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Overview

§Lecture 1: Hamiltonian 
Prelude ● Nuclear Hamiltonian ● Matrix Elements ● Two-Body Problem ● 
Correlations & Unitary Transformations 

§Lecture 2: Light Nuclei 
Similarity Renormalization Group ● Many-Body Problem ● Configuration 
Interaction ● No-Core Shell Model ● Hypernuclei 

§Lecture 3: Beyond Light Nuclei 
Normal Ordering ● Coupled-Cluster Theory ● In-Medium Similarity 
Renormalization Group 

§Hands-On: Do-It-Yourself NCSM 
Three-Body Problem ● Numerical SRG Evolution ● NCSM Eigenvalue Problem ● 
Lanczos Algorithm 
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Prelude
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New Era of Nuclear Structure Theory

§QCD at low energies 
improved understanding through lattice 
simulations & effective field theories
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New Era of Nuclear Structure Theory

§QCD at low energies 
improved understanding through lattice 
simulations & effective field theories 

§ quantum many-body methods 
advances in ab initio treatment of the 
nuclear many-body problem
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New Era of Nuclear Structure Theory

§QCD at low energies 
improved understanding through lattice 
simulations & effective field theories 

§ quantum many-body methods 
advances in ab initio treatment of the 
nuclear many-body problem 

§ computing and algorithms 
increase of computational resources and 
developments of algorithms

7



 Robert Roth - TU Darmstadt - June 2017 

New Era of Nuclear Structure Theory

§QCD at low energies 
improved understanding through lattice 
simulations & effective field theories 

§ quantum many-body methods 
advances in ab initio treatment of the 
nuclear many-body problem 

§ computing and algorithms 
increase of computational resources and 
developments of algorithms 

§ experimental facilities 
amazing perspectives for the exploration 
of nuclei far-off stability

8
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The Problem

9

H |�ni = En |�ni

 Assumptions

• use nucleons as effective degrees of freedom 

• use non-relativistic framework, relativistic 
corrections are absorbed in Hamiltonian 

• use Hamiltonian formulation, i.e., conventional 
many-body quantum mechanics 

• focus on bound states, though continuum 
aspects are very interesting 
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The Problem

10

H |�ni = En |�ni

nuclear forces, chiral effective 
field theory, three-body 

interactions, consistency, 
convergence,…

What is this many-body 
Hamiltonian?

many-body quantum mechanics, 
antisymmetry, second 

quantisation, many-body basis, 
truncations,…

What about these 
many-body states?

ab initio methods, correlations, 
similarity transformations, large-
scale diagonalization, coupled-

cluster theory,…

How to solve this 
equation?



Many-Body Quantum Mechanics

... a very quick reminder
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Single-Particle Basis

§ effective constituents are nucleons characterized by position, spin and isospin 
degrees of freedom

12

|� i = |position i ⌦ | spin i ⌦ | isospin i

|position i = |nlml i or |nxnynz i or |kxkykz i

H | n i = En | n ispherical harmonic oscillator or other 
spherical single-particle potential

eigenstates of s2 and sz with s=1/2

eigenstates of t2 and t3 with t=1/2

|� i = |position i ⌦ | spin i ⌦ | isospin i

|position i = |nlml i or |nxnynz i or |kxkykz i

| spin i = | s = 1
2 ,ms i

| isospin i = | t = 1
2 ,mt i

H | n i = En | n i

|� i = |position i ⌦ | spin i ⌦ | isospin i

|position i = |nlml i or |nxnynz i or |kxkykz i

| spin i = | s = 1
2 ,ms i

| isospin i = | t = 1
2 ,mt i

H | n i = En | n i

|� i = |position i ⌦ | spin i ⌦ | isospin i

|position i = |nlml i or |nxnynz i or |kxkykz i

| spin i = | s = 1
2 ,ms i

| isospin i = | t = 1
2 ,mt i

H | n i = En | n i

§ typical basis choice for configuration-type bound-state methods

§ use spin-orbit coupling at the single-particle level 

|� i = |position i ⌦ | spin i ⌦ | isospin i

|position i = |nlml i or |nxnynz i or |kxkykz i

| spin i = | s = 1
2 ,ms i

| isospin i = | t = 1
2 ,mt i

|n(l12 )jm; 12mt i =
X

ml,ms

c
✓

l 1/2
ml ms

��� jm
◆
|nlml i ⌦ | 12ms i ⌦ | 12mt i
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Identical Particles & Spin-Statistics Theorem

§ systems of identical particles: many-body states have to be eigenstates of 
the transposition operator for any particle pair with eigenvalues ±1

13

states symmetric under transposition of any pair 
of particle indices

states antisymmetric under transposition of any 
pair of particles

§ spin-statistics theorem connects transposition symmetry to particle spin:  

• bosons = integer spin = symmetric states 

• fermions = half-integer spin = antisymmetric states

Tij | i = +1 | i

Tij | i = �1 | i

| spin i = | s = 1
2 ,ms i

| isospin i = | t = 1
2 ,mt i

|n(l12 )jm; 12mt i =
X

ml,ms

c
✓

l 1/2
ml ms

��� jm
◆
|nlml i ⌦ | 12ms i ⌦ | 12mt i

Tij | i = +1 | i

Tij | i = �1 | i

| spin i = | s = 1
2 ,ms i

| isospin i = | t = 1
2 ,mt i

|n(l12 )jm; 12mt i =
X

ml,ms

c
✓

l 1/2
ml ms

��� jm
◆
|nlml i ⌦ | 12ms i ⌦ | 12mt i

§ simple product states are not suitable for systems of identical particles

Tij | i = +1 | i

Tij | i = �1 | i

|� i = |�1 i ⌦ |�2 i ⌦ · · ·⌦ |�A i

| isospin i = | t = 1
2 ,mt i

|n(l12 )jm; 12mt i =
X

ml,ms

c
✓

l 1/2
ml ms

��� jm
◆
|nlml i ⌦ | 12ms i ⌦ | 12mt i

§ focus on fermions, i.e., antisymmetric states in the following
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Slater Determinants

§ antisymmetric states can be constructed via the antisymmetrization operator

14

Tij | i = +1 | i

Tij | i = �1 | i

|� i = |�1 i ⌦ |�2 i ⌦ · · ·⌦ |�A i

| isospin i = | t = 1
2 ,mt i

A =
1

A!

X

�
sgn(�) P�

§ technically it is a projection operator onto the antisymmetric A-body Hilbert 
space and has the same structure as a general determinant

§ Slater determinants: antisymmetrized product states 

§ Pauli principle is a consequence of antisymmetry: you cannot 
antisymmetrize a product state that contains two identical single-particle states

permutation 
operator

sum over all  
permutations

signum of 
permutation

Tij | i = +1 | i

Tij | i = �1 | i

|� i = |�1 i ⌦ |�2 i ⌦ · · ·⌦ |�A i

| isospin i = | t = 1
2 ,mt i

A =
1

A!

X

�
sgn(�) P�

|�1�2...�A i =
p
A! A ( |�1 i ⌦ |�2 i ⌦ · · ·⌦ |�A i)

=
1
p
A!

X

�
sgn(�) P� ( |�1 i ⌦ |�2 i ⌦ · · ·⌦ |�A i)



§ given a complete single-particle basis           then the set of Slater determinants 
formed by all possible combinations of A different single-particle states is a 
complete basis of the antisymmetric A-body Hilbert space 
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Slater Determinants as Basis

15

§ resolution of the identity operator

§ expansion of general antisymmetric state in Slater determinant basis

§ careful with double counting: Slater determinants that differ only by the order 
of the single-particle states are identical up to a sign... 

1 =
X

�1<�2<...<�A
|�1�2...�Aih�1�2...�A| =

1

A!

X

�1,�2,...,�A
|�1�2...�Aih�1�2...�A|

|�i =
X

�1<�2<...<�A
C�1�2...�A |�1�2...�Ai =

X

�
C� |{�1�2...�A}� i

{ |�i}



§ creation operators: add a particle in single-particle state      to an A-body 
Slater determinant yielding an (A+1)-body Slater determinant
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Second Quantization: Basics

§ define Fock-space as direct sum of A-particle Hilbert spaces

16

F = H0 �H1 �H2 � · · ·�HA � · · ·

|�i

§ vacuum state: the only state in the zero-particle Hilbert space

|0i 2 H0 h0|0i = 1 |0i 6= 0

§ resulting states are automatically normalized and antisymmetrized 

§ new single-particle state is added in the first slot, can be moved elsewhere 
through transpositions

�†� |0i = |�i

�†� |�1�2...�Ai =
®
|��1�2...�Ai ; � /2 {�1�2...�A}
0 ; otherwise
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Second Quantization: Basics

17

|�i§ annihilation operators: remove a particle with single-particle state      from 
an A-body Slater determinant yielding an (A-1)-body Slater determinant

§ annihilation operator acts on first slot, need transpositions to get correct single-
particle state there

§ based on these definitions one can easily show that creation and annihilations 
operators satisfy anticommutation relations

§ complication of handling permutations in "first quantization" are translated to 
the commutation behaviour of strings of operators

�� |0i = 0

�� |�1�2...�Ai =
®
(�1)��1 |�1�2...���1��+1...�Ai ; � = ��
0 ; otherwise

{�� ,��0} = 0 {�†� ,�
†
�0} = 0 {�� ,�

†
�0} = ���0
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Second Quantization: States

§ Slater determinants can be written as string of creation operators acting on 
vacuum state

18

§ alternatively one can define an A-body reference Slater determinant 

and construct arbitrary Slater determinants through particle-hole excitations 
on top of the reference state

|�1�2...�Ai = �†�1�
†
�2
· · ·�†�A |0i

|�i = |�1�2...�Ai = �†�1�
†
�2
· · ·�†�A |0i

a,b,c,… : hole states, occupied in reference state 
p,q,r,… : particle state, unoccupied in reference states

index convention:

|�p�i = �†�p��� |�i

|�pq�bi = �†�p�
†
�q
��b��� |�i...
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Second Quantization: Operators

§ operators can be expressed in terms of creation and annihilation operators as 
well, e.g., for one-body kinetic energy and two-body interactions: 

19

V =
1

4

X

�1�2�01�
0
2

h�1�2|v |�01�
0
2i �

†
�1
�†�2 ��02��01V =

AX

�<j=1
v�j

T =
AX

�=1
t�

§ second quantization is extremely convenient to compute matrix elements of 
operators with Slater determinants

‘first quantization’ second quantization

§ set of one or two-body matrix elements fully defines the one or two-body 
operator in Fock space

T =
X

��0
h�| t |�0i �†���0



Nuclear Hamiltonian



 Robert Roth - TU Darmstadt - June 2017 

Nuclear Hamiltonian

§ these symmetries constrain the possible operator structures that can appear in 
the interaction terms... 

... but how can we really determine the nuclear interaction ?

21

Hint = Tint + VNN + V3N + · · ·

=
AX

�<j

1

2mA
(~p� � ~pj)2 +

AX

�<j
vNN,�j +

AX

�<j<k
v3N,�jk + · · ·

H = T+ VNN + V3N + · · · = Tcm + Tint + VNN + V3N + · · ·
= Tcm +Hint

§ general form of many-body Hamiltonian can be split into a center-of-mass 
and an intrinsic part

§ intrinsic Hamiltonian is invariant under translation, rotation, Galilei boost, 
parity, time evolution, time reversal,...
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Nature of the Nuclear Interaction

§ nuclear interaction is not fundamental 

§ residual force analogous to van der Waals 
interaction between neutral atoms 

§based on QCD and induced via polarization 
of quark and gluon distributions of nucleons 

§ encapsulates all the complications of the 
QCD dynamics and the structure of nucleons 

§ acts only if the nucleons overlap, i.e. at 
short ranges 

§ irreducible three-nucleon interactions are 
important

22

Nature of the Nuclear Interaction

∼ 1.6fm

ρ−1/30 = 1.8fm

■ NN-interaction is not fundamental

■ analogous to van der Waals interac-
tion between neutral atoms

■ induced via mutual polarization of
quark & gluon distributions

■ acts only if the nucleons overlap, i.e. at
short ranges

■ genuine 3N-interaction is important

9



 Robert Roth - TU Darmstadt - June 2017 

Wiringa, Machleidt,…

Yesterday... from Phenomenology 

§ until 2005: high-precision phenomenological NN interactions were state-
of-the-art in ab initio nuclear structure theory 

§ Argonne V18: long-range one-pion exchange plus phenomenological 
parametrization of medium- and short-range terms, local operator form 

§ CD Bonn 2000: more systematic one meson-exchange parametrization 
including pseudo-scalar, scalar and vector mesons, inherently nonlocal 

23

§ supplemented by phenomenological 3N interactions 
consisting of a Fujita-Miyazawa-type term plus various hand-
picked contributions

§ parameters of the NN potential (~40) fit to NN phase shifts up to ~300 MeV 
and reproduce them with high accuracy

§ fit to ground states and spectra of light nuclei, sometimes 
up to A≤8 
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Wiringa, et al., PRC 51, 38 (1995)
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Argonne V18 Potential
Argonne V18 Potential
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Hatsuda, Aoki, Ishii, Beane, Savage, Bedaque,... 

Tomorrow... from Lattice QCD

§ first attempts towards construction of 
nuclear interactions directly from 
lattice QCD simulations 

§ compute relative two-nucleon wave 
function on the lattice 

§ invert Schrödinger equation to 
extract effective two-nucleon potential 

§ only schematic results so far 
(unphysical masses and mass 
dependence, model dependence,…) 

§ alternatives: phase-shifts or low-
energy constants from lattice QCD

25

Nuclear Interaction from Lattice QCD
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■ first steps towards construction
of a nuclear interaction through
lattice QCD simulations

■ compute relative two-nucleon
wavefunction on the lattice

■ invert Schrödinger equation to
obtain local ‘effective’ two-
nucleon potential

■ schematic results so far (un-
physical quark masses, S-wave
interactions only,...)

10
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Today... from Chiral EFT

26

§ low-energy effective field theory for 
relevant degrees of freedom (π,N) based  
on symmetries of QCD 

§ explicit long-range pion dynamics 

§ unresolved short-range physics absorbed  
in contact terms, low-energy constants  
fit to experiment 

§ systematic expansion in a small parameter 
with power counting enable controlled 
improvements and error quantification 

§ hierarchy of consistent NN, 3N, 4N,... 
interactions  

§ consistent electromagnetic and weak 
operators can be constructed in the same 
framework

Weinberg, van Kolck, Machleidt, Entem, Meißner, Epelbaum, Krebs, Bernard,...
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Momentum-Space Matrix Elements

SRG Evolution in Two-Body Space

chiral NN
Entem & Machleidt. N3LO, 500 MeV
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SRG Evolution in Two-Body Space

Argonne V18α = 0.000 fm4

Λ =∞ fm−1

Jπ = 1+, T = 0
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Argonne V18 chiral NN  
(N3LO, E&M, 500 MeV)

hq(LS) JM;TMT |vNN |q0(L0S) JM;TMT i

J=1 
L=0 
L’=0 
S=1 
T=0

J=1 
L=0 
L’=2 
S=1 
T=0



Matrix Elements
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Partial-Wave Matrix Elements

§ relative partial-wave matrix elements of NN and 3N interaction are 
universal input for many-body calculations

29

§ exception: Quantum Monte Carlo methods working in coordinate 
representation need local operator form 

§ lots of transformations between the different bases are needed in practice

§ selection of relevant partial-wave bases in two and three-body space with all 
M quantum numbers suppressed: 

|N1N2; [(L1S1) J1, (L2 12 ) J2] J12; (T1
1
2 ) T12i

|�1�2; [(L1S1) J1, (L2 12 ) J2] J12; (T1
1
2 ) T12i

|E12� J�12T12i

two-body relative momentum: 

two-body relative HO: 

three-body Jacobi momentum: 

three-body Jacobi HO: 

antisym. three-body Jacobi HO: 

|q (LS) JTi

|N (LS) JTi
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Symmetries and Matrix Elements

§ relative partial-wave matrix elements make maximum use of the symmetries 
of the nuclear interaction 

§ consider, e.g., the relative two-body matrix elements in HO basis

30

§ the matrix elements of the NN interaction 
… do not connect different J 
… do not connect different M and are independent of M 
… do not connect different parities 
… do not connect different S 
… do not connect different T 
… do not connect different MT

hN (LS) JM;TMT |vNN |N0 (L0S0) J0M0;T 0M0T i

hN (LS) J;TMT |vNN |N0 (L0S) J;TMT i⇒
§ relative matrix elements are efficient and simple to compute
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Transformation to Single-Particle Basis

§most many-body calculations need matrix elements with single-particle 
quantum numbers (cf. second quantization)

31

h�1�2|vNN |�01�
0
2i =

= hn1�1j1m1mt1, n2�2j2m2mt2|vNN |n01�
0
1j
0
1m
0
1m
0
t1, n

0
2�
0
2j
0
2m
0
2m
0
t2i

§ obtained from relative HO matrix elements via Moshinsky-transformation

hn1�1j1, n2�2j2; JT |vNN |n01�
0
1j
0
1, n
0
2�
0
2j
0
2; JTi =

=
∆
(2j1 + 1)(2j2 + 1)(2j01 + 1)(2j02 + 1)

X

L,L0,S

X

N,�

X

�,�

X

�0,�0

X

j

⇥

8
<
:
�1 �2 L
1
2

1
2 S

j1 j2 J

9
=
;

8
<
:

�01 �02 L0
1
2

1
2 S

j01 j02 J

9
=
;
⇢
� � L
S J j

�⇢
� �0 L0
S J j

�

⇥ hhN�,�� |n1�1, n2�2; Lii hhN�,�0�0 |n01�
0
1, n
0
2�
0
2; L
0ii

⇥ (2j+ 1)(2S+ 1)(2L+ 1)(2L0 + 1) (�1)L+L0 {1� (�1)�+S+T}
⇥ h�(�S)jT |vNN |�0(�0S)jTi

this analytic transformation from relative 

 to single-particle matrix elements only  

exists for the harmonic oscillator basis
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Matrix Element Machinery

§ beneath any ab initio many-body method there is a machinery for computing, 
transforming and storing matrix elements of all operators entering the 
calculation

32

compute and store relative 
 two-body HO matrix elements 

 of NN interaction

compute and store Jacobi  
 three-body HO matrix elements 

 of 3N interaction

perform unitary transformations of the two- and three-body  
relative matrix elements  

(e.g. Similarity Renormalization Group)

transform to single-particle  
JT-coupled two-body HO matrix 

elements and store

transform to single-particle  
JT-coupled three-body HO matrix 

elements and store

●  ●  ● 
same for 4N with 
four-body matrix 

elements



Two-Body Problem
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Solving the Two-Body Problem

§ simplest ab initio problem: the only two-nucleon bound state, the deuteron

34

H = Hcm +Hint = Tcm + Tint +VNN

=
1

2M
~P2cm +

1

2�
~q2 +VNNH = Hcm +Hint = Tcm + Tint +VNN

=
1

2M
~P2cm +

1

2�
~q2 +VNN

|� i = |�cm i ⌦ |�int i

Hint |�int i = E |�int i

H = Hcm +Hint = Tcm + Tint +VNN

=
1

2M
~P2cm +

1

2�
~q2 +VNN

|� i = |�cm i ⌦ |�int i

Hint |�int i = E |�int i
§ solve eigenvalue problem for intrinsic part (effective one-body problem)

§ start from Hamiltonian in two-body space, change to center of mass and 
intrinsic coordinates

§ separate two-body state into center of mass and intrinsic part
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Solving the Two-Body Problem

§ expand eigenstates in a relative partial-wave HO basis

35

§ for given Jπ at most two sets of angular-spin-isospin quantum numbers 
contribute to the expansion

§ symmetries simplify the problem dramatically: 

• Hint does not connect/mix different J, M, S, T, MT  and parity π  

• angular mom. coupling only allows J=L+1, L, L-1 for S=1 or J=L for S=0 

• total antisymmetry requires L+S+T=odd

|�inti =
X

NLSJMTMT

CNLSJMTMT |N (LS) JM;TMT i

|N (LS) JM;TMT i =
X

MLMS

c
� L S
ML MS

�� J
M
� |NLMLi ⌦ |SMSi ⌦ |TMT i
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Deuteron Problem

§ assume Jπ = 1+ for the deuteron ground state, then the basis expansion 
reduces to 

36

§ inserting into Schrödinger equation and multiplying with basis bra leads to 
matrix eigenvalue problem

§ truncate matrices to N ≤ Nmax and choose Nmax large enough so that 
observables are converged, i.e., do not depend on Nmax anymore

§ eigenvectors yield expansions coefficients and eigenvalues the energies

0
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simplest possible Jacobi-NCSM calculation
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Deuteron Solution

§ deuteron wave function show two characteristics that are signatures of 
correlations in the two-body system: 

• suppression at small distances due to short-range repulsion 

• L=2 admixture generated by tensor part of the NN interaction

37

SRG Evolution in Two-Body Space

33

chiral NN
Entem & Machleidt. N3LO, 500 MeV
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SRG Evolution in Two-Body Space
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Argonne V18
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Correlations &  
Unitary Transformations
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Correlations

§many-body eigenstates of independent-particle models described by one-body 
Hamiltonians are Slater determinants 

§ thus, a single Slater determinant does not describe correlations 

§ but Slater determinants are a basis of the antisym. A-body Hilbert space, so any 
state can be expanded in Slater determinants 

§ to describe short-range correlations, a superposition of many Slater 
determinants is necessary 

39

correlations:  
everything beyond the independent 

particle picture
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Why Unitary Transformations ?

40

realistic nuclear interactions generate strong short-range 
correlations in many-body states

many-body methods rely on truncated Hilbert spaces  
not capable of describing these correlations

 Unitary Transformations

§ adapt Hamiltonian to truncated low-
energy model space 

§ improve convergence of many-body 
calculations 

§ preserve the physics of the initial 
Hamiltonian and all observables
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Unitary Transformations

§ unitary transformations conserve the spectrum of the Hamiltonian, with a 
unitary operator U we get

41

H |�i = E |�i
U†HU U† |�i = E U† |�i

H̃ |�̃i = E |�̃i
with

§ for other observables defined via matrix elements of an operator A with the 
eigenstates we obtain

h�|A |�0i = h�|U U†AU U† |�0i = h�̃| Ã |�̃0i

unitary transformations conserve all  
observables as long as the Hamiltonian and all other 

 operators are transformed consistently

1 = U†U = UU†

H̃ = U†HU

|�̃i = U† |�i
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Overview

§Lecture 1: Hamiltonian 
Prelude ● Nuclear Hamiltonian ● Matrix Elements ● Two-Body Problem ● 
Correlations & Unitary Transformations 

§Lecture 2: Light Nuclei 
Similarity Renormalization Group ● Many-Body Problem ● Configuration 
Interaction ● No-Core Shell Model ● Hypernuclei 

§Lecture 3: Beyond Light Nuclei 
Normal Ordering ● Coupled-Cluster Theory ● In-Medium Similarity 
Renormalization Group 

§Hands-On: Do-It-Yourself NCSM 
Three-Body Problem ● Numerical SRG Evolution ● NCSM Eigenvalue Problem ● 
Lanczos Algorithm 
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