
1 Chiral symmetry and its consequences

There is a very fortunate connection between the electroweak sector of the
Standard Model and the world of strong interactions. The link is provided by
chiral symmetry, which is the approximate symmetry exhibited by QCD due
to the small values of the light quark masses, as compared to the intrinsic
scale of the theory, ΛQCD. Indeed, if we set the light quark masses to zero,
then we can mix independently the left and right chiralities of the quarks,

ψL =


u
d
...


L

→ VLψL, ψr =


u
d
...


R

→ VLψR, (1)

where ψR/L = (1±γ5)/2ψ and the transformation matrix VR/L ∈SU(Nf ), Nf

being the number of light flavours, in the case of interest Nf = 2. Without
quark masses, this transformation leaves the Lagrangian invariant, since the
kinetic term does not mix chiralities,

ψ̄i /Dψ = ψ̄Ri /DψR + ψ̄Ri /DψR. (2)

In the absence of quark masses the left and right chiralities live their life
independently.

This is a global symmetry, since if we allow VL and VR to depend on the
spacetime point, then we could not shift the transformation matrix through
the (covariant) derivative. It is also a continuous symmetry, characterized
by parameters αaR/L, such that the SU(N) transformation matrices can be
written

VR/L = e
i
∑

a
λa

2
αa
R/L , (3)

in terms of the group generators λa in the defining representation (in theNf =
2 case λa = τa, the Pauli matrices, a = 1, 2, 3). As all continuous symmetries,
chiral symmetry implies the existence of conserved Noether currents and
associated charges. It is an easy first exercise to derive them as

JaµR/L = ψ̄R/Lγµ
λa

2
ψR/L (4)

with corresponding charges

Qa
R/L =

∫
d3xJa0R/L (5)
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which, in force of the current conservation equation ∂µJµ = 0, are time-
independent. And here is the link that was mentioned before: these Noether
currents are the same as the electroweak currents, that is, to these currents
are coupled weakly interacting particles.

It is customary to define the vector and axial vector currents as the ap-
propriate combinations

V a
µ = JaµR + JaµL, Aaµ = JaµR − JaµL, , (6)

with corresponding vector and axial vector charges denoted as Qa and Qa
5

respectively. At this point it is worthwile to observe that actually the sym-
metry group of the Lagrangian is U(Nf )×U(Nf ), so that the index a runs
over the U(1) component too, say a = 0. But this is only possible for the
vector symmetry, because the axial U(1) is affected by the QCD anomaly.
The charges are the group generators and they satisfy the group algebra.
Also the currents, by covariance, satisfy what is called the “current algebra”,

[Qa, V b
µ ] = ifabcV c

µ , [Qa, Abµ] = ifabcAcµ, (7)

[Qa
5, V

b
µ ] = ifabcAcµ, [Qa

5, A
b
µ] = ifabcV c

µ . (8)

On the basis of these relations a number of results were obtained in the ’60,
at a time when the theory of strong interaction was not yet known.

2 Chiral Ward identities

The symmetry, which at the classical level is simply expressed by the current
conservation relation (or partial conservation), implies, at the quantum level,
a whole hierarchy of relations among Green functions, i.e. vacuum correlation
functions of time-ordered products of local operators involving the Noether
currents themselves, e.g.,

qµ
∫
dxeiq·x〈0|T {Jµ(x)O1(x1)...On(xn)} |0〉 (9)

∼
∫
dxeiq·x〈0|T {∂µJµ(x)O1(x1)...On(xn)} |0〉+ 〈0|[Q,O1(x1)]...On(xn)|0〉+ ....(10)

When we are in the presence of a spontaneously broken symmetry, as in the
case of chiral symmetry, these identities lead to the appearance of the order
parameters of the spontaneous breaking, since the commutator terms do not
vanish in general if the charge doesn’t annihilate the vacuum.
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There is a very convenient way to resume all these Ward identities. It
consists of promoting the global symmetry to a local one. This means that
the symmetry transformation parameters αaR/L are allowed to depend on the
spacetime. Under such local transformations,

ψR → VR(x)ψR, ψL → VL(x)ψL, (11)

the Lagrangian is not left invariant, unless we equip it with external fields
that transform as gauge fields, in order to absorb the non-invariant terms.
We will thus write,

ψ̄Ri /DψR + ψ̄Rr
µγµψR, (12)

with the external field rµ transforming under the symmetry transfornation
as

rµ → VRr
µV †R − u∂µVRV

†
R, (13)

and, to gauge the left transformations, we have to introduce a corresponding
external field `µ, transforming analogously. The external fields rµ and `µ are
matrices in flavor space, they belong to the group algebra, so that we can
expand them in the basis of the generators,

rµ =
∑
a

raµ
λa

2
, `µ =

∑
a

`aµ
λa

2
. (14)

We have thus promoted the global symmetry to a local one. We can also add
scalar and pseudoscalar sources that absorb the non invariant contributions
issuing from the quark mass terms and write

ψ̄R(s+ ip)ψL + ψ̄L(s− ip)ψR, (15)

where, under chiral transformations,

s+ ip→ VR(s+ ip)V †L , s− ip→ VL(s− ip)V †R. (16)

What we have done is to couple bilinear quark operators to external vector,
axial, scalar and pseudoscalar sources,

LQCD[vµ, aµ, s, p] = L0
QCD + ψ̄ [γµ (vµ + γ5aµ)− s+ ipγ5]ψ, (17)

where L0
QCD is the QCD Lagrangian in the chiral limit and vµ = rµ + `µ,

aµ = rµ − `µ are the external vector and axial vector sources. Besides ren-
dering the theory chiral gauge invariant, the external sources are alsto useful
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because they can generate the Green functions of quark bilinears, through
the generating functional W [vµ, aµ, s, p],

eiW [vµ,aµ,s,p] =
∫
DµQCDei

∫
dxLQCD[vµ,aµ,s,p]. (18)

By differentiating W with respect to its arguments and evaluating the result
at zero external sources, we get all connected Green functions of the quark
bilinears. If, instead of evaluating the functional derivatives at zero value of
the external sources we put Vµ = Aµ = P = 0 and s =M, where M is the
light quark mass matrix, we obtain the physical correlation functions, away
from the chiral limit.

Now, what happens if we subject the sources to the chiral gauge trans-
formations Eqs.(13)-(16) that we introduced?

eiW [v′µ,a
′
µ,s

′,p′] =
∫
DµQCDei

∫
dxLQCD[v′µ,a

′
µ,s

′,p′] =
∫
DµQCDei

∫
dxL̃QCD[vµ,aµ,s,p],

(19)
where L̃ is written in terms of the antitransformed quark fields,

ψR/L = VR/Lψ̃R/L, (20)

using the invariance of the complete Lagrangian. But the quark fields are
mere functional integration variables, dummy variables. Provided that the
QCD functional measure is invariant under the transformation, say DµQCD =
Dµ̃QCD, we can conclude that

eiW [v′µ,a
′
µ,s

′,p′] = eiW [vµ,aµ,s,p]. (21)

which express the invariance of the generating functional under local chiral
transformation. It should be remembered that, for axial transformation,
the integration measure is not invariant, nevertheless the Jacobian can be
expressed in closed form, and this has been done by Bardeen. So the correct
equation is

W [v′µ, a
′
µ, s
′, p′] = W [vµ, aµ, s, p] + ∆[vµ, aµ, s, p;VLV

†
R]. (22)

It is called the chiral anomaly, but we need not discuss it here. By focusing
on infinitesimal transformations, characterized by infinitesimal vector and
axial parameters αa = αaR + αaL, βa = αaR − αaL, and taking a derivative with
respect to αa and βa one obtains two functional equations which contain all
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the constraints from the chiral Ward identities for quark bilinears. To obtain
such equations is left as the second exercise.

Of course these are just formal manipulations, as we don’t know how
to calculate the functional integral. Perturbation theory in powers of the
QCD coupling constants will certainly not work at large distances, due to
the asymptotic freedom. Nevertheless, the spontaneous breakdown of chi-
ral symmetry ensures two things: i) that there exist massless particles, the
Goldstone bosons, to be identified with the pions; ii) that these particles
interact weakly at low energy. The latter is also a consequence of the Gold-
stone theorem, something that entails what is called “soft pions theorems”.
These two facts allow to establish a calculational scheme for this functional.
It is based on a representation in terms of the lightest vacuum excitation of
the theory, the pions. So the same functional W [vµ, aµ, s, p] is written as a
result of a theory of interacting pions,

eiW [vµ,aµ,s,p] =
∫
DUei

∫
dxLeff [U ;vµ,aµ,s,p]. (23)

If we want it to respect the chiral Ward identities, we have to demand that
the effective Lagrangian be invariant under the local chiral transformations
of the sources. But first we should ask: how to the pions transform under
the chiral symmetry?

3 Non linear symmetry realization

Let us denote by π the pion fields. Under a transformation g of the chiral
group g =SU(2)L×SU(2)R, it will be transformed as

π
g−→ π′ = f(π, g), (24)

with a certain function f which must satisfy the group composition law, i.e.

π
g1−→ π′ = f(π, g1)

g2−→ π′′ = f(π′, g2) = f(f(π, g1), g2) = f(π, g2g1). (25)

Consider now a transformation h ∈ G that leaves the origin of the pion field
manifold invariant, i.e.

f(0, h) = 0. (26)

It can readily be checked that all such transformations form a subgroup
H ⊂ G. Moreover, for any g ∈ G and h ∈ H,

f(0, g) = f(0, gh), (27)
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in force of the group composition law (25). Thus, for any ḡ,

f(0, ḡ) = f(0, g), ∀g ∈ ḡH, (28)

where ḡH denotes what is called a left coset of the subgroup H. We can view
f(0, ...) as a function which takes from the set of all the left cosets of H to
the manifold of the pion fields. In addition, the correspondence is invertible,
since, if f(0, g) = f(0, g′) then

f(0, g−1g′) = f(f(0, g′), g−1) = f(f(0, g), g−1) = f(0, g−1g) = 0 (29)

which implies that g−1g′ ∈ H so that there is a h ∈ H such that

g−1g′ = h =⇒ g′ = gh, (30)

i.e. g and g′ belong to the same left coset. So there is a one-to-one corre-
spondence between the left cosets of H and the pion field manifold. Each
pion field corresponds to some left coset of H. The set of all left cosets of
H is called the (left) coset space and it is denoted by G/H. The pion fields
live in this space, they can be viewed as coordinates of this space. In the
case of chiral symmetry breakdown G =SU(2)L×SU(2)R ∼SU(2)V×SU(2)A
and H =SU(2)V , and the coset space is a group itself, the group SU(2)A.
The pion field is thus essentially an SU(2) matrix. To set the correspon-
dence between the coset space and SU(2) transformations we have to choose
a representative in each left coset, say

g = (gL, gR)→ (1, gRg
−1
L ). (31)

So, to every group transformation g, there corresponds a unique element
of the coset space, represented by a SU(2) matrix U = gRg

−1
L . We know

that group transformation transform under group operation by the group
composition law (by definition), so that

g = (gL, gR)
(VL,VR)−→ (VLgL, VRgR) (32)

which corresponds to the coset space element U ′,

U ′ = VRgRg
−1
L V −1L = VRUV

−1
L (33)

so that the SU(2) matrix U , which can be taken to represent the pion field,
transforms as

U → U ′ = VRUV
†
L . (34)
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Different choices of the group representatives of the coset space elements
(for instance g → (gLg

−1
R , 1) would correspond to different transformation

properties of the pion field matrix, which however lead to the same physical
consequences, it would just amount to a change of coordinates of the coset
space. The canonical choice for the parametrization of the SU(2) matrix U
in terms of the pion field is

U = e
i
F0

∑
a
πaτa

, (35)

where the constant F0 sets the scale of the pion field. Another frequently
used parametrization is the σ-model one

U = σ +
i

F0

∑
a

πaτa, σ2 +
π2

F 2
0

= 1, (36)

You may prove, as exercise number 3, that the most general possible parametriza-
tion is

U = f0(π
2) + i

[
1− f0(π2)

]∑
a

πaτa, (37)

with a real scalar function f0, using the fact that πa is an isotriplet, the
known transformation properties of U under isospin (VL = VR = V ), and
the requirement of definite transformation laws for U under the discrete
symmetries. Show also that, up to four powers of the pion fields, the most
general parametrization depends on only two arbitrary parameters, one of
which sets the overall scale of the pion field.

Nothing must depend on the choice of the pion field, since U is a mere
functional integration variable. Or, better said, the QCD Green functions
generated by the functional W must be independent of the choice of the pion
field, and the same is true for on-shell pion amplitudes, which constitute
pole residues of those correlation functions. Off the mass-shell there can be
differences though. At the level of the effective Lagrangian, a change of field
variables ϕ induces additional terms in the action, which are proportional to
the equations of motion, since, if the equation of motions are fulfilled, then
the action is stationary with respect to change of fields,

δS

δϕ
= 0. (38)

Such “equations of motion terms” will affect off-shell amplitudes, renormal-
ization constants, but not physical quantities. They are therefore irrelevant.
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4 Exercises

As exercise #0, please point out the mistakes you will spot in these notes!

1. Derive the Noether currents of the chiral symmetry of QCD

2. Find how the vector, axial, scalar and pseudoscalar sources trans-
form under infinitesimal local vector and axial transformations, with
(infinitesimal) parameters α(x) and β(x). Impose the invariance of
the generating functional W [Vµ, Aµ, s, p] of connected Green functions,
with respect to such transformation to derive two functional equations
(ignore the chiral anomaly for simplicity).
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