No-Core Shell Model and Related Areas (NCSM*)

Lecture 3: Beyond Light Nuclei

Robert Roth

Overview

- Lecture 1: Hamiltonian

Prelude • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations \& Unitary Transformations

- Lecture 2: Light Nuclei

Similarity Renormalization Group • Many-Body Problem • Configuration Interaction • No-Core Shell Model • Hypernuclei

- Lecture 3: Beyond Light Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group

- Hands-On: Do-It-Yourself NCSM

Three-Body Problem • Numerical SRG Evolution • NCSM Eigenvalue Problem • Lanczos Algorithm

Beyond Light Nuclei

advent of novel ab initio approaches
targeting the ground state of medium-mass nuclei very efficiently

■ idea: decouple reference state from particle-hole excitations by a unitary or similarity transformation of Hamiltonian

Beyond Light Nuclei

advent of novel ab initio approaches
targeting the ground state of medium-mass nuclei very efficiently

- idea: decouple reference state from particle-hole excitations by a unitary or similarity transformation of Hamiltonian

■ In-Medium Similarity Renormalisation Group: decouple many-body reference state from particle-hole excitations by SRG transformation

- normal-ordered A-body Hamiltonian truncated at the two-body level
- open and closed-shell nuclei can be targeted directly
- Coupled-Cluster Theory: ground-state is parametrised by exponential wave operator acting on single-determinant reference state
- truncation at doubles level (CCSD) with corrections for triples contributions
- directly applicable for closed-shell nuclei, equations-of-motion methods for open-shell

Normal Ordering

Particle-Hole Excitations

- short-hand notation for creation and annihilation operators

$$
\mathrm{a}_{i}=\mathrm{a}_{\alpha_{i}} \quad \mathrm{a}_{i}^{\dagger}=\mathrm{a}_{\alpha_{i}}^{\dagger}
$$

- define an A-body reference Slater determinant

$$
|\Phi\rangle=\left|\alpha_{1} \alpha_{2} \ldots \alpha_{A}\right\rangle=\mathrm{a}_{1}^{\dagger} \mathrm{a}_{2}^{\dagger} \cdots \mathrm{a}_{A}^{\dagger}|0\rangle
$$

and construct arbitrary Slater determinants through particle-hole excitations on top of the reference state

$$
\begin{aligned}
\left|\Phi_{a}^{p}\right\rangle & =\mathrm{a}_{p}^{\dagger} \mathrm{a}_{a}|\Phi\rangle \\
\left|\Phi_{a b}^{p q}\right\rangle & =\mathrm{a}_{p}^{\dagger} \mathrm{a}_{q}^{\dagger} \mathrm{a}_{b} \mathrm{a}_{a}|\Phi\rangle
\end{aligned}
$$

index convention: a, b, c, \ldots : hole states, occupied in reference state
p, q, r, \ldots : particle states, unoccupied in reference states
i, j, k, \ldots : all states

Normal Ordering

- a string of creation and annihilation operators is in normal order with respect to a specific reference state, if all
- creation operators are on the left
- annihilation operators are on the right
- standard particle-hole operators are normal ordered with respect to the vacuum state as reference state

$$
a_{i}^{\dagger} a_{j}, \quad a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}, \quad a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{n} a_{m} a_{l}, \ldots
$$

- normal-ordered product of string of operators

$$
\left\{a_{n} a_{i}^{\dagger} \cdots a_{m} a_{j}^{\dagger}\right\}=\operatorname{sgn}(\pi) a_{i}^{\dagger} a_{j}^{\dagger} \cdots a_{n} a_{m}
$$

- defining property of a normal-ordered product: expectation value with the reference state always vanishes

$$
\langle\Phi|\{\ldots\}|\Phi\rangle=0
$$

Normal Ordering with A-Body Reference

- in particle-hole formulation with respect to an A-body reference Slater determinant things are more complicated
creation operators annihilation operators
particle states

$$
\mathrm{a}_{p^{\prime}}^{\dagger} \mathrm{a}_{q^{\prime}}^{\dagger} \ldots
$$

$$
\mathrm{a}_{p}, \mathrm{a}_{q}, \ldots
$$

hole states
a_{a}, a_{b}, \ldots
$\mathrm{a}_{a^{\prime}}^{\dagger} \mathrm{a}_{b}^{\dagger}, \ldots$

- redefinition of creation and annihilation operators necessary to guarantee vanishing reference expectation value

$$
\langle\Phi|\{\ldots\}|\Phi\rangle=0
$$

- starting from an operator string in vacuum normal order one has to reorder to arrive at reference normal order
- "brute force" using the anticommutation relations for fermionic creation and annihilation operators
- "elegantly" using Wick's theorem and contractions...

Normal-Ordered Hamiltonian

- second quantized Hamiltonian in vacuum normal order

$$
\mathrm{H}=\frac{1}{4} \sum_{i j k l}\langle i j| \mathrm{T}_{\mathrm{int}}+\mathrm{V}_{N N}|k l\rangle \mathrm{a}_{i}^{\dagger} \mathrm{a}_{j}^{\dagger} \mathrm{a}_{l} \mathrm{a}_{k}+
$$

normal-ordered two-body

 approximation: discard residual normal-ordered three-body part■ normal-ordered Hamiltonian with respect to reference sta

$$
\mathrm{H}=E+\sum_{i j} f_{j}^{i}\left\{\mathrm{a}_{i}^{\dagger} \mathrm{a}_{j}\right\}+\frac{1}{4} \sum_{i j k l} \Gamma_{k l}^{i j}\left\{\mathrm{a}_{i}^{\dagger} \mathrm{a}_{j}^{\dagger} \mathrm{a}_{l} \mathrm{a}_{k}\right\}+\frac{1}{36} \sum_{\text {wlik }}\left\{a^{\dagger} \mathrm{a}_{i}^{+} \mathrm{a}_{k}^{+} \mathrm{a}_{n} \mathrm{a}_{m} \mathrm{a}_{l}\right\}
$$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{a b}\langle a b| \mathrm{T}_{i n t}+\mathrm{V}_{N N}|a b\rangle+\frac{1}{6} \sum_{a b c}\langle a b c| \mathrm{V}_{3 N}|a b c\rangle \\
f_{j}^{i} & =\sum_{a}\langle a i| \mathrm{T}_{\mathrm{int}}+\mathrm{V}_{N N}|a j\rangle+\frac{1}{2} \sum_{a b}\langle a b i| \mathrm{V}_{3 N}|a b j\rangle \\
\Gamma_{k l}^{i j} & =\langle i j| \mathrm{T}_{i n t}+\mathrm{V}_{N N}|k l\rangle+\sum_{a}\langle a i j| \mathrm{V}_{3 N}|a k l\rangle \\
W_{l m n}^{i j k} & =\langle i j k| \mathrm{V}_{3 N}|l m n\rangle
\end{aligned}
$$

Coupled-Cluster Theory

Coupled-Cluster Ansatz

- coupled-cluster ground state parametrized by exponential of particle-hole excitation operators acting on reference state

$$
\left|\Psi_{\mathrm{CC}}\right\rangle=\exp (\mathrm{T})|\Phi\rangle=\exp \left(\mathrm{T}_{1}+\mathrm{T}_{2}+\cdots \mathrm{T}_{A}\right)|\Phi\rangle
$$

- with the n-particle-n-hole excitation operators with unknown amplitudes

$$
\begin{aligned}
\mathrm{T}_{1} & =\sum_{a, p} t_{a}^{p}\left\{\mathrm{a}_{p}^{\dagger} \mathrm{a}_{a}\right\} \\
\mathrm{T}_{2} & =\sum_{a b, p q} t_{a b}^{p q}\left\{\mathrm{a}_{p}^{\dagger} \mathrm{a}_{q}^{\dagger} \mathrm{a}_{b} \mathrm{a}_{a}\right\} \\
& \quad \vdots
\end{aligned}
$$

- need to truncate the excitation operator at some small particle-hole order, defining different levels of coupled-cluster approximations

T_{1}	CCS
$\mathrm{T}_{1}+\mathrm{T}_{2}$	CCSD
$\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}$	CCSDT

Coupled-Cluster Equations

- insert the coupled-cluster ansatz into the A-body Schrödinger equation and manipulate

$$
\mathrm{H}_{\mathrm{int}}\left|\Psi_{\mathrm{CC}}\right\rangle=E\left|\Psi_{\mathrm{CC}}\right\rangle \quad \Rightarrow \quad \exp (-T) \mathrm{H}_{\mathrm{int}} \exp (T)|\Phi\rangle=E|\Phi\rangle
$$

to obtain Schrödinger-like equation for a similarity-transformed Hamiltonian

$$
\mathcal{H}|\Phi\rangle=E|\Phi\rangle \quad \text { with } \quad \mathcal{H}=\exp (-T) \mathrm{H}_{\text {int }} \exp (T)
$$

- note: this is not a unitary transformation and therefore the transformed Hamiltonian is non-hermitian
- as a result approximations will be non-variational
- similarity transformation of the Hamiltonian can be expanded in a Baker-Campbell-Hausdorff series, which terminates at finite order
- CCSD with a two-body Hamiltonian terminates after order T^{4}

CCSD Equations

- project the Schrödinger-like equation onto the reference state, 1 p 1 h states, and 2 p 2 h states to obtain CCSD energy and amplitude equations

$$
\begin{aligned}
\langle\Phi| \mathcal{H}|\Phi\rangle & =E_{\mathrm{CCSD}} \\
\left\langle\Phi_{a}^{p}\right| \mathcal{H}|\Phi\rangle & =0 \\
\left\langle\Phi_{a b}^{p q}\right| \mathcal{H}|\Phi\rangle & =0
\end{aligned}
$$

- after BCH -expansion these are coupled non-linear algebraic equations for the amplitudes $t_{a}^{p}, t_{a b}^{p q}$ and the CCSD energy
- for large-scale calculations use spherical formulation, where particle-hole operators are coupled to $J=0$
- full CCSDT is too expensive, various non-iterative triples corrections are being used to include triples contributions
- coupled-cluster with explicit 3 N interactions can be done and was used to test the NO2B approximation

CCSD Equations for Amplitudes

0

$=0, \forall a, i$

Coupled Cluster: Pros \& Cons

In-Medium SRG

Decoupling in A-Body Space

- partially diagonalize Hamilton matrix through a unitary transformation and read-off eigenvalues from the diagonal

- continuous unitary transformation of many-body Hamiltonian

$$
\mathrm{H}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha}
$$

morphs the initial Hamilton matrix $(\alpha=0)$ to diagonal form $(\alpha \rightarrow \infty)$

Decoupling in A-Body Space

- partially diagonalize Hamilton matrix through a unitary transformation and read-off eigenvalues from the diagonal

- continuous unitary transformation of many-body Hamiltonian

$$
\mathrm{H}_{\alpha}=\mathrm{U}_{\alpha}^{\dagger} \mathrm{H} \mathrm{U}_{\alpha}
$$

morphs the initial Hamilton matrix $(\alpha=0)$ to diagonal form $(\alpha \rightarrow \infty)$

In-Medium SRG

use SRG flow equations for normal-ordered Hamiltonian to decouple many-body reference state from excitations

- flow equation for Hamiltonian

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)]
$$

- Hamiltonian in single-reference or multi-reference normal order, omitting normal-ordered 3B term

$$
\mathrm{H}(s)=E(s)+\sum_{i j} f_{j}^{i}(s)\left\{\mathrm{a}_{i}^{\dagger} \mathrm{a}_{j}\right\}+\frac{1}{4} \sum_{i j k l} \Gamma_{k l}^{i j}(s)\left\{\mathrm{a}_{i}^{\dagger} \mathrm{a}_{j}^{\dagger} \mathrm{a}_{l} \mathrm{a}_{k}\right\}
$$

In-Medium SRG Generators

- Wegner: simple, intuitive, inefficient

$$
\eta=\left[H_{\mathrm{d}}, H\right]=\left[H_{\mathrm{d}}, H_{\mathrm{od}}\right]
$$

- White: efficient, problems with near degeneracies

$$
\begin{gathered}
\eta_{2}^{1}=\left(\Delta_{2}^{1}\right)^{-1} n_{1} \bar{n}_{2} f_{2}^{1}-[1 \leftrightarrow 2] \\
\eta_{34}^{12}=\left(\Delta_{34}^{12}\right)^{-1} n_{1} n_{2} \bar{n}_{3} \bar{n}_{4} \Gamma_{34}^{12}-[12 \leftrightarrow 34]
\end{gathered}
$$

- Imaginary Time: good work horse [Morris, Bogner]

$$
\begin{gathered}
\eta_{2}^{1}=\operatorname{sgn}\left(\Delta_{2}^{1}\right) n_{1} \bar{n}_{2} f_{2}^{1}-[1 \leftrightarrow 2] \\
\eta_{34}^{12}=\operatorname{sgn}\left(\Delta_{34}^{12}\right) n_{1} n_{2} \bar{n}_{3} \bar{n}_{4} \Gamma_{34}^{12}-[12 \leftrightarrow 34]
\end{gathered}
$$

- Brillouin: potentially better work horse [Hergert]

$$
\begin{gathered}
\eta_{2}^{1}=\langle\Phi|\left[H,\left\{a_{1}^{\dagger} a_{2}\right\}\right]|\Phi\rangle \\
\eta_{34}^{12}=\langle\Phi|\left[H,\left\{a_{1}^{\dagger} a_{2}^{\dagger} a_{4} a_{3}\right\}\right]|\Phi\rangle
\end{gathered}
$$

Flow-Equations for Matrix Elements

$$
\begin{aligned}
\frac{d E}{d s}= & \sum_{a b}\left(n_{a}-n_{b}\right)\left(\eta_{b}^{a} f_{a}^{b}-f_{b}^{a} \eta_{a}^{b}\right)+\frac{1}{4} \sum_{a b c d}\left(\eta_{c d}^{a b} \Gamma_{a b}^{c d}-\Gamma_{c d}^{a b} \eta_{a b}^{c d}\right) n_{a} n_{b} \bar{n}_{c} \bar{n}_{d} \\
\frac{d}{d s} f_{2}^{1}= & \sum_{a}\left(\eta_{a}^{1} f_{2}^{a}-f_{a}^{1} \eta_{2}^{a}\right)+\sum_{a b}\left(\eta_{b}^{a} \Gamma_{a 2}^{b 1}-f_{b}^{a} \eta_{a 2}^{b 1}\right)\left(n_{a}-n_{b}\right) \\
& +\frac{1}{2} \sum_{a b c d e f}\left(\eta_{b c}^{1 a} \Gamma_{2 a}^{b c}-\Gamma_{b c}^{1 a} \eta_{2 a}^{b c}\right)\left(n_{a} \bar{n}_{b} \bar{n}_{c}+\bar{n}_{a} n_{b} n_{c}\right) \\
\frac{d}{d s} \Gamma_{34}^{12}= & \sum_{a}\left(\eta_{a}^{1} \Gamma_{34}^{a 2}+\eta_{a}^{2} \Gamma_{34}^{1 a}-\eta_{3}^{a} \Gamma_{a 4}^{12}-\eta_{4}^{a} \Gamma_{3 a}^{12}-f_{a}^{1} \eta_{34}^{a 2}-f_{a}^{2} \eta_{34}^{1 a}+f_{3}^{a} \eta_{a 4}^{12}+f_{4}^{a} \eta_{3 a}^{12}\right) \\
& +\frac{1}{2} \sum_{a b}\left(\eta_{a b}^{12} \Gamma_{34}^{a b}-\Gamma_{a b}^{12} \eta_{34}^{a b}\right)\left(1-n_{a}-n_{b}\right) \\
& +\sum_{a b}\left(n_{a}-n_{b}\right)\left(\left(\eta_{3 b}^{1 a} \Gamma_{4 a}^{2 b}-\Gamma_{3 b}^{1 a} \eta_{4 a}^{2 b}\right)-\left(\eta_{3 b}^{2 a} \Gamma_{4 a}^{1 b}-\Gamma_{3 b}^{2 a} \eta_{4 a}^{1 b}\right)\right)
\end{aligned}
$$

In-Medium SRG: Single Reference

160
chiral NN+3N
$\Lambda_{3 N}=400 \mathrm{MeV}$ $\alpha=0.08 \mathrm{fm}^{4}$ $\hbar \Omega=20 \mathrm{MeV}$
$e_{\text {max }}=12$
$N_{\text {max }}=0$ reference HF basis

- zero-body piece of the flowing Hamiltonian gives ground-state energy when full decoupling is reached

$$
E(s)=\left\langle\Phi_{\mathrm{ref}}\right| H(s)\left|\Phi_{\mathrm{ref}}\right\rangle
$$

- truncation of flow equations destroys unitarity, induced many-body terms

In-Medium SRG: Single Reference

Merging NCSM and IM-SRG

- ground-state from NCSM at small $N_{\max }$ as reference state for multi-reference IM-SRG
- access to all open-shell nuclei and systematically improvable
- IM-SRG evolution of multi-reference normalordered Hamiltonian (and other operators)
- decoupling of particle-hole excitations, i.e., pre-diagonalization in A-body space
- use in-medium evolved Hamiltonian for a subsequent NCSM calculation
- access to ground and excited states and full suite of observables

In-Medium SRG: Multi Reference

In-Medium SRG: Multi Reference

Flow: Ground-State Energy

Gebrerufael et al., PRL 118, 152503 (2017)

- NCSM convergence is drastically improved
- $N_{\max }=0$ eigenvalues deviated from $E(s)$
- identify plateau in s before induced terms blow up
chiral $N N+3 N$
$\Lambda_{3 N}=400 \mathrm{MeV}$
$\alpha=0.08 \mathrm{fm}^{4}$
$\hbar \Omega=20 \mathrm{MeV}$
$e_{\text {max }}=12$
HF basis
$N_{\text {max }}=0$ reference state
$N_{\text {max }}=0,2,4,6,8$

Flow: Ground-State Energy

Gebrerufael et al., PRL 118, 152503 (2017)

- NCSM convergence is drastically improved
- $N_{\text {max }}=0$ eigenvalues deviated from $E(s)$
- identify plateau in s before induced terms blow up
chiral $N N+3 N$
$\Lambda_{3 N}=400 \mathrm{MeV}$
$\alpha=0.08 \mathrm{fm}^{4}$
$\hbar \Omega=20 \mathrm{MeV}$
$e_{\max }=12$
HF basis
$N_{\text {max }}=0$ reference state
$N_{\text {max }}=0,2,4,6,8$

IM-NCSM: Ground-State Energies

IM-NCSM: Ground-State Energies

- good agreement with NCSM within uncertainties expected from omission of normal-ordered many-body terms
- ${ }^{12} \mathrm{C}$ shows surprisingly large spread among methods

Flow: 2+ Excitation Energy

Gebrerufael et al., PRL 118, 152503 (2017)

- excitation energies are less affected by flow evolution
- convergence from above in decoupled regime
chiral $N N+3 N$
$\Lambda_{3 \mathrm{~N}}=400 \mathrm{MeV}$
$\alpha=0.08 \mathrm{fm}^{4}$
$\hbar \Omega=20 \mathrm{MeV}$
$e_{\text {max }}=12$
HF basis
$N_{\text {max }}=0$ reference state
$N_{\text {max }}=0,2,4,6,8$

Flow: 0+ Excitation Energy

Gebrerufael et al., PRL 118, 152503 (2017)

- excited 0^{+}state behaves differently
- excitation energy drops by $\sim 5 \mathrm{MeV}$ in decoupling regime
- no stable result before induced manybody terms blow up

[^0]
IM-NCSM: Excitation Spectra

In-Medium SRG: Pros \& Cons

flexibility of
 generators

Applications for Medium-Mass Nuclei

Ground States of Oxygen Isotopes

Ground States of Oxygen Isotopes

Ground States of Oxygen Isotopes

Towards Heavy Nuclei - Ab Initio

CR-CC(2,3)

$\Lambda_{3 N}=400 \mathrm{MeV}, \alpha=0.08 \rightarrow 0.04 \mathrm{fm}^{4}, \quad E_{3 \max }=18$, optimal $h \Omega$

Towards Heavy Nuclei - Ab Initio

CR-CC(2,3)

$\Lambda_{3 N}=400 \mathrm{MeV}, \alpha=0.08 \rightarrow 0.04 \mathrm{fm}^{4}, \quad E_{3 \max }=18$, optimal $h \Omega$

Open-Shell Medium-Mass Nuclei

Open-Shell Medium-Mass Nuclei

Conclusions

Ab Initio Frontiers

■ ab initio theory is entering new territory...

- QCD frontier
nuclear structure connected systematically to QCD via chiral EFT
- precision frontier precision spectroscopy of light nuclei, including current contributions
- mass frontier
ab initio calculations up to heavy nuclei with quantified uncertainties
- open-shell frontier
extend to medium-mass open-shell nuclei and their excitation spectrum
- continuum frontier
include continuum effects and scattering observables consistently
- strangeness frontier
ab initio predictions for hyper-nuclear structure \& spectroscopy
...providing a coherent theoretical framework for nuclear structure \& reaction calculations

Epilogue

- thanks to my group and my collaborators
- S. Alexa, E. Gebrerufael, T. Hüther, L. Mertes, S. Schulz, H. Spielvogel, C. Stumpf, A. Tichai, K. Vobig, R. Wirth

Technische Universität Darmstadt

- P. Navrátil, A. Calci

TRIUMF, Vancouver

- S. Binder

Oak Ridge National Laboratory

- H. Hergert NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- S. Quaglioni

Lawrence Livermore National Laboratory

- E. Epelbaum, H. Krebs \& the LENPIC Collaboration Universität Bochum, ..

Deutsche
Forschungsgemeinschaft
DFG

Helmholtz International Center

LOEWE

Exzellente Forschung für
Hessens Zukunft
/ HelMholtz
| GEMEINSCHAFT

Bundesministerium
für Bildung und Forschung

[^0]: chiral NN+3N
 $\Lambda_{3 \mathrm{~N}}=400 \mathrm{MeV}$
 $\alpha=0.08 \mathrm{fm}^{4}$
 $\hbar \Omega=20 \mathrm{MeV}$
 $e_{\text {max }}=12$
 HF basis
 $N_{\text {max }}=0$ reference state
 $N_{\text {max }}=0,2,4,6,8$

