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Diffusion Monte Carlo

The variational wave function can be very accurate, but things can be
improved.

The time-dependent Schroedinger equation is (~ = 1)

−i ∂
∂t

Ψ(R, t) = H Ψ(R, t)

and its solution is given by:

Ψ(R, t) = e−i H (t−t0)Ψ(R, t0)

we will call τ = it imaginary time.
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Diffusion Monte Carlo

Projection in imaginary time:

Let’s assume that the wave function can be expanded over a set of
eigenstates of the Hamiltonian H:

ψ =
∑
n

φn

Then let’s apply the evolution operator exp[−(H − ET )τ ]:

e−(H−ET )τψ = e−(H−ET )τ
∑
n

φn

=
∑
n

e−(En−ET )τφn → c0φ0

In this way, in the limit of τ →∞ we can extract the ground-state of H.

Note: ET is a constant to guarantee a finite normalization.
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Diffusion Monte Carlo

Let’s represent the wave function as an ensemble of points, i.e. walkers in
the volume:

〈R|ΨT 〉 =
∑
n

cnδ(R − Rn)

then:

〈R ′|ΨT (τ)〉 =

∫
dR G (R,R ′, τ)〈R|ΨT (0)〉

where G (R,R ′, τ) is the propagator of the Hamiltonian, and we have
used the identity

1 =

∫
dR |R〉〈R|
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Diffusion Monte Carlo

Let’s define the propagator in coordinates as the matrix element between
two points in the volume:

G (R,R ′, τ) = 〈R|e−(H−ET )τ |R ′〉

The expression above is very difficult to calculate. What easy instead is:

G (R,R ′, t) ≈
N∏
n

G (Rn,Rn−1, δτ) ≈
[
〈R|e−Tδτe−V δτeET δτ |R ′〉

]n
where δτ = τ/N, and 〈R|e−Tδτe−V δτ |R ′〉 is easy to sample.

Then we need to iterate the integral in previous slide many times to
reach the limit τ →∞.
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Diffusion Monte Carlo

The kinetic energy is sampled as a diffusion of particles (in 3D):

〈R ′|e− ~2

2m∇
2δτ |R〉 =

( m

2π~2δτ

)3A/2

e−m(R−R′)2/2~2δτ

= G0(R,R ′, δτ)

Note: G0 is normalized!

The (scalar, local) potential and ET give the weight of the configuration:

〈R ′|e−V δτeET δτ |R〉 = wδR,R′

Note: the weight w is basically the normalization of exp[−V (R)δτ ], as
the propagator is dependent to the “arrival” (or “starting”) point in the
diffusion: ∫

dR G (R,R ′, δτ) = e−V (R′)δτ
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Diffusion Monte Carlo

In summary, the propagation in imaginary time is carried out as

ΨT (t) =

∫
G (Rn,Rn−1, δτ)G (Rn−1,Rn−2, δτ)...G (R1,R, δτ)ΨT (0)

× dRn dRn−1...dR1

=

∫
〈Rn|e−∇

2δτ |R ′n−1〉〈R ′n−1|e−V δτ |Rn−1〉

× 〈Rn−1|e−∇
2δτ |R ′n−2〉〈R ′n−2|e−V δτ |Rn−2〉

× . . .

× 〈R2|e−∇
2δτ |R ′1〉〈R ′1|e−V δτ |R1〉ΨT (0) dR

=

∫
e−(Rn−Rn−1)2/2δτwn−1e

−(Rn−1−Rn−2)2/2δτwn−2 . . .

× e−(R2−R1)2/2δτw1ΨT (0) dR

where wi = exp[−(V (Ri )− ET )δτ ].
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Diffusion Monte Carlo

Remember that the wave function is represented as a collection of
walkers.

In the previous expression, the product of weights can become very large
(or very small) for some of them. For example, consider the case of an
infinite potential like repulsive Coulomb. If two particles are sampled to
be close, the weight becomes zero, and then that walker will always
contribute zero to the observables.
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Diffusion Monte Carlo

One possible solution, the branching technique: take the weight of a
walker and make a number of copies of it according to:

# = int[wi + ξ]

where ξ is a (uniform) random number between 0 and 1.
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Importance sampling

The sampling of G (R,R ′, δτ) can be very noisy. Assume that we know a
wave function ΨG that describes reasonably the system (i.e. in most of
the cases the variational wave function). Then, it is very efficient to
“project” our sampling over the “good guess”:

〈ΨG |R ′〉〈R ′|ΨT (τ)〉 =

∫
dR G (R,R ′, τ)〈ΨG |R ′〉〈R|ΨT (0)〉

=

∫
dR G (R,R ′, τ)

〈ΨG |R ′〉
〈ΨG |R〉

〈ΨG |R〉〈R|ΨT (0)〉

= f (R ′, τ)

In this way we are sampling a different distribution f (R ′, τ) whose
variance is much improved from before!
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Importance sampling

Let’s see how to sample the quantity G (R,R ′, τ) 〈R
′|ΨG 〉
〈R|ΨG 〉 (notation

ΨG (R) = 〈R|ΨG 〉).

The first thing to note is that the normalization of the modified
propagator is now dependent to the “arrival” point in the diffusion.

Before:

N(R ′) =

∫
dR G (R,R ′, δτ) = e−[V (R′)−ET ]δτ

Now:

N(R ′) =

∫
dR G (R,R ′, δτ)

ΨG (R ′)

ΨG (R)
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Importance sampling

In the limit of small δτ (small |R − R ′|) we can expand

Ψ∗G (R)

Ψ∗G (R)

ΨG (R ′)

ΨG (R)
≈1 +

Ψ∗G (R)

Ψ∗G (R)

1

ΨG (R)

∂

∂xi
ΨG (R) (xi − x ′i )

+
1

2

Ψ∗G (R)

Ψ∗G (R)
ΨG (R)

∂2

∂xi∂xj
ΨG (R) (xi − x ′i )(xj − x ′j ) + . . .

And we can prove that

N(R ′) = e
−[

Ψ∗G (R)HΨG (R′)
Ψ∗
G

(R)ΨG (R′) −ET ]δτ

At the same time, the modified propagator can be sampled as a shifted
Gaussian

exp

[
−m(R − R ′)2

2~2δτ

]
−→ exp

−m
(
R − R ′ +

Ψ∗G (R)∇ΨG (R)
Ψ∗G (R)ΨG (R)

)2

2~2δτ


Note: there are other ways to sample the modified propagator.
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Calculation of observables

Observables in DMC are calculated:

〈O〉 =

∑M
i ωi

〈ΨT |Wi 〉〈Wi |Ô|ΨT 〉
〈ΨG |Wi 〉〈Wi |ΨT 〉∑M

i ωi
〈ΨT |Wi 〉〈Wi |ΨT 〉
〈ΨG |Wi 〉〈Wi |ΨT 〉

But now the weights ωi contain “information” on the evolution in
imaginary time!
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Diffusion Monte Carlo

The DMC algorithm can be summarized in the following steps:

1 Generate a set of N walkers randomly or distributed with VMC

2 Loop over the N walkers, and for each i-th walker:

3 Make a step: R ′i = Ri + ~2δτ
m

Ψ∗T (R)∇ΨG (R)
ΨT (R)ΨG (R) + ξ

√
~2δτ/m

4 Calculate the weight: wi = exp
[
−
(

ΨT (R)HΨG (R′)
ΨT (R)ΨG (R′) − ET

)
δτ
]

5 Do branching

6 Increase the total imaginary-time by a unit of δτ

7 Iterate with 2) until the equilibration is reached, then reset
estimators and iterate until the error is small enough

Stefano Gandolfi (LANL) - stefano@lanl.gov Diffusion Monte Carlo 14 / 19



DMC: the first piece of code

Note: here we assume that ΨG = ΨT !

...

do j=1,nstep

nw=0

do n=1,nwalk

xtest=xold(n)-sigma**2*alpha*xold(n)+sigma*rgauss(irn)

eloc=-0.5_r8*((alpha*xtest)**2-alpha)+0.5_r8*omega**2*xtest**2

weight=exp(-dt*(eloc-etrial))

call ran(csi,irn)

iwt=weight+csi

do k=1,iwt

nw=nw+1

xnew(nw)=xtest

enddo

tau=tau+dt

enddo

enddo

...
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Diffusion Monte Carlo

An example: 1D harmonic oscillator, projection in imaginary time.
Energy as a function of the imaginary time τ :
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1D harmonic oscillator

Ground-state resolved!
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Growth energy

In DMC a very nice “diagnostic tool” is the growth energy. It can be
calculated by measuring the weights of the walkers.

If we had the exact wave function and ET the exact energy, then the
weight of each walker would be 1 independently to the configuration (i.e.
HΨ/Ψ = ET ). Then, by averaging over weights, we can define:

ωi = exp
[
−(E i

G − ET )δτ
]

and we get:

〈EG 〉 = ET −
1

δτ
log (〈ω〉)

Note: EG is very similar to the local energy if δτ is small enough!

Exercise: test it.
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Mixed estimates

Note that in DMC we calculate “mixed estimates”, i.e.:

〈O〉mix = 〈ΨT |O|Φ0〉

where ΨT is the variational wave function, and Φ0 is the DMC (ground
state) one. By assuming that

|ΨT 〉 ' |Φ0〉+ λ|δΨ〉

it is easy to show that

〈O〉 = 〈Φ0|O|Φ0〉 ' 2〈O〉mix − 〈O〉vmc

where 〈O〉vmc = 〈ΨT |O|ΨT 〉.

Exercise: prove that.

Note: the only exceptions where 〈O〉mix is truly the ground state one is
for those operators for which [H,O] = 0. Can you guess why?
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Diffusion Monte Carlo

DMC is a tool to calculate the energy of a many-body system for a given
wave function by projecting it in imaginary time.

... for now :-)
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