
11 The problem of the heavy mass

After presenting the low-energy expansion of the counterterms, we would like
to present the low-energy expansion of the loops, as done for the pions. We
would like to say that a given loop has a “chiral dimension”, dictating its
low-momentum behaviour,

D = 4L− 2Iπ − IN +
∑
i

nidi, (1)

where L is the number of loops, Iπ the number of pion internal lines (propa-
gators), IN the number of nucleon propagators and ni the number of vertices
of type i, each of dimension di in the chiral counting. This would follow from
counting the nucleon propagators as O(p−1), the inverse of i /D−mN ∼ O(p).
Another way to put it is to say that the virtual nucleons always carry mo-
mentum q = mNv + k with v the four-velocity, v2 = 1 and k ∼ O(p), so

1

/q −mN + iε
=

/q +mN

q2 −mN + iε
∼ /q +mN

2mNv · k + iε
∼ O(p−1). (2)

If that was the case then, using the already discussed topological identity
which relates the number of loops L, the number of total internal lines I =
Iπ + IN and the number of vertices V =

∑
i ni,

L = Iπ + IN − V + 1, (3)

to remove the number of pion propagators, and the relation

2IN + EN =
∑
i

nifi, (4)

which counts the total number of nucleon lines (external EN or internal IN)
attached to the vertices, where to vertices of type i are attached fi nucleon
lines, we would arrive at

D = 2L+ 2− 1

2
EN +

∑
i

ni

(
di − 2 +

1

2
fi

)
, (5)

whence we would observe that D is bounded from below, for a given pro-
cess, since chiral symmetry ensures that, for each vertex di − 2 + fi/2 ≥ 0.
We would then have a well defined loop expansion as in the purely pionic
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Figure 1: Pion loop contribution to the nucleon self-energy.

case. Unfortunately, the presence of the nucleon mass mN , which is a hard
scale entering in the loop integrals, not suppressed in the chiral counting,
complicates the life a bit. Indeed, you can prove as exercise # 6, that the
nucleon self energy diagram depicted in Fig. 1, which should be of order
O(p3) on the basis of the above couunting, scales instead, in ordinary di-
mensional regularization, as m3

N , so it is O(1). This is the consequence of
the presence of a hard scale in the integrand, which was not the case for
the pions, when using a mass-independent regularization scheme. Thus, it
doesn’t happen anymore that loop renormalize the higher order LECs. They
also renormalize the lower order LECs! One way to cure these drawbacks is
to use the so-called heavy-baryon formalism. This was originally introduced
for the heavy quarks, but it works in the same way. The idea is that, in the
limit of infinite mass, the four-velocity of each baryon is fixed, it will never
be changed by processes that happen at low momenta. In other words, if we
start from some (on-mass-shell) state with momentum

Pµ = mNvµ, v2 = 1, (6)

then every soft transition will lead to a momentum

P ′µ = mNvµ + kµ = mNv
′
µ, v′2 = 1, (7)

so that in the limit mN → ∞ we have vµ = v′µ, So, each baryon has a
definite 4-velocity in this limit, that we can keep track of, and that will never
change. Then, in defining the theory, we can introduce velocity-dependent
heavy fermion fields. Once a given velocity is picked up, it will not change.
Formally the velocity-dependent fields are defined in terms of the original
nucleon field N like

N = e−imNv·x (Hv + hv) , (8)

with Hv and hv representing eigenspinors of /v = γµvµ,

/vHv = Hv, /vhv = −hv. (9)
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Notice that, since /v2 = v2 = 1, then the eigenvalues of /v can either be +1 or
−1. The eigenspinors can be obtained by the action of the projectors

P± =
1± /v

2
. (10)

In the nucleon rest frame, in which v = (1, 0, 0, 0), the Hv and hv fields are
expressed, respectively, in terms of the large and small components of the
nucleon Dirac spinors, whence the notation. The phase factor in Eq. (8) is
meant to absorb most of the time-dependence of Hv due to the heavy mass.
The relation (8) can be used to express the Lagrangian in terms of the heavy
fermion fields. Using the defining properties (9) one obtains, e.g.,

H̄ve
imNv·x

(
i /D −mN +

1

2
gA/uγ5

)
e−imNv·xN (11)

=
1

2
H̄ve

imNv·x
[
/v
(
i /D −mN +

1

2
gA/uγ5

)
+
(
i /D −mN +

1

2
gA/uγ5

)
/v
]

e−imNv·xN

and using the Clifford algebra the above expression is equal to

H̄v (iv ·D + gAS · u) (12)

where the spin four-vector,

Sµ =
i

2
σµνγ5vν , σµν =

i

2
[γµ, γν ]. (13)

Notice that the heavy scale, the nucleon mass mN , has disappeared from
the Lagrangian involving Hv, which was the purpose of the formalism. The
leading order Lagrangian becomes,

L(1)
πN = H̄v (iv ·D + gAS · u) +

[
h̄v

(
2iS ·D +

gA
2
v · u

)
Hv + h.c.

]
+h̄v (−2mN + iv ·D + gAS · u)hv. (14)

One can then “integrate out” the field hv, by using iteratively the equations
of motion, so that the dependence on mN is reduced to additional vertices
representing relativistic 1/mN corrections. Notice however that, despite be-
ing formally Lorentz invariant, the dependence on v introduces a preferred
reference frame. One way to restore the appropriate relativistic properties is
to impose the so-called “reparametrization invariance”, i.e. the freedom to
relabel the four velocity by addition of small terms,

(v, k)→ (v + q/mN , k − q), with (v + q/mN)2 = 1, (15)
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which puts non-trivial constraints on the construction of the Lagrangian.
We will not pursue this formalism, since in the case of more nucleons, as will
be explained in the following lectures, it is natural, following Weinberg, to
abandon the Lorentz-invariant perturbation theory, or Feynman diagrams,
and use the old-fashioned time-ordered perturbation theory (TOPT).

12 Recoil-corrected TOPT

Indeed, TOPT can also be profitably used in the 1-nucleon sector. To under-
stand this, let’s come back to the example of the nucleon self energy diagram,
Fig. 1, which involves the scalar integral∫ d4k

(2π)4
1

[k2 −M2 + iε] [(p− k)2 −m2
N + iε]

, (16)

which should count as O(p) in the näıf counting. We can calculate thihs
integral by first doing the integration over the temporal component k0. This
procedure actually generates the TOPT diagrams. In the complex k0 plane
the integrand has 4 poles located at

k20 − k2 −M2 + iε = 0 =⇒ k0 = ±
(√

k2 +M2 − iε
)
, (17)

(k0 − p0)2 − (k− p)2 −m2
N + iε = 0 =⇒ k0 = p0 ±

(√
(k− p)2 +m2

N − iε
)
,(18)

two in the upper and two in the lower complex plane. We can close the
contour at infinity, since the integrand goes like k−4o , and use Cauchy theorem.
Choosing to complete the contour counterclockwise at positive imaginary
infinity, we get contribution from the two poles at

k0 ∼
√
k2 +M2 ≡ ωk, k0 ∼ p0 −

√
(k− p)2 +m2

N ∼ O(p2). (19)

Neglecting O(p2) contributions the contour integration gives

2πi
1

4mnω2
k

, (20)

which, after integration over the spatial k, restores the proper counting ∼
O(p).

This procedure, of doing the k0 integration first and then doing the 1/mN

expansion, is the same procedure which was used in the late 90’s by Kaiser,
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Figure 2: Planar box Feynman diagram contributing to the NN potential.

Brockmann and Weise, to single out the iterated one pion exchange (OPE)
NN potential and subtract it from the two-pion exchange planar box dia-
gram, depicted in Fig. 2. In that case the scalar integral contains 4 propa-
gators and 8 poles. One can do the same exercise as done for the nucleon
self-energy diagram, and discover an enhanced contribution which is the it-
eration of the OPE plus a remainder, that is interpreted as an irreducible
TPE. Notice that the result is not simply the same as when neglecting the
reducible TOPT diagrams tout-court. In order to obtain the correct result
we have to include the recoil corrections to the reducible topologies, which
scale, in the low-energy counting, as the contributions from the irreducible
topologies. We can call this calculational scheme “recoil-corrected TOPT”.

There is a further subtlety in using the TOPT. It is the fact that what is
needed is not the Lagrangian, but the Hamiltonian. For derivative couplings,
as it is the case in the effective theory, the interaction Hamiltonian is not
simply the negative of the interaction Lagrangian. We need to go carefully
through the canonical formalism, as done in a paper by Gerstein, Jackiw, Lee
and Weinberg of the early 70’s. Indeed, suppose we start from a (Lorentz
invariant) Lagrangian density for interacting pions

L =
1

2
∂µπaGab∂

b
µ, (21)

where the matrix G in isospin space depends on the pion fields, and so
generates interactions. The canonical momentum Π is, in vector notation

Π = G∂0π =⇒ ∂0π = G−1Π, (22)

and the Hamiltonian density H is

H = ΠG−1Π−L =
1

2
ΠPi− 1

2
∂iπG∂iπ +

1

2
Π
(
G−1 − 1

)
Π− 1

2
∂iπ(G− 1)∂iπ

(23)
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Figure 3: A time-ordered diagram contributing to the two-body nuclear axial
charge.

can be divided into a free part and an interaction part. Reexpressing it in
terms of ∂0π we get

H =
1

2
ΠΠ− 1

2
∂iπ∂iπ − Lint −

1

2
∂0π (G− 1)2 ∂0π, (24)

where

Lint =
1

2
∂µπ(G− 1)∂µπ. (25)

It is clear that we have extra interaction terms, which are not Lorentz invari-
ant, and compensate non-invariant contributions arising from the propagator
of the Π field. Notice that Eq. (24) is not the final expression, since we have
to reexpress it in terms of Π. In the case of the coupling to the (temporal
component of the) external axial source, a0, we have

L ∼ 1

2
(∂0π∂0π − 2∂0πa0) + N̄iγµΓµN + ..., (26)

so the canonical momentum Π depends both on a0 and on a N̄πN vertex
coming from

Γµ ∼
i

4F 2
0

∂µτ · τ × π, (27)

so that

Π ∼ ∂0 − a0 −
1

4F 2
0

N̄γ0τ × πN. (28)

It is possible to show (exercise # 7) that the canonical formalism entails a
direct coupling of the axial charge to NNπ, which contributes in the diagram
shown in Fig. 3, a vertex which is absent in the original Lagrangian density.
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Figure 4: Two-nucleon contact current.

13 Chiral symmetry constraints on the two-

body nuclear electroweak currents

As a last subject we discuss, related to the chiral effective field theory cal-
culation of nuclear electroweak currents, of which we have only given the
main ingredients in these lectures, the so-called “contact terms”. Those are
depicted diagrammatically in Fig. 4, and contribute to the two-body elec-
troweak charge and current operators. Two-body currents have contributions
from tree diagrams, as in Fig. 3, and also from pion loop diagrams. But in
this kind of diagrams the couplings are not free. They acn be fixed in princi-
ple in the 1-nucleon sector, because there is always one nucleon participating
at most. Therefore we can say that these contributions are constrained by
chiral symmetry. On the contrary, interactions like the contact ones of Fig. 4
are free. They are genuinely 2-body operators, and subsume the contribu-
tion of short-distance physics, beyond the pion exchanges. In this theory,
such couplings have to be fixed from experiment. Of course there will be an
infinity of terms, but they can be ordered in the low-energy expansion. At
each order, only a finite number of those contributes. It is therefore crucial
to know the exact number of these couplings, and to make use of all possible
constraints from chiral symmetry. The effective Lagrangian technique is de-
vised exactely for that, and all the ingredients have been given. We have to
build all possible chiral invariant operators with two nucleon bilinears, which
respect all the symmerties of the underlying theory,

N̄O1NN̄O2N. (29)

One possibility is to build them out of products of individually chirally in-
variant nucleon bilinears, but actually this is not the only possibility. In any
way, we can ask questions like, e.g.: how can the axial current external source
enter in these interactions? It has to enter through the building blocks, uµ,
and DµN , besides Lµν and Rµν which, however, involve one extra deriva-
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Figure 5: One short-range contribution to the three-nucleon interaction.

tive, so we can disregard them initially. By parity, the axial source can only
enter inside DµN accompanied by an odd number of pion fields, therefore
it doesn’t contribute to the contact terms we are interested in. Instead, aµ
enters inside uµ, and it enters in exactely the same way as ∂µπ. So the aial
coupling to nucleons are the same as the pion coupling to the nucleons. We
didn’t discover anything, it is just the statement of PCAC, that we saw al-
ready at work for the Goldberger-Treiman relation. So a contribution to the
two-nucleon axial current like the one represented in Fig. 4 will come with
the same coupling constant as a πNN vertex, a vertex that is crucial because
it contributes to the leading expression of the three-nucleon interaction, cfr.
Fig. 5. The three nucleon force can therefore be related to a 2-nucleon weak
process. This is almost a paradigmatic example of the utility of the effective
Lagrangian approach in implementing the constraints that chiral symmetry
puts on different processes.

14 Exercises

6. Show by explicit calculation of the Feynman diagram, in dimensional
regularization, that the pion loop contribution to the nucleo self-energy
of Fig. 1 contains contributions of order O(m3

N) which therefore are not
suppressed in the chiral counting.

7. Starting from the Lagrangian (26), and carrying the canonical formal-
ism to obtain the Hamiltonian density, show that there exists a direct
coupling of the axial charge to NNπ, which is absent in the Lagrangian
density.
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