Introduction

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

Microscopic Theories of Nuclear Structure, Dynamics and Electroweak Currents
June 12-30, 2017, ECT*, Trento, Italy

Why (quantum) Monte Carlo?

Monte Carlo: solve multi-dimensional integrals by using random numbers.

Quantum Monte Carlo: solve quantum mechanical problems using Monte Carlo methods.

Why (quantum) Monte Carlo?

Monte Carlo: solve multi-dimensional integrals by using random numbers.

Quantum Monte Carlo: solve quantum mechanical problems using Monte Carlo methods.

From Wikipedia, "Monte Carlo algorithm":
In computing, a Monte Carlo algorithm is a randomized algorithm whose running time is deterministic, but whose output may be incorrect with a certain (typically small) probability.

The name refers to the grand casino in the Principality of Monaco at Monte Carlo, which is well-known around the world as an icon of gambling.

About these lectures

My contact: Stefano Gandolfi, stefano@lanl.gov

- 9 lectures (45 minutes each)
- Main topics:
- VMC
- DMC
- GFMC/AFDMC
- Quantum Monte Carlo simulations of solids
W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001)
- Quantum Monte Carlo methods for nuclear physics
J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015)

Introduction

What do you need if interested to exercises and examples:

- Basic knowledge of Fortran For your own practice coding, you are very welcome to use any language that you like (but my help will be dependent on that!)
- Know how to compile and run a simple code
- Have your laptop ready to compile Fortran codes. I can help if you use a Linux distribution
- Have basic libraries installed (Lapack, Blas, random numbers generator, ...)
- Install some MPI library. I recommend OpenMPI, https://www.open-mpi.org/ (I can help installing on Linux)
- Have fun while learning!!!

Using random events: the first example

The first, older, example that I found on literature to calculate something by mean of random events, the dartboard method:

Throw darts, i.e. choose points randomly within a rectangular box with some area inside to integrate on:

$$
A_{\text {box }}=4 r^{2}, \quad A_{\text {area }}=\pi r^{2}, \quad \pi=4 \frac{A_{\text {area }}}{A_{\text {box }}}
$$

$\frac{A_{\text {area }}}{A_{\text {box }}}=P($ hit inside the area $)=\frac{\# \text { hits inside the area }}{\# \text { hits inside the box }}$

The first example

The first code!
npt $=10000$
count=0
do $\mathrm{j}=1$, npt
$\mathrm{x}=\mathrm{random} 1$
$\mathrm{y}=\mathrm{random} 2$
if (sqrt(x**2+y**2).lt.radius) count=count+1
enddo
pi=4.0*count/npt

Another example, π

Buffon's Needle Problem (1733):
What is the probability that a needle of length / will land on a line, given a floor with equally spaced parallel lines a distance d apart?

Let's define $x=I / d$. For a short needle $(I<d)$:

$$
P(x)=\int_{0}^{2 \pi} \frac{| | \cos \theta \mid}{d} \frac{d \theta}{2 \pi}=\frac{2 l}{\pi d} \rightarrow \pi \approx \frac{2 / N}{d H}
$$

where N is needles thrown, and H is the time for a needle to cross a line.
Possible exercise:
throw many needles, or write a MC code for this!

Monte Carlo integration

The goal of Monte Carlo integration is to solve multi-dimensional integrals using random numbers!

Monte Carlo integration

The goal of Monte Carlo integration is to solve multi-dimensional integrals using random numbers!

Why???

Brute force integration

Suppose that we want to calculate some integral of dimension D. The easiest thing to do is a sum over discrete intervals h, something like

$$
I=\int_{a}^{b} d x_{1} \ldots \int_{a}^{b} d x_{D} f\left(x_{1} \ldots x_{D}\right) \approx h^{D} \sum f\left(x_{1} \ldots x_{D}\right)
$$

Brute force integration

Suppose that we want to calculate some integral of dimension D. The easiest thing to do is a sum over discrete intervals h, something like

$$
I=\int_{a}^{b} d x_{1} \ldots \int_{a}^{b} d x_{D} f\left(x_{1} \ldots x_{D}\right) \approx h^{D} \sum f\left(x_{1} \ldots x_{D}\right)
$$

It's easy to show that if we want an error of order ϵ, we need to sum a number of points

$$
N=\epsilon^{-D}
$$

Brute force integration

Suppose that we want to calculate some integral of dimension D. The easiest thing to do is a sum over discrete intervals h, something like

$$
I=\int_{a}^{b} d x_{1} \ldots \int_{a}^{b} d x_{D} f\left(x_{1} \ldots x_{D}\right) \approx h^{D} \sum f\left(x_{1} \ldots x_{D}\right)
$$

It's easy to show that if we want an error of order ϵ, we need to sum a number of points

$$
N=\epsilon^{-D}
$$

so, for $\epsilon=0.1$ and a system with 20 particles ($D=60$) we have to sum $N=10^{60}$ points. With the best available supercomputers the time needed is greater than the age of the universe!

Central limit theorem

- Assume independent samples X_{i}
- Compute averages by "blocks" : $\bar{X}_{i}=\frac{1}{N_{b}} \sum_{i}^{j+N_{b}} X_{i}$

Central limit theorem: For $N_{b} \rightarrow \infty$ the Distribution of averages over blocks converges to a Gaussian, whose width gives the statistical error. Histogram of 100,000 blocks, for different values of N_{b} :

Note how the width reduces by increasing N_{b} !

Statistical errors from Gaussian distributions

- Assume independent samples with Gaussian distribution of "measurements"
- Compute average $\bar{X}=\frac{1}{N_{b}} \sum_{i} X_{i}$
- Compute standard error $\sigma=\sqrt{\frac{\sum_{i}\left(X_{i}-\bar{X}\right)^{2} / N_{b}}{N_{b}}}$

The probabilities to have the average \bar{X} within 1,2 , or 3σ within the exact integral are

- $\mathrm{P}(\bar{X}-\sigma \leq x \leq \bar{X}+\sigma) \approx 0.6827$
- $\mathrm{P}(\bar{X}-2 \sigma \leq x \leq \bar{X}+2 \sigma) \approx 0.9545$
- $\mathrm{P}(\bar{X}-3 \sigma \leq x \leq \bar{X}+3 \sigma) \approx 0.9973$

Monte Carlo integration

Monte Carlo methods provide the tools to solve multi-dimensional integrals!

Monte Carlo methods allow us to solve for integrals:

$$
I=\int d x F(x)=\int d x W(x) \frac{F(x)}{W(x)},
$$

where we sample points x_{i} distributed as $W(x)$, and we evaluate $F\left(x_{i}\right) / W\left(x_{i}\right)$. In the limit of large points sampled, we have:

$$
X=\frac{1}{N} \sum_{n=1}^{N} \frac{F\left(x_{n}\right)}{W\left(x_{n}\right)} \rightarrow I
$$

Central limit theorem:

Sample many X_{i} above. As explained before, the average of them is a "measure" of I, with a (statistical) error that goes like $1 / \sqrt{N_{b}}$ and depends critically on the choice of $W(x)$.

Monte Carlo sampling: the first example

Sampling the distribution $x_{i}=100+15 *(\xi-0.5)$ with ξ uniformly distributed from 0 to 1 :

100 samples 1000 samples $1,000,000$ samples

Caveat: samples must be independent!
\rightarrow calculate averages using several independent samples.

Block size vs number of blocks

The total number of samples is given by $N_{\text {tot }}=N_{b} \times N_{\text {val }}$. What happens by increasing N_{b} by keeping constant $N_{\text {tot }}$?

The distribution is more peaked, but it becomes "less" Gaussian for small values of $N_{\text {val }}$. Need to find a compromise.

Possible exercise: try to solve some simple integral

Monte Carlo integration

Questions???

Monte Carlo integration

Questions???

... for now :-)

