the deuteron exhibits a non vanishing electric
quadrupole moment, which implies that its charge distribution
is not spherically symmetric. Hence, nuclear forces are non
central.
Besides the properties of the two-nucleon bound state, the

large data base of phase shifts accurately measured in NN
scattering experiments (∼ 4000 data points at beam energies
up to 350 MeV in the lab frame) provides valuable additional
information on the nature of NN interactions.

II. THE TWO-NUCLEON INTERACTION

The theoretical description of the NN interaction within
the framework of quantum field theory was first attempted by
Yukawa in in the 1930s. He made the hypothesis that nucleons
interact through the exchange of a particle whose mass, µ, is
related to the range of the interaction, r0, through r0 ∼ 1/µ1.
Using r0 ∼ 1 fm = 10−13 cm, this relation yields µ ∼ 200 MeV.
Yukawa’s idea has been successfully implemented identify-

ing the exchanged particle with the π meson (or pion), discov-
ered in 1947, the mass of which is mπ ≈ 140MeV. Experimen-
tal data show that the pion is a pseudoscalar particle2—that is,
it has spin-parity 0−—which comes in three charge states, de-
noted π0, π+, and π−. Hence, it can be regarded as an isospin
triplet having t=1, the charge states being associated with the
projections t3 = 0,±1.
The simplest π-nucleon interaction Lagrangian compatible

with the requirement of Lorentz invariance and with the ob-
servation that nuclear interactions conserve parity involves a

1 We adopt the system of units in which ~ = c = 1, implying in turn that
1 fm−1 = 197.3 MeV.

2 The pion spin has been deduced from the balance of the reaction π++2 H↔
p + p, while its intrinsic parity was determined observing π− capture from
the K shell of the deuterium atom leading to the appearance of two neutrons:
π− + d → n + n.
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pseudoscalar coupling, and can be written in the form

LI = −igψ̄Nγ
5τ jψNπ

j , (4)

where

π1 =
1
√

2
(π+ + π−) ,

π2 =
i
√

2
(π+ − π−) , (5)

π3 = π0 ,

and a sum over the index j is understood. In Eq.(4), g is
the pseudoscalar strong interactions coupling constant and
γ5 = iγ0γ1γ2γ3. The γµ are again Dirac matrices, and the

Pauli matrices τ j , acting in isospin space, are associated with
the isospin of the nucleon. Note that, in the non relativistic
limit, the pseudoscalar coupling, −igγ5τ, and the alternative
pseudovector coupling, ig′γ5γµτ∂µ, yield the same NN po-
tential. It is apparent that in both cases the isospin formalism
allows to take into account in a concise fashion all interaction
vertices, involving proton, neutrons, charged pions and neutral
pions.
Let us now consider the NN scattering process

N (p1s1) + N (p2s2) → N (p′1s′1) + N (p′2s′2)

depicted by the Feynman diagrams of Fig. 1.
The corresponding S-matrix element reads

Sf i = (−ig)2 m2(
E1E2E ′1E ′2

)1/2 (2π)4δ(4) (p1 + p2 − p′1 − p′2)

×

{ [
η†1′ū1′iγ5τu1η1

] i
k2 − m2

π

[
η†2′ū2′iγ5τu2η2

]
−

[
(1′, 2′) 
 (2′, 1′)

]}
, (6)

where mπ is the pion mass, k = p1 − p′1 = p′2 − p2, and ηi
denotes the two-component Pauli spinor describing the isospin
state of particle i.

Let us consider the direct term of Eq.(6). It can be rewritten
in the form

S(D)
f i
= ig2 m2(

E1E2E ′1E ′2
)1/2

× (2π)4δ(4) (p1 + p2 − p′1 − p′2)
1

k2 − m2
π

(7)

× η†2′τη2 ū2′γ5u2 ū1′γ5u1 η
†

1′τη1 .

Substituting the expression of the Dirac spinor describing a
particle with momentum p, energy E =

√
p2 + m2, and spin

projection s

us (p) =

√
E + m

2E
*.
,

χs

σ ·p
E+m χs

+/
-
, (8)

where χs denotes a Pauli spinor acting in spin space, and
taking the non relativistic limit we find

ū2′γ5u2 =

√√ (
E ′2 + m

)
(E2 + m)

4E ′2E2

×

(
χ†2′

σ · p2
E2 + m

χ2 − χ
†

2′
σ · p′2
E ′2 + m

χ2

)
(9)

≈ χ†2′
σ(p2 − p′2)

2m
χ2 = −χ

†

2′
(σ · k)

2m
χ2 ,

and the similar expression for ū1′γ5u1.
The non relativistic approximation also implies that (use

Ei ≈ E ′i ≈ mπ and k2 = (Ei − E ′i )
2 − |k|2 ≈ −|k|2)

1
k2 − m2

π

≈
−1

|k|2 + m2
π

. (10)

Substituting the above results in the definition of Sf i we
obtain

S(D)
f i
≈ −i

g2

4m2 (2π)4δ(4) (p1 + p2 − p′1 − p′2) (11)

× 〈 f |
[
(τ1 · τ2)

(σ1 · k)(σ2 · k)
|k|2 + m2

π

]
|i〉 ,

where |i〉 = η1η2 χ1 χ2. and 〈 f | = η†1′η
†

2′ χ
†

1′ χ
†

2′ denote the
initial and final states of the interacting particles, respectively.
Equation (11) suggest that the operator

vOPE(k) = −
g2

4m2
(σ1 · k)(σ2 · k)
|k|2 + m2

π

= −

(
f

mπ

)2 (σ1 · k)(σ2 · k)
|k|2 + m2

π

, (12)

can be interpreted as the one-pion-exchange potential in mo-
mentum space. Note that in the second line of Eq.(12) we
have replaced the pseudoscalar coupling constant g with the
new dimensionless constant (use g2/4π ≈ 14)

f 2 = g2 m2
π

4m2 ≈ 4π × 14
(140)2

4 × (939)2 ≈ 4π × 0.08 ≈ 1 . (13)
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FIG. 1 Feynman diagrams describing direct (upper panel) and ex-
change (lower panel) contributions to one-pion-exchange between
two nucleons. The corresponding amplitude is given by Eq. (6).

The coordinate-space potential is obtained from Fourier
transformation according to

vOPE(r) = −
(

f
mπ

)
(τ1 · τ2) (σ1 · ∇) (σ2 · ∇) (14)

×

∫
d3k

(2π)3
1

(|k|2 + m2
π )

e−ik·r , (15)

where ∫
d3k

(2π)3
1

( |k|2 + m2
π )

e−ik·r =
1

4π
e−mπr

r

=
1

4π
yπ (r) . (16)

The gradients appearing in Eq. (14) can be readily evaluated
exploiting the relation

(−∇2 + m2
π ) yπ (r) = 4πδ(r) , (17)

and rewriting

(σ1 · ∇) (σ2 · ∇)yπ (r)

=

[
(σ1 · ∇) (σ2 · ∇) −

1
3

(σ1 · σ2) ∇2
]
yπ (r)

(18)

+
1
3

(σ1 · σ2) ∇2 yπ (r) .

The δ-function contribution to ∇2yπ (r), arising from Eq.(17),
does not appear in the first term, yielding

[
(σ1 · ∇) (σ2 · ∇) −

1
3

(σ1 · σ2)∇2
]
yπ (r) (19)

=

[
(σ1 · r̂) (σ2 · r̂) −

1
3

(σ1 · σ2)
]

×

(
m2
π +

3mπ

r
+

3
r2

)
yπ (r),

where r̂ = r/|r|. In the second term, it can be replaced with
m2
π yπ (r) − 4π δ(r) using Eq. (17).

Carrying out the calculation of the derivatives in Eq. (14)
we finally find

vOPE(r) =
1
3

1
4π

f 2 mπ (τ1 · τ2)
[

Tπ (r)S12

+

(
Yπ (r) −

4π
m3
π

δ(r)
)

(σ1 · σ2)
]
, (20)

with

Yπ (r) =
e−mπr

mπr
, (21)

and

Tπ (r) =
(
1 +

3
mπr

+
3

m2
πr2

)
Yπ (r) . (22)

Note that due to the presence of a contribution involving the
operator

S12 =
3
r2 (σ1 · r)(σ2 · r) − (σ1 · σ2) , (23)

reminiscent of the operator describing the interaction between
two magnetic dipoles, the above potential is not spherically
symmetric.

The above potential provides a good description of the long
range part (|r| > 1.5 fm) of the NN interaction, as shown
by the fit to the NN scattering phase shifts in states of high
angular momentum. Note that in these states, due to the strong
centrifugal barrier, the probability of finding the two nucleons
at small relative distances becomes negligibly small.
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