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I. INTRODUCTION

The energy spectrum of high-energy leptons �elec-
trons in particular� scattered from a nuclear target dis-
plays a number of features. At low energy loss ���,

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer �q� gives access to the Fourier transform of
nuclear �transition� densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger �, peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large �, a structureless continuum due to deep in-
elastic scattering �DIS� on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.
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FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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A number of questions have been investigated using
quasielastic scattering:

• The quasielastic cross section integrated over elec-
tron energy loss is proportional to the sum of
electron-nucleon cross sections. Historically, this has
been exploited in order to measure the neutron
charge and magnetic form factors using mainly light
�A�4� nuclear targets. Today the emphasis has
shifted to exposing possible medium modifications of
the nucleon form factors.

• Another integral property of the quasielastic peak,
its width, provides a direct measure of the average
momentum of nucleons in nuclei, and has been used
to determine nuclear Fermi momenta; contrary to
other observables such as densities, quasielastic scat-
tering provides a direct determination via an observ-
able sensitive to the momenta of nucleons.

• The shape of the quasielastic peak depends on the
distribution in energy E and momentum k of the ini-
tially bound nucleons. Precise measurements give in-
direct access to �integrated properties of� the nuclear
spectral function S�k ,E� describing this distribution.
In particular, the tail of the quasielastic peak at large
�q� and low � is sensitive to the tail of the spectral
function at large �k�.

• Processes more complicated than one-nucleon
knockout, in particular those related to non-
nucleonic degrees of freedom and meson exchange
currents �MEC�, also play a role. They can be inves-
tigated by separating the quasielastic response into
the longitudinal �charge� and transverse �magnetic
plus convection� pieces, the latter being preferen-
tially affected by MEC.

• Scaling is one of the unique features of quasielastic
scattering. This refers to the fact that the inclusive
cross section, which a priori is a function of two in-
dependent variables �q� and �, depends on a single
variable y�q ,��. This scaling property, a consequence
of the kinematics of the underlying electron-nucleon
elastic scattering process, provides a strong handle
on the reaction mechanism. Further, the scaling vio-
lations that are observed reveal how the dynamics go
beyond the impulse approximation �IA� picture of
quasielastic scattering.

Inclusive quasielastic electron-nucleus scattering is
not the only process of this type. This quasielastic pro-
cess occurs in other areas of physics, and is being ex-
ploited to learn about the dynamics of the underlying
composite system:

�a� Quasielastic scattering of keV-energy photons from
electrons bound in atoms provides information
about the energy and momentum distribution of
bound electrons.

�b� Scattering of eV to keV neutrons from condensed-
matter systems such as liquid helium provides a
measurement of the He momentum distribution

and correlations, and has been exploited for a long
time to isolate the effects of the Bose condensate in
superfluid helium.

�c� Quasielastic scattering of GeV-energy leptons on
quarks bound in nucleons �DIS� has provided a
wealth of information on the quark distribution
functions; the observation of scaling violations in
DIS has taught us much about the dynamics of
strong interactions.

Inclusive electron scattering from nuclei is a subclass
of quasielastic processes, the most obvious other repre-
sentative being �e ,e�p�. When compared to exclusive
processes in which the knocked-out nucleon is detected,
�e ,e�� corresponds to an integral over all final states of
the nucleon, and consequently provides less specific in-
formation. On the other hand, �e ,e�� is more directly
related to the dynamics of the initial hadronic �nuclear�
ground state. The complications of the final hadronic
continuum play a much smaller role. This is true particu-
larly at large �q�, as the electron is sensitive to the fate of
the recoiling nucleon in a region of size 1/ �q�; the final-
state interaction �FSI� beyond that region affects only
the more exclusive processes.

Quasielastic scattering from nuclei, compared to the
other quasielastic processes mentioned above, has one
distinct drawback one must deal with: the nucleon the
electron scatters from is not elementary, but can be ex-
cited to various states. At large momentum transfer, the
result is that only the low-� side of the quasielastic peak
can be exploited; the large-� side is obscured by the
overlap with � excitation.

During the past decade, remarkable progress in our
understanding of quasielastic scattering has allowed us
to define a number of features precisely. In particular,
for light nuclei and nuclear matter, quasielastic scatter-
ing has provided accurate determinations of �integrated
properties of� the nuclear spectral function. Detailed in-
vestigations of the reaction mechanism and the condi-
tions necessary and/or sufficient for scaling have clearly
shown that the dominant process is elastic scattering
from individual nucleons. The different scale-breaking
mechanisms have been identified. The effects beyond
IA, mainly due to FSI, have come under much better
control. The kinematic region in which more compli-
cated processes, such as MEC, are important has also
been identified, and the size of two-body current contri-
butions has been understood.

In this review, we give a comprehensive discussion on
the various aspects of quasielastic scattering. Quantita-
tive understanding of the cross section starts from a de-
scription in terms of IA; effects beyond IA such as the
role of FSI and MEC are addressed next. We then de-
scribe some experimental aspects important for the
study of this reaction. We then give a compilation of the
experiments that have been performed and point out
where the cross sections �most often not published in
numerical form� can be found. We also briefly describe
experiments that provide the nucleon form factors
needed to understand quasielastic scattering. We subse-
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quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse �L /T�
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e� + X , �1�

in which an electron of initial four-momentum ke
��Ee ,ke� scatters off a nuclear target to a state of four-
momentum ke���Ee� ,ke��, the target final state being un-
detected, can be written in the Born approximation as
�Itzykson and Zuber, 1980�

d2�

d�e�dEe�
=
�2

Q4

Ee�

Ee
L�	W

�	, �2�

where �=1/137 is the fine-structure constant, d�e� is the
differential solid angle in the direction specified by ke�,
Q2=−q2, and q=ke−ke���� ,q� is the four-momentum
transfer.

The tensor L�	, which can be written neglecting the
lepton mass as

L�	 = 2�ke
�ke�
	 + ke

	ke�
� − g�	�keke��� , �3�

where g�	�diag�1,−1,−1,−1� and �keke��=EeEe�
−ke ·ke� is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W�	, whose definition involves
the initial and final nuclear states �0� and �X�, carrying
four-momenta p0 and pX, as well as the nuclear current
operator J�,

W�	 = �
X

	0�J��X�	X�J	�0�
�4��p0 + q − pX� , �4�

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. �4�, fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W�	 = W1
− g�	 +
q�q	

q2 �
+

W2

M2
p0
� −

�p0q�
q2 q��
p0

	 −
�p0q�

q2 q	� , �5�

where M is the target mass and the structure functions
depend on the two scalars Q2 and �p0q�. In the target
rest frame, �p0q�=m� and W1 and W2 become functions
of the measured momentum and energy transfer �q� and
�.

Substitution of Eq. �5� into Eq. �2� leads to

d2�

d�e�dEe�
= 
 d�

d�e�
�

M

� �W2��q�,�� + 2W1��q�,��tan2�

2
 , �6�

where � and �d� /d�e��M=�2 cos2�� /2� /4Ee sin4�� /2� de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. �6� can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally �L� and transversely �T� polar-
ized virtual photons. The resulting expression is

d2�

d�e�dEe�
= 
 d�

d�e�
�

M
� Q4

�q�4
RL��q�,��

+ 
1
2

Q2

�q�2
+ tan2�

2
�RT��q�,�� , �7�

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT��q�,�� = 2W1��q�,�� �8�

and

Q2

�q�2
RL��q�,�� = W2��q�,�� −

Q2

�q�2
W1��q�,�� . �9�

In principle, calculations of W�	 of Eq. �4� at moder-
ate momentum transfer ��q ��0.5 GeV/c� can be carried
out within nuclear many-body theory �NMBT�, using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of �q � /m �Carlson and Schiavilla, 1998�, where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations �Dellafiore et al., 1985�.

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling �A−1�-nucleon system acting as a spectator.
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On the other hand, at higher values of �q�, correspond-
ing to beam energies larger than �1 GeV, describing the
final states �X� in terms of nonrelativistic nucleons is no
longer possible. Due to the prohibitive difficulties in-
volved in a fully consistent treatment of the relativistic
nuclear many-body problem, calculations of W�	 in this
regime require a set of simplifying assumptions, allowing
one to take into account the relativistic motion of final-
state particles carrying momenta �q, as well as inelastic
processes leading to the production of hadrons other
than protons and neutrons.

The IA scheme is based on the assumptions that �i� as
the space resolution of the electron probe is �1/ �q�, at
large momentum transfer scattering off a nuclear target
reduces to the incoherent sum of elementary scattering
processes involving individual bound nucleons �see Fig.
2� and �ii� there is no FSI between hadrons produced in
electron-nucleon scattering and the recoiling nucleus.1

Under these assumptions, a relativistic particle in the
final state is completely decoupled from the spectator
system, and the description of its motion becomes a
simple kinematic problem.

Within the IA picture, the nuclear current appearing
in Eq. �4� is written as a sum of one-body currents

J�→ �
i

ji
�, �10�

while �X� reduces to the direct product of the hadronic
state produced at the electromagnetic vertex, carrying
momentum px, and the state describing the
�A−1�-nucleon residual system, carrying momentum
pR=q−px �in order to simplify the notation, spin indices
will be omitted�,

�X� → �x,px� � �R,pR� . �11�

Using Eq. �11�, we can replace

�
X

�X�	X� → �
x
� d3px�x,px�	px,x�

��
R

d3pR�R,pR�	pR,R� . �12�

Substitution of Eqs. �10�–�12� into Eq. �4� and insertion
of a complete set of free nucleon states, satisfying

� d3k�N,k�	k,N� = 1, �13�

then leads to the factorization of the nuclear current
matrix element according to

	0�J��X� = 
 m
��pR�2 + m2�1/2

	0�R,pR;N,− pR�

��
i

	− pR,N�ji
��x,px� , �14�

where the factor �m /��pR�2+m2�1/2 takes into account
the implicit covariant normalization of 	−pR ,N� in the
matrix element of ji

�.
As a result, the incoherent contribution to Eq. �4� can

be rewritten in the form

W�	 = �
x,R

� d3pRd3px�	0�R,pR;N,− pR��2

�
m

ER
�

i

	− pR,N�ji
��x,px�	px,x�ji

	�N,− pR�

� 
�3��q − pR − px�
�� + E0 − ER − Ex� , �15�

where E0 is the target ground-state energy, ER
=��pR�2+MR

2 , MR being the mass of the recoiling system
and Ex the energy of the final state X.

Finally, using the identity


�� + E0 − ER − Ex� =� dE
�E − m + E0 − ER�

� 
�� − E + m − Ex� , �16�

and defining the nucleon spectral function as

SN�k,E� = �
R

�	0�R,− k ;N,k��2
�E − m + E0 − ER� ,

�17�

where the index N=p ,n labels either a proton or a neu-
tron, we can cast Eq. �4� in the form

W�	�q,�� =� d3kdE
 m

Ek
��ZSp�k,E�wp

�	

+ �A − Z�Sn�k,E�wn
�	� , �18�

A and Z being the target mass number and number of
protons, respectively. In Eq. �18�, Ek=��k2 � +m2 and

wN
�	 = �

x
	k,N�jN

� �x,k + q�	k + q,x�jN
	 �N,k�

� 
��̃ + Ek − Ex� �19�

with �see Eqs. �15� and �17��

�̃ = Ex − Ek = E0 + � − ER − Ek = � − E + m − Ek.

�20�

The above equations show that within the IA scheme,
the definition of the electron-nucleus cross section in-
volves two important elements: �i� the tensor wN

�	, de-
fined by Eq. �19�, describing the electromagnetic inter-
actions of a bound nucleon carrying momentum k, and
�ii� the spectral function, defined by Eq. �17�, yielding its
momentum and removal energy distribution. These
quantities will be further discussed in the following sec-
tions.

1Coherent effects, not included in the impulse approximation
picture, appear in DIS even at large �q� for values of the
Bjorken scaling variable x=Q2 /2m�0.2, corresponding to
very large electron energy loss.
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B. Electron scattering off a bound nucleon

While in electron-nucleon scattering in free space the
struck particle is given the entire four-momentum trans-
fer q���̃ ,q�, in a scattering process involving a bound
nucleon a fraction 
� of the energy loss goes into the
spectator system. This mechanism emerges in a most
natural fashion from the IA formalism.

Assuming that the current operators are not modified
by the nuclear environment, the quantity defined by Eq.
�19� can be identified with the tensor describing electron
scattering off a free nucleon at four-momentum transfer
q̃���̃ ,q�. Hence, Eq. �19� shows that within IA, binding
is taken into account through the replacement

q � ��,q� → q̃ � ��̃,q� . �21�

The interpretation of 
�=�− �̃ as the amount of en-
ergy going into the recoiling spectator system becomes
particularly transparent in the limit �k � /m�1, in which
Eq. �20� yields 
�=E.

In the case of quasielastic scattering wN
�	 of Eq. �19�

can be obtained from �compare to Eq. �5��

wN
�	 = w1

N
− g�	 +
q̃�q̃	

q̃2 � +
w2

N

m2
k� −
�kq̃�
q̃2 q̃��

�
k	 −
�kq̃�
q̃2 q̃	� �22�

where k��Ek ,k� and the two structure functions w1 and
w2 are simply related to the measured electric and mag-
netic nucleon form factors GEN

and GMN
through

w1
N = −

q̃2

4m2

�̃ +
q̃2

2m
�GMN

2 , �23�

w2
N =

1

1 − q̃2/4m2

�̃ +
q̃2

2m
�
GEN

2 −
q̃2

4m2GMN

2 � . �24�

While the replacement of � with �̃ is reasonable on
physics grounds and in fact quite natural in the context
of the IA analysis presented above, it poses a consider-
able conceptual problem in that it leads to a violation of
current conservation, which requires

q�wN
�	 = 0. �25�

A widely used prescription to overcome this difficulty
was proposed in the early 1980s �de Forest, 1983�. It
amounts to using a tensor w̃N

�	 whose time components
are given by Eq. �19�, while the longitudinal ones are
obtained from the time components requiring that the
continuity equation �25� be satisfied. Taking the z axis
along the direction of q, one obtains

w̃N
�	 = wN

�	�q̃� for � and/or 	 = 0,

w̃N
3	 =

�

�q�
wN

0	�q̃� , �26�

with q̃ given by Eq. �21�.

The above prescription is manifestly not unique. For
example, one might have just as well chosen to use Eq.
�19� to obtain the longitudinal components of w̃�	 and
the continuity equation to obtain the time components.
However, differences between these two procedures to
restore gauge invariance only affect the longitudinal re-
sponse RL. As a consequence, they are expected to be-
come less and less important as the momentum transfer
increases, electron scattering at large �q� being largely
dominated by transverse contributions. Numerical calcu-
lations of the quasielastic cross section off 3He have con-
firmed that these differences become indeed vanishingly
small already in the pion production region �Meier-
Hajduk et al., 1989�.

The uncertainty associated with the implementation
of current conservation has been analyzed by Kim, who
has compared the inclusive cross sections computed us-
ing the Coulomb gauge �equivalent to the deForest pre-
scription� to those obtained from the Landau and Weyl
gauges for a variety of targets and kinematic condition
�Kim, 2004�. The results corresponding to the different
choices agree to better than �1% for backward angle
kinematics, thus confirming that the transverse response
is unaffected by gauge ambiguities. For the longitudinal
response, Kim finds more substantial ambiguities, as a
consequence of the huge scalar and vector potentials
present in the �-� model; these large potentials, how-
ever, only occur when trying to describe nuclei—strongly
correlated systems—using a mean-field basis.

Other prescriptions based on the use of free nucleon
currents �de Forest, 1983� were employed in the analysis
of �e ,e�p� data in the region of large missing momentum
and energy, where the effects of using different off-shell
extrapolations of electron-nucleon scattering become
sizable �Rohe, 2004�. More fundamental approaches, in-
volving the explicit calculation of the off-shell form fac-
tors, necessarily rely on oversimplified dynamical mod-
els �Naus and Koch, 1987; Naus et al., 1990�.

In conclusion, the violation of gauge invariance in the
IA scheme, while in principle an intricate one, turns out
to be only marginally relevant to inclusive electron scat-
tering at large momentum transfer. The main effect of
nuclear binding can be easily accounted for with the re-
placement �→ �̃.

C. The nuclear spectral function

The spectral function, defined by Eq. �17�, gives the
probability of removing a nucleon from the target
nucleus leaving the residual system with energy ER
=E0−m+E.

Within the shell-model picture, based on the assump-
tion that nucleons in a nucleus behave as independent
particles moving in a mean field, the spectral function
reduces to

SSM�k,E� = �
n��F�

��n�k��2
�E − En� , �27�

where �n�k� is the momentum-space wave function as-
sociated with the single-particle shell-model �SM� state
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n, En is the corresponding energy eigenvalue, and the
sum is extended to all occupied states belonging to the
Fermi sea �F�.

The results of electron- and hadron-induced nucleon
knock-out experiments have provided overwhelming
evidence of the inadequacy of the independent-particle
model to describe the full complexity of nuclear dynam-
ics. While the peaks corresponding to knock-out from
shell-model orbits can be clearly identified in the mea-
sured energy spectra, the corresponding strengths turn
out to be consistently and sizably lower than expected,
independent of the nuclear mass number.

This discrepancy is mainly due to the effect of dy-
namical correlations induced by the nucleon-nucleon
�NN� force, whose effect is not taken into account in the
independent-particle model. Correlations give rise to
scattering processes, leading to the virtual excitation of
the participating nucleons to states of energy larger than
the Fermi energy, thus depleting the shell-model states
within the Fermi sea. As a result, the spectral function
acquires tails extending to the region of large energy and
momentum, where SSM�k ,E� of Eq. �27� vanishes.

The typical energy scale associated with NN correla-
tions can be estimated considering a pair of correlated
nucleons carrying momenta k1 and k2 much larger than
the Fermi momentum ��250 MeV/c�. In the nucleus
rest frame, where the remaining A−2 particles carry low
momenta, k1�−k2=k. Hence, knock-out of a nucleon of
large momentum k leaves the residual system with a par-
ticle in the continuum and requires an energy

E � Ethr + k2/2m , �28�

much larger than the typical energies of shell-model
states ��30 MeV�. The above equation, where Ethr de-
notes the threshold for two-nucleon removal, shows that
large removal energy and large nucleon momentum are
strongly correlated.

Realistic theoretical calculations of the spectral func-
tion have been carried out within NMBT, according to
which the nucleus consists of a collection of A nucleons
whose dynamics are described by the nonrelativistic
Hamiltonian

H = �
i=1

A
ki

2

2m
+ �

j�i=1

A

vij + �
k�j�i=1

A

Vijk. �29�

In the above equation, ki is the momentum of the ith
constituent and vij and Vijk describe two- and three-
nucleon interactions, respectively. The two-nucleon po-
tential, which reduces to the Yukawa one-pion-exchange
potential at large internucleon distance, is obtained from
an accurate fit to the available data on the two-nucleon
system, i.e., deuteron properties and �4000 NN scatter-
ing data �Wiringa et al., 1995�. The additional three-body
term Vijk has to be included in order to account for the
binding energies of the three-nucleon bound states �Pud-
liner et al., 1995� and the empirical saturation properties
of uniform nuclear matter �Akmal and Pandharipande,
1997�; this term results from the fact that non-nucleonic
constituents �such as �’s� have been excluded.

The many-body Schrödinger equation associated with
the Hamiltonian of Eq. �29� can be solved exactly, using
stochastic methods, for nuclei with mass number A
�12. The resulting energies of the ground and low-lying
excited states are in excellent agreement with the ex-
perimental data �Pieper and Wiringa, 2001�. Accurate
calculations can also be carried out for uniform nuclear
matter, exploiting translational invariance and using ei-
ther a variational approach based on cluster expansion
and chain summation techniques �Akmal and Pandhari-
pande, 1997� or G-matrix perturbation theory �Baldo et
al., 2000�.

Nonrelativistic NMBT has been employed to obtain
the spectral functions of the three-nucleon systems �Die-
perink et al., 1976; Ciofi degli Atti et al., 1980; Meier-
Hajduk et al., 1983�, oxygen �Geurts et al., 1996; Polls et
al., 1997�, and symmetric nuclear matter, having A→�
and Z=A /2 �Benhar et al., 1989; Ramos et al., 1989�.
Calculations based on NMBT but involving some simpli-
fying assumptions have also been carried out for 4He
�Ciofi degli Atti et al., 1990; Morita and Suzuki, 1991;
Benhar and Pandharipande, 1993�.

As an example, Fig. 3 shows the results of a nuclear
matter calculation2 carried out using correlated basis
function �CBF� perturbation theory �Benhar et al., 1989�.
In addition to the peaks corresponding to single-particle
states, i.e., to bound one-hole states of the
�A−1�-nucleon system, the resulting SN�k ,E� exhibits a
broad background, extending up to E�200 MeV and
�k � �800 MeV/c, associated with n-hole �n−1�-particle
�A−1�-nucleon states in which at least one nucleon is

2As in symmetric nuclear matter Sp�k ,E�=Sn�k ,E�, the spec-
tral function shown corresponds to an isoscalar nucleon.

FIG. 3. Nuclear matter spectral function calculated using cor-
related basis function perturbation theory. From Benhar et al.,
1989.
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excited to the continuum. The correlation ridge at E
�k2 /2m �see Eq. �28�� is clearly visible. Note that, in the
absence of interactions, the surface shown in Fig. 3 col-
lapses to a collection of 
-function peaks distributed
along the line �E � =k2 /2m, with �k ��kF�250 MeV/c.

The proton spectral functions of nuclei with A�4
have been modeled using the local density approxima-
tion �LDA� �Benhar et al., 1994�, in which the experi-
mental information obtained from nucleon knock-out
measurements is combined with theoretical calculations
of the nuclear matter S�k ,E� at different densities.

The kinematic region corresponding to low missing
energy and momentum, where shell-model dynamics
dominates, has been studied extensively by coincidence
�e ,e�p� experiments. The spectral function extracted
from the data is usually written in the factorized form
�compare to Eq. �27��

SMF�k,E� = �
n��F�

Zn��n�k��2Fn�E − En� , �30�

where the spectroscopic factor Zn�1 and the function
Fn�E−En�, describing the energy width of the nth state,
account for the effects of residual interactions not in-
cluded in the mean-field picture. In the Zn→1 and
Fn�E−En�→
�E−En� limit, Eq. �30� reduces to Eq. �27�.

The correlation contribution to the nuclear matter
spectral function has been calculated using CBF pertur-
bation theory for a wide range of density values �Benhar
et al., 1994�. Within the LDA scheme, these results can
be used to obtain the corresponding quantity for a finite
nucleus of mass number A from

Scorr�k,E� =� d3r�A�r�Scorr
NM

„k,E ;� = �A�r�… , �31�

where �A�r� is the nuclear density distribution and
Scorr

NM�k ,E ;�� is the correlation part of the spectral func-
tion of uniform nuclear matter at density �. The corre-
lation part of the nuclear matter spectral function can be
easily singled out at zeroth order of CBF, being associ-
ated with two-hole–one-particle intermediate states. At
higher orders, however, one-hole and two-hole–one-
particle states are coupled, and the identification of the
correlation contributions becomes more involved. A full
account of the calculation of Scorr

NM�k ,E� can be found in
Benhar et al. �1994�.

The full LDA spectral function is written in the form

SLDA�k,E� = SMF�k,E� + Scorr�k,E� , �32�

the spectroscopic factors Zn of Eq. �30� being con-
strained by the normalization requirement

� d3kdESLDA�k,E� = 1. �33�

A somewhat different implementation of LDA has
also been proposed �Van Neck et al., 1995�. Within this
approach, the nuclear matter spectral function is only
used at k�kF�r�, kF�r� being the local Fermi momen-
tum, whereas the correlation background at k�kF�r� is

incorporated in the generalized mean-field contribution.
Comparison between the resulting oxygen momentum
distribution and that obtained by Benhar et al. shows
that they are in almost perfect agreement.

The LDA scheme is based on the premise that short-
range nuclear dynamics are unaffected by surface and
shell effects. The validity of this assumption is supported
by the results of theoretical calculations of the nucleon
momentum distribution

n�k� =� dE�ZSp�k,E� + �A − Z�Sn�k,E�� , �34�

showing that for A�4 the quantity n�k� /A becomes
nearly independent of A at large �k� ��300 MeV/c�. This
feature, illustrated in Fig. 4, suggests that the correlation
part of the spectral function also scales with the target
mass number, so that Scorr

NM�k ,E� can be used to approxi-
mate Scorr�k ,E� at finite A.

A direct measurement of the correlation component
of the spectral function of 12C, from the �e ,e�p� cross
section at missing momentum and energy up to
�800 MeV/c and �200 MeV, respectively, was carried
out by the JLab E97-006 Collaboration �Rohe, 2004�.
The data from the preliminary analysis appear to be
consistent with the theoretical predictions based on
LDA.

D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. �18� and �19� describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of had-
rons other than protons and neutrons, one has to replace
w1

N and w2
N given by Eqs. �23� and �24� with the inelastic

nucleon structure functions extracted from the analysis
of electron-proton and electron-deuteron scattering data
�Bodek and Ritchie, 1981�. The resulting IA cross sec-

FIG. 4. Calculated momentum distribution per nucleon in 2H,
4He, 16O, and uniform nuclear matter �Schiavilla et al., 1986;
Benhar et al., 1993�.
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tion can be written as in Eq. �6�, the two nuclear struc-
ture functions W1 and W2 being given by �Benhar et al.,
1997�

W1��q�,�� =� d3kdE�ZSp�k,E�
 m

Ek
�

� �w1
p��q�,�̃� +

1
2

w2
p��q�,�̃�

m2

�k� q�2

�q�2  + ¯ �
�35�

and

W2��q�,�� =� d3kdE�ZSp�k,E�
 m

Ek
�

� �w1
p��q�,�̃�

q2

�q�2
q2

q̃2 − 1�
+

w2
p��q�,�̃�

m2 � q4

�q�4
Ek − �̃
Ek�̃ − k · q

q̃2 �2

−
1
2

q2

�q�2
�k� q�2

�q�2 � + ¯ � , �36�

where the dots denote the neutron contributions. Equa-
tions �35� and �36� are obtained using the prescription of
Eq. �26� �de Forest, 1983� to preserve gauge invariance.
Note that the standard expression �Atwood and West,
1973�, widely used in studies of nuclear effects in deep
inelastic scattering, can be recovered from the above
equations replacing �̃→� and Ek→MA−ER.

As an example, Fig. 5 shows the quasielastic �dashed
line� and total �solid line� inclusive cross sections of uni-
form nuclear matter, at beam energy Ee=3.595 GeV and
scattering angle �=30°, evaluated using a phenomeno-
logical fit of the nucleon structure functions w1

N and w2
N

�Bodek and Ritchie, 1981� and the above-mentioned
spectral function �Benhar et al., 1989�.

The data show that the transition from the quasielas-
tic to the inelastic regime, including resonant and non-

resonant pion production as well as deep inelastic pro-
cesses, is a smooth one, thus suggesting the possibility of
a unified representation.

The approach based on NMBT and the IA yields a
good description of the measured cross section at energy
loss ��1 GeV, corresponding to x1.3 �note that in
the kinematics of Fig. 5, the top of the quasifree bump
corresponds to �=�QE�1.4 GeV�. On the other hand,
the data at lower energy loss are largely underestimated.

The failure of IA calculations to explain the measured
cross sections at ���QE has long been recognized, and
confirmed by a number of theoretical studies, carried
out using highly realistic spectral functions �Meier-
Hajduk et al., 1983; Benhar et al., 1989; Ciofi degli Atti et
al., 1992�; see, e.g., Fig. 6. It has to be ascribed to FSI
between the struck nucleon and the spectator particles,
which move strength from the region of the quasifree
bump to the low � tail. This mechanism will be analyzed
in the next section.

In conclusion, NMBT and the IA provide a consistent
and computationally viable approach, yielding a quanti-
tative description of the data in both the quasielastic and
inelastic regimes, with the only exception being the re-
gion of very low-energy loss. Theoretical studies in
which nuclear binding effects are included using realistic
spectral functions also provide a quantitative account of
the size and density dependence of the European Muon
Collaboration �EMC� effect �Benhar et al., 1997, 1999�.

E. Different implementations of the IA scheme

In spite of the fact that the basic assumptions under-
lying IA can be unambiguously stated, in the literature
one finds two different definitions of the IA inclusive
cross section: the one discussed in Sec. II.A, involving
the target spectral function, and another one, written in

FIG. 5. Inclusive electron scattering cross section at Ee
=3.595 GeV and �=30°. The data points represent the ex-
trapolated nuclear matter cross section �Day et al., 1989� while
the solid and dashed lines show the results of IA calculations
carried out with and without inclusion of the inelastic contri-
butions, respectively. From Benhar et al., 1991.

FIG. 6. Inclusive electron scattering cross section at Ee
=7.26 GeV and �=8° for 3He. The data points are from Day et
al. �1979�; the solid line shows the IA calculation based on the
3He spectral function �Meier-Hajduk et al., 1983�. Approxi-
mate values for the scaling variable x are indicated on top.
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terms of the target momentum distribution of Eq. �34�
�Rinat and Taragin, 1996�.

It has been shown �Benhar et al., 2001� that the defi-
nition in terms of the spectral function follows from
minimal use of the assumptions involved in the IA
scheme, and correctly takes into account the correlation
between momentum and removal energy of the partici-
pating constituent. On the other hand, a more extended
use of the same assumptions leads to a definition of the
IA cross section in which the nucleon spectral function is
written in the approximated form

S�k,E� =
1

A
n�k�

E +

�k�2

2m
� , �37�

so that the information on the target removal energy
distribution is lost.

Figure 7 shows a comparison between the response
function of a nonrelativistic model of uniform nuclear
matter3 obtained from the full spectral function �solid
line� and the approximation of Eq. �37� �dashed line�.

The two responses have similar shape, their width be-
ing dictated by the momentum distribution. However,
they are shifted with respect to one another. The peak of
the dashed curve is located at energy loss ���q�2 /2m,
corresponding to elastic scattering off a free stationary
nucleon, whereas the solid line, due to the removal en-
ergy distribution described by the spectral function,
peaks at significantly larger energy. The shift is roughly
given by the average nucleon removal energy4

Ē =� d3kdEES�k,E� = 62 MeV. �38�

This feature is illustrated by the diamonds of Fig. 7,
which show the response obtained replacing �k�2 /2m

→ ��k�2 /2m− Ē� in the argument of the energy-
conserving 
 function of Eq. �37�. The results of this
calculation turn out to be much closer to those derived
in the previous sections.

In addition to the shift in the position of the peak, the
dashed and solid curves differ sizably at low energy
transfer, where the response obtained using the momen-
tum distribution is much larger. Obviously, to identify
corrections to the response arising from mechanisms not
included in the IA picture, one has to start from the
definition involving the minimal set of approximations.
The results of Fig. 7 show that a quantitative under-
standing of the effects of FSI, which are known to domi-
nate the inclusive cross section at low �, requires the use
of the spectral function in the calculation of the IA cross
section.

III. FINAL-STATE INTERACTIONS

The existence of strong FSI in quasielastic scattering
has been experimentally long established. The results of
a number of �e ,e�p� measurements, covering the kine-
matic domain corresponding to 0.5Q28.0 �GeV/c�2

�Garino et al., 1992; O’Neill et al., 1995; Abbott et al.,
1998; Garrow et al., 2002; Rohe et al., 2005�, show that
the flux of outgoing protons is strongly suppressed with
respect to the IA predictions. The observed attenuation
ranges from 20–40 % in carbon to 50–70 % in gold.

Being only sensitive to rescattering processes taking
place within a distance �1/ �q� of the electromagnetic
vertex, the inclusive cross section at high momentum
transfer in general is largely unaffected by FSI. How-
ever, the systematic discrepancies between data and the
results of highly accurate IA calculations indicate that
the effects of FSI can become appreciable, indeed domi-
nant, in the low-� region, where the cross sections pro-
duced by IA calculations become very small. As IA
cross sections in this region are most sensitive to the
high momentum and high removal energy tails of the
nuclear spectral function,5 a quantitative understanding
of FSI is required to unambiguously identify correlation
effects.

In inclusive processes, FSI has two effects: �i� an en-
ergy shift of the cross section, due to the fact that the
struck nucleon moves in the average potential generated
by the spectator particles, and �ii� a redistribution of the
strength, leading to the quenching of the quasielastic

3The response function shown in Fig. 7 is proportional to the
inclusive cross section for scattering of a scalar probe. The
generalization to the electromagnetic target tensor of Eq. �4� is
straightforward.

4Note that for spectral functions describing correlated nucle-
ons, Ē is much larger than the average of single-particle
energies.

5When ignoring the E distribution of S�k ,E�, the cross sec-
tion at low � is related to the strength at large k. However, the
spectral function exhibits a strong correlation between large �k�
and large E. For example, in nuclear matter at equilibrium
density, more than 50% of the strength at �k � =1.5 fm−1 �just
above the Fermi surface� is located at E�80 MeV.

FIG. 7. Response of uniform nuclear matter at equilibrium
density and �q � =5 fm−1. The solid and dashed lines have been
obtained using the full spectral function �Benhar et al., 1989�
and the approximation of Eq. �37�, respectively. The diamonds
represent the results obtained when shifting the dashed line by
Ē=62 MeV �Benhar et al., 2001�.
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peak and an enhancement of the tails, as a consequence
of NN scattering processes coupling the one-particle–
one-hole final state to more complex n-particle–n-hole
configurations.

Early attempts to include FSI effects were based on
the Green’s function formalism and multiple scattering
theory, leading to a description of the dynamics in terms
of a complex optical potential �Horikawa et al., 1980�.
However, while providing a computationally practical
scheme to account for the loss of flux in the one-nucleon
removal channel, the optical potential model employed
relies on the mean-field picture of the nucleus, and does
not include the effect of dynamical NN correlations.

A similar approach has been adopted �Chinn et al.,
1989a, 1989b� to analyze the longitudinal and transverse
responses of Eq. �7� and investigate the possible impor-
tance of relativistic effects using Dirac bound-state wave
functions and optical potentials. Although the authors
suggest that relativity may play an important role in sup-
pressing the response functions, particularly RL, the in-
terpretation of their results is hindered by the large un-
certainty associated with relativistic descriptions of
nuclear dynamics and the appearance of the deep poten-
tials, driven by the attempt to describe correlated sys-
tems using an independent-particle model. Systematic
studies of relativistic effects carried out within NMBT
show that they are indeed rather small. For example,
when using the relativistic kinetic energy operator and
when including boost corrections to the NN potential, a
change of the binding energy of nuclear matter at equi-
librium density of �10% only has been found �Akmal et
al., 1998�.

A different approach, based on NMBT and a gener-
alization of Glauber theory of high-energy proton scat-
tering �Glauber, 1959�, was proposed in the early 1990s
�Benhar et al., 1991�. This treatment of FSI, generally
referred to as the correlated Glauber approximation
�CGA�, rests on the premises that �i� the struck nucleon
moves along a straight trajectory with constant velocity
�eikonal approximation�, and �ii� the spectator nucleons
are seen by the struck particle as a collection of fixed
scattering centers �frozen approximation�.

Under the assumptions given above, the expectation
value of the propagator of the struck nucleon in the tar-
get ground state can be written in the factorized form
�Petraki et al., 2003�

Uk+q�t� = Uk+q
0 �t�Ūk+q

FSI �t� , �39�

where Uk+q
0 �t� is the free-space propagator, while FSI ef-

fects are described by the quantity �R��r1 , . . . ,rA��

Ūk+q
FSI �t� = 	0�Uk+q

FSI �R ;t��0� , �40�

with

Uk+q
FSI �R ;t� =

1

A�
i=1

A

e−i�j�i�0
t dt��k+q��rij+vt���. �41�

In Eq. �41�, rij=ri−rj and �k+q��r � � is the coordinate-
space t matrix, related to the NN scattering amplitude at
incident momentum k+q and momentum transfer p,
Ak+q�p�, by

�k+q�r� = −
2�

m
� d3p

�2��3eip·rAk+q�p� . �42�

At large �q�, k+q�q and the eikonal propagator of Eq.
�41� becomes a function of t and the momentum transfer
only.

The scattering amplitude extracted from the mea-
sured NN cross sections is generally parametrized in the
form

Aq�p� = i
�q�
4�
�NN�1 − i�NN�e−��NN�p��2

, �43�

where �NN and �NN denote the total cross section and
the ratio between the real and the imaginary part of the
amplitude, respectively, while the slope parameter �NN
is related to the range of the interaction.

The quantity

Pq�t� = 	0��Uq
FSI�R ;t��2�0� �44�

measures the probability that the struck nucleon does
not undergo rescattering processes during a time t after
the electromagnetic interaction �Rohe et al., 2005�. In
the absence of FSI, i.e., for vanishing �q, Pq�t��1.

Note that P�t� is trivially related to the nuclear trans-
parency Tq, measured in coincidence �e ,e�p� experi-
ments �Garino et al., 1992; O’Neill et al., 1995; Abbott et
al., 1998; Garrow et al., 2002; Rohe et al., 2005�, through

Tq = lim
t→�

Pq�t� . �45�

It is important to realize that, as shown by Eqs. �40�
and �41�, the probability that a rescattering process oc-
curs is not simply dictated by the nuclear density distri-
bution �A�rj�, the probability of finding a spectator at
position rj. The rescattering probability depends upon
the joint probability of finding the struck particle at po-
sition ri and a spectator at position rj, which can be writ-
ten in the form

��2��ri,rj� = �A�ri��A�rj�g�ri,rj� . �46�

Due to the strongly repulsive nature of nuclear inter-
actions at short range, ��2��ri ,rj� is dominated by NN cor-
relations, whose behavior is described by the correlation
function g�ri ,rj�. The results of numerical calculations
carried out within NMBT yield g�ri ,rj��1 at �rij �
�1 fm. This feature is illustrated in Fig. 8, showing the
average �̄�2��ri ,rj�, defined as

�̄�2��rij� =
1

A
� d3Rij�

�2��ri,rj� , �47�

with Rij= �ri+rj� /2, evaluated for both NN and pp pairs
with and without inclusion of dynamical correlation ef-
fects.
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From Eq. �41�, it follows that within the CGA the
energy shift and the redistribution of the inclusive
strength are driven by the real and the imaginary part of
the NN scattering amplitude, respectively. However, at
large q the imaginary part of �q, which gives rise to the

real part of Ūq
FSI, is dominant.

Neglecting the contribution of the real part of Aq al-
together, the CGA inclusive cross section can be written
as a convolution integral, involving the cross section
evaluated within the IA, i.e., using Eqs. �2�, �3�, and �18�,
and a folding function embodying FSI effects,

d�

d�e�d�
=� d��
 d�

d�e�d��
�

IA

fq�� − ��� , �48�

fq��� being defined as

fq��� = 
����Tq +� dt

2�
ei�t�Ūq

FSI�t� − �Tq�

= 
����Tq + Fq��� , �49�

and normalized according to

�
−�

+�

d�fq��� = 1. �50�

The preceding equations show that the strength of FSI is
governed by both Tq and the width of Fq���. In the ab-

sence of FSI, Ūq
FSI�t��1, implying in turn Tq=1 and

fq���→
���.
In principle, the real part of the NN scattering ampli-

tude can be explicitly included in Eq. �41� and treated on
the same footing as the imaginary part. However, its ef-
fect turns out to be appreciable only at t�0, when the
attenuation produced by the imaginary part is weak. The
results of numerical calculations show that an approxi-
mate treatment, based on the use of a time-independent
optical potential, is adequate to describe the energy shift
produced by the real part of �q �Benhar et al., 1994�,

whose size of �10 MeV is to be compared to a typical
electron energy loss of a few hundred MeV.

The shape of the folding function is mainly deter-
mined by the total NN cross section �NN. In the energy
region relevant to scattering of few-GeV electrons, �NN
is dominated by the contribution of inelastic processes
and nearly independent of energy. As a consequence,
the scattering amplitude of Eq. �43� grows linearly with

q, and both Ūq
FSI�t� and the folding function fq become

independent of q.
This feature is illustrated in Fig. 9, showing that the Fq

calculated in uniform nuclear matter at equilibrium den-
sity at momentum transfers �q � =2.2 and 3.4 GeV/c are
nearly identical.

Dynamical NN correlations also affect the shape of
the folding function. Inclusion of correlations through
the distribution function g�ri ,rj� results in a strong
quenching of the tails and an enhancement of the peak
of Fq, leading to a significant suppression of FSI effects.

The effect of FSI is illustrated in Fig. 10, showing the
inclusive cross section of uniform nuclear matter at a
beam energy Ee=3.595 GeV and a scattering angle �
=30°, corresponding to momentum transfer �q �
�2 GeV/c.

Comparison between theory and the data in Fig. 10
clearly shows that at ��1.1 GeV, where quasielastic
scattering dominates6 and which corresponds to x�1,
x=Q2 /2m� being the Bjorken scaling variable, FSI ef-
fects are large and must be taken into account. The re-
sults obtained within the CGA are in good agreement
with the data in the region ��800 MeV, i.e., for x
1.8, while at higher x the experimental cross section is
largely overestimated. The dashed line has been ob-
tained neglecting the effect of dynamical correlations on

6In the kinematics of Fig. 10, inelastic processes only contrib-
ute �5% of the inclusive cross section at �=1.1 GeV, and
become negligibly small at lower �.

FIG. 8. Averaged distribution functions, defined by Eq. �47�, of
NN �solid lines� and pp �dashed lines� pairs in 4He, 16O, and
uniform nuclear matter at equilibrium density �NM�. The cor-
responding quantities obtained neglecting dynamical correla-
tion effects are shown by the dot-dashed and dotted lines, re-
spectively. From Benhar et al., 1993.

FIG. 9. Folding functions Fq of Eq. �49�, calculated in uniform
nuclear matter at equilibrium density. The solid line and dia-
monds correspond to momentum transfer �q � =2.2 and
3.4 GeV/c, respectively �Benhar, 1999�.
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the distribution function g�ri ,rj�. Comparison between
the solid and dashed lines provides a measure of the
quenching of FSI due to NN correlations.

The ability of the CGA to provide a quantitative un-
derstanding of FSI in the region x�2 is illustrated fur-
ther in Fig. 11, showing the cross-section ratio

R =
d��e + 56Fe → e� + X�
d��e + 2H → e� + X�

2
56

�51�

at Ee=3.595 GeV and �=25°. Note that R of Eq. �51� is
only defined up to y� –700 MeV/c, corresponding to
x=2, the kinematic limit for inclusive scattering off an
A=2 target �for the definition of y, see Sec. VII�.

The solid line in Fig. 11 corresponds to the full CGA
calculation, providing a good description of the experi-
ments over the whole range of y, whereas the IA results,
represented by the dashed line, lie well below the data at
y�−200 MeV/c �x�1.5�. For comparison, Fig. 11 also
shows the results obtained using the approximate spec-
tral function of Eq. �37�, which turn out to largely over-
estimate the data at negative y.

The results of Figs. 11 and 6 clearly rule out the inter-
pretation of the behavior of the cross-section ratio at y
−200 MeV/c in terms of scattering off strongly corre-
lated nucleon pairs �Egiyan et al., 2003�. This interpreta-
tion in fact assumes the validity of the IA picture, which
is known to fail at large negative y, and does not take
into account the large effect of FSI.

Notwithstanding its success in describing the existing
inclusive data at large negative y, the CGA appears con-
sistently to overestimate FSI effects at larger −y. As the
validity of the eikonal approximation is well established
in the kinematic region apposite to scattering of few-
GeV electrons, possible corrections to the CGA scheme
are likely to be ascribable either to modifications of the
NN scattering amplitude or to the inadequacy of the
approximations leading to the convolution expression
for the cross section.

It has been pointed out �Benhar et al., 1991� that the
use of the free-space amplitude to describe NN scatter-
ing in the nuclear medium may be questionable. Pauli
blocking and dispersive corrections are known to be im-
portant at moderate energies �Pandharipande and
Pieper, 1992�. However, their effects on the calculated
inclusive cross section have been found to be small in
the kinematic region corresponding to �q ��2 GeV/c,
and decrease as �q� increases �Benhar et al., 1995a�. Cor-
rections to the amplitude associated with its extrapola-
tion to off-shell energies are also expected to be small at
�q ��2 GeV/c �Benhar and Liuti, 1996�.

Modifications of the free-space NN cross section may
also originate from the internal structure of the nucleon.
It has been suggested �Brodsky, 1982; Mueller, 1982� that
elastic scattering on a nucleon at high momentum trans-
fer can only occur if the nucleon is found in the Fock
state having the fewest number of constituents, so that
the momentum transfer can be most effectively shared
among them. This state is very compact, its size being
proportional to 1/�q�, and therefore interacts weakly with
the nuclear medium. Within this picture a nucleon, after
absorbing a large momentum, travels through nuclear
matter experiencing very little FSI, i.e., exhibits color
transparency, before it evolves back to its standard con-
figuration with a characteristic time scale.

Color transparency �CT� may be particularly relevant
to the analysis of inclusive electron-nucleus scattering at
x�1, where elastic scattering is the dominant reaction
mechanism, since it leads to a significant quenching of
FSI. In fact, the influence of CT is expected to be much
larger for �e ,e�� than for �e ,e�p�; in �e ,e��, FSI occur
mainly very close to the electromagnetic vertex, at a dis-
tance of less than �1/ �q�, where the compact configura-

FIG. 10. Inclusive electron-scattering cross section at Ee
=3.595 GeV and �=30°. The data points represent the ex-
trapolated nuclear matter cross section �Day et al., 1989�, while
the solid and dashed lines show the results obtained in CGA
including FSI effects, with and without taking into account cor-
relation effects. For comparison, the IA cross section is also
shown by the dot-dashed line �Benhar et al., 1991�.

FIG. 11. Ratios of inclusive cross sections of iron and deute-
rium at Ee=3.595 GeV and �=25°. Solid line, full calculation;
dashed line, IA calculation, neglecting FSI in both iron and
deuteron; dot-dashed line, calculation carried out using the ap-
proximate spectral function of Eq. �37� �Benhar et al., 1995b�.
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tion has not yet evolved back to the ordinary proton. It
has been suggested that the modification of the NN scat-
tering amplitude due to onset of CT may explain the
failure of CGA to reproduce the data in the region of
very low � �Benhar et al., 1991, 1994; Benhar and Pan-
dharipande, 1993�.

However, recent measurements show no enhancement
of the nuclear transparency up to Q2�8 �GeV/c�2 �Gar-
row et al., 2002; Dutta et al., 2003� and seem to rule out
observable CT effects in �e ,e�p� at beam energies of few
GeV. Therefore, the excellent agreement between the
measured inclusive cross sections and the results of the-
oretical calculation �Benhar et al., 1991, 1994; Benhar
and Pandharipande, 1993� carried out using CGA and
the quantum diffusion model of CT �Farrar et al., 1988�
may be accidental.

An improved version of CGA has been recently pro-
posed �Petraki et al., 2003�. Within this approach, the
initial momentum of the struck nucleon, which is aver-
aged over in CGA, is explicitly taken into account. As a
result, one goes beyond the simple convolution form of
the inclusive cross section and gets a generalized folding
function, depending on both the momentum transfer q
and the initial momentum k. Numerical calculations of
the nonrelativistic response of uniform nuclear matter at
1 �q �2 GeV/c show that the inclusion of this addi-
tional momentum dependence leads to a sizable quench-
ing of the low-energy loss tail of the inclusive cross sec-
tion, with respect to the predictions of CGA.

Even though they cover a limited kinematic range and
have been obtained using a somewhat oversimplified
model, the available results suggest that a better treat-
ment of the momentum distribution of the struck
nucleon may improve the agreement between theory
and data in the region of x�2, where CGA begins to
fail. A systematic study of the dependence of the rescat-
tering probability on the initial momentum, based on a
relativistically consistent formalism, is presently being
carried out �Benhar and Sick, 2007�.

A different approach to describe FSI in inclusive
electron-nucleus scattering, based on the relativistic gen-
eralization of the Gersch-Rodriguez-Smith �GRS� 1/ �q�
expansion of the response of many-fermion systems
�Gersch et al., 1973�, has been proposed �Gurvitz and
Rinat, 2002�. Numerical studies of the cross section of
4He �Viviani et al., 2003�, carried out using realistic wave
functions to compute the 	4He � 3He� and 	4He � 3He�
transition matrix elements and a model spectral function
�Ciofi degli Atti and Simula, 1994� to describe the many-
body breakup channels, show that the generalized GRS
expansion provides a fairly good overall description of
the SLAC data �Day et al., 1993� at a beam energy of
3.6 GeV.

IV. EXPERIMENTS

Studies of inclusive electron-nucleus scattering have
been performed at a number of facilities. The bulk of
the currently available data �at momentum transfers �q�

on the order of 500 MeV/c and above upon which we
focus here� has been generated at Saclay �France�,
Bates-MIT �Boston�, Jefferson Lab �Newport News�,
and SLAC �Stanford�. Isolated data sets are available
from other facilities �see the next section�. Without ex-
ception, magnetic spectrometers have been used to mo-
mentum analyze scattered electrons. The magnet ar-
rangements are varied, and at the four facilities
mentioned above they were D�ipole�, DD, Q�uadru-
pole�QQD, and QQDDQ systems, respectively. These
spectrometers had a maximum bending momentum of
0.6, 0.9, 7, and 8 GeV/c, respectively and solid angles
between 4 and 6.8 msr �Mo and Peck, 1965; Bertozzi
et al., 1979; Leconte et al., 1980; Yan, 1997�. As an ex-
ample, we show in Figs. 12 and 13 the JLab High Mo-
mentum Spectrometer �HMS� of Hall C and its associ-
ated focal-plane detector setup. In most cases, the
electron track in the focal plane was reconstructed using
two to four planes of multiwire chambers, and the trig-
ger involved the use of fast scintillator detectors, often
two planes of segmented paddles. Typically the focal
plane detector also included a Čerenkov detector
needed to separate electrons from slower particles such
as pions. At the high-energy facilities, a total absorption
counter provided an additional, cruder, energy measure-
ment to assist in the discrimination of electrons from
other, often more numerous, charged particles.

The data acquisition systems of the earlier, lower-
energy facilities were rather restricted because of com-
puter speed, memory, and high data rates. Consequently,
much of the data were preprocessed on-line and stored
in spectra; this allowed little off-line analysis of the data.
The data acquisition at the higher-energy facilities in-
cluded event-mode acquisition where all coordinates,

FIG. 12. �Color online� HMS spectrometer in Hall C at Jeffer-
son Lab with four magnets arranged as QQQD and the heavily
shielded detector hut.

FIG. 13. HMS detector package, consisting of multiple planes
of multiwire drift chambers, fast scintillators, a subatmospheric
gas Čerenkov counter, and a lead glass total absorption
counter.
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times, and amplitudes are registered for further off-line
analysis. Event-mode acquisition has important advan-
tages in that during the course of the off-line analysis,
shortcomings of the acquisition hardware can be discov-
ered and �often� corrected. This typically leads to much
more reliable cross sections.

In many cases, the product of effective solid angle and
detector efficiency is not easily established. While the
efficiency of the detector system can be determined by
exploiting the redundancy of the detector elements, the
effective solid angle of spectrometers �not using a solid-
angle defining slit of well-known geometry� is difficult to
establish. For that reason, many of the experiments, par-
ticularly the ones at the higher-energy facilities, use elas-
tic scattering from a liquid hydrogen target as a check;
the e-p cross sections are well known. The data on hy-
drogen are often also used to determine offsets in the
scattered electron momenta and angles as reconstructed
from positions and angles of electrons in the detectors.

The inclusive quasielastic spectrum extends over a
momentum range that exceeds �in most cases� the mo-
mentum acceptance of the spectrometers. Consequently,
data taking entails a sequence of runs at stepped values
of the central spectrometer momentum. The resulting
set of spectra, if taken with sufficient overlap, can then
be used to determine both the dependence in 
p
��p /pcentral due to detector acceptance and inefficien-
cies and the true � dependence of the cross section
�Crannell and Suelzle, 1966�.

An experimental aspect peculiar to inclusive scatter-
ing is the need to accurately know the dispersion of the
spectrometer. As the cross section is ultimately deter-
mined for bins in energy loss, the accuracy of the differ-
ential momentum dispersion enters directly in the accu-
racy of the cross sections. The dispersion can be
determined using focal-plane scans with an elastic peak,
provided that the relation between the integral over Bdl
and the quantity measured—typically the B field at one
point—is linear and has no offset at zero momentum.
For spectrometers with high resolution, the dispersion
can be determined using elastic scattering off nuclei with
different mass. This determination of a precise disper-
sion often has not been given the appropriate attention.

After correcting the data for the various shortcomings
of the spectrometers and detector packages �energy and
angle offsets, detector inefficiencies, etc.�, one major cor-
rection is the removal of radiative effects from external
and internal bremsstrahlung. While the theory for radia-
tive effects is well under control �Mo and Tsai, 1969�, the
specifics of quasielastic scattering lead to the need for
extensive modeling. In quasielastic scattering, the en-
ergy loss can be very large as can be the energy loss due
to radiative effects. Since radiation can be emitted be-
fore or after the quasielastic scattering process, the cal-
culation of radiative effects requires knowledge of the
quasielastic structure function for all incident electron
beam energies down to Ee−�max, where Ee is the inci-
dent energy and �max is the largest energy loss of inter-
est. Collecting the required quasielastic data at the cor-
responding lower incident electron energies is often too

time consuming. As a consequence, only few such data
or none at all are taken. In order to obtain the quasielas-
tic cross section at all energies, extensive modeling of
the data in the region covered by experiment is needed,
such that a reliable extrapolation to the other regions is
feasible. With the discovery of y scaling �see Sec. VII�,
this modeling has been greatly facilitated, as the scaling
function F�y� represents a quantity that is only very
weakly dependent on energy and angle and can be inter-
polated over a large range. This unfortunately does not
apply to the � region, which at large � overlaps with the
quasielastic peak. Modeling of the � contribution can be
facilitated when using an approach based on superscal-
ing �Amaro et al., 2005�.

Despite the difficulties introduced by radiative correc-
tions, the impact on the overall accuracy is relatively
small. For cross sections that do not depend greatly on
�, the effect of radiative corrections is small; the uncer-
tainty introduced is also small if the model cross section
is not grossly deficient.

There is another correction—not always considered—
that is unique to cross-section measurements of con-
tinuum spectra at large energy losses. One must account
for the contributions of electrons with momenta outside
the momentum acceptance of the spectrometer, which
interact with part of the spectrometer yoke or vacuum
chamber, and are rescattered into the detector. Usually
the trajectory of these electrons cannot be traced back
through the spectrometer as their momentum is not
known. This process can lead to background, which in
general is in the % region, but can become problematic
when, e.g., an L /T separation is performed. In this case,
the effect is greatly enhanced in magnitude if the L or T
contribution is small as compared to the other one, as
happens at the larger momentum transfers where the
longitudinal response gives a small contribution to the
cross section. Such rescattering events can become espe-
cially important if the experiment uses long �liquid or
gas� targets that extend beyond the acceptance of the
spectrometer; in this case, electrons can enter the spec-
trometer through the solid-angle defining collimator and
scatter from the vacuum chamber or pole pieces.

Experimentally, provisions against scattering from the
yoke �but not the pole pieces� include the use of baffles
on the high or low momentum wall of the vacuum cham-
ber �Leconte et al., 1980�. In some cases, these back-
grounds have also been subtracted by Monte Carlo
simulations of electron paths through the spectrometer
�Danel, 1990�. They have been measured using a solid
target displaced along the beam direction, and correc-
tions up to 10% have been found �Danel, 1990�. The
most reliable method to remove these contributions has
been accomplished via a secondary measurement of the
energy of the electron in the focal plane, using some
total-absorption counter �Jourdan, 1996�. Once one
knows with reasonable accuracy the energy of the de-
tected particles, they can be traced back and one can
find out whether they come directly from the target or
not. For the QQDDQ 8 GeV spectrometer at SLAC, an
acceptance-reducing collimator placed in between the
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two dipoles allowed an experimental determination of
the fractional contribution of rescattered events. At
large energy loss, this fraction has been found to be
quite substantial �Jourdan, 1996�.

On the whole, this correction for rescattering has been
given too little attention, particularly at the lower ener-
gies where their contribution is more important and
where secondary energy measurements using total-
absorption counters are not very effective.

One further correction that has to be applied to the
data is the subtraction of electrons resulting from e+e−

pair production in the target. The e− from this charge-
symmetric process gives a significant contribution to the
inclusive cross section, particularly at large scattering
angles and small energy loss � where the quasielastic is
very small. The effect of this contribution is usually
handled by subtracting the spectrum, measured under
identical kinematic conditions, of the pair produced e+.

V. DATA

The modern era of experiments dedicated to quasi-
elastic electron-nucleus scattering began in 1969 with a
series of data sets from Kharkov �Dementii et al., 1969;
Titov et al., 1969, 1971, 1974; Titov and Stepula, 1972�; a
first systematic survey of quasielastic electron scattering
from a range of nuclei �He to Pb� �Moniz et al., 1971;
Whitney et al., 1974; McCarthy et al., 1976� was made at
Stanford. The first attempt to separate the response
functions was performed at Stanford when data for 40Ca
and 48Ca were collected at constant values of the three-
momentum transfer �Zimmerman, 1969; Zimmerman
and Yearian, 1976�.

At about the same time, quasielastic electron scatter-
ing from 12C was studied at the Harvard CEA at ener-
gies ranging from 1 to 4 GeV and angles from 8.5° to 18°
using a half-quadrupole spectrometer �Stanfield et al.,
1971�. At DESY, inclusive electron scattering data in the
quasielastic region were studied �Heimlich, 1973; Zeller,
1973; Heimlich et al., 1974� from 6Li and 12C at energies
up to 2.7 GeV and angles as large as 15°.

The high-energy beam at SLAC was exploited in the
mid-1970s to measure quasielastic cross sections at very
high momentum transfer ��4 �GeV/c�2� on 3He �Day
et al., 1979�. A considerable body of quasielastic data
was also measured at SLAC in the mid-1980s �Day et al.,
1987, 1993; Baran et al., 1988; Baran, 1989; Potterveld,
1989; Sealock et al., 1989; Chen, 1990; Meziani et al.,
1992� using the high-intensity, low-energy ��5 GeV�
beam from the Nuclear Physics at SLAC �NPAS� injec-
tor.

Starting in the late 1970s, a series of experiments be-
gan to measure data for a wide range of nuclei �2H to
U�, often as part of a program to separate the structure
functions, both at Bates �Zimmerman et al., 1978; Alte-
mus et al., 1980; Deady et al., 1983, 1986; Hotta et al.,
1984; Blatchley et al., 1986; Dow, 1987; O’Connell et al.,
1987; Dow et al., 1988; Dytman et al., 1988; Quinn et al.,
1988; VanReden et al., 1990; Yates et al., 1993� and at

Saclay �Mougey et al., 1978; Barreau et al., 1983; Meziani
et al., 1984, 1985; Marchand et al., 1985; Zghiche et al.,
1994; Gueye et al., 1999�.

In 1996, an experiment at JLab, intended to extend
the range in four-momentum transfer Q2 and Bjorken
scaling variable x, produced data in the quasielastic re-
gion out to 5�GeV/c�2 �Arrington, 1998; Arrington et al.,
1999�. In the past year, a new experiment using the full
energy of Jlab �6 GeV� extended these measurements
even further using 2H, 3He, 4He, Be, C, Cu, and Au
targets.

As most of the data are not published in numerical
form, we have prepared, as part of this review, a website,
Quasielastic Electron Nucleus Scattering Archive, http://
faculty.virginia.edu/qes-archive. In this archive, we have
placed all radiatively unfolded cross sections we could
locate in tabular form. The site also gives the references
and some details on the experiments.

For some nuclei, quite a comprehensive set of cross
sections is available. Figure 14 shows the range in �q� and
y covered by the data for 12C. The symbols incorporate
information on �=1.0/ �1.0+ �2q2 /Q2�tan2� /2�, indicating
that only for the lower momentum transfers is a large
enough � range is covered for reliable L /T separations.

VI. EXTRACTION AND USE OF NUCLEON FORM
FACTORS

We began our discussion on the quasielastic scattering
process by describing it as the incoherent scattering of
high-energy electrons from the bound and quasifree
nucleons. Any quantitative description of this process
then depends on an accurate description of the elemen-
tary electron-nucleon �proton and neutron� cross sec-
tion.

In this section, we briefly review the status of the form
factors, with particular attention to the most recent de-
velopments. A comprehensive review is not called for

FIG. 14. Kinematic range covered by the �e ,e�� data for 12C,
plotted as a function of �q� and y �for definition, see Sec. VII�.
The symbols encode the range of � covered by the data �bins of
0.2 in ��.
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and the interested reader should consult Gao �2003� and
Hyde-Wright and de Jager �2005� or the recent confer-
ence proceedings �Day, 2005; de Jager, 2005�.

The form factor data, until recently, have been ob-
tained, in the case of the proton, through a Rosenbluth
separation that exploits the linear dependence of the
cross section on the polarization � of the virtual photon.
In terms of exchange of a single virtual photon, the cross
section depends on the Sachs form factors GE and GM
via

d�

d�
= �NS�GE

2 + �GM
2

1 + �
+ 2�GM

2 tan2��/2� , �52�

with �=Q2 /4M2 and �NS=�MottE� /E0. Rearranging this
expression with �−1=1+2�1+��tan2�� /2� yields

�R �
d�

d�

��1 + ��
�NS

= �GM
2 �Q2� + �GE

2 �Q2� . �53�

By making measurements at a fixed Q2 and variable
��� ,E0�, the reduced cross section �R can be fitted with a
straight line with slope GE

2 and intercept �GM
2 . The

Rosenbluth technique, because of the dominance of GM
p

over GE
p at large Q2, demands strict control over the

kinematics, acceptances, and radiative corrections over a
large range of both incident and final electron energies
and angles.

The analysis of quasielastic scattering has utilized
widely accepted parametrizations or models of the
nucleon form factors, based on data collected, starting in
the 1950s through the 1990s. The data have been de-
scribed by simple fits as well as sophisticated models
based on the vector dominance model �VDM�, disper-
sion relations and quark models; see Gao �2003�, Hyde-
Wright and de Jager �2004�, and Perdrisat et al. �2007�
for a review.

The lack of a free neutron target with which to study
the neutron properties forces the experimental effort to
investigate the neutron bound in a nucleus. The deu-
teron, weakly bound and with a ground state that, in
principle, is calculable, has been the nucleus of choice
for unpolarized studies. Until the early 1990s, the extrac-
tion of GE

n was done most successfully through either
small angle elastic electron scattering from the deuteron
�Drickey and Hand, 1962; Benaksas et al., 1964; Bumiller
et al., 1970; Galster et al., 1971; Simon et al., 1981; Platch-
kov et al., 1990� or by quasielastic e-D scattering
�Hughes et al., 1965, 1966; Bartel et al., 1973; Lung et al.,
1993�.

In the IA, the elastic electron-deuteron cross section
is the sum of proton and neutron responses with deu-
teron wave-function weighting. The coherent nature of
elastic scattering gives rise to an interference term be-
tween the neutron and proton response that allows the
smaller GE

n contribution to be extracted. Still, the large
proton contribution must be removed. Experiments
have been able to achieve small statistical errors but re-

main very sensitive to the deuteron wave-function
model, leaving a significant residual dependence on the
NN potential.

Quasielastic eD scattering provides a complementary
approach to the extraction of GE

n . In the IA model pio-
neered by Durand and McGee �Durand, 1961; McGee,
1967�, the cross section is an incoherent sum of p and n
cross sections. The extraction of GE

n requires both a
Rosenbluth separation and the subtraction of the size-
able proton contribution. It suffers, unfortunately, from
unfavorable error propagation and a sensitivity to the
deuteron structure.

GM
n has been extracted from both inclusive and exclu-

sive quasielastic scattering from the deuteron. GM
n , when

determined from the ratio 2H�e ,e�p� / 2H�e ,e�n�, always
working near the top of the quasielastic peak, has the
smallest uncertainties arising from FSI, MEC, and de-
tails of the ground-state wave function. For both the ra-
tio technique and 2H�e ,e�n�p, the absolute efficiency of
the neutron detector must be determined. The most pre-
cise data are from MAMI �Kubon et al., 2002�; recently
GM

n was measured out to 5 �GeV/c�2 �Brooks and Lach-
niet, 2005; Lachniet, 2006� at JLab.

It has been known for many years that the “small”
nucleon electromagnetic form factors GE

n and GE
p at

large Q2 could be measured through spin-dependent
elastic scattering from the nucleon, accomplished either
through a measurement of the scattering asymmetry of
polarized electrons from a polarized nucleon target
�Dombey, 1969; Donnelly and Raskin, 1986; Raskin and
Donnelly, 1989� or equivalently by measuring the polar-
ization transferred to the nucleon �Akhiezer and Re-
kalo, 1974; Arnold et al., 1981�.

In the scattering of polarized electrons from a polar-
ized target, an asymmetry appears in the elastic scatter-
ing cross section when the beam helicity is reversed due
to the presence of a polarized piece � in addition to the
unpolarized piece, �. The total cross section is

��h� = � + h�, h = ± pbeam. �54�

The asymmetry

A =
�+ − �−

�+ + �−
=
�

�
�55�

can be written schematically �a, b, c, and d are known
kinematic factors� as

A =
a cos���GM�2 + b sin�� cos��GEGM

c�GM�2 + d�GE�2 , �56�

where �� and �� fix the target polarization axis. With
the target polarization axis in the scattering plane and
perpendicular to q� ��� ,��=90° ,0° �, the asymmetry
ATL is proportional to GEGM. With the polarization axis
in the scattering plane and parallel to q ��� ,��

=0° ,0° �, one measures the transverse asymmetry AT,
which in the case of a free nucleon would be insensitive
to GM

n �depending simply on the kinematic factors�. In
3He��e� ,e��X scattering, the denominator contains contri-
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butions arising from both protons and neutrons and at
modest Q2 is sensitive to GM

n �Gao, 2003�.
In elastic scattering of polarized electrons from a

nucleon, the nucleon obtains �is transferred� a polariza-
tion whose components Pl �along the direction of the
nucleon momentum� and Pt �perpendicular to the
nucleon momentum� are proportional to GM

2 and GEGM,
respectively. Polarimeters are sensitive only to the per-
pendicular polarization components, so precession of
the nucleon spin before the polarimeter in the magnetic
field of the spectrometer �for the proton� or a dipole
�inserted in the path of neutron� allows a measurement
of the ratio Pt /Pl and the form factor ratio: GE /GM

=−�Pt /Pl���E0+E�� /2MN�tan�� /2�. The recoil polariza-
tion technique has allowed precision measurements of
GE

p to nearly 6 �GeV/c�2 �Jones et al., 2000; Gayou et al.,
2001, 2002�

These data on the proton have generated a great deal
of activity as they have revealed a major discrepancy
between the Rosenbluth data and the polarization trans-
fer data for GE

p at Q2�2 GeV2/c2. A detailed discussion
of these topics is beyond the scope of this review; it has
been discussed in the papers of Gao �2003�, Hyde-
Wright and de Jager �2004�, and Perdrisat et al. �2007�.

Extraction of the neutron form factors using polariza-
tion observables is complicated by the need to account
for Fermi motion, MEC, and FSI, complications that are
absent when scattering from a proton target. Fortu-
nately it has been found for the deuteron that in kine-
matics that emphasize quasifree neutron knockout, both
the transfer polarization Pt �Arenhoevel, 1987� and the
beam-target asymmetry AV

eD �Arenhoevel et al., 1988�
are especially sensitive to GE

n and relatively insensitive
to the NN potential describing the ground state of the
deuteron and other reaction details; see Fig. 15. The util-
ity of 3He as a polarized neutron arises from the fact
that in the ground state �dominantly a spatially symmet-
ric S wave�, the proton spins cancel and the 3He spin is
carried by the unpaired neutron. Calculations �Ishikawa
et al., 1998; Golak et al., 2001� of the beam-target asym-
metry from a polarized 3He target have shown it to have
only modest model dependence.

Extraction of the neutron form factors from beam-
target asymmetry measurements in inclusive scattering is
hindered by the dominant contribution of the proton,
even with polarized 3He where the protons are respon-
sible for just 10% of the 3He polarization. This is espe-
cially true in the case of the neutron charge form factor
�Jones-Woodward et al., 1991; Jones et al., 1993�, though
methods to minimize the role of the proton have been
proposed �Ciofi degli Atti et al., 1995�. GM

n has been ex-
tracted from inclusive polarized electron-polarized 3He
scattering at Bates and Jefferson Lab out to Q2

=0.6�GeV/c�2 �Gao et al., 1994; Xu et al., 2000, 2003�.
Inclusive asymmetry measurements on 3He in the
threshold region �Xiong et al., 2001� have been used to
successfully test nonrelativistic Faddeev calculations,
which include MEC and FSI.

Fortunately the development of polarized beams and
targets has been able to leverage the utility of exclusive
quasielastic scattering from bound neutrons in both 3He
and 2H providing precision data on the electric form
factors of the neutron. Coincidence measurements allow
one to avoid completely the subtraction of the dominant
proton.

Since the early work on the neutron at Bates �Jones et

al., 1993; Eden et al., 1994� through 3He��e� ,e��X and
D�e� ,e�n� �p, respectively, further development of high po-
larization beams and targets, together with high duty
factor accelerators, has improved the data set �and out-
look� for GE

n �Meyerhoff et al., 1994; Becker et al., 1999;
Herberg et al., 1999; Ostrick et al., 1999; Passchier et al.,
1999; Rohe et al., 1999; Zhu et al., 2001; Warren

et al., 2004� through either D� �e� ,e�n�p, 3He��e� ,e�n�, or
2H�e� ,e�n� �p and GM

n through 3He��e� ,e��X �Gao et al.,
1994; Xu et al., 2000, 2003�.

In order to understand the discrepancy between po-
larization transfer and Rosenbluth results for GE

p , sev-
eral investigators �Blunden et al., 2003; Guichon and
Vanderhaeghen, 2003; Chen et al., 2004; Rekalo and
Tomasi-Gustafsson, 2004� have explored the possibility
of two-photon exchange corrections. While only incom-
plete calculations exist, the results of Blunden et al.
�2003� and Chen et al. �2004� account for part of the
difference.

The most recent work by Chen et al. �2004� describes
the process in terms of hard scattering from a quark and
uses generalized parton distributions to describe the
quark emission and absorption. Chen et al. argued that
when taking the recoil polarization form factors as input,
the addition of the two-photon corrections reproduces

FIG. 15. A calculation �Arenhoevel et al., 1988, 1989, 1992� of
the electron-deuteron vector asymmetry Aed

V at Q2=0.5
�GeV/c�2, which demonstrates the insensitivity of Aed

V to the
reaction model and subnuclear degrees of freedom at angles
near 180° corresponding to neutron along the momentum
transfer.
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the Rosenbluth data. However, Arrington �2005� has
shown that when the corrections of Chen et al. are ap-
plied to the new Jefferson Lab Rosenbluth data, which
have small errors �see below and Fig. 16�, only one-half
of the discrepancy is explained.

Direct tests for the existence of two-photon exchange
include measurements of the ratio ��e+p� /��e−p�, where
the real part of the two-photon exchange amplitude
leads to an enhancement, and in Rosenbluth data, where
it can lead to nonlinearities in �. There is no experimen-
tal evidence of nonlinearities in the Rosenbluth data,
and the e+/e− ratio data �Mar et al., 1968� are of only
modest precision, making it difficult to absolutely con-
firm the presence of two-photon effects in these pro-
cesses.

It is the imaginary part of the two-photon amplitude
that can lead to single spin asymmetries, but again the
existing data �Kirkman et al., 1970; Powell et al., 1970�
are of insufficient precision to allow one to make a state-
ment. There is, however, one observable that has pro-
vided unambiguous evidence for a two-photon effect in
ep elastic scattering. Groups in both the United States
�Wells et al., 2001� and Europe �Maas et al., 2005� have
measured the transverse polarized beam asymmetry.
These measurements are significant but have limited
utility in solving the GE

p discrepancy. The reader inter-
ested in more details about the existence of two-photon
effects and their role in the form factor measurements
should refer to Arrington �2005�.

For quasielastic electron-nucleus scattering one there-
fore must ask the following question: Which form fac-
tors should one use in the interpretation of the data?
What one needs is a parametrization of the electron-
nucleon cross section for the various kinematics, and this
parametization is provided by the form factors GE and
GM determined via Rosenbluth separation of the eN
cross sections. Whether the G’s from Rosenbluth sepa-
rations or polarization transfer, with or without two-

photon corrections, are the true �one-photon exchange�
form factors is largely irrelevant.

In any case, the discrepancy is largely confined to the
proton electric form factor GE

p . At large momentum
transfers �above 1�GeV/c�2�, the quasielastic cross sec-
tion is weakly dependent on GE

p . For example, at for-
ward angles at 1�GeV/c�2, the electric part of the proton
cross section is approximately 30%, decreases to less
than 20% at 2 �GeV/c�2, and to less than 10% at
4 �GeV/c�2. The electric proton contribution to quasi-
elastic electron-nucleus scattering is almost a factor of 2
smaller due to the magnetic contribution of the neutron
cross section.

We also note that another potential problem recently
discussed �Bystritskiy et al., 2007�, namely, the difference
between radiative corrections calculated by different au-
thors, hardly influences the interpretation of quasielastic
electron-nucleus scattering. For the time being, most of
the data on both the nucleon and nuclei have been ra-
diatively corrected using the approach of Mo and Tsai
�including various improvements made over the years�,
and eventual shortcomings drop out when using nucleon
form factors in predicting quasielastic cross sections.

VII. SCALING

In general, the inclusive cross section is a function of
two independent variables, the momentum transfer q
and the energy transfer � of the electron. �The L or T
nature of the scattering might be considered as a third
independent—discrete—variable.� Scaling refers to the
dependence of the cross section on a single variable
y�q ,��, itself dependent on q and �. This scaling prop-
erty is basically a consequence of momentum and en-
ergy conservation in the quasifree scattering process
�West, 1975; Sick et al., 1980�.

Inclusive scattering by a “weakly” interacting probe
such as the electron can often be interpreted in terms of
IA �see Sec. II�. Quantitative derivations of scaling in IA
have been given in several places; see, e.g., Day et al.
�1990�. Here we first look at a qualitative consideration,
which, however, contains much of the basic physics. En-
ergy and momentum conservation for quasifree scatter-
ing off an initially bound nucleon with momentum k
yields

� = ��k + q�2 + m2�1/2 − m + E + Erecoil, �57�

with Erecoil=k2 /2m�A−1�. Splitting k into its compo-
nents k� and k� parallel and perpendicular to q and as-
suming �q � ,�→�, such that the k�

2 and recoil- and
removal-energy terms can be neglected, yields ��+m�2

=k�
2+2k� �q � + �q�2−m2. This equation reveals that k�

=y�q ,��; q and � are no longer independent variables.
The same value of y ��k�� can result from different com-
binations of �q� and �. The cross section ���q � ,�� di-
vided by the electron-nucleon cross section �eN��q � ,��
and a kinematic factor gives a function F�y� that only
depends on y. This function F has an easy approximate
interpretation: it represents the probability to find in the

FIG. 16. Result from the global analysis of the L-T �Rosen-
bluth� data �Arrington et al., 2007�. Open �full� points are ob-
tained before �after� two-photon exchange corrections. The
dashed line is a fit to the polarization-transfer data.
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nucleus a nucleon of momentum component y parallel
to q.

The quantitative derivation of y scaling is more in-
volved �Pace and Salme, 1982; Day et al., 1990�. In the
limit of very large momentum transfer, one also finds
scaling; the main quantitative difference concerns the re-
striction of the region �k � ,E which contributes to F�y�;
Fig. 17 shows an example. In the limit of very large �q�,
the scaling function is given by

F�y� = 2��
y

�

kdkñ�y ; �k�� , �58�

with

ñ�y ; �k�� = �
0

�

dES��k�,E� . �59�

Allowing the upper integration limit to �, ñ would then
correspond to

n�k� = �
0

�

dES��k�,E� �60�

and F�y� would become the probability n�k�� to find a
nucleon with momentum component k� in the nucleus.
This approximation is quite reasonable; due to the rapid
falloff of S�k ,E� with increasing �k� or E, the integral is
dominated by the region near ��k � =y ,E=0�.

As an illustration of scaling in quasielastic electron
scattering, we show in Fig. 18 some available inclusive
scattering data for 3He. The data cover a large kinematic
range and extend over many orders of magnitude in
cross section, and the quasielastic peak shifts over a
large range of � with increasing �q�. The same data, now
shown in terms of the scaling function and plotted as a
function of the scaling variable y �Fig. 19�, show an im-

pressive scaling behavior for y�0, i.e., for the low-�
side of the quasielastic peak. The cross section that dif-
fers by several orders of magnitude define the same
function F�y�. For y�0, the values strongly diverge, pri-
marily due to the more involved kinematics and the dif-
ferent q dependence of the inelastic eN cross section ��
excitation in particular�, which contributes to the inclu-
sive cross section at large � and q.

In the IA, because of the distribution of strength in E
of the spectral function, we expect that the asymptotic
limit of the scaling function would be approached from
below with increasing �q�.

This scaling property allows the data to be exploited
in several ways: The presence or absence of scaling tells
us something about the reaction mechanism �we as-
sumed IA without FSI to derive scaling�, a residual �q�
dependence of F�y� can tell us something about the �q�
dependence of the in-medium nucleon form factor and
FSI, and the functional form of the experimental scaling
function provides some insight into the nuclear spectral

FIG. 17. Integration region of S�k ,E� in Eq. �59� �below cor-
responding curves� contributing to F�y� at y=−0.2 GeV/c and
given �q� �Day et al., 1990�. The long-dashed line shows the
location of the “ridge” of S�k ,E� where, at large �k�, most of
the strength is expected to occur.

FIG. 18. Cross sections for 3He�e ,e�� as a function of incident
electron energy and energy loss, for different incident electron
energies.

FIG. 19. Scaling function for 3He�e ,e��. The various data sets
are labeled by electron energy �MeV� and angle �deg�.
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function. We address some of these points in more detail
below.

Reaction mechanism. The data show a marked devia-
tion from scaling behavior for y�0, indicating that in
this region, processes other than quasifree scattering,
such as MEC, pion production, � excitation, and DIS,
contribute. This is confirmed by substituting MEC or �
cross sections for the electron-nucleon cross section in
our development of F�y�. In this instance, the data pro-
foundly fail to scale for y�0 as well. We thus may con-
clude in particular that, at places where the data ap-
proximately scale, contributions of reaction mechanisms
other than quasifree scattering are smaller than the re-
sidual nonscaling of the data. Thus, scaling gives us di-
rect information on the reaction mechanism, a question
we must understand before we can use the data for
quantitative interpretation.

Bound-nucleon form factor. The scaling function is se-
cured by dividing the experimental cross sections by the
electron-nucleon cross section. If the �q� dependence of
the electron-nucleon cross section is not correct, the
data will not scale, at least as long as the range of �q�
covered is large enough to lead to a large variation of
the elementary cross section. In order to exploit this
idea quantitatively, one can compute the scaling function
using a modified nucleon form factor describing the as-
sumed revision of the bound-nucleon form factor, de-
pending on one parameter, and then fit F�y� using a flex-
ible parametrization. The minimum of �2 of this fit gives
the best value for the parameter modifying the nucleon
form factor.

It has been found for iron, for example �Sick, 1986�,
that within the systematic error of 3% no change of the
nucleon radius �more precisely the size parameter in the
dipole formula� can be supported by the data. As the
cross sections receive a �70% contribution from mag-
netic scattering, this result mainly applies to the mag-
netic radius; the limit on any medium modification of
the charge radius is twice as large. Given the number of
models that predict a sizable influence of the nuclear
medium on the nucleon form factors, the information
provided by scaling behavior is quite constraining.

Constituent mass. In the calculation of the scaling vari-
able y, the mass mc of the constituent from which the
electron scatters plays an important role, at least as long
as the recoiling constituent is not ultrarelativistic �recoil
energy �3 GeV�. The dependence of the scaling func-
tion on mc can be exploited to learn about the nature of
the constituent. This is important for small � and large
q, where it has been suggested that scattering from
quark clusters or individual quarks plays a role �Pirner
and Vary, 1981; Kumano and Moniz, 1988�. For the ki-
nematical region explored, the data are best explained
by scattering from nucleons.

It is only possible to identify the participating con-
stituent �its mass and form factor� if the data cover a
large range of momentum transfer. If only a limited
range is considered, accidental compensations can occur
that then obscure an interpretation. For instance, the

simultaneous observation of y scaling �nucleon mass and
form factor� and � scaling �pointlike, massless constitu-
ents� was rather confusing until it could be shown to
result from an accidental cancellation of q dependencies
�Benhar and Liuti, 1995; Day and Sick, 2004�.

Nucleon FSI. The final-state interaction of the
knocked-out nucleon in general is of minor importance
in inclusive scattering; the electron carries information
only about the FSI that takes place within a distance of
order 1/ �q� from the scattering vertex. Subsequent inter-
actions of the recoil nucleon on its way out of the
nucleus �which are much more important for, e.g.,
�e ,e�p�� do not influence the scattered electron.

At low energy loss FSI does, however, play a role, as
discussed in Sec. III. While the distribution of the spec-
tral function S��k � ,E� in E leads to a convergence of
F�y , �q � � from below with increasing �q�, the FSI leads to
a convergence from above. Figure 20, which presents the
scaling function F�y ,Q2� for iron for fixed values of y,
shows this convergence from above, and, with the large
momentum transfers recently made available at Jeffer-
son Lab �Arrington et al., 1999�, that convergence of
F�y ,Q2� can be demonstrated for values of −y as large as
0.5 GeV/c.

FIG. 20. Convergence of F�y ,Q2� with increasing Q2, for dif-
ferent values of y �Arrington et al., 1999�. The rise of F�y ,Q2�
for y=0 and increasing Q2 is due to the � contribution.
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Drawing conclusions on FSI starting from scaling
should be done with caution. Scaling is usually derived
assuming the IA, so the experimental observation of
scaling would seemingly suggest that FSI are unimpor-
tant. This, however, is not correct. It has been shown
�Benhar, 1999� how scaling in the presence of FSI can
come about: for quasielastic scattering, the width of
the quasielastic peak becomes constant at large �q�
�due to relativistic kinematics�. If at the same time the
folding function that accounts for FSI becomes q
independent—which is the case for NN scattering,
where the total cross section is essentially independent
of momentum—then the folded function also is indepen-
dent of �q�, and will scale. The same observation has
been made for deep inelastic lepton-nucleon scattering
�Paris and Pandharipande, 2002�.

It has also been pointed out �Weinstein and Negele,
1982� that for a hard-core interaction the scaling func-
tion is not directly related to the momentum distribu-
tion, due to the effect of FSI. However, for less singular
interactions, such as the Paris potential, it has been
shown �Butler and Koonin, 1988� via a calculation in
Brueckner-Goldstone theory that the full response does
converge to the IA result at large �q�.

Spectral function at large momentum. The properties
of S�k ,E� at large �k� are closely connected to the behav-
ior of the inclusive cross section at large �q� �several
GeV/c� and comparatively low � �several hundred
MeV�. This is qualitatively obvious when considering
the limit of � 0. It is only possible �working in the
PWIA� to transfer a large momentum �q� to the nucleon
with the result that the nucleon in the final state will
have both small energy and hence small momentum k
+q, if the initial nucleon had momentum k�−q before
the scattering.

The region of the low-� tail of the quasielastic re-
sponse is best studied by considering the ratio of the
nuclear and deuteron response �the latter being well
known experimentally and accurately calculable for any
NN potential�.

Figure 21 shows the ratio for one of the kinematics at
large �q�, small �, where data are available. Data and
theory are plotted as a function of the variable yD, which
is basically the component of the nucleon momentum k
parallel to q, calculated for the deuteron. The dip at y
=0 results from the fact that the per nucleon momentum
space density at low momenta is higher for the deuteron
�see Fig. 3�; the “plateau” in the region of y�−300
MeV/c results from the fact that the deuteron and
nuclear momentum distributions have a similar falloff at
large momenta and essentially differ by an overall fac-
tor.

Figure 21 shows that the particular nuclear matter
spectral function used in this calculation �Benhar et al.,
1989� agrees well with the data. Tests carried out by
renormalizing the spectral function at �k ��kF have
shown that the cross-section ratio at y�−300 MeV/c is
essentially proportional to S��k � ,E� at �k ��kF. One
needs to realize, however, that for a quantitative study

of n��k � �, it is important to include FSI, as has been done
in Fig. 21, although it was suggested �Frankfurt et al.,
1993� that the FSI could cancel in this ratio �see also Fig.
11�. Also, when dealing with nuclei with A�2 it is im-
portant to use a spectral function S�k ,E� rather than just
a momentum distribution �which ignores the E depen-
dence of S�; see Fig. 11.

In terms of the scaling variable x, the inclusive cross
sections now reach up to x�3. It is of course tempting
to interpret the strength near x=2 �x=3� as originating
from scattering off two �three� correlated nucleon sys-
tems having 2m �3m� mass. This type of interpretation
�Egiyan et al., 2003�, however, ignores the fact that the
data exhibit clear y scaling, hereby proving that the elec-
tron scatters from constituents with nucleonic mass and
nucleonic form factor. The interpretation of cross-
section ratios between nuclei as ratios of correlated
strength is also hindered by the fact that x, unlike y, is
not simply related to the momentum carried by the
struck nucleon �Liuti, 1993�. In addition, the strength at
very negative y �large x� is strongly affected by
A-dependent FSI; see Fig. 11.

Superscaling. Recently, the scaling idea has been
pushed one step further �Donnelly and Sick, 1999�. Mo-
tivated by the Fermi-gas model, in which all momentum
distributions only differ by an overall scale factor �the
Fermi momentum�, Donnelly and Sick have investigated
whether the scaling functions of different nuclei can also
be related to each other by adjusting one overall scale
factor. It turns out that this is possible for nuclei with
A�12; for lighter nuclei, deviations near the top of the
quasielastic peak are visible. Figure 22 shows an ex-
ample of the scaling function f�!�� plotted as a function
of !�, which corresponds to the variable y scaled by a
“Fermi momentum.”

This scaling as a function of nuclear mass number is
actually better realized than the normal scaling, which is
broken by the non-quasielastic contributions to the re-

FIG. 21. Per nucleon cross section ratio of nuclear matter and
the deuteron taken at 3.6 GeV and 30°, as a function of the
scaling variable y. The result of the CBF calculation is shown
as a solid line �Benhar et al., 1994�.
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sponse; these non-quasielastic contributions are not too
dissimilar for different nuclei at the same kinematics. As
the momentum used to scale y is a slow and smooth
function of A, this superscaling property is particularly
useful to interpolate data on F�y� in order to predict
F�y� for nuclei not experimentally investigated.

For the longitudinal response, superscaling is particu-
larly well realized, even at large energy loss where the
transverse quasielastic response is obscured by inelastic
eN scattering. Figure 23 shows the longitudinal response
function determined via superscaling from the available
separated data on C, Ca, and Fe. This function, inciden-
tally, also displays a tail toward larger � discussed in Sec.
II.

This superscaling feature is particularly useful when
one realizes that �e ,e�� and 	-induced quasielastic pro-
cesses such as �	 ,e� or �	 ,�� differ only by the elemen-
tary vertex, the underlying nuclear physics being the
same. Cross sections for �e ,e�� together with superscal-

ing then allow one to accurately predict the cross section
for neutrino-induced reactions �Amaro et al., 2005�, cur-
rently an area of intense experimental activity.

VIII. LIGHT NUCLEI

Quasielastic scattering from light nuclei �A�4� occu-
pies a special place. For these systems, several methods
to calculate the inclusive response have been used, often
treating both the initial and the final state in less ap-
proximate ways than imposed by the complexities of the
many-body system for heavier nuclei. For A=3, for ex-
ample, the first calculation of a realistic spectral function
was performed 30 years ago �Dieperink et al., 1976�. A
variety of approaches to describe quasielastic scattering
from light nuclei is available; we address some of their
results below.

The longitudinal response for the A=3 nuclei has
been calculated �Efros et al., 2004� using the Lorentz
integral transform technique �see also Sec. IX�. They use
ground-state wave functions expanded in terms of corre-
lated sums of hyperspherical harmonics, calculated using
different NN forces �e.g., Argonne 18, Bonn-A� and
three-body force �3BF� models. As their calculation is
essentially nonrelativistic, they restrict it to �q �
�500 MeV/c, and consider the longitudinal response to
avoid the difficulty of MEC. Figure 24 shows their re-
sults for 3He and 3He compared to data.

This calculation finds rather small differences between
the responses calculated using different modern NN
forces. The three-body force leads to a systematic reduc-
tion in the height of the quasielastic peak, presumably as
a consequence of the tighter binding, which leads to a
more compressed �extended� distribution in radial �mo-
mentum� space. While for 3He the 3BF is helpful in ex-
plaining the data, this does not seem to be the case for
the 3H nucleus. In a recent paper �Efros et al., 2005�, the
range of applicability of this nonrelativistic calculation
has been extended.

The inclusive cross section has also been calculated
separately for the two- and three-body breakup �Golak

FIG. 22. Scaling function for nuclei A=4–197 and fixed kine-
matics ��q � �1 GeV/c� as a function of !�, which corresponds
to the variable y scaled by a “Fermi momentum.”

FIG. 23. Longitudinal superscaling function extracted �Don-
nelly and Sick, 1999� from the available data on C, Ca, and Fe,
for momentum transfers between 300 and 570 MeV/c.

FIG. 24. Comparison of experimental and theoretical response
�Efros et al., 2004� for Argonne 18 potential �dotted� and Ar-
gonne V18�3BF �solid�. Data are shown as open circles �Dow
et al., 1988� and squares �Marchand et al., 1985�.
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et al., 1995�. For the ground state, Golak et al. used a
solution of the 34-channel Faddeev equation for the
Bonn-B NN potential. For the final state, the authors
separated the contribution from the �symmetrized�
plane-wave approach and the one from rescattering pro-
cesses, summed to all orders. This calculation again is
nonrelativistic, and does not include MEC.

Figure 25 shows the results of Golak et al. for 3He and
3H, with the contributions of two- and three-body
breakup separately displayed.

The inclusive cross section has also been calculated
using a realistic coupled-channel potential with single
�-isobar excitation for the initial and final hadronic
states, with the corresponding e.m. current with two-
baryon contributions �Deltuva et al., 2004�. The poten-
tial is an extension of the CD-Bonn NN potential. The
main �-isobar effects on observables result from the ef-
fective three-nucleon force and the corresponding effec-
tive two- and three-nucleon exchange currents. Both ini-
tial bound state and final continuum state are exact
solutions of the three-particle scattering equations.

In particular, at low momentum transfer Deltuva et al.

found large effects due to the � in the threshold region
of the transverse response. At the larger momentum
transfers, e.g., at 500 MeV/c shown in Fig. 26 for 3He,
the contribution of � degrees of freedom is smaller, in
agreement with the observation made in Sec. IX. The
small shift between data and calculation has been as-
signed to the use of nonrelativistic kinematics �necessary
for consistency�. Deltuva et al. have also calculated other
e.m. observables such as elastic form factors and exclu-
sive quasielastic cross sections, and find rather large
changes when allowing for the coupled channel nucleon-
� case.

As pointed out in Sec. VII, the scaling function F�y� is
closely related to the spectral function and momentum
distribution. In the limit of very large momentum trans-
fer, and when neglecting the effects due to finite E and
FSI, the scaling function is given by

F�y� = 2��
�y�

�

n��k��d�k� , �61�

in which case the momentum distribution can be ob-
tained from

n��k�� =
1

2�y

dF

dy
with k = �y� . �62�

For the deuteron, neglecting the effects of finite E and
FSI is not unreasonable as the data reach very high q.
The n�k� derived via scaling �Ciofi degli Atti et al., 1987�

FIG. 25. Comparison of theoretical �Golak et al., 1995� and
experimental response at �q � =300 MeV/c for �a� 3He and �b�
3H. Dotted, two-body breakup; dashed, three-body breakup.
Data are shown as open circles �Dow et al., 1988� and squares
�Marchand et al., 1985�.

FIG. 26. Comparison of theoretical �Deltuva et al., 2004� and
experimental response at �q � =500 MeV/c. Solid, coupled-
channel nucleon-�; dashed, purely nucleonic case. Data are
shown as circles �Dow et al., 1988� and squares �Marchand et
al., 1985�.
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is compared in Fig. 27 to the ones obtained from �e ,e�p�
reactions and theory.

For heavier nuclei, both FSI and the effects of the
distribution in E are no longer negligible, and can only
be incorporated in predictions of F�y ,Q2� starting from
S�k ,E�.

IX. EUCLIDEAN RESPONSE

In previous sections, we discussed quasielastic scatter-
ing in terms of PWIA, with corrections for FSI. This
type of theoretical description often is the only practical
one, as a less approximate treatment of the final, relativ-
istic continuum state is hard to come by.

For comparatively low momentum transfers, alterna-
tive and more reliable treatments are possible. For A
=3 and A=�, the response in the nonrelativistic region
can be calculated �Fabrocini and Fantoni, 1989; Golak et
al., 1995�. For nuclei in between, integrals over the
quasielastic response can be studied. These integrals can
be expressed as expectation values of the ground-state
wave function, without the need for an explicit treat-
ment of the continuum state. This approach has been
followed via both the Lorentz transform technique
�Efros et al., 1994; Leidemann et al., 1997� and the use of
the Laplace transform �Carlson and Schiavilla, 1992�.
The most extensive results, including one- and two-body
currents, are available for the latter approach �Carlson et
al., 2002�, which we discuss in more detail below.

The Euclidean response is defined as an integral over
the quasielastic response

ẼT,L��q�,�� = �
�th

�

exp�− ���RT,L��q�,��d� , �63�

with �=Q2 /4m. In the Lorentz transform technique, an
additional Lorentzian factor that enhances the integrand
at a given � is used. The Lorentz transform technique
has the advantage that the response as a function of �
can be reconstructed by the inverse transformation,

something that is not practical for the Euclidean re-
sponse.

The longitudinal and transverse Euclidean response
functions represent weighted sums of the corresponding
RL��q � ,�� and RT��q � ,��: at �=0, they correspond to the
Coulomb and transverse sum rules, respectively, while
their derivatives with respect to � evaluated at �=0 cor-
respond to the energy-weighted sum rules. Larger values
of � correspond to integrals over progressively lower en-
ergy loss regions of the response.

In a nonrelativistic picture, ẼT,L can be obtained from

ẼL��q�,�� = 	0��†�q�exp�− �H − E0�����q��0�

− exp
−
q2�

2Am
��	0�q����q��0��2, �64�

and similarly for ẼT��q � ,��, with the charge operator
��q� replaced by the current operator jT�q�. The elastic
contributions have been explicitly subtracted, and �0�q��
represents the ground state recoiling with momentum q.

The study of the Euclidean response has the outstand-

ing advantage that Ẽ��q � ,�� can be calculated from the
ground-state properties alone; no explicit treatment of
the final continuum state is required. For the A=3,4
ground states, very precise wave functions are available,
and the effects of MEC can be included using the two-
body operators well established in elastic and inelastic
electron scattering from light nuclei �for a review, see
Sick, 2001�.

The Euclidean response has the disadvantage that we
lack an intuitive interpretation of this integrated quan-
tity. Model studies �Carlson et al., 2002� have shown the

sensitivity of Ẽ��q � ,�� to properties of R��q � ,��; see Fig.
28.

Figure 28 �top� shows various modifications of the
“normal” response, Fig. 28 �bottom� shows the effect on
the ratios of the resulting Euclidean responses to the
normal one. These studies show that, for the responses
that can be extracted from the data, the region 0.01��
�0.05 MeV−1 is the most relevant one for a comparison
with theory. Below �=0.01 MeV−1, the contribution of
the tail of the � in the experimental response is too
important; above �=0.05 MeV−1, the response is totally
dominated by the contribution of very small values of �.

The calculations discussed here �Carlson et al., 2002�
have used the standard expressions for the one-body
electromagnetic operators, obtained from a relativistic
reduction of the covariant single-nucleon current. The
two-body current operator consists of “model-
independent” and “model-dependent” components, in
the standard classification scheme �Riska, 1989�. The
model-independent terms are obtained �Schiavilla et al.,
1990� from the nucleon-nucleon interaction. For the
model-dependent pieces, the calculation includes the
isoscalar ��" and isovector ��" transition currents as
well as the isovector current associated with excitation
of intermediate �-isobar resonances. The two-body
charge operators �Schiavilla et al., 1990� include the �-,

FIG. 27. Comparison of deuteron momentum distribution ob-
tained from �e ,e�� �squares�, �e ,e�p� �triangles�, and theory
�curves� �Ciofi degli Atti et al., 1987�.
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�-, and �-meson exchange charge operators, the �iso-
scalar� ��" and �isovector� ��" couplings, and the
single-nucleon Darwin-Foldy and spin-orbit relativistic
corrections.

We show in Fig. 29 the results obtained for 3He and
4He at one value of �q�. The ground-state wave functions
used in this study were obtained with the variational
Monte Carlo approach �Carlson et al., 2002� and the Ar-
gonne v8 NN interaction plus the UIX three-nucleon in-
teraction.

The helium nuclei studied by Carlson et al. are of par-
ticular interest as for 4He the excess in the transverse
strength is maximal among all nuclei, and grows by a
factor of 2 between A=3 and 4. This excess—
presumably due to MEC—had not been understood in
the past; many calculations of MEC for a multitude of
nuclei gave results that were rather discordant, and al-
ways much too small. The data for the helium nuclei also
show that this excess covers the entire quasielastic, and
not only the “dip” region between the quasielastic and �
peak.

Figure 29 shows that the full calculation, which in-
cludes MEC, is in good agreement with the data �we
pointed out above why the region ��0.01 MeV−1 should
be ignored�. The calculation predicts rather accurately
the enhancement of the transverse strength due to MEC
and the doubling between A=3 and 4, and it also does
quite well in predicting the Q2 dependence �not shown�.

The good reproduction of the transverse strength at
first glance comes as somewhat of a surprise, given the
lack of success of previous MEC calculations �Donnelly
et al., 1978; Kohno and Ohtsuka, 1981; Van Orden and
Donnelly, 1981 Alberico et al., 1984; Blunden and Butler,
1989; Leidemann and Orlandini, 1990; Amaro and Lal-
lena, 1992; Carlson and Schiavilla, 1994; Dekker et al.,
1994; Van der Sluys et al., 1995; Anguiano et al., 1996;
Fabrocini, 1997a; Gadiyak and Dmitriev, 1998�. Carlson
et al. have therefore investigated in more detail the rea-
son for the large MEC contribution. They have found
that, in agreement with previous studies �Leidemann
and Orlandini, 1990; Fabrocini, 1997b�, MEC only pro-

FIG. 28. Model responses derived from the “normal” response
plus various modifications �top�. The corresponding Euclidean
response in terms of the ratio to the one from the normal one
�bottom�.

FIG. 29. Transverse Euclidean response divided by the proton
magnetic form factor for 3He and 4He at 600 MeV/c momen-
tum transfer, scaled by e��qe. Data �+�, IA ���, and full calcu-
lation ���.
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duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at �q �
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls �Sargsian, 2001� like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A�12 and for A=�. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the �small� contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind �see Sec. VII�. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and � ex-
citation �which are of a largely transverse nature�. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d�

d�d�

�

�Mott

�q�4

Q4 = �RL��q�,�� +
�q�2

2Q2RT��q�,�� = � ,

�65�

is a linear function of the virtual photon polarization

� = 
1 +
2�q�2

Q2 tan2�

2
�−1

�66�

with q �Q� being the 3- �4-� momentum transfer and �
varying from 0 to 1 for scattering angles � between 180°
and 0°. The slope of the linear function yields RL and
the intercept at �=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same �q�, but varying �, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in �, hence beam energy, is re-
quired. As data are usually not taken at constant �q�, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant �q� involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-� side of the quasielastic peak, which also illus-
trate the importance of the forward angle �high-energy�
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger �or much smaller� than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large �q�, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections �Arrington and Sick, 2004�. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal �lower data set� and transverse re-
sponses of 12C �Finn et al., 1984�, plotted in terms of the scaling
function F�y�.
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dinal response. For practical reasons, the determination
of the longitudinal response is possible only in a q range
that is somewhat limited. In addition, at low �q�, typically
below twice the Fermi momentum, the response is af-
fected by Pauli blocking, which in many of the ap-
proaches used to describe inclusive scattering is not
properly treated. At large �q�, typically above 0.8
GeV/c, the transverse response dominates the cross sec-
tion, due to both the �q�2 /Q2 factor in Eq. �65� and the
increasing � contribution �see Fig. 30�, such that an ac-
curate determination of RL becomes very difficult.
Energy-dependent experimental systematic errors must
be handled with great care.

One particular use of the longitudinal response has
received much attention: the determination of the Cou-
lomb sum rule �CSR�. In the nonrelativistic regime,
when short-range correlations between nucleons and the
effect of Pauli blocking is neglected, the CSR takes the
simple form

SL��q�� =
1

Z
�
�+

� RL��q�,��

G̃e
2

d� , �67�

where G̃e
2= �Gep

2 +Gen
2 N /Z� and �+ is the threshold for

particle emission. In the limit of large �q�, SL should be 1.
In other words, when neglecting the small contribution
from the neutron charge form factor Gen, the integral
over the longitudinal response counts the number of
protons times the square of the proton charge form fac-
tor Gep

2 .
The history of the CSR is very checkered. Early work

proposed the CSR as a tool to study short-range corre-
lation SRC between nucleons �Czyz and Gottfried, 1963;
Gottfried, 1963�. These correlations move strength to
large energy loss, and partly out of the physical region;
at very large �q�, these correlation contributions go to
zero in the sum rule. The series of L /T separations per-
formed at Bates �Altemus et al., 1980� and Saclay �Me-
ziani et al., 1984� found effects in SL that were much
bigger than could be expected from SRC: in the region
of �q � =350–550 MeV/c, SL was up to 50% lower than
expected, the deficit increasing with increasing �q� and
increasing nuclear mass number A. These observations
have been widely interpreted as a medium modification
of the proton charge form factor �Noble, 1981; Celenza
et al., 1986; Mulders, 1986�.

The experiments dealing with the CSR have received
much of the attention. It was not generally known that
some experiments �Altemus et al., 1980� had suffered
from rescattering of electrons on the “snout” connecting
the scattering chamber and the spectrometer �Deady et
al., 1986� �see also Sec. IV�. It was also a long time be-
fore a reanalysis �Jourdan, 1996� removed a number of
deficiencies in the Saclay analysis of the data �see be-
low�.

L /T separations have been performed for a number
of nuclei and momentum transfers �Zimmerman, 1969;
Altemus et al., 1980; Deady et al., 1983, 1986; Barreau et
al., 1983; Finn et al., 1984; Blatchley et al., 1986; VanRe-
den et al., 1990; Chen et al., 1991; Meziani et al., 1992;
Yates et al., 1993; Williamson et al., 1997�. Often �but not
always, see, e.g., Williamson et al., 1997� these separa-
tions were quite limited in the � range as data from one
facility only were included; from the determination of
the proton form factors Gep and Gmp, it is well known
that more reliable results are obtained from an analysis
of the world data spanning the largest possible range in
� �electron energy�. In almost all cases, only approxi-
mate Coulomb corrections were included, using the ef-
fective momentum approximation version of the
effective-momentum transfer approach �see Sec. XI�.
Particularly for data producing low SL, the longitudinal
response functions show an unphysical behavior at large
�: they dive steeply toward zero, and would, for re-
sponses without discontinuities, obviously be negative
just beyond the range of � shown �see, e.g., Jourdan,
1996�. From microscopic calculations �Dieperink et al.,
1976; Dellafiore et al., 1985; Fabrocini and Fantoni,
1989� using realistic nuclear spectral functions, we do

FIG. 31. Rosenbluth separation for 56Fe and �q � =570 MeV/c
�Jourdan, 1996�. The dashed lines are fits to the Saclay data
alone; the solid lines are fits to the world data, which include
the forward-angle SLAC data and emphasize the importance
of a large range in �.
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know, however, that the response at large � should ap-
proach zero slowly, much more slowly than the response
at low �, as a consequence of the components of large
removal energy E present in realistic spectral functions
S�k ,E� �see, e.g., Fig. 24�.

The analysis of the data performed by Carlson et al.
�2003� and Jourdan �1996� included the world data to
employ the largest � range and improved a number of
aspects of the Saclay analysis. In particular, the integral
in Eq. �67� was divided by the correct Gep, the well-
known relativistic corrections were included �de Forest,
1984�, and Coulomb corrections in distorted wave
Born approximation �DWBA� were made; in addition,
the contribution of RL��� above the upper integration
limit—which experimentally is far from � due to the
limited range of data on SL���—was added. These L /T
separations extend to �q � �600 MeV/c, only for 4He,
where the overlap of quasielastic and � strength is a
lesser problem, the L strength is known up to 1 GeV/c.
The corrections to the 1984 analysis, which all happen to
go in the same direction, increase the CSR by a substan-
tial amount. For example, the CSR for the largest �q�
and heaviest nucleus, 56Fe and 570 MeV/c analyzed by
Jourdan �1996�, amounts to 0.98±0.15. Figure 32 shows
the corresponding L and T responses.

In a subsequent reanalysis of the �e ,e�� data �Morgen-
stern and Meziani, 2001� resulting in a less extreme re-
duction in the CSR result, for iron the CSR was found to
be 82% of the expected value. This result for the sum
rule is still significantly smaller than that of Jourdan
�1996�, the difference being largely due to the use of the
effective momentum approximation �EMA� for Cou-
lomb corrections. This emphasizes that the Coulomb
corrections are important for the determination of the
CSR; in particular, for the largest q value of 570 MeV/c
and the large �, where the difference from Jourdan
�1997� and Morgenstern and Meziani �2001� is largest,
the backward angle data go down to scattered-electron
energies as low as 130 MeV, where approximations such
as EMA fail �Aste et al., 2005�.

The issue of medium modifications of proton electro-
magnetic structure has recently been revived by results
of a polarization transfer 4He�e� ,e�p� �3H measurement
carried out at Jefferson Lab �Strauch et al., 2003�. How-
ever, the interpretation of the experimental data in
terms of medium-modified form factors is challenged by
the results of a theoretical calculation, carried out using
accurate three- and four-nucleon bound-state wave func-
tions, a realistic model for the nuclear electromagnetic
current operator, and a treatment of final-state interac-
tions with an optical potential �Schiavilla et al., 2005�.
Schiavilla et al. �2005� found no significant discrepancies
between theory and experiment, both for the ratio of
transverse to longitudinal polarization transfers and for
the induced polarization, when free-nucleon electromag-
netic form factors are used in the current operator.

To close the discussion of the Coulomb sum, we add
as a caveat that even for the longitudinal response, the
contribution of MEC is not entirely negligible. In the

�q � �1 GeV/c region, it has been shown �Carlson et al.,
2003� that for 4He the contributions are of the order of
10%.

XI. COULOMB CORRECTIONS

The effects of the static Coulomb field of nuclei upon
quasielastic scattering has posed a persistent problem.
The presence of the Coulomb potential—for lead of or-
der of 25–30 MeV in the nuclear interior—has a major
effect on the quasielastic cross section measured in the
several-hundred-MeV energy region. It invalidates the
linear relation �65� used to separate the longitudinal and
transverse responses with the Rosenbluth technique.

While the treatment of the Coulomb distortion on
electron waves in the quasielastic region presents no
conceptual problems, practical application has been dif-
ficult. Reliable calculations of Coulomb distortion have
not been easily accessible to analyses of experimental
data. As a consequence, most experiments have been

FIG. 32. Separated response functions for 56Fe and �q �
=570 MeV/c. The solid curve corresponds to the CBF calcula-
tion �Fabrocini and Fantoni, 1989�.
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analyzed without considering Coulomb distortion ef-
fects, or by using relatively simple recipes.

The Coulomb distortion is more important for the
lower-energy data and the heavier nuclei. Its effects are
visible in the separations of longitudinal and transverse
strength, where the small contribution—in general the
longitudinal one—is most affected. It is likely that one
of the main problems with the longitudinal strength—
the diving to negative responses mentioned in Sec.
X—is related to this aspect �Traini et al., 1988�.

The Coulomb distortion can be treated in the DWBA
by using electron wave functions calculated as solutions
of the Dirac equation for the known nuclear charge dis-
tribution; different programs have been employed �Cò
and Heisenberg, 1987; Udias et al., 1993; Kim et al.,
1996�, in particular by the group of Onley and Wright
�Zamani-Noor and Onley, 1986; Jin et al., 1992�. In these
calculations, high-energy approximations �Lenz and
Rosenfelder, 1971; Knoll, 1974; Rosenfelder, 1980� have
been employed, as in general the electron energy is
much higher than the Coulomb potential. Such calcula-
tions have been successfully carried out, and can serve
as a benchmark. For a systematic analysis of experimen-
tal data, the numerical effort is usually too big and not
practical. This is true in particular because often com-
puter codes have been developed for �e ,e�p�, in which
case the �e ,e�� cross section has to be generated by sum-
ming over all possible initial and final states of the
knocked-out nucleon.

Simplifications are possible when going to the eikonal
approximation �Yennie et al., 1965; Giusti and Pacati,
1987; Traini et al., 1988�. When using the lowest-order
expansion in Z�, one finds two dominating effects:

�i� As a consequence of the attractive electron-nucleus
Coulomb interaction, the effective energy of the inci-
dent and scattered electrons at the moment of the scat-
tering is increased by the Coulomb potential V. This has
the consequence that the effective momentum transfer
qeff squared, on which the response functions R depend,
is increased by a factor �Ee+V��Ee�+V� /EeEe�.

�ii� Due to the attractive Coulomb interaction, the
electron “plane” waves are focused onto the nucleus,
hereby increasing the wave function at the location of
the nucleus, with a corresponding increase in the scatter-
ing cross section.

In the calculation of the inclusive cross section, the
overall effect of these corrections is accounted for by
using the Mott cross section with the unmodified elec-
tron energy, but with qeff as an argument of the response
function. This approximation has been termed the effec-
tive momentum approximation. Versions in the litera-
ture differ by the choice of V. The results of EMA have
been compared to the ones from DWBA calculations
�Kim et al., 1996; Jourdan, 1997�.

Higher-order terms have been included �Traini et al.,
1988�. These terms have been calculated using severe
approximations in the expansion around r=0, and are
not recommended �Traini, 2001�. Due to the approxima-
tions, the second-order effects found are about as large

as the first-order effects, which is indicative of problems
of the expansion.

The term EMA is often confused in the literature be-
cause of the fact that it is used for two different choices
of the nuclear Coulomb potential V. This parameter V is
often evaluated for the nuclear center r=0 assuming a
homogeneous nuclear charge density, in which case V
=V0=3Z� /2Req, with Req being the equivalent radius
�a good approximation being �1.1A1/3+0.86A−1/3� fm
�Kim et al., 1996��. It has been recognized early on, how-
ever, that a better choice would be an appropriate aver-
age Coulomb potential �Rosenfelder, 1980�. For this rea-
son, many applications of EMA use for V the value at
the nuclear surface, Vs= �2/3�V0, where most nucleons
are located.

In order to improve upon the quality of the Coulomb
corrections without resorting to the full solution of the
Dirac equation, one can employ the eikonal distorted
wave Born approximation �EDWBA�, where electron
waves in the DWBA approach, including solutions of
the Dirac equation, are calculated using the eikonal ap-
proximation �Aste et al., 2004�. In this case the electron
current is modified by an additional eikonal phase and a
change in amplitude. This type of calculation can be car-
ried out for realistic shapes of the nuclear Coulomb po-
tential, and EDWBA, contrary to the full solutions of
the Dirac equation, can be extended more easily to the
larger energies of interest for modern experiments.

While EDWBA is a fairly practical approach that can
be employed on a routine basis, it still is much more
involved than EMA. Aste and Jourdan have identified
one problem of EMA, and have introduced an EMA-
like approach called EMA� �Aste and Jourdan, 2004�. In
EMA, one tries to treat two distinct effects mentioned
above: the increase of the electron momentum due to
Coulomb interaction with the nucleus, and the focusing
of the electron waves. To handle the increase of the elec-
tron momentum �and momentum transfer�, it clearly
makes sense to use a potential V that corresponds to the
Coulomb potential averaged over all nucleons; here the
use of the potential at the nuclear surface is a good ap-
proximation. For the focusing effect, on the other hand,
the value for the nuclear center is a better approxima-
tion, as the focusing takes place all along the trajectory
of the electron through the nucleus. As the electron ap-
proaches �leaves� the nuclear center, the focusing is
smaller �larger�. Hence the value at the center is a good
compromise.

Subsequent studies using solutions of the Dirac equa-
tion in the Coulomb field of the nucleus �Aste et al.,
2005� indicate that, in addition to the enhanced focusing
in the longitudinal direction accounted for by EMA�,
there is a reduction for noncentral electron trajectories.
The two effects together give an overall focusing that is
not far from the one obtained with EMA.

Recent studies by Tjon and Wallace �2006�, performed
using the eikonal expansion for the electron wave func-
tion, indicate that EMA somewhat overestimates the
Coulomb effects. The authors give a recipe for correct-
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ing the deficiencies, which, however, is not very practical
for analyses of data.

The recent work of Kim and Wright �2005�, who per-
formed calculations of �e ,e� both in full DWBA and also
in an approximate version DW, which was found to
agree well with DWBA, indicates that EMA is a good
approximation for the transverse part, but that it works
poorly for a longitudinal cross section. The authors,
however, offer no explanation for the difference.

It would clearly be desirable to certify, via exact cal-
culations, the validity of some EMA-type approach, as
only such an approach could also be applied to the im-
portant region of the large-� side of the quasielastic
peak, where one has to deal with the overlap with a
large � contribution, the Coulomb corrections for which
also need to be dealt with properly.

The ideal way to experimentally check the Coulomb
corrections is a comparison of electron and positron
scattering. Unfortunately, positron beams are hard to
come by, and experiments with the secondary positron
beams are much more difficult than with electrons. One
such experiment has been carried out �Gueye et al.,
1999�. The data, unfortunately, suffer from normaliza-
tion problems �Aste et al., 2004�; from the position of the
quasielastic peak, one can, however, deduce that it is
appropriate to use Vs for the calculation of qeff.

XII. NUCLEAR MATTER

For nuclear matter, the Schrödinger equation for
nucleons bound by the nucleon-nucleon interaction �de-
duced from NN scattering� can be solved with few ap-
proximations. The translationally invariant nature of the
medium, where solutions can all be written in terms of
plane waves, simplifies the calculation. As a conse-
quence, the quality of nuclear matter wave functions is
comparable to that for the A=2,3 ,4 nuclei. Due to the
“exact” nature of the nuclear matter single-particle wave
function, both the long-range and short-range properties
are well under control. This is in contrast to finite nuclei,
where calculations that are designed to do well in the
long-range properties �mean-field calculations� usually
do badly in the short-range aspects.

Unfortunately, only some integral properties such as
density and binding energy are known experimentally;
little is known on the short-range properties of nuclear
matter. Quasielastic scattering here provides valuable in-
formation.

It is important to realize that inclusive electron scat-
tering at large Q2 is sensitive only to rather “local” prop-
erties of the medium. The spatial resolution of �e ,e�� is
of order 1/�q�, which at large transfer is small. In particu-
lar, the scattered electron is not sensitive to the interac-
tions of the recoiling nucleon outside this range. This
allows for an extrapolation from finite-nucleus data us-
ing the LDA.

The extrapolation procedure �Day et al., 1989� starts
from consideration that the nuclear response is essen-
tially the incoherent sum of contributions from indi-

vidual nucleons. As the average value of the density in
the nuclear interior and the shape of the density distri-
bution in the nuclear surface are approximately A inde-
pendent, the response can be divided into a volume
component, proportional to the mass number A, and a
nuclear surface component proportional to A2/3. It is the
former one that is of interest when discussing nuclear
matter. The ratio of the surface-to-volume contributions
is thus proportional to A−1/3. Extrapolation of the
nuclear response per nucleon to A−1/3=0 �A→� � as a
linear function of A−1/3 yields the nuclear matter re-
sponse.

In order to illustrate this approach, we reproduce in
Fig. 33 one example for an extrapolation as a function of
A−1/3 �Day et al., 1989�. Ignoring 4He �for which the
properties of the density cited above are not valid�, the
nuclear response s�q ,�� for A=12–197 is well fitted by a
linear function of A−1/3. The plot on the bottom of Fig.
33 gives the same extrapolation as a function of A. This
figure reveals that the extrapolation as a function of A is
unwieldy, though the curve better imparts the saturation

FIG. 33. Extrapolation of nuclear response per nucleon at
fixed q and � �E=3.6 GeV, �=16°, and �=180 MeV� as a
function of A−1/3 �top� and as a function of A �bottom� where
the extrapolated value of the nuclear matter response is indi-
cated by the arrow.
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of the response. Even heavy nuclei significantly differ
from nuclear matter due to the large fraction of surface
nucleons.

In order to obtain the response function for symmet-
ric nuclear matter, one makes use of additional knowl-
edge. For quasielastic scattering, the relative contribu-
tion of protons and neutrons changes as a function of A.
Although protons dominate due to the larger electron-
proton cross section, the contribution of neutrons is not
negligible. For the extrapolation, one assumes that the
response functions for protons and neutrons are the
same, and the trivial dependence on N ,Z is removed by
extrapolating the quantity

s�q,�� = ��q,��/�Z�ep + N�en� . �68�

The nuclear matter response has been extrapolated
�Day et al., 1989� from the nuclear response measured
for finite nuclei over a large region of q and �; see Fig.
34. This was made possible by the availability of data for
nuclei with A=4,12,27,56, and 197 �Day et al., 1993�
taken at the same incident energies and angles. Recent
data taken at Jefferson Lab with A=3,4 ,9 ,12,63, and
197 will allow this to be extended over an even larger
range of q and �.

XIII. RELATED AREAS

Inclusive scattering from composite systems is used as
a tool in a number of areas �Silver and Sokol, 1989�. The
corresponding processes have many aspects that are
closely related to quasielastic scattering from nuclei, but
they also exhibit significant differences. We now address

those areas in which inclusive scattering has been har-
nessed to study diverse composite systems.

These areas differ not only by the nature of the com-
posite system investigated, but also by the probe used:
photons, low-energy electrons, neutrons, high-energy
electrons, muons, and neutrinos. The energies of the
probes cover many orders of magnitude, from meV to
GeV, scaling with the dimensions relevant for the com-
posite systems.

Historically, the first area in which inclusive scattering
became prominent was the measurement of the Comp-
ton profile, i.e., quasielastic scattering of photons or x
rays from electrons bound in atoms �Williams, 1977;
Cooper, 1985�. The Compton effect actually played a
substantial role in the early validation of quantum ideas,
and with the experimental work of DuMond �1947� it
became a practical tool for the investigation of electron
momentum distributions. Modern experiments involve
energies in the region of ten to hundreds of keV, i.e.,
energies that in general are very large as compared to
atomic Fermi energies �eV�.

The observable in Compton scattering, the so-called
Compton profile, is the longitudinal momentum distri-
bution of the initially bound electrons, in direct corre-
spondence with the scaling function F�y� determined in
quasielastic scattering from nuclei; see Sec. VII. The mo-
mentum distribution of the electrons exhibits a more
complex structure, as not only the bound-electron n�k�
play a role, but also—and often more prominently—the
conduction electrons for metallic targets.

As an example, we show in Fig. 35 the Compton pro-
file of sodium. The contribution of the core electrons has
been removed; the parabola-like part below a momen-
tum of 0.5 a.u. is due to the free-electron Fermi gas and
the tail at larger momenta is due to interelectron inter-
actions �Eisenberger et al., 1972�.

When compared to quasielastic scattering on nuclei,
Compton scattering possesses an additional feature: for

FIG. 34. Nuclear matter response at momentum transfers up
to 3.5 �GeV/c�2. From Day et al., 1989.

FIG. 35. Compton profile of Na as a function of electron mo-
mentum �in atomic units�, with the contribution of core elec-
trons removed and finite-resolution effects unfolded �Eisen-
berger et al., 1972�.

219Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008



crystalline samples, the Compton profile can be mea-
sured for many different orientations of the probe. This
allows one to derive the reciprocal form factor B�r��,
from which one can extract the autocorrelation function
in r space, a quantity that helps to deduce the spatial
structure of the molecules in the crystal.

A variant of Compton scattering is electron Compton
scattering, where the photon is replaced by an electron,
typically in the 50 keV energy region. While the produc-
tion of a good beam and the detection of the scattered
particle is much easier, the requirement of very thin tar-
gets, unfortunately, partially offsets these advantages.

A second area in which inclusive scattering represents
a popular tool is the scattering of low-energy neutrons
from condensed-matter systems such as quantum liq-
uids. Neutrons with energies ranging from 10 meV to
10 keV, from reactors or spallation neutron sources, are
employed. The energies are again very high as compared
to energy scales of the system, of order meV for liquid
helium, for example.

Similar to quasielastic scattering from nuclei, the mea-
sured structure function S�q ,�� yields, in the impulse
approximation, an integral over the momentum distribu-
tion. In the limit of large �q�, it can be written as a func-
tion of one variable Y, the longitudinal momentum com-
ponent.

In quasielastic neutron scattering, emphasis has been
placed on the understanding of the role of FSI, for two
reasons. First, the interaction between two atoms is
fairly singular at short interatom distances r; the typical
Lennard-Jones potential rises very steeply �r−12� at small
r. This strong FSI has a pronounced effect on the ob-
servables, to the extent that the longitudinal momentum
distribution can only be extracted after correction for
FSI.

FSI was studied in great detail for a second reason.
Much of the emphasis in the field was placed on the
measurement of the fraction of Bose condensate in su-
perfluid 4He. This Bose condensate was expected to pro-
duce a 
-function-like spike in the momentum distribu-
tion n�k� at k=0, which would lead to a spike in the
response at Y=0. This feature was not seen, a fact that is
now understood as a consequence of FSI.

The understanding of FSI in neutron scattering has
many aspects that are parallel to the discussion given in
Sec. III. In particular, it has been found that the main
effect of FSI is a folding of the IA response. The folding
function has a width governed by the atom-atom total
cross section. It has also been found that for a quantita-
tive understanding of FSI, it is imperative to include in
the description of the initial state the atom-atom corre-
lation function g��ri−rj � �. The treatment of the atom-
atom potential is comparatively difficult, yet is possible
with hard-core perturbation theory �Silver, 1988�.

As an example, we show in Fig. 36 the scaling function
measured at a momentum transfer of 23 Å on superfluid
helium at 0.35 K �Sosnik et al., 1990�. At this tempera-
ture, a Bose condensate is predicted to occur. The 
�Y
=0� function due to the condensate, smeared with the

FSI folding function, explains the data for a condensate
fraction of 10%.

The last related area we address concerns deep inelas-
tic scattering �DIS� of GeV electrons or muons from
nucleons �for a review, see, e.g., Ellis et al. �1996��. Here
the energy spectrum of the inclusively scattered lepton is
used to derive the momentum distribution of quarks
bound in the nucleon. This process provided the first
direct evidence for the existence of pointlike constitu-
ents of fractional charge, subject to asymptotic freedom
�Gross and Wilczek, 1973; Politzer, 1973�, and still is one
of the main sources of information on nucleon structure.

DIS is generally analyzed in terms of the Bjorken scal-
ing variable x=Q2 /2m� �Bjorken and Paschos, 1969� ap-
propriate for constituents of negligible rest mass. The
variable y, which in the limit of small constituent mass
equals the Nachtmann variable � �but for a trivial fac-
tor�, is more appropriate for extending scaling to the
lower momentum transfers �Benhar et al., 2000�. In
terms of �, DIS and quasielastic scattering from nuclei
have many things in common.

Apart from the parallel aspects �see Sec. II�, DIS ex-
hibits one special feature, namely the evolution of the
scaling function with increasing Q2. This evolution is a
consequence of the fact that the lepton, at larger and
larger Q2, resolves more and more of the nucleon struc-
ture and the other nucleon constituents, the gluons. This
evolution of the structure function has been studied in
great detail, and is well understood in terms of quantum
chromodynamics �QCD� �Gribov and Lipatov, 1972; Al-
tarelli and Parisi, 1977�. Figure 37 displays the evolution
of the proton structure function with momentum trans-
fer.

Unlike, e.g., the neutron scattering mentioned above,
DIS is always analyzed in IA, neglecting the FSI of the
recoiling quark; the structure functions are then inter-

FIG. 36. Profile for neutron scattering from liquid helium at
0.35 K. The curves, calculated using GFMC and including FSI
effects, are shown for different fractions of the Bose conden-
sate, 10% giving the best fit. From Sosnik et al., 1990.
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preted directly as quark distribution functions. The ef-
fects of FSI, although known to be present even in the
Q2→� limit �Brodsky et al., 2002�, are neglected despite
the fact that model calculations indicate that they are of
substantial size �Paris and Pandharipande, 2002�.

Analogous experiments on DIS of neutrinos have also
been performed; due to the small rates, the database in
this area is much more restricted.

XIV. CONCLUSIONS

The field of inclusive quasielastic electron-nucleus
scattering has seen important progress during the past
decade, in terms of both experimental results and theo-
retical understanding.

Experiment has greatly benefited from the high-
intensity GeV-energy facilities and the high-
performance spectrometers and detectors that became
available. This has allowed one to extend the data to
extreme values of momentum transfer and energy loss.
As a consequence, we now have, at least for selected
nuclei, a fairly complete database �see the Web page
http://faculty.virginia.edu/qes-archive, which gives a
rather complete collection of the available cross sec-
tions�. Not yet satisfactory is the situation for the longi-
tudinal strength at large momentum transfer, where the
database is very narrow. Improvements would also be
desirable at low momentum transfer, where much of the
database comes from experiments done in spectrum-
acquisition mode.

Theory has also made considerable progress. Nuclear
many-body theory today provides reliable spectral func-
tions, which are at the basis of any quantitative under-
standing of quasielastic scattering, and especially impor-
tant in the region of high momentum transfer and not
too large energy loss. In particular, the nucleon-nucleon
short-range correlations, which have long been known
to play a major role, are now included in an adequate
fashion.

The y-scaling analysis of the data clearly shows that
elastic scattering off a single nucleon is the dominant
reaction mechanism at x�1. This is the region in which
quantitative information on nuclear properties can be
extracted.

For the treatment of the recoil-nucleon final-state in-
teraction, various approaches have been developed, ap-
plicable in different regions of momentum transfer and
energy loss. The results of calculations carried out within
the scheme widely adopted at large momentum transfer
�typically �q ��1 GeV�, based on the eikonal approxima-
tion, indicate that final-state interaction effects are large,
indeed dominant, in the low-energy-loss tail of the inclu-
sive cross section, and their inclusion leads to a quanti-
tative account of the existing data up to x�2.

The role of meson exchange currents, which surpris-
ingly have a large effect at rather low momentum trans-
fer and across the entire quasielastic peak, has also been
much better understood. Issues not yet satisfactorily re-
solved concern the final-state interaction at large mo-
mentum transfer and very low energy loss, correspond-
ing to x�2, and the role of non-nucleonic degrees of
freedom at very large momentum transfer. Recent stud-
ies of FSI in �e ,e�p�, carried out the within the formal-
ism described in Sec. III �Schiavilla et al., 2005�, show
that the spin dependence of the NN scattering amplitude
plays an important role. The possible relevance of these
effects in inclusive processes requires further investiga-
tions. The treatment of knock-out processes accompa-
nied by excitation of the nucleon also is not yet entirely
satisfactory.

Recently, much consideration has been given to the
connection between electron- and neutrino-nucleus scat-
tering �Amaro et al., 2005; Benhar, 2005�. The generali-
zation of the existing theoretical approaches and the ex-
ploitation of the measured �e ,e�� cross sections to
predict the analogous neutrino-induced reactions, such
as �	 ,e� or �	 ,��, will be of great importance to reduce
the systematic uncertainty in the interpretation of neu-
trino oscillation experiments.

Only partially exploited is the relation to quasielastic
scattering of hadronic probes �p ,� ,K , . . . � from which
additional, and largely complementary, information
could be learned.
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the Bjorken scaling variable x. From Eidelman et al., 2005.
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