Lead (²⁰⁸Pb) Radius Experiment : PREX

Elastic Scattering Parity Violating Asymmetry

E = 1 GeV, $\theta = 5^{\circ}$ electrons on lead

Spokespersons

- Krishna Kumar
- Robert Michaels
- Kent Pascke
- Paul Souder
- Guido Maria Urciuoli

Hall A Collaboration Experiment

Electron - Nucleus Potential

$$\hat{V}(r) = V(r) + \gamma_5 A(r)$$
electromagnetic

$$V(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$A(r) = \frac{G_F}{2\sqrt{2}} \left[(1 - 4\sin^2 \theta_W) Z \rho_P(r) - N \rho_N(r) \right]$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$A(r) = \frac{G_F}{2\sqrt{2}} \left[(1 - 4\sin^2 \theta_W) Z \rho_P(r) - N \rho_N(r) \right]$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$A(r) = \frac{G_F}{2\sqrt{2}} \left[(1 - 4\sin^2 \theta_W) Z \rho_P(r) - N \rho_N(r) \right]$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$\hat{V}(r) = \int d^3$$

Z^o of weak interaction : sees the neutrons

Analysis is clean, like electromagnetic scattering:

- 1. Probes the entire nuclear volume
- 2. Perturbation theory applies

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

Nuclear Structure: Neutron density is a fundamental observable that remains elusive.

FIG. 2. The neutron EOS for 18 Skyrme parameter sets. The filled circles are the Friedman-Pandharipande (FP) variational calculations and the crosses are SkX. The neutron density is in units of neutron/fm³.

Reflects poor understanding of symmetry energy of nuclear matter = the energy cost of $N \neq Z$

$$E(n,x) = E(n,x=1/2) + S_{v}(n)(1-2x^{2})$$

n = n.m. density $x = \frac{\text{ratio}}{\text{proton/neutrons}}$

- Slope unconstrained by data
- Adding R_N from ²⁰⁸ Pb will eliminate the dispersion in plot.

(R.J. Furnstahl)

PREX & Neutron Stars

(C.J. Horowitz, J. Piekarweicz)

R _N calibrates EOS of Neutron Rich Matter

Crust Thickness

Explain Glitches in Pulsar Frequency?

Combine PREX R_N with Obs. Neutron Star Radii

Phase Transition to "Exotic" Core ?

Strange star? Quark Star?

Some Neutron Stars seem too Cold

G.M. Urciuoli

Thicker neutron skin in Pb means energy rises rapidly

- The ²⁰⁸Pb radius constrains the pressure of neutron matter at subnuclear densities.
- The NS radius depends on the pressure at nuclear density and above..
- If Pb radius is relatively large: EOS at low density is stiff with high P. If NS radius is small than high density EOS soft.
- This softening of EOS with density could strongly suggest a transition to an exotic high density phase such as quark matter, strange matter, color superconductor, kaon condensate...
- Proton fraction Y_p for matter in beta equilibrium depends on symmetry energy S(n).
- R_n in Pb determines density dependence of S(n).
- The larger R_n in Pb the lower the threshold mass for direct URCA cooling.
- If R_n - R_p <0.2 fm all EOS models do not have direct URCA in 1.4 M- stars.
- If R_n - R_p >0.25 fm all models do have URCA in 1.4 M-stars.

Atomic Parity Violation

- Low Q² test of Standard Model
- Needs R_N to make further progress. e.g. Berkeley Yb

Isotope Chain Experiments

Neutron Skin and Heavy – Ion Collisions (Alex Brown)

Hall A at Jefferson Lab

PREX in Hall A at JLab

Experimental Method

Flux Integration Technique: HAPPEX: 2 MHz PREX: 850 MHz

Consolidated techniques from the previous Hall A parity violating electron scatttering experiments (HAPPEX)

Polarized Source

Intensity Feedback

PITA Effect

(Polarization Induced Transport Asymmetry)

Beam Asymmetries

$$A_{raw} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

New for PREX

(to achieve a 2% systematic error)

Double Wien Filter

Crossed E & B fields to rotate the spin

- Two Wien Spin Manipulators in series
- Solenoid rotates spin +/-90 degrees (spin rotation as B but focus as B²).
 Flips spin without moving the beam !

Upgraded Polarimetry

(Sirish Nanda et al.)

Compton Polarimeter (1 % Polarimetry)

Upgrades:

Laser → Green Laser

Moller Polarimeter (< 1 % Polarimetry)

Upgrades:

Magnet → Superconducting Magnet from Hall C

Target → Saturated Iron Foil Targets

DAQ → FADC

Lead Target

- Three bays
- Lead (0.5 mm) sandwiched by diamond (0.15 mm)
- Liquid He cooling (30 Watts)

5⁰ Septum magnet (augments the High Resolution Spectrometers) (Increased Figure of Merit) HRS-L HRS-R Septum Magnet collimator collimator 2 a target 汤

Integrating Detection

Deadtime free, 18 bit ADC with $< 10^{-4}$ nonlinearity.

New HRS optics tune focuses elastic events both in x & y at the PREx detector location

120 Hz pair windows asymmetry distribution.

No Gaussian tails up to 5 standard deviations.

Beam-Normal Asymmetry in elastic electron scattering

i.e. spin transverse to scattering plane

$$A_{T} \equiv \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \vec{S}_{e} \bullet (\vec{k}_{e} \times \overset{\rightarrow}{k'}_{e})$$

Possible systematic if small transverse spin component

New results **PREX**

²⁰⁸*Pb*:
$$A_T = +0.13 \pm 0.19 \pm 0.36 \ ppm$$

¹²*C*: $A_T = -6.52 \pm 0.36 \pm 0.35 \ ppm$

- Pretiminary Preparation • Small A_{T} for ²⁰⁸Pb is a big (but pleasant) surprise.
 - A_T for ¹²C qualitatively consistent with ⁴He and available calculations (1) Afanasev; (2) Gorchtein & Horowitz

PREX Result

Systematic Errors		
Error Source	Absolute (ppm)	Relative (%)
Polarization (1)	0.0071	1.1
Beam Asymmetries (2)	0.0072	1.1
Detector Linearity	0.0071	1.1
BCM Linearity	0.0010	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ² (1)	0.0028	0.4
Target Thickness	0.0005	0.1
¹² C Asymmetry (2)	0.0025	0.4
Inelastic States	0	0
TOTAL	0.0130	2.0

 $A = 0.656 \ ppm$ $\pm 0.060(stat) \pm 0.0140(syst)$

 \rightarrow Statistics limited (9%)

(1) Normalization Correction applied

(2) Nonzero correction (the rest assumed zero)

PREX Asymmetry $(P_e \times A)$

Asymmetry leads to R_N

 $R_N \approx 6.156 + 1.675 \bullet \langle A \rangle - 3.420 \bullet \langle A \rangle^2$

PREX Result, cont.

$$A = 0.656 \pm 0.060(stat) \pm 0.014(syst) ppm$$

 $R_{\rm N} = 5.78 + 0.16 - 0.18$ fm

Neutron Skin = $R_N - R_P$ =

0.33 + 0.16 - 0.18 fm

Establishing a neutron skin at ~92 % CL

²⁰⁸Pb Radius from the Weak Charge Form Factor

TRANSVERSE ASIMMETRY

Two photon exchange

- \triangleright R = G^p_E/G^p_M discrepancy → 2γ exchange amplitude A_{2γ}
- Observable: Beam normal spin asymmetry BNSA
- BNSA sensitive to Im(A_{2γ}).

Asymmetry dependency on azimuthal angle

PREX measured A_n with ¹²C and ²⁰⁸Pb targets. HAPPEX and HAPPEX-II measured A_n with ¹H and ⁴He targets

FUTURE: PREX-II

G.M. Urciuoli

→ PREX-II to use all-metal seals

1.5

1

2.5

Energy (GeV)

3

2

Summary

- Fundamental Nuclear Physics with many applications
- Because of significant time-losses due to O-Ring problem and radiation damage PREX achieved a 9% stat. error in Asymmetry (original goal was 3 %).
- PREX measurement of Rn is nevertheless the cleanest performed so far
- Several experimental goals (Wien filters, 1% polarimetry at 1 GeV, etc.) were all achieved.
- Systematic error goal was consequently achieved too.
- PREX-II approved (runs in 2013 or 2014)
 → 3% statistical error

Spare

Corrections to the Asymmetry are Mostly Negligible

- Coulomb Distortions ~20% = the biggest correction.
- Transverse Asymmetry
- Strangeness
- Electric Form Factor of Neutron
- Parity Admixtures
- Dispersion Corrections
- Meson Exchange Currents
- Shape Dependence
- Isospin Corrections
- Radiative Corrections
- Excited States
- Target Impurities

Horowitz, et.al. PRC 63 025501

Polarized Electron Source

- Rapid, random helicity reversal
- Electrical isolation from rest of lab
- Feedback on Intensity Asymmetry

Future in Hall A at JLab

Possible Future PREX Program ?

	Each point 30 days		stat. error only	
	Nucleus	E (GeV)	dR _N / R _N	comment
Not yet proposed. Just a 'what if ?"	²⁰⁸ Pb	1	1 %	PREX-II (approved)
	⁴⁸ Ca	2.2 (1-pass)	0.4 %	natural 12 GeV exp't
	⁴⁸ Ca	2.6	2 %	surface thickness
	⁴⁰ Ca	2.2 (1-pass)	0.6 %	basic check of theory
	tin isotope	1.8 ng Ban, C.J. Horowitz,	0.6 % R. Michaels arXiv	apply to heavy ion
	tin isotope	2.6	1.6 %	surface thickness