The Qweak Experiment at Jefferson Lab

J. Birchall University of Manitoba

for the Qweak Collaboration Elba XII, June 2012

Qweak: measurement of the weak charge of the proton

Commissioning June - August, 2010 (LH2 target, QTOR spectrometer + 9000 A power supply, tracking detectors, scanner...)

- "Engineering" runs October 2010
- "25% run" (run 1): November 2010 May 2011
- "4% run" (run 2): November 2011 May 2012

Data analysis continues!

May 18, 2012: JLab director pulls the plug on 6 GeV running

CEBAF down now for 2 years for upgrade to 12 GeV Qweak running has truly ended !

Qweak Objectives

Measure elastic e-p parity-violating analyzing power:

• to 2% at $Q^2 = 0.026 (GeV/c)^2$ \rightarrow weak charge of proton, Q_w , to 4% $\rightarrow sin^2 \Theta_w$ to 0.3% (10 σ offset relative to Z-pole)

Evidence of physics beyond the Standard Model?

To what extent can "new physics" be ruled out?

Ancillary measurements:

- Background asymmetry from Al windows of target
- e-p at 3.36 GeV to check γZ box correction to $Q_w (A_L \sim 8 \text{ ppm})$
- · e-p inelastic analyzing power including to $\Delta(1232)$
- \cdot Low Q² non-resonant inelastic asymmetries
- Transverse spin analyzing power on p, Al and C

Weak Charge

Parity-violating electron scattering couplings

- Weak vector coupling: $C_{1q} = 2g_A^e g_V^q$
- Weak axial coupling: $C_{2q} = 2g_V^e g_A^q$

Particle	Electric charge	Weak charge ($\sin^2 \theta_W \simeq 1/4$)
u	+2/3	$-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \simeq +1/3$
d	-1/3	$-2C_{1d} = -1 + \frac{4}{3}\sin^2\theta_W \simeq -2/3$
p(uud)	+1	$Q_W^p = +1 - 4\sin^2\theta_W \simeq 0.07$
n(udd)	0	$Q_W^n = -1$

Suppression of the proton and electron weak charges in the standard model - easier to see an asymmetry outside of SM

Constraints on Clq couplings

What we measure: parity-violating analyzing power

Interference of photon and weak boson exchange

Very small asymmetry between left and right helicity

$$A_{PV}(p) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto rac{\mathcal{M}_{PV}^{NC}}{\mathcal{M}^{EM}} \propto rac{Q^2}{M_Z^2} \quad ext{when } Q^2 \ll M_Z^2$$

Friday, 29 June, 12

Parity-violating e-p analyzing power

Interference of photon and weak boson exchange

Asymmetry between left and right helicity in nucleons

$$A_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\epsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^Z}{\epsilon(G_E)^2 + \tau(G_M)^2} \right]$$

In the forward elastic limit $Q^2 \rightarrow 0$, $\theta \rightarrow 0$ (plane wave)

$$A_{PV}(p) \xrightarrow{Q^2 \to 0} \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \begin{bmatrix} Q_W^P + Q^2 \cdot B(Q^2) \end{bmatrix} \approx 230 \text{ ppb}$$
Hadronic corrections

Friday, 29 June, 12

Q_w from extrapolation to $Q^2 = 0$

Model-Independent Constraints on New Physics

Radiative Corrections

New calculations: yZ box: 8% correction with ~1% uncertainty. Verification in "DIS" region (Qweak data at 3.36 GeV), following calculation by Melnitchouk

Requirements for the experiment

Measure $A_L(e-p)$ parity-violating analyzing power to relative error of ~2%, i.e. to ~5x10⁻⁹

Need:

- high beam current and event rate
- precision polarimetry
- \cdot accurate measurement of Q^2
- control of systematic errors
- control of backgrounds

Qweak Error Budget - preliminary analysis

Source of Error	Contribution to $\Delta A_{PV}/A_{PV}$	Contribution to ∆Q _w /Q _w
Counting statistics	2.1% (1.8%)	3.2% <mark>(2.9%)</mark>
Beam polarimetry	1.0% (1.0%)	1.5% <mark>(1.6%)</mark>
Backgrounds	0.7% <mark>(0.5%)</mark>	1.0% <mark>(0.8%)</mark>
Helicity-correlated beam properties	0.5% <mark>(0.5%)</mark>	0.8% <mark>(0.8%)</mark>
Absolute Q ²	0.5% <mark>(0.5%)</mark>	1.0% <mark>(1.1%)</mark>
Hadronic corrections	-	1.5% <mark>(1.9%)</mark>
Total Systematic	1.4% (1.3%)	2. 7% (2.9%)
Total	2.5% (2.2%)	4.2% (4 .1%)

4.2% on $Q_W \rightarrow 0.3\%$ on $\sin^2 \theta_W$

Proposal: in red

Limits on Helicity-Correlated Beam Properties

		Achieved	
Beam value	Requirement	Run I	Run II
X-position at target [nm]	<2	3.6 +/- 0.39	-0.95 +/- 0.06
Y-position at target [nm]	<2	-6.9 +/- 0.39	-0.24 +/- 0.28
X-angle at target [nrad]	<30	-0.22 +/- 0.012	-0.07 +/- 0.017
Y-angle at target [nrad]	<30	-0.18 +- 0.015	-0.06 +/- 0.011
Position at dispersion (3c12X)[nm]	-	-13.6 +/- 0.23	-0.83 +/- 0.30
Energy dE/E [ppb]	<	<3.8 +/- 0.06	<0.23 +/- 0.08

Qweak: overview of the experiment

$$A_{PV}(p) = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

Skeleton View of Qweak Apparatus

Polarized Source

- Pockels cell for fast helicity reversal
- Helicity reversal frequency: 960 Hz (to "freeze" bubble motion in the target)
- Helicity pattern: pseudo-random "quartets" (+--+ or -++-, asymmetry calculated for each quartet)
- Insertable Half-Wave Plate: for "slow reversal" of helicity to check systematic effects and cancel certain false asymmetries. Less frequently, by Wien filter.

Liquid Hydrogen Target

- The world's highest power LH2 target (~2.5 kW cooling power)
- Computational fluid dynamics used in design
- 35 cm long
- \cdot LH2 transverse flow at 2.8 m/s
- Density fluctuations < 5x10⁻⁵ at 15 Hz, run at 960 Hz to reduce further
- High power heater responds rapidly to changing beam power (H2 liquid only 14-20 K !) to prevent freezing or boil-off

Qweak LH2 target

Design principle: minimize density induced noise

Entrance and exit windows: Al, 0.127 mm thick in beam

Computational Fluid Dynamics: liquid flow in LH2 target Contours of constant v_x

6

Noise seen on detector signal

Target density fluctuations apparent at low frequency and high beam current \rightarrow use 960 Hz spin flip rate (240 Hz rate for quartets)

Noise on detector asymmetry due to target boiling at 960 Hz spin flip rate

Increase in running time due to target noise ~3 % Goal was < 5 %

At 165 μ A, total detected rate is 5.83 GHz (integrating mode)

- Pure counting statistics: 215 ppm @ 93% helicity reversal live time
- With detector shower fluctuations: 232 ppm
- With current normalization and target boiling: 235 ppm
- Very close to counting statistics!

Qweak Data Quality

"Slow reversal": the Insertable Half Wave Plate (IHWP) optically flips the spin polarity before every 8 hour "slug".

The signal must reverse sign...

This is a selection out of a few hundred slugs

Hall C Moller Polarimeter

- Hall C Moller polarimeter has been refurbished
- Electrons are scattered from a magnetized Fe foil
- Beam polarization determined from scattering asymmetry
- One measurement every 3 4 days at ~2 μA

New Hall C Compton Polarimeter

- Operation: continuous at full beam current for Qweak (180 μ A)
- Beam: directed along a chicane 57 cm below the undeflected line
- Laser system:
 - 532 nm green laser
 - 10 W CW laser with low gain cavity
- Photon detection: PbWO₄ scintillator in integrating mode
- Electron detection: Rad-hard diamond strips with 20 μ m pitch
- Early results available for electron detector

Qweak: Polarimetry to 1%

Preliminary (Electron Detector, Plane-1, stat error only, 1 hr runs)

Polarization values are very preliminary!

Møller polarimetry

- New beamline, refurbished
- Invasive measurements
- Polarization larger than anticipated: 86% to 88%

Compton polarimetry

- Excellent performance
- Continuous measurements
- Operates at full 180 μ A
- Great statistical precision

Comparison of Moller and Compton Polarimeters

Tracking Mode: to determine Q² to 0.5%

Region 2

Horizontal drift chambers

- 32 wires in 0.5 m wide planes
- 12 planes per octant
- 2 instrumented octants
- Constructed at Va Tech

Projected to collimator 2

Region 3 Vertical drift chambers

- 181 wires in 2 m long planes
- 4 planes per octant (65° tilt)
- 2 instrumented octants
- Constructed at W&M

Projected to Cerenkov bar

Q² measurement

Need momentum and scattering angle + energy loss to vertex:

- Region 2 HDCs \rightarrow scattering angle and vertex in target
- Region 3 VDCs \rightarrow partial track from QTOR exit to detector
- Find momentum by "swimming" electrons through the QTOR magnetic field to match partial tracks
- Map out main detector's light response for single track to determine light-weighted <Q²>

Sample tracking result (preliminary)

Scanner

- \cdot Verifies event distributions the same at low current (Q^2 measurement) and for high current parity running
- Follows a raster pattern to map out event distribution along a Cerenkov bar

Tracking Mode

Simulation of electrons hitting main detector bar

Backgrounds

Largest component from Al windows of LH2 target:

Scattering angle [degrees]

Aluminum Background

- Dilution Factor:
 - Effect from long target on acceptance:

Simulated elastic e- profile at detector:

Simulation predicts dilution of $\sim 3.5\%$

Measurement:

 $\left(\frac{dA_{ep}}{A_{ep}}\right)_f \simeq df \frac{A_{bkgd}}{A_{ep}}$

• Evacuated target or low pressure (cold) gas

Dilution Factor: Dependence on Gas Density

omulation prodicts director

Inelastics: $f_{AI} \sim 0.02\%$ - not as critical

Friday, 29 June, 12

(K. Myers)

Measure f_{AI}

to ~1%!!

Aluminum Background

Measure asymmetry on thick dummy target

Raw asymmetry from a subset of data

Measured on target 30x's thicker than windows

Target made of same Al alloy as windows

(Not corrected for: false asymmetry or beam polarization)

Ran ~10% of our time on Aluminum dummy target!

(K. Myers)

Detector Asymmetries with Transverse Polarized Beam

Relative Uncertainties

B_n = A_T = analyzing power for transverse polarized beam

Error source	Preliminary (dB/B)	Anticipated(dB/B)
Polarization	2.2 %	~1.0%
Statistics	1.3%	~1.3%
Q ² acceptance	1.2%	~0.5%
Non-linearity	1.0%	~0.2%
Regression	0.9%	~0.9%
Backgrounds	0.3%	~0.3%

Jefferson Lab 휂

Buddhini Waidyawansa

CIPANP2012

19

Impact of B_n (i.e., A_T) on Qweak

- B_n leakage due to symmetry breaking:
 (due to imperfect symmetry of the parity detectors)
 - 100% transverse polarization → leakage \leq 64 ppb
 - Typical residual transverse polarization in the beam is 2-3%
 - leakage into PV asymmetry ≤ 2 ppb. Acceptable!

- To keep the B_n leakage small, Qweak used the measured B_n asymmetry and the main detectors to monitor the amount of residual transverse polarization in the beam.
 - Residual transverse polarization is known to a ± 3% at the injector.
 - Using main detectors, can control that to a level of better than ± 1% (transverse graduate-student feedback).

Preliminary result: $A_T = -5.27 \pm 0.07$ (stat) ± 0.14 (syst) ppm

Buddhini Waidyawansa

Jefferson Lab 휂 🎲 OHIO 23

Relative Precisions of other Qweak B_n measurements.

- Analysis not complete.
- However, the relative precision of the measurements looks good.
- Good candidates to test model predictions!

Target	Relative Precisions	
Inelastic Measurements with delta final state		
LH2 cell	~ 3%	
Aluminum	~ 5%	
Carbon	~ 3%	
Elastic Measurements		
Aluminum	~4%	
Carbon	~7%	

CIPANP2012

Buddhini Waidyawansa

Friday, 29 June, 12

Jefferson Lab 👋 🍿 OHIO 24

Summary

- The experimental phase of Qweak has ended
- Key components worked very well
- Beam quality mostly very high
- Main detector asymmetry width close to counting statistics and excess understood
- Many systematics measurements taken
- Ancillary measurements at 0.877 and 3.3 GeV (Al, C)
- First preliminary result: transverse asymmetry on hydrogen - $A_T = -5.27 \pm 0.07$ (stat) ± 0.14 (syst) ppm
- Release of further results in the next couple of years
 - Inelastic N $\rightarrow \Delta$
 - Aluminum asymmetry
 - Weak charge Qw: 25% this year, followed by 8%, 4%...

Extra Slides

The Qweak Collaboration

The Qweak Collaboration

Spokespersons:

R.D. Carlini (PI) S. Kowalski S.A. Page

Project Manager: G. Smith

22 thesis students

D. Androic, D. Armstrong, A. Asaturyan, T. Averett, J. Balewski, J. Beaufait, R. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R. D. Carlini (PI), G. Cates, J.C. Cornejo, S. Covrig, M.M. Dalton, C. A. Davis, W. Deconinck, K. Dow, X. Deng, J. Diefenbach, K. Dow, J. Dowd, J. Dunne, D. Dutta, W. Duvall, M. Elaasar, R. Ent, J. Erler, W. Falk, J.M. Finn, T. A. Forest, W. Franklin, M. Furic, D. Gaskell, M. Gericke, J. Grames, K. Grimm, F. Guo, M.H. Shabestari, D. Higinbotham, M. Holtrop, J.R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, K. Joo, E. Kargiantoulakis, J. Kelsey, C. Keppel, P. King, M. Kohl, E. Korkmaz, S. Kowalski, J. Leacock, J.P. Leckey, A.Lee, J.H. Lee, L. Lee, A. Lung, N. Luwani, S. MacEwan, D. Mack, J. Magee, R. Mahurin, J. Martin, M. McHugh, N. McMahon, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, R. Munroe, K.E. Myers, A. Narayan, Nuruzzaman, A. K. Opper, S. A.Page, J. Pan, K. Paschke, S. Phillips, M. Pitt, B.(Matt) Poelker, J. Rajotte, W. D. Ramsay, M. Ramsey-Musolf, J. Roche, B. Sawatzky, T. Seva, R. Silwal, N. Simicevic, G. Smith, T. Smith, P. Souder, D. Spayde, A.Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, E. Tsentalovich, W.T.H. van Oers, B. Waidyawansa, D. Wang, P. Wang, S. Wells, S. A. Wood, S. Yang, R. Young, S. Zhamkochyan, Z. Zhao, X. Zheng, D. Zou

Running of $\sin^2\theta$ scale dependence of weak mixing angle in MS scheme K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) 0.248 SM prediction - $\overline{\mathrm{MS}}$ scheme Qweak 0.246 decreasing Existing measurements 0.244 $\sin^2\theta_W = \frac{1}{4} \left(1 - Q_W^p \right)$ 0.242 Q_w(e) $\text{sin}^2\theta_W(Q)$ 0.24 Q_w(APV) 0.238 v-DIS $\mathsf{Q}_{\mathsf{Weak}}$ 0.236 0.234 Qweak LEP 0.232 increasing Tevatron 0.23 SLC 0.228 0.001 0.01 0.1 10000 0.0001 10 100 1000 Q[GeV] far close

Figure from: K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) and 2011 partial update for the 2012 edition.

Sensitivity to New Physics

Lower bound on new physics (95% CL)

Figure: Young, Carlini, Thomas, Roche (2007)

Constraints from

- Atomic PV: $\frac{\Lambda}{g} > 0.4 \ TeV$
- PV electron scattering: $\frac{\Lambda}{g} > 0.9 \ TeV$

Projection Q_{Weak}

- $\frac{\Lambda}{g} > 2 \ TeV$
- 4% precision

Possible deviations from the Standard Model allowed by fits to existing data

Target noise vs raster size

Target noise extracted from main detector asymmetry width.