No-Core Shell Model

and Related Areas (NCSM*)

Lecture 2: Light Nuclei

Robert Roth

Overview

Lecture 1: Hamiltonian

Prelude • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations & Unitary Transformations

Lecture 2: Light Nuclei

Lecture 3: Beyond Light Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group

Hands-On: Do-It-Yourself NCSM

continuous unitary transformation to pre-diagonalize the Hamiltonian with respect to a given basis

start with an **explicit unitary transformation** of the Hamiltonian with a unitary operator U_{α} with continuous **flow parameter** α

$$H_{\alpha} = U_{\alpha}^{\dagger} H U_{\alpha}$$

differentiate both sides with respect to flow parameter

$$\frac{d}{d\alpha}H_{\alpha} = \left(\frac{d}{d\alpha}U_{\alpha}^{\dagger}\right)HU_{\alpha} + U_{\alpha}^{\dagger}H\left(\frac{d}{d\alpha}U_{\alpha}\right)$$
$$= \left(\frac{d}{d\alpha}U_{\alpha}^{\dagger}\right)U_{\alpha}U_{\alpha}^{\dagger}HU_{\alpha} + U_{\alpha}^{\dagger}HU_{\alpha}U_{\alpha}^{\dagger}\left(\frac{d}{d\alpha}U_{\alpha}\right)$$
$$= \left(\frac{d}{d\alpha}U_{\alpha}^{\dagger}\right)U_{\alpha}H_{\alpha} + H_{\alpha}U_{\alpha}^{\dagger}\left(\frac{d}{d\alpha}U_{\alpha}\right)$$

define the antihermitian generator of the unitary transformation via

$$\eta_{\alpha} = -U_{\alpha}^{\dagger} \left(\frac{d}{d\alpha} U_{\alpha} \right) = \left(\frac{d}{d\alpha} U_{\alpha}^{\dagger} \right) U_{\alpha} = -\eta_{\alpha}^{\dagger}$$

where the antihermiticity follows explicitly from differentiating the unitarity condition $1 = U_{\alpha}^{\dagger}U_{\alpha}$

we thus obtain for the derivative of the transformed Hamiltonian

$$\frac{d}{d\alpha} \mathbf{H}_{\alpha} = \eta_{\alpha} \mathbf{H}_{\alpha} - \mathbf{H}_{\alpha} \eta_{\alpha}$$
$$= [\eta_{\alpha}, \mathbf{H}_{\alpha}]$$

thus, that change of the Hamiltonian as function of the flow parameter is governed by the **commutator of the generator with the Hamiltonian**

this is the SRG flow equation, which has a close resemblance to the Heisenberg equation of motion

Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth,...

continuous unitary transformation to pre-diagonalize the Hamiltonian with respect to a given basis

consistent unitary transformation of Hamiltonian and observables

$$H_{\alpha} = U_{\alpha}^{\dagger} H U_{\alpha} \qquad O_{\alpha} = U_{\alpha}^{\dagger} O U_{\alpha}$$

flow equations for H_{α} and U_{α} with continuous **flow parameter** α

$$\frac{d}{d\alpha}H_{\alpha} = [\eta_{\alpha}, H_{\alpha}] \qquad \qquad \frac{d}{d\alpha}O_{\alpha} = [\eta_{\alpha}, O_{\alpha}] \qquad \qquad \frac{d}{d\alpha}U_{\alpha} = -U_{\alpha}\eta_{\alpha}$$

• the physics of the transformation is governed by the **dynamic generator** η_{α} and we choose an ansatz depending on the type of "pre-diaognalization" we want to achieve

SRG Generator & Fixed Points

standard choice for antihermitian generator: commutator of intrinsic kinetic energy and the Hamiltonian

 $\eta_{\alpha} = (2\mu)^2 [T_{\text{int}}, H_{\alpha}]$

- this generator vanishes if
 - kinetic energy and Hamiltonian commute
 - kinetic energy and Hamiltonian have a simultaneous eigenbasis
 - the Hamiltonian is diagonal in the eigenbasis of the kinetic energy, i.e., in a momentum eigenbasis
- a vanishing generator implies a trivial fix point of the SRG flow equation the r.h.s. of the flow equation vanishes and the Hamiltonian is stationary
- SRG flow drives the Hamiltonian towards the fixed point, i.e., towards the diagonal in momentum representation

Solving the SRG Flow Equation

convert operator equations into a basis representation to obtain coupled evolution equations for *n*-body matrix elements of the Hamiltonian

n=2: two-body relative momentum
$$|q(LS)JT\rangle$$

n=3: antisym. three-body Jacobi HO $|EiJ^{\pi}T\rangle$

matrix-evolution equations for n=3 with antisym. three-body Jacobi HO states:

$$\frac{d}{d\alpha} \langle EiJ^{\pi}T | H_{\alpha} | E'i'J^{\pi}T \rangle = (2\mu)^{2} \sum_{E'',i''}^{E_{SRG}} \sum_{E''',i'''}^{E_{SRG}} \left[\langle Ei... | T_{int} | E''i''... \rangle \langle E''i''... | H_{\alpha} | E'''i''... \rangle \langle E''i''... | H_{\alpha} | E'i'... \rangle \langle E''i''... | H_{\alpha} | E''i''... \rangle \langle E''i''... | T_{int} | E'i'... \rangle$$

note: when using *n*-body matrix elements, components of the evolved Hamiltonian with particle-rank > *n* are discarded

8

Robert Roth - TO Darmstadt - June 201

SRG Evolution in A-Body Space

assume initial Hamiltonian and intrinsic kinetic energy are two-body operators written in second quantization

$$H_0 = \sum \dots a^{\dagger} a^{\dagger} a a , \qquad T_{int} = T - T_{cm} = \sum \dots a^{\dagger} a^{\dagger} a a$$

• perform single Euler-type evolution step $\Delta \alpha$ in Fock-space operator form

$$\begin{split} H_{\Delta \alpha} &= H_0 + \Delta \alpha \left[\left[\mathsf{T}_{\text{int}}, \mathsf{H}_0 \right], \mathsf{H}_0 \right] \\ &= \sum \dots a^{\dagger} a^{\dagger} a a + \Delta \alpha \sum \dots \left[\left[a^{\dagger} a^{\dagger} a a, a^{\dagger} a^{\dagger} a a \right], a^{\dagger} a^{\dagger} a a \right] \\ &= \sum \dots a^{\dagger} a^{\dagger} a a + \Delta \alpha \sum \dots a^{\dagger} a^{\dagger} a^{\dagger} a^{\dagger} a a a a + \Delta \alpha \sum \dots a^{\dagger} a^{\dagger} a^{\dagger} a a a a + \dots \end{split}$$

- SRG evolution induces many-body contributions in the Hamiltonian
- Induced many-body contributions are the price to pay for the pre-diagonalization of the Hamiltonian

SRG Evolution in A-Body Space

decompose evolved Hamiltonian into irreducible *n*-body contributions H_α^[n]

$$H_{\alpha} = H_{\alpha}^{[1]} + H_{\alpha}^{[2]} + H_{\alpha}^{[3]} + H_{\alpha}^{[4]} + \cdots$$

- Intersection of cluster series formally destroys unitarity and invariance of energy eigenvalues (independence of α)
- flow-parameter variation provides diagnostic tool to assess neglected contributions of higher particle ranks

SRG-Evolved Hamiltonians

NNonly : use initial NN, keep evolved NN

NN+3N_{ind} : use initial NN, keep evolved NN+3N

NN+3N_{full} : use initial NN+3N, keep evolved NN+3N

NN+3N_{full}+4N_{ind} : use initial NN+3N, keep evolved NN+3N+4N

Many-Body Problem

Definition: Ab Initio

solve nuclear many-body problem based on realistic interactions using controlled and improvable truncations with quantified theoretical uncertainties

In under the some truncations or approximations is inevitable for any nontrivial nuclear structure application

challenges for ab initio calculations are to

- control the truncation effects
- quantify the resulting uncertainties
- reduce them to an acceptable level
- convergence with respect to truncations is important: demonstrate that observables become independent of truncations
- continuous transition from approximation to ab initio calculation...

Configuration Interaction Approaches

Configuration Interaction (CI)

select a convenient single-particle basis

 $|\alpha\rangle = |nljmtm_t\rangle$

 construct A-body basis of Slater determinants from all possible combinations of A different single-particle states

$$|\Phi_i\rangle = |\{\alpha_1\alpha_2...\alpha_A\}_i\rangle$$

convert eigenvalue problem of the Hamiltonian into a matrix eigenvalue problem in the Slater determinant representation

$$\begin{aligned} \mathsf{H}_{\text{int}} |\Psi_n\rangle &= \mathcal{E}_n |\Psi_n\rangle \\ & \left(\begin{array}{c} \vdots \\ \dots & \langle \Phi_i | \operatorname{H}_{\text{int}} |\Phi_{i'}\rangle \\ \vdots \end{array} \right) \begin{pmatrix} \vdots \\ C_{i'}^{(n)} \\ \vdots \end{pmatrix} = \mathcal{E}_n \begin{pmatrix} \vdots \\ C_{i}^{(n)} \\ \vdots \end{pmatrix} \end{aligned}$$

(.-)

Model Space Truncations

have to introduce truncations of the single/many-body basis to make the Hamilton matrix finite and numerically tractable

• full CI:

truncate the single-particle basis, e.g., at a maximum single-particle energy

• particle-hole truncated CI:

truncate single-particle basis and truncate the many-body basis at a maximum n-particle-n-hole excitation level

• interacting shell model:

truncate single-particle basis and freeze low-lying single-particle states (core)

- In order to qualify as ab initio one has to demonstrate convergence with respect to all those truncations
- there is freedom to optimize the single-particle basis, instead of HO states one can use single-particle states, e.g., from a Hartree-Fock calculation

Variational Perspective

solving the eigenvalue problem in a finite model space is equivalent to a variational calculation with a trial state

$$\Psi_n(D)\rangle = \sum_{i=1}^D C_i^{(n)} |\Phi_i\rangle$$

- formally, the stationarity condition for the energy expectation value directly leads to the matrix eigenvalue problem in the truncated model space
- Ritz variational principle: the ground-state energy in a D-dimensional model space is an upper bound for the exact ground-state energy

 $E_0(D) \geq E_0(\text{exact})$

Hylleraas-Undheim theorem: all states of the spectrum have a monotonously decreasing energy with increasing model space dimension

 $E_n(D) \geq E_n(D+1)$

Theory Uncertainties

- model-space truncation is the sole source of uncertainties in the solution of the many-body problem
- absolute energies are protected by the variational principle, i.e., smooth and monotonic dependence on model-space size (not so for other observables)

convergence with respect to model-space size is the only thing we have to worry about

- efficient truncations: get closer to convergence with smaller model-space dimension, i.e., physics-informed truncation scheme
- extrapolations: extrapolate observables to infinite model-space from a sequence of finite-space calculations
- Incertainty quantification: extract many-body uncertainty from residual model-space dependence or extrapolation

No-Core Shell Model

No-Core Shell Model (NCSM)

- NCSM is a special case of a CI approach:
 - single-particle basis is a **spherical HO basis**
 - truncation in terms of the total number of HO
 excitation quanta N_{max} in the many-body states
- specific advantages of the NCSM:
 - many-body energy truncation (N_{max}) truncation is much more efficient than single-particle energy truncation (e_{max})
 - equivalent NCSM formulation in relative Jacobi coordinates for each N_{max} Jacobi-NCSM
 - explicit separation of center of mass and intrinsic states possible for each N_{max}

⁴He: NCSM Convergence

worst case scenario for NCSM convergence: Argonne V18 potential

NCSM Basis Dimension

Vary et al.; J. Phys.: Conf. Series 180, 012083 (2009)

Computational Strategy

- **key properties** of the computational problem:
 - only interested in a few low-lying eigenstates
 - Hamilton matrix is **very sparse** (typically <0.01% non-zeros)
- Lanczos-type algorithms for an iterative solution of the eigenvalue problem
- amount of fast storage for non-zero matrix elements & a few eigenvectors sets the limits and drives parallelization strategies

Lanczos Algorithm

Lanczos Algorithm: convert the eigenvalue problem of a huge matrix *H* in an iterative process to eigenvalue problems of small matrices *T_m* that converge to the same extremal eigenvalues

Lanczos Algorithm

Lanczos Algorithm: convert the eigenvalue problem of a huge matrix *H* in an iterative process to an eigenvalue problem of small matrices *T_m* which converge to the same extremal eigenvalues

Importance Truncation

- converged NCSM calculations limited to lower & mid p-shell nuclei
- example: full N_{max} =10 calculation for ¹⁶O would be very difficult, basis dimension $D > 10^{10}$

Importance Truncation

- converged NCSM calculations limited to lower & mid p-shell nuclei
- example: full N_{max} =10 calculation for ¹⁶O would be very difficult, basis dimension $D > 10^{10}$

starting point: approximation $|\Psi_{ref}\rangle$ for the **target state** within a limited reference space \mathcal{M}_{ref}

$$|\Psi_{\text{ref}}\rangle = \sum_{\nu \in \mathcal{M}_{\text{ref}}} C_{\nu}^{(\text{ref})} |\Phi_{\nu}\rangle$$

measure the importance of individual basis state $|\Phi_{\nu}\rangle \notin \mathcal{M}_{ref}$ via first-order multiconfigurational perturbation theory

$$\kappa_{\nu} = -\frac{\langle \Phi_{\nu} | H | \Psi_{ref} \rangle}{\Delta \epsilon_{\nu}}$$

- construct **importance-truncated space** $\mathcal{M}(\kappa_{\min})$ from all basis states with $|\kappa_{\nu}| \ge \kappa_{\min}$
- **solve eigenvalue problem** in importance truncated space $\mathcal{M}_{IT}(\kappa_{\min})$ and obtain improved approximation of target state

- repeat calculations for a sequence of importance thresholds
- observables show smooth threshold dependence and systematically approach the full NCSM limit
- use a posteriori extrapolation $\kappa_{min} \rightarrow 0$ of observables to account for effect of excluded configurations
- uncertainty quantification via set of extrapolations

From Dripline to Dripline

oxygen isotopic chain has received significant attention and documents the rapid progress over the past years

Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

2010: shell-model calculations with 3N effects highlighting the role of 3N interaction for drip line physics

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, PRL 108, 242501 (2012)

2012: coupled-cluster calculations with phenomenological two-body correction simulating chiral 3N forces

Hergert, Binder, Calci, Langhammer, Roth, PRL 110, 242501 (2013)

2013: ab initio IT-NCSM with explicit chiral 3N interactions and first multi-reference in-medium SRG calculations...

> Cipollone, Barbieri, Navrátil, PRL 111, 062501 (2013) Bogner, Hergert, Holt, Schwenk, Binder, Calci, Langhammer, Roth, PRL 113, 142501 (2014) Jansen, Engel, Hagen, Navratil, Signoracci, PRL 113, 142502 (2014)

since: self-consistent Green's function, shell model with valencespace interactions from in-medium SRG or Lee-Suzuki,...

The NCSM Family

NCSM

HO Slater determinant basis with N_{max} truncation

Jacobi NCSM

relative-coordinate Jacobi HO basis with N_{max} truncation

Importance Truncated NCSM

HO Slater determinant basis with N_{max} and importance truncation

Symmetry Adapted NCSM

group-theoretical basis with SU(3) deformation quantum numbers & truncations

Gamow NCSM/CI

Slater determinant basis including Gamow single-particle resonance states

NCSM with Continuum

NCSM for sub-clusters with explicit RGM treatment of relative motion

Hypernuclei

$$N_{\rm f} = 2 \rightarrow N_{\rm f} = 3$$

Ab Initio Hypernuclear Structure

- precise data on ground states & spectroscopy of hypernuclei
- ab initio few-body and phenomenological shell or cluster model calculations done so far
- chiral YN & YY interactions at (N)LO are available

time to transfer ab initio toolbox to hypernuclei

Ab Initio Hypernuclear Structure

Hamiltonian from chiral EFT

- NN+3N: standard chiral Hamiltonian (Entem&Machleidt, Navrátil)
- YN: LO chiral interaction (Haidenbauer et al.), NLO in progress

Similarity Renormalization Group

- consistent SRG-evolution of NN, 3N, YN interactions
- using particle basis and including $\Lambda\Sigma$ -coupling (larger matrices)
- Λ - Σ mass difference and $p\Sigma^{\pm}$ Coulomb included consistently

Importance Truncated No-Core Shell Model

- include explicit $(p, n, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-)$ with physical masses
- larger model spaces easily tractable with importance truncation
- all p-shell single-Λ hypernuclei are accessible

Application: $^{7}_{\Lambda}$ Li

Robert Roth - TU Darmstadt - June 2017

Application: $^{7}_{\Lambda}$ Li

Robert Roth - TU Darmstadt - June 2017

Application: $^{9}_{\Lambda}Be$

Robert Roth - TU Darmstadt - June 2017

Application: $^{13}_{\Lambda}C$

Robert Roth - TU Darmstadt - June 2017

Overview

Lecture 1: Hamiltonian

Prelude • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations & Unitary Transformations

Lecture 2: Light Nuclei

Lecture 3: Beyond Light Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group

Hands-On: Do-It-Yourself NCSM

Three-Body Problem

• Numerical SRG Evolution

• NCSM Eigenvalue Problem

Lanczos Algorithm