Metropolis/Variational Monte Carlo

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

Microscopic Theories of Nuclear Structure, Dynamics and Electroweak Currents
June 12-30, 2017, ECT*, Trento, Italy

Metropolis Monte Carlo and Markov Chain Algorithms

Metropolis Monte Carlo is an algorithm designed to sample complicated many-variable distributions. It employs a Markov Chain Monte Carlo algorithm to achieve this.
see: Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., "Equations of state calculations by fast computing machines", J. Chem. Phys. 2121(6) 1087 (1953).

- A Markov Chain Monte Carlo Algorithm employs random walks where each step depends only upon the present position of the system (no 'history').
- The Metropolis algorithm assumes that you want to sample from a non-negative function $W(\mathbf{R})$ which may be in many dimensions: eg. $\mathbf{R}=\left(\mathbf{r}_{i}\right)$ for many particles i.

Metropolis Monte Carlo

- Metropolis algorithm is used to sample a multi-variable function $W(\mathbf{R})$, whose distribution is at priori unknown. But with a priori unknown equilibration time and unknown time between 'independent' samples.
- Detailed balance is enforced, requiring the flux from point $\mathbf{A} \rightarrow \mathbf{B}$ equals that from $\mathbf{B} \rightarrow \mathbf{A}$
- Rejection is used, we propose a move with a probability $T(\mathbf{A} \rightarrow \mathbf{B})$ and accept that move with probability $P(\mathbf{A} \rightarrow \mathbf{B})$.
- Detailed balance requires:

$$
W(\mathbf{A}) T(\mathbf{A} \rightarrow \mathbf{B}) P(\mathbf{A} \rightarrow \mathbf{B})=W(\mathbf{B}) T(\mathbf{B} \rightarrow \mathbf{A}) P(\mathbf{B} \rightarrow \mathbf{A})
$$

Note that detailed balance is more restrictive than strictly necessary.

Metropolis Monte Carlo

A simple Metropolis Algorithm:
(1) Initialize all particles within the physical volume and calculate $W(\mathbf{R})$
(2) Propose a move of all particles \mathbf{R}^{\prime}, within a box centered on the current positions: $r_{i}^{\prime \alpha}=r_{i}^{\alpha}+b\left(\xi_{i}^{\alpha}-0.5\right)$
where α runs over 3 dimensions and i over N particles
(3) Calculate $W\left(\mathbf{R}^{\prime}\right)$
(4) Accept this proposed move with probability P given by: $P=\min \left[W\left(\mathbf{R}^{\prime}\right) / W(\mathbf{R}), 1\right]$
(5) If the move is 'accepted', set the current position to \mathbf{R}^{\prime}, otherwise keep the current position at \mathbf{R}
(6) Return to step 2, and propose a new move

After some number of steps the samples will be independent.
Averages and Errors can be calculated using these independent samples

Let's consider a many-body general Hamiltonian describing a system of N particles.

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{i}^{N} \nabla_{i}^{2}+\sum_{i<j} v\left(r_{i j}\right)
$$

and we want to calculate the energy:

$$
E_{0} \leq E=\frac{\left\langle\Psi_{T}\right| H\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}=\frac{\int d r_{1} \ldots d r_{N} \Psi_{T}^{*}\left(r_{1} \ldots r_{N}\right) H \Psi_{T}\left(r_{1} \ldots r_{N}\right)}{\int d r_{1} \ldots d r_{N} \Psi_{T}^{*}\left(r_{1} \ldots r_{N}\right) \Psi_{T}\left(r_{1} \ldots r_{N}\right)}
$$

where $\Psi_{T}\left(r_{1} \ldots r_{N}\right)$ is a variational wave function that depends on the coordinates (positions) of the particles, with variational parameters $\{\alpha\}$.
For a given form of $\Psi_{T}\left(r_{1} \ldots r_{N}\right)$ we want to find the best value(s) of α giving the lower energy, i.e. we need to study $E[\alpha]$. How do we solve the above integral?

Some definition:

- $r_{i}=\left(x_{i}, y_{i}, z_{i}, \ldots\right)$ has coordinate(s) of particle i
- when used, $R=r_{1} \ldots r_{N}$ (and $\left.d R=d r_{1} \ldots d r_{N}\right)$
- $\Psi(R)=\langle R \mid \Psi\rangle$

Remember:

$$
\int F(x) d x=\int \frac{F(x)}{W(x)} W(x) d x=\int f(x) W(x) d x
$$

So we can rewrite the integral as:

$$
\begin{aligned}
E & =\frac{\int d r_{1} \ldots d r_{N} \Psi_{T}^{*}\left(r_{1} \ldots r_{N}\right) H \Psi_{T}\left(r_{1} \ldots r_{N}\right)}{\int d r_{1} \ldots d r_{N} \Psi_{T}^{*}\left(r_{1} \ldots r_{N}\right) \Psi_{T}\left(r_{1} \ldots r_{N}\right)} \\
& =\int d R W(R) \frac{\Psi_{T}^{*}(R) H \Psi_{T}(R)}{\Psi_{T}^{*}(R) \Psi_{T}(R)}
\end{aligned}
$$

where

$$
W(R)=\frac{\Psi_{T}^{*}\left(r_{1} \ldots r_{N}\right) \Psi_{T}\left(r_{1} \ldots r_{N}\right)}{\int d r_{1} \ldots d r_{N} \Psi_{T}^{*}\left(r_{1} \ldots r_{N}\right) \Psi_{T}\left(r_{1} \ldots r_{N}\right)}=\frac{\left|\Psi_{T}(R)\right|^{2}}{\int d R\left|\Psi_{T}(R)\right|^{2}}
$$

VMC: first implementation

Easy case: 1-dimensional Harmonic oscillator $(\hbar=m=1)$.

$$
H=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} \Omega^{2} x^{2}
$$

Let's start from the following variational wave function:

$$
\Psi_{T}(x)=e^{-\alpha x^{2} / 2}
$$

($\Omega=\alpha$ gives the exact solution).
We will call walker one configuration that will be used to generate new configurations according to the Metropolis/Markov chain algorithm. In the 1D harmonic oscillator case, walker i is simply

$$
W_{i}=\left\{x_{i}\right\}
$$

but in general (3D, multiparticles, spins, etc.) each walker will contain many more information, i.e. $\left\{\vec{r}_{1}, \ldots, \vec{r}_{N}, \ldots\right\}$.

VMC: first implementation

Following Metropolis, the VMC algorithm can be summarized in the following steps:
(1) Generate a set of N walkers randomly distributed
(2) Loop over the N walkers, and for each i-th walker:
(3) Calculate $W\left(x_{i}\right)=\left|\left\langle\Psi_{T} \mid x_{i}\right\rangle\right|^{2}$
(9) Make a "trial" step: $x_{\text {test }}=x+(\xi-0.5) \Delta$
(5) Calculate $W\left(x_{\text {test }}\right)=\left|\left\langle\Psi_{T} \mid x_{\text {test }}\right\rangle\right|^{2}$
(6) Calculate the ratio $W\left(x_{\text {test }}\right) / W\left(x_{i}\right)$ and do Metropolis
(3) If the move is accepted, set $x_{i}=x_{\text {test }}$.
(8) Calculate averages
(9) Iterate with 2) until the equilibration is reached, then reset estimators and iterate until the error is small enough
Note: in VMC, N can be even 1. But using more configurations will be very convenient when parallel machines are available.

VMC: first implementation

The calculation of observables is carried out over a total of M walkers (uncorrelated points in the Markov chain) as

$$
\langle O\rangle=\frac{\sum_{i}^{M} \omega_{i} \frac{\left\langle\Psi_{T} \mid W_{i}\right\rangle\left\langle W_{i}\right| \hat{O}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} W_{i}\right\rangle\left\langle W_{i} \mid \Psi_{T}\right\rangle}}{\sum_{i}^{M} \omega_{i}}
$$

where ω_{i} is the weight of the configuration (usually 1).
For example (remember that $\Psi_{T}=\exp \left(-\alpha x^{2} / 2\right)$

$$
\begin{aligned}
& \frac{\left\langle\Psi_{T} \mid W_{i}\right\rangle\left\langle W_{i}\right| \hat{H}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid W_{i}\right\rangle\left\langle W_{i} \mid \Psi_{T}\right\rangle}= \\
& =-\frac{1}{2} \frac{\left\langle\Psi_{T} \mid x_{i}\right\rangle\left\langle x_{i}\right| \frac{d^{2}}{d x^{2}}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid x_{i}\right\rangle\left\langle x_{i} \mid \Psi_{T}\right\rangle}+\frac{1}{2} \Omega^{2} \frac{\left\langle\Psi_{T} \mid x_{i}\right\rangle\left\langle x_{i}\right| x^{2}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid x_{i}\right\rangle\left\langle x_{i} \mid \Psi_{T}\right\rangle} \\
& =-\frac{1}{2}\left(\alpha^{2} x_{i}^{2}-\alpha\right)+\frac{1}{2} \Omega^{2} x_{i}^{2}
\end{aligned}
$$

Note: if Ψ_{T} is the exact solution, then $\frac{\psi_{T}^{*} H \Psi_{T}}{\psi_{T}^{*} \Psi_{T}}=E=\frac{\Omega}{2} \quad \forall x!$

VMC: the first piece of code

```
do j=1,nstep
    do n=1,nwalk
        psiold=exp(-0.5*alpha*xold(n)**2)
        call ran(csi,irn)
        xtest=xold(n)+sigma*(csi-0.5)
        psinew=exp(-0.5*alpha*xtest**2)
        prob=(psinew/psiold)**2
        call ran(csi,irn)
        if (csi.gt.prob) xtest=xold(n)
        eloc=-0.5*((alpha*xtest)**2-alpha)+0.5*omega**2*xtest**2
        xold(n)=xtest
    enddo
enddo
```


VMC: first implementation

(1) Loop over the N walkers, and for each i-th walker:
do $\mathrm{j}=1$,nstep
do $\mathrm{n}=1$, nwalk
(2) Calculate $W\left(x_{i}\right)=\left|\left\langle\Psi_{T} \mid x_{i}\right\rangle\right|^{2}$

$$
\text { psiold=exp(-0.5*alpha*xold (n) } * * 2)
$$

(0) Make a "trial" step: $x_{\text {test }}=x+(\xi-0.5) \Delta$ call ran(csi,irn) xtest $=x o l d(n)+$ sigma*(csi-0.5)
(1) Calculate $W\left(x_{\text {test }}\right)=\left|\left\langle\Psi_{T} \mid x_{\text {test }}\right\rangle\right|^{2}$

$$
\text { psinew }=\exp (-0.5 * \text { alpha } * x t e s t * * 2)
$$

VMC: first implementation

(1) Calculate the ratio $W\left(x_{\text {test }}\right) / W\left(x_{i}\right)$ and do Metropolis

```
prob=(psinew/psiold)**2
call ran(csi,irn)
```

(2) If the move is accepted, set $x_{i}=x_{\text {test }}$, otherwise reject the move if (csi.gt.prob) xtest=xold(n) xold(n)=xtest
(3) Calculate averages

$$
\text { eloc }=-0.5 *((\text { alpha } * x t e s t) * * 2-\text { alpha })+0.5 * \text { omega } * * 2 * x t e s t * * 2
$$

(9) Iterate with 2) until the equilibration is reached, then reset estimators and iterate until the error is small enough

Variational Monte Carlo

An example: 1D harmonic oscillator, VMC calculations.
Energy as a function of the variational parameter α :

Variational Monte Carlo

VMC is a tool to calculate the energy of a many-body system for a given wave function as a function of its variational parameters.

This requires to solve multi-dimensional integrals, that are solved using Monte Carlo integration.

Variational Monte Carlo

VMC is a tool to calculate the energy of a many-body system for a given wave function as a function of its variational parameters.

This requires to solve multi-dimensional integrals, that are solved using Monte Carlo integration.

... for now :-)

Backup: Harmonic Oscillator

$$
\begin{aligned}
\Psi_{T}(x) & =e^{-\alpha x^{2} / 2} \\
\left|\Psi_{T}\right|^{2} & =\int d x e^{-\alpha x^{2}}=\sqrt{\frac{\pi}{\alpha}} \\
\langle H\rangle & =\int d x e^{-\alpha x^{2} / 2}\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} \Omega^{2} x^{2}\right) e^{-\alpha x^{2} / 2} \\
& =\int d x e^{-\alpha x^{2} / 2}\left[-\frac{1}{2}\left(\alpha^{2} x^{2}-\alpha\right)+\frac{1}{2} \Omega^{2} x^{2}\right] e^{-\alpha x^{2} / 2} \\
& =\left[\frac{1}{4 \alpha}\left(\Omega^{2}-\alpha^{2}\right)+\frac{\alpha}{2}\right] \sqrt{\frac{\pi}{\alpha}} \\
\frac{\left\langle\Psi_{T}\right| H\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle} & =\frac{1}{4 \alpha}\left(\Omega^{2}-\alpha^{2}\right)+\frac{\alpha}{2}
\end{aligned}
$$

