No-Core Shell Model

and Related Areas (NCSM*)

Robert Roth

Overview

Lecture 1: Hamiltonian

Prelude • Nuclear Hamiltonian • Matrix Elements • Two-Body Problem • Correlations & Unitary Transformations

Lecture 2: Light Nuclei

Lecture 3: Beyond Light Nuclei

Normal Ordering • Coupled-Cluster Theory • In-Medium Similarity Renormalization Group

Hands-On: Do-It-Yourself NCSM

Beyond Light Nuclei

advent of novel ab initio approaches targeting the ground state of medium-mass nuclei very efficiently

idea: decouple reference state from particle-hole excitations by a unitary or similarity transformation of Hamiltonian

Beyond Light Nuclei

advent of novel ab initio approaches targeting the ground state of medium-mass nuclei very efficiently

idea: decouple reference state from particle-hole excitations by a unitary or similarity transformation of Hamiltonian

Tsukiyama, Bogner, Schwenk, Hergert,...

- In-Medium Similarity Renormalisation Group: decouple many-body reference state from particle-hole excitations by SRG transformation
 - normal-ordered A-body Hamiltonian truncated at the two-body level
 - open and closed-shell nuclei can be targeted directly

Hagen, Papenbrock, Dean, Piecuch, Binder,...

- Coupled-Cluster Theory: ground-state is parametrised by exponential wave operator acting on single-determinant reference state
 - truncation at doubles level (CCSD) with corrections for triples contributions
 - directly applicable for closed-shell nuclei, equations-of-motion methods for open-shell

Normal Ordering

Particle-Hole Excitations

short-hand notation for creation and annihilation operators

$$a_i = a_{\alpha_i} \qquad a_i^{\dagger} = a_{\alpha_i}^{\dagger}$$

define an A-body reference Slater determinant

$$|\Phi\rangle = |\alpha_1 \alpha_2 \dots \alpha_A\rangle = \alpha_1^{\dagger} \alpha_2^{\dagger} \cdots \alpha_A^{\dagger} |0\rangle$$

and construct arbitrary Slater determinants through **particle-hole excitations** on top of the reference state

$$\begin{split} |\Phi_{a}^{p}\rangle &= \alpha_{p}^{\dagger}\alpha_{a} |\Phi\rangle \\ |\Phi_{ab}^{pq}\rangle &= \alpha_{p}^{\dagger}\alpha_{q}^{\dagger}\alpha_{b}\alpha_{a} |\Phi\rangle \end{split}$$

index convention:

a,*b*,*c*,... : hole states, occupied in reference state *p*,*q*,*r*,... : particle states, unoccupied in reference states *i*,*j*,*k*,... : all states

Normal Ordering

- a string of creation and annihilation operators is in normal order with respect to a specific reference state, if all
 - creation operators are on the left
 - annihilation operators are on the right
- standard particle-hole operators are normal ordered with respect to the vacuum state as reference state

$$a_i^{\dagger}a_j$$
, $a_i^{\dagger}a_j^{\dagger}a_la_k$, $a_i^{\dagger}a_j^{\dagger}a_k^{\dagger}a_na_ma_l$,...

normal-ordered product of string of operators

$$\{\alpha_n\alpha_i^{\dagger}\cdots\alpha_m\alpha_j^{\dagger}\} = \operatorname{sgn}(\pi) \alpha_i^{\dagger}\alpha_j^{\dagger}\cdots\alpha_n\alpha_m$$

defining property of a normal-ordered product: expectation value with the reference state always vanishes

$$\langle \Phi | \{ \dots \} | \Phi \rangle = 0$$

Normal Ordering with A-Body Reference

In particle-hole formulation with respect to an A-body reference Slater determinant things are more complicated

	particle states	hole states
creation operators	$a_{\rho}^{\dagger}, a_{q}^{\dagger}, \dots$	a _a , a _b ,
annihilation operators	α _p , α _q ,	$a_a^{\dagger}, a_b^{\dagger}, \dots$

redefinition of creation and annihilation operators necessary to guarantee vanishing reference expectation value

 $\langle \Phi | \{ \dots \} | \Phi \rangle = 0$

- starting from an operator string in vacuum normal order one has to reorder to arrive at reference normal order
 - "brute force" using the anticommutation relations for fermionic creation and annihilation operators
 - "elegantly" using Wick's theorem and contractions...

Normal-Ordered Hamiltonian

second quantized Hamiltonian in vacuum normal order

$$H = \frac{1}{4} \sum_{ijkl} \langle ij | T_{int} + V_{NN} | kl \rangle a_i^{\dagger} a_j^{\dagger} a_l a_k + \frac{1}{2}$$

normal-ordered two-body approximation: discard residual normal-ordered three-body part

normal-ordered Hamiltonian with respect to reference sta

$$\mathsf{H} = E + \sum_{ij} f_j^i \{ \mathfrak{a}_i^\dagger \mathfrak{a}_j \} + \frac{1}{4} \sum_{ijkl} \Gamma_{kl}^{ij} \{ \mathfrak{a}_i^\dagger \mathfrak{a}_j^\dagger \mathfrak{a}_l \mathfrak{a}_k \} + \frac{1}{36} \sum_{ijklmn} W_{lmn}^{ijk} \{ \mathfrak{a}_i^\dagger \mathfrak{a}_j^\dagger \mathfrak{a}_k^\dagger \mathfrak{a}_n \mathfrak{a}_m \mathfrak{a}_l \}$$

$$E = \frac{1}{2} \sum_{ab} \langle ab | \mathsf{T}_{int} + \mathsf{V}_{NN} | ab \rangle + \frac{1}{6} \sum_{abc} \langle abc | \mathsf{V}_{3N} | abc \rangle$$
$$f_j^i = \sum_a \langle ai | \mathsf{T}_{int} + \mathsf{V}_{NN} | aj \rangle + \frac{1}{2} \sum_{ab} \langle abi | \mathsf{V}_{3N} | abj \rangle$$
$$\Gamma_{kl}^{ij} = \langle ij | \mathsf{T}_{int} + \mathsf{V}_{NN} | kl \rangle + \sum_a \langle aij | \mathsf{V}_{3N} | akl \rangle$$
$$W_{lmn}^{ijk} = \langle ijk | \mathsf{V}_{3N} | lmn \rangle$$

Coupled-Cluster Theory

Coupled-Cluster Ansatz

coupled-cluster ground state parametrized by exponential of particle-hole excitation operators acting on reference state

$$|\Psi_{CC}\rangle = \exp(T) |\Phi\rangle = \exp(T_1 + T_2 + \cdots T_A) |\Phi\rangle$$

with the n-particle-n-hole excitation operators with unknown amplitudes

$$T_{1} = \sum_{a,p} t_{a}^{p} \{a_{p}^{\dagger}a_{a}\}$$
$$T_{2} = \sum_{ab,pq} t_{ab}^{pq} \{a_{p}^{\dagger}a_{q}^{\dagger}a_{b}a_{a}\}$$
$$\vdots$$

need to truncate the excitation operator at some small particle-hole order, defining different levels of coupled-cluster approximations

$$T_1$$
CCS $T_1 + T_2$ CCSD $T_1 + T_2 + T_3$ CCSDT

Coupled-Cluster Equations

Insert the coupled-cluster ansatz into the A-body Schrödinger equation and manipulate

 $H_{int} |\Psi_{CC}\rangle = E |\Psi_{CC}\rangle \Rightarrow \exp(-T) H_{int} \exp(T) |\Phi\rangle = E |\Phi\rangle$

to obtain Schrödinger-like equation for a similarity-transformed Hamiltonian

 $\mathcal{H} | \Phi \rangle = E | \Phi \rangle$ with $\mathcal{H} = \exp(-T) H_{int} \exp(T)$

- note: this is not a unitary transformation and therefore the transformed Hamiltonian is non-hermitian
 - as a result approximations will be non-variational
- similarity transformation of the Hamiltonian can be expanded in a Baker– Campbell–Hausdorff series, which terminates at finite order
 - CCSD with a two-body Hamiltonian terminates after order T⁴

CCSD Equations

project the Schrödinger-like equation onto the reference state, 1p1h states, and 2p2h states to obtain CCSD energy and amplitude equations

$$\begin{split} \langle \Phi | \, \mathcal{H} \, | \Phi \rangle &= E_{\text{CCSD}} \\ \langle \Phi_a^p | \, \mathcal{H} \, | \Phi \rangle &= 0 \\ \langle \Phi_{ab}^{pq} | \, \mathcal{H} \, | \Phi \rangle &= 0 \end{split}$$

- after BCH-expansion these are coupled non-linear algebraic equations for the amplitudes t^p_a, t^{pq}_{ab} and the CCSD energy
- for large-scale calculations use spherical formulation, where particle-hole operators are coupled to J=0
- full CCSDT is too expensive, various non-iterative triples corrections are being used to include triples contributions
- coupled-cluster with explicit 3N interactions can be done and was used to test the NO2B approximation

CCSD Equations for Amplitudes

$$\Delta E^{(\text{CCSD})} = + \frac{1}{4} \sum_{abij} v_{ab}^{ij} t_{ij}^{ab} + \sum_{ai} f_a^i t_i^a + \frac{1}{2} \sum_{abij} v_{ab}^{ij} t_i^a t_j^b$$

Robert Roth - TU Darmstadt - June 2017

Coupled Cluster: Pros & Cons

In-Medium SRG

Decoupling in A-Body Space

partially diagonalize Hamilton matrix through a unitary transformation and read-off eigenvalues from the diagonal

continuous unitary transformation of many-body Hamiltonian

 $H_{\alpha} = U_{\alpha}^{\dagger} H U_{\alpha}$

morphs the initial Hamilton matrix ($\alpha = 0$) to diagonal form ($\alpha \rightarrow \infty$)

Decoupling in A-Body Space

partially diagonalize Hamilton matrix through a unitary transformation and read-off eigenvalues from the diagonal

continuous unitary transformation of many-body Hamiltonian

 $H_{\alpha} = U_{\alpha}^{\dagger} H U_{\alpha}$

morphs the initial Hamilton matrix ($\alpha = 0$) to diagonal form ($\alpha \rightarrow \infty$)

In-Medium SRG

Tsukiyama, Bogner, Schwenk, Hergert,...

flow equation for Hamiltonian

$$\frac{d}{ds}H(s) = [\eta(s), H(s)]$$

Hamiltonian in single-reference or multi-reference normal order, omitting normal-ordered 3B term

$$H(s) = E(s) + \sum_{ij} f_j^i(s) \{\alpha_i^{\dagger}\alpha_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{kl}^{ij}(s) \{\alpha_i^{\dagger}\alpha_j^{\dagger}\alpha_l\alpha_k\}$$

In-Medium SRG Generators

Wegner: simple, intuitive, inefficient

 $\eta = [H_{d}, H] = [H_{d}, H_{od}]$

• White: efficient, problems with near degeneracies $\eta_2^1 = (\Delta_2^1)^{-1} n_1 \bar{n}_2 f_2^1 - [1 \leftrightarrow 2]$ $\eta_{34}^{12} = (\Delta_{34}^{12})^{-1} n_1 n_2 \bar{n}_3 \bar{n}_4 \Gamma_{34}^{12} - [12 \leftrightarrow 34]$

■ Imaginary Time: good work horse [Morris, Bogner] $\eta_2^1 = \operatorname{sgn}(\Delta_2^1) n_1 \bar{n}_2 f_2^1 - [1 \leftrightarrow 2]$ $\eta_{34}^{12} = \operatorname{sgn}(\Delta_{34}^{12}) n_1 n_2 \bar{n}_3 \bar{n}_4 \Gamma_{34}^{12} - [12 \leftrightarrow 34]$

Brillouin: potentially better work horse [Hergert]

$$\eta_2^1 = \langle \Phi | [H, \{\alpha_1^\dagger \alpha_2\}] | \Phi \rangle$$
$$\eta_{34}^{12} = \langle \Phi | [H, \{\alpha_1^\dagger \alpha_2^\dagger \alpha_4 \alpha_3\}] | \Phi \rangle$$

Flow-Equations for Matrix Elements

ab

dy

In-Medium SRG: Single Reference

zero-body piece of the flowing Hamiltonian gives ground-state energy when full decoupling is reached

$$E(s) = \langle \Phi_{\text{ref}} | H(s) | \Phi_{\text{ref}} \rangle$$

truncation of flow equations destroys unitarity, induced many-body terms

In-Medium SRG: Single Reference

Merging NCSM and IM-SRG

- ground-state from NCSM at small *N*_{max} as reference state for multi-reference IM-SRG
- access to all open-shell nuclei and systematically improvable
- IM-SRG evolution of multi-reference normalordered Hamiltonian (and other operators)
- decoupling of particle-hole excitations, i.e., pre-diagonalization in A-body space
- use in-medium evolved Hamiltonian for a subsequent NCSM calculation
- access to ground and excited states and full suite of observables

In-Medium SRG: Multi Reference

Gebrerufael et al., PRL 118, 152503 (2017)

Robert Roth - TU Darmstadt - March 2017

In-Medium SRG: Multi Reference

Gebrerufael et al., PRL 118, 152503 (2017)

Robert Roth - TU Darmstadt - March 2017

Flow: Ground-State Energy

Gebrerufael et al., PRL 118, 152503 (2017)

Flow: Ground-State Energy

Gebrerufael et al., PRL 118, 152503 (2017)

IM-NCSM: Ground-State Energies

Gebrerufael et al., PRL 118, 152503 (2017)

IM-NCSM: Ground-State Energies

Gebrerufael et al., PRL 118, 152503 (2017)

good agreement with NCSM within uncertainties expected from omission of normal-ordered many-body terms

¹²C shows surprisingly large spread among methods

Flow: 2⁺ Excitation Energy

Gebrerufael et al., PRL 118, 152503 (2017)

Flow: 0+ Excitation Energy

IM-NCSM: Excitation Spectra

Gebrerufael et al., PRL 118, 152503 (2017)

- IM-NCSM and direct NCSM in excellent agreement for converged states
- first excited 0⁺ states in ¹²C and ¹⁶C differ

In-Medium SRG: Pros & Cons

Applications for Medium-Mass Nuclei

Binder et al., PLB 736, 119 (2014)

 $\Lambda_{3N} = 400 \text{ MeV}, \quad \alpha = 0.08 \rightarrow 0.04 \text{ fm}^4, \quad E_{3 \text{ max}} = 18, \text{ optimal } h\Omega$

Robert Roth - TU Darmstadt - June 2017

Robert Roth - TU Darmstadt - June 2017

Conclusions

ab initio theory is entering new territory...

• QCD frontier

nuclear structure connected systematically to QCD via chiral EFT

precision frontier

precision spectroscopy of light nuclei, including current contributions

mass frontier

ab initio calculations up to heavy nuclei with quantified uncertainties

open-shell frontier extend to medium-mass open-shell nuclei and their excitation spectrum

continuum frontier

include continuum effects and scattering observables consistently

strangeness frontier
 ab initio predictions for hyper-nuclear structure & spectroscopy

...providing a coherent theoretical framework for nuclear structure & reaction calculations

Epilogue

thanks to my group and my collaborators

- S. Alexa, E. Gebrerufael, T. Hüther, L. Mertes, S. Schulz, H. Spielvogel, C. Stumpf, A. Tichai, K. Vobig, R. Wirth Technische Universität Darmstadt
- P. Navrátil, A. Calci TRIUMF, Vancouver
- S. Binder Oak Ridge National Laboratory
- H. Hergert NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- S. Quaglioni Lawrence Livermore National Laboratory
- E. Epelbaum, H. Krebs & the LENPIC Collaboration Universität Bochum, ...

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung