
5 Construction of the effective Lagrangian

We determined the required transformation properties of the SU(2) pion
field matrix U . Remember that VR and VL are spacetime dependent, so the
derivatives of the pion field matrix will lead to extra contributions

∂µU → ∂µVRUV
†
L + VR∂

µUV †L + VRU∂
µV †L (1)

which can be eliminated by the use of the covariant derivative

DµU = ∂µ − irµU + iU`µ, (2)

which transform homogeneously under chiral symmetry

DµU → VRD
µUV †L . (3)

The same can be done for derivatives of the χ source,

Dµχ→ VRD
µχV †L . (4)

We may form invariant structures by taking flavour traces (denoted as 〈...〉)
of alternate products of operators transforming covariantly like U or U †. In
addition we may also use the left and right source curvatures

Rµν → VRRµνV
†
R, Lµν → VLLµνV †L , (5)

to form invariant structures like e.g.

〈RµνULµνU †〉. (6)

Of course we can build an infinite variety of chiral invariant operators, but
they can be ordered according to the number of (covariant) derivatives,
and/or external sources involved. Since each derivatives brings down one
power of momenta, this ordering corresponds to a low-momentum expan-
sion. An important fact is that there are no possible invariants without
derivatives or external sources at all: the only one would be 〈U †U〉 which
is however constant since U ∈SU(2). The first non trivial operator contains
two derivatives

〈DµU †DµU〉, (7)

and belong to the leading order Lagrangian

L(2) =
F 2
0

4

[
〈DµU †DµU〉+ 2B0〈U †χ+ χ†U〉

]
, (8)
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together with a linear term in the scalar/pseudoscalar source χ = s + ip,
which provides a mass term for the pions, once evaluated at s = M the
quark mass matrix. The superscript (2) in the Lagrangian specifies the so
called “chiral power”, according to the standard chiral counting

∂µ ∼ Dµ ∼ pµ ∼Mπ ∼ O(p), χ ∼ O(p2). (9)

The constant F0 which already appeared in the expression of U , is there to
ensure a properly normalized pionic kinetic term. The other constant that
appears at leading order (LO) is B0, which is related to the vacuum quark-
antiquark condensate in the SU(2) chiral limit. Notice that this Lagrangian
already contains an infinite tower of pion self-interactions, which are always of
derivative type, in the chiral limit. This is the manifestation of the good old
soft pion theorems. Such interactions are also not renormalizable. But this
causes no harm, as the renormalizability is recovered order by order in the
chiral counting. This was Weinberg’s original insight in the ’70s, according
to which a given diagram with L loops, I internal lines and ni vertices of
type i, each with chiral dimension di, will scale like pν with

ν = 4L− 2I +
∑
i

nidi. (10)

Using the topological identity relating L, I and V =
∑
i ni, the total number

of vertices,
L = I − V + 1, (11)

we have that
ν = 2L+ 2 +

∑
i

ni(di − 2). (12)

This implies that the loops are more and more suppressed in the chiral count-
ing, since, as we have already noticed, di ≥ 2. Notice that this depends
crucially on the adoption of a mass-independent regularization scheme for
the loop integrals, such as dimensional regularization, and on the fact that
no hard scale is present in the integrands. This will change when there are
nucleon propagators in the loops. But in this case we see that, up to a given
chiral power ν only a finite number of diagrams needs to be calculated, and
the divergences can be absorbed in the coefficients of the higher-order La-
grangians, which contain by construction all possible chiral invariant terms.
What is the higher-order Lagrangian? Lorentz covariance and the adopted
chiral counting implies that it may contain up to 4 (covariant) derivatives, or
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2 derivatives and a χ source or source curvature, or two χ sources or source
curvatures. The complete list of operators is

L(4) =
`1
4
〈DµU †DµU〉2 +

`2
4
〈DµU †DνU〉〈DµU

†DνU〉

+`3B
2
0〈U †χ+ χ†U〉2 + `4

B0

2
〈DµU †Dµχ+Dµχ†Dµχ〉

+`5〈RµνULµνU †〉+
i

2
`6〈RµνDµUDνU

† + LµνDµU
†DνU〉

−`7
B2

0

4
〈U †χ− χ†U〉2 (13)

Whenever possible the terms with a single trace have been expressed as
products of traces, using the Cayley-Hamilton relations satisfied by any 2×2
matrix X,

X2 −X〈X〉+ detX = 0, (14)

that, applied to X = A+B implies also

AB +BA− A〈B〉 −B〈A〉 − 〈AB〉+ 〈A〉〈B〉. (15)

Also, terms with squared covariant derivatives, like D2U can be eliminated
using the equation of motion, according to the discussion above. The con-
stants `i are “low-energy constants” (LECs), whence their initial, while other
pure source contact terms like 〈χ†χ〉 are multiplied by “high-energy con-
stants” denoted by hi.

6 Mπ and Fπ to one loop

With this Lagrangian it is already possible to determine the chiral expansion
of the pion mass, by considering the pion propagator, This could be the
subject of the afternoon hands-on activity. The pion propagator up to one
loop is made up of the diagrams depicted in Fig. 1, where the first term is the
free propagator, the second term is the tadpole calculated with the vertices
from L(2) and the third one is the tree contribution from the subleading L(4).
The iteration of the Dyson series leads to

i

p2(1 + A)−M2 +B
(16)
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Figure 1: Pion propagator up to one loop.

with calculable coefficients A and B. from the pole of the dressed propagator
we read the physical pion mass,

M2
π =

M2 −B
1 + A

. (17)

Explicit calculation in dimensional regularization gives

A =
M2

8π2F 2
0

(
1

d− 4
+ ...

)
(18)

where the dots stand for finite contributions for d = 4, and

B = −2`3
M2

F 2
0

− 3M4

16π2F 2
0

(
1

d− 4
+ ...

)
, (19)

so that the physical pion mass is

M2
π = M2

[
1− 2`3

M2

F 2
0

+
M2

16π2F 2
0

(
Md−4

d− 4
+ ...

)]
, (20)

where in all these equations M = 2Bm̂, with m̂ the average light quark
mass, is the leading order pion mass squared. The loop divergence shows up
as a pole in dimension d, and it can be absorbed by the renormalization of
the `3. The divergent contribution also specifies the so-called chiral log, as
coming from expanding the non-analytic M -dependence in powers of d − 4.
The renormalized result is

M2
π = M2

(
1 + 2`r3(µ)

M2

F 2
0

+
M2

16π2F 2
0

log
M

µ

)
(21)

and the renormalized LEC becomes dependent on the scale µ, related to the
choice of subtraction. The pion decay constant is found by calculating the
diagrams in Fig. 2, in addition to the ones with the dressed pion propagators,
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Figure 2: 1PI contributions to Fπ up to one loop.

that we know already how to treat. The result is

i

(1 + A)(p2 −M2
π)
ipµF0

[
1 + `4

M2

F 2
0

− 4M2

16π2

(
Md−4

d− 4
+ ...

)]
. (22)

We have still to remember that there is a Z in the LSZ formula, so we have
to multiply the result by Z−1/2. Who is Z? The renormalization constant
appears in the definition of the interpolating field ϕ, as, e.g.,

ϕ(x)→ Z1/2ϕin(x), (23)

such that
〈0|ϕ(x)|π(p)〉 = Z1/2e−ip·x. (24)

The same Z appears in the π → π amplitude (the “dressed propagator”), or
in the matrix element

〈0|ϕ(x)|π(p)〉 = Z−1/2
(

i

p2 −M2
π

)−1 (
i

(1 + A)(p2 −M2
π)

)
e−ip·x, (25)

so that
Z−1 = 1 + A. (26)

At the end we end up with

Fπ = F0

[
1 + `4

M2

F 2
0

− 2
M2

16π2F 2
0

(
Md−4

d− 4
+ ...

)]
, (27)

which can be made finite upon renormalization of the LEC `4. Notice that the
pion field renormalization constant, as well as the individual contributions
to Feynman diagrams, depend on the choice of the pion field. They would
differ if another parametrization than the σ-model one was used. There
would be differences also if equations of motion were used to change the
Lagrangian L(4) (as it is sometimes done to rewrite the term proportional to
`4). Nevertheless, the physical results, and the anomalous dimensions of the
LECs, would remain the same.
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7 The physics of the LECs

There is another aspect to discuss concerning the LECs, i.e. the fact that
they contain information about the short-distance physics that is not explic-
itly included in the effective theory. This is called “resonance saturation”.
Indeed, heavier mesons can be included rather easily in the same picture,
similarly to what will be explained for nucleons in the next lecture. Suppose,
for simplicity, that there existed a scalar-isoscalar meson, described by a field
φ, with mass mS. Due to the particularly simple transformation properties,
it is straightforward to write chiral invariant coupling of this field to the
pions. One such coupling would be

hφ〈DµU †DµU〉, (28)

with a coupling h to be determined from the phenomenology. In the func-
tional integral we will have to integrate over φ as well. A given term of the
perturbative expansion will have e.g.

1

2
i2
∫
d4z1hφ(z1)〈DµU †DµU〈(z1)

∫
d4z2hφ(z2)〈DνU †DνU〈(z2) (29)

which will yield the φ propagator∫ d4p

(2π)4
i

p2 −m2
S + iε

e−ip·(z1−z2). (30)

If the flowing momentum p is such that p2 << m2
S the φ propagator becomes

a Dirac δ function and its contribution amounts to a term

i2

2
h2
(
−i
m2
S

)∫
d4z1〈DµU †DµU〉2(z1), (31)

the same as would be given by the vertex proportional to `1. Therefore the
heavy meson entails a contribution to the LEC `1

`
(φ)
1 =

h2

2m2
S

. (32)

So, in general we can say that the LECs mimic the effect of virtual heavier
particles, which have been “integrated out” from the theory. This works in
practice much better for the vector meson (vector meson dominance), the
principle is the same, the calculation a little more involved.
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8 Extension to nucleons

In extending the effective chiral Lagrangian to include nucleons, the first
thing we have to establish is how nucleons transform under the chiral sym-
metry. We know that they form an isodoublet under isospin, the vectorial
SU(2),

N =

(
p
n

)
, (33)

but this leaves open many possibilities. One such possibility is that the re-
spective chiralities transform linearly under the corresponding SU(2) trans-
formations, e.g.,

NL → VLNL, NR → VRNR, (34)

where NR/L = (1± γ5)/2N . When restricted to vector transformation VR =
VL = V then the isospin transformation properties are satisfied. However,
the same is true for other choices, e.g.

N → VLN, (35)

or
N → VRN. (36)

It would seem that there is ample freedom in the choice of the representation.
However, all the different choices are equivalent, since one can pass from
one representation to the other by using the Goldstone bosons’ field U . For
instance, if we start from the transformation law (35), then the fieldN ′ = UN
transform according to (36),

N ′ = UN → VRUV
†
LVLN = VRUN = VRN

′. (37)

As we saw in the case of the pions, a field redefinition does not affect the phys-
ical consequences of the theory. Nevertheless, among all possible choices of
transformation properties, there is a particularly convenient one. The reason
is that all of the above choices lead to non-derivative couplings with pions,
a fact that renders the crucial property at the basis of soft pion theorems
(that would nevertheless arise), not immediately transparent from the power
counting. This is clear, e.g. using the (parity respecting) representation (34),
since in this case the nucleon mass term would take the chiral invariant form

mN(N̄RUNL + N̄LU
†NR) = mN

(
N̄
U + U †

2
N + N̄

U † − U
2i

iγ5N

)
, (38)
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leading to a tower of non-derivative pion-nucleon interactions, in addition to
a pseudoscalar coupling that was discussed in the previous lectures at this
School. Notice that a pseudoscalar pion-nucleon coupling is a rather reason-
able choice. A choice which is “equivalent” to the axial vector coupling, as
stated by so-called “equivalence theorems. These theorems involve precisely
some field redefinition (or equations of motion) to demonstrate the equiva-
lence. For instance, it is left as the 4th exercise to prove that, starting from
the πN interaction Lagrangian

N̄(i/∂ −mN)N − igN̄γ5τ · πN, (39)

the nucleon field redefinition,

N → N ′ = e
−i g

2mN
γ5τ ·πN (40)

leads to the replacement of the pseudoscalar coupling with the axial vector
one,

g

2mN

N̄γµγ5∂µτ · πN, (41)

in addition to more many-pion couplings. The same results can be obtained
by partial integration of the axial vector coupling and by using the nucleon
equation of motion. We see that, in order to eliminate the unwanted non-
derivative pion couplings issuing from N̄RUNL + N̄LU

†NR, we have to split
the SU(2) matrix U = uu and assign it partially to the left and right-handed
nucleon fields, i.e.,

N ′L = uNL, N ′R = u†NR, (42)

so that the mass term does not involve the pion field U anymore. We have
now to determine the transformation properties of the transformed fields,
and therefore of the square root u =

√
U . We know that

u2 → u′2 = VRu
2V †L , (43)

and require that there is a SU(2) matrix h such that

VRuh
† = huVL, (44)

so that
u′ = VRuh

† = huV †L , u′† = hu†V †R = VLu
†h†. (45)
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h is called the compensator field and we can give an explicit expression for
it from

u′ =
√
VRUV

†
L = huV †L =⇒ h =

√
VRUV

†
LVL
√
U †. (46)

In spite of the apparent uglyness, the transformation properties of the rede-
fined nucleon fields are very simple,

N ′L = uNL → huV †LVLN = huNL = hN ′L, (47)

and the same for N ′R. Then finally the redefined nucleon field N transforms
homogeneously,

N → hN. (48)

You can easily prove that the set of transformations

U → VRUV
†
L , N → hψ, (49)

with the above definition of the compensator field h, defines a (non-linear)
representation of the chiral group, in the sense that it respects the group
composition law. This is the exercise #5. We have disposed of the (non-
derivative) pion interaction. What about the derivative one? We saw that
they must come from the covariant derivative of the pion field DµU , which,

however, transforms as U itself, DµU → VRDµUV
†
L . We can put it inside a

nucleon bilinear if we multiply it by appropriate factors of the u fields, e.g.

u†DµUu
† → hu†V †RVRDµUVLV

†
Lu
†h† = h(u†DµUu

†)h†, (50)

and the same happens with uDµU
†u. It is convenient to define the object

uµ = iu†DµUu
† = −iuDµU

†u→ huµh
†, (51)

where the i ensures its hermiticity. An invariant operator is e.g.

N̄γµγ5uµN, (52)

which gives a πNN derivative coupling of axial vector type. The presence
of γ5 is dictated by the parity invariance. Indeed, the pions inherits its
properties under the discrete symmetries from the fact that it couples to the
Noether axial current,

〈0|ψ̄γµγ5
τa

2
ψ(x)|πb(p)〉 = ipµe−ip·xFπ, (53)
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therefore it is pseudoscalar and even under charge conjugation. So, e.g.,
under parity

U
P→ U †, uµ

P→ −uµ. (54)

So the pions can basically enter only through the field uµ. Notice that, up
to one spacetime derivative, we cant’ have further invariant operator, as uµ
is traceless, so that e.g.

N̄γµγ5N〈uµ〉 = 0. (55)

We can also have derivatives of the nucleon fields, but we have to construct
a chiral covariant derivative, since for local chiral transformation

N → hN =⇒ ∂µN → h∂µN + ∂µhN. (56)

This is done as usual, by introducing a connection with the duty to absorb
the extra piece,

DµN = (∂µ + Γµ)N, (57)

where we require that
Γµ → hΓµh† − ∂µhh†. (58)

Now, we know that

u→ huV †L =⇒ ∂µ → ∂µhuV †L + h∂µV †L + hu∂µV †L , (59)

so the field ∂µu can serve the purpose, but it has to be combined with u†,

∂µuu† → h(∂µu†)h† + ∂µhh† + hu∂µV †LVLu
†h† (60)

the unwanted term depending on ∂µV †L can be compensated by the inclusion
of the external source `µ whose transformation properties involves precisely
that term. Finally parity requires that also the right handed source be in-
cluded. At the end we find, for the chiral connection

Γµ =
1

2

(
u†∂µu− ∂µuu†

)
− i

2
u`µu† − i

2
u†rµr, (61)

which ensures that

DµN = (∂µ + Γµ)N → hDµNh†. (62)

Also the scalar/pseudoscalar sources can be used to build homogeneously
transforming building blocks, as

u†χu†, uχ†u, (63)
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and the curvatures,
u†Rµνu, uLµνu†, (64)

that transform as uµ. The chiral counting is modified, due to the fact that the
nucleon mass mN is not protected by chiral symmetry, it must be counted as
order O(1). Only the space part of nucleon four-momenta must be counted as
a small parameter, therefore also covariant derivatives of nucleon fields must
count as O(1), while /D −mN ∼ O(p). The leading order πN Lagrangian is
therefore of order O(p),

L(1)
πN = N̄

(
i /D −mN +

1

2
gA/uγ5

)
N, (65)

with a single LEC, gA, that determines the nucleon coupling to the pion and
also to the axial current. This is the celebrated Goldberger-Treiman relation,
which is authomatically built in in the effective theory. At the following order
more LECs appear, it is, in its full glory,

L(2)
πN = N̄

{
2B0c1〈U †χ+ χ†U〉 − c2

4m2
N

〈uµuν〉(DµDν + h.c.)

+
c3
2
〈uµuµ〉+

i

4
c4σ

µν [uµ, uν ]

+2B0c5
(
uχ†u+ u†χu† − 〈U †χ+ χ†U〉

)
+

c6
8mN

σµν(u†Rµνu+ uLµνu†)

+
c7

8mN

σµν〈Rµν + Lµν〉
}
N. (66)

The LEC c1 is related to the πN σ-term, i.e. the light-quark condensate
inside the nucleon, which also dictates the chiral expansion of the nucleon
mass. c2, c3 and c4 can be measured in πN scattering, and the first two
play an important role since they get large contributions from ∆-resonance
saturation, by a similar mechanism to what we have seen in the previous
lecture for the `i. Other constants describe the structure of the nucleon, like
the anomalous magnetic moment of the protono and neutron.
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9 Exercises

3. Show that the most general parametrization of the SU(2) matrix U in
terms of the isovector pion field π(x) is the following

U = f0(π
2) + i

[
1− f0(π2)

]∑
a

πaτa, (67)

with a real scalar function f0. Expand up to four powers of the pion
fields, and give the most general expansion in terms of one parameter,
besides F0.

4. Show that, starting from the πN interaction Lagrangian

N̄(i/∂ −mN)N − igN̄γ5τ · πN, (68)

the nucleon field redefinition,

N → N ′ = e
−i g

2mN
γ5τ ·πN (69)

leads to the replacement of the pseudoscalar coupling with the axial
vector one,

g

2mN

N̄γµγ5∂µτ · πN, (70)

in addition to more many-pion couplings.

5. Show that the transformation

N → hN, U → VRUV
†
L , (71)

with h defined in Eq. (46), realizes a (non-linear) representation of the
chiral group, in the sense that it respects the group composition law.
Show also that, when restricted to vector transformations, you recover
the proper isospin transformation law.

10 Hands-on activity

1. Derive the four-pion vertices from L(2) and the two pion vertices from
L(4) in the σ-model representation of U .
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2. Use the above vertices to compute the pion propagator up to one-loop
order, O(p4) of the low-momentum expansion. Deduce the pion field
renormalization constant Z and the chiral expansion of Mπ up to that
order.

3. Find the linear coupling of the axial source to one and three pions from
L(2) + L(4) and L(2) respectively.

4. Determine the matrix element of the quark axial current between one
pion and the vacuum. Deduce the chiral expansion of Fπ up to O(p4)
using the definition

〈0|ψ̄γµγ5
τa

2
ψ(x)|πb(p)〉 = ipµFπe−ip·x. (72)
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