Elba XII Workshop Electron-Nucleus Scattering XII Elba International Physics Center June 25-29, 2012

Meson Spectroscopy at CLAS and CLAS12

M.Battaglieri INFN-Ge Italy

Marciana Marina, Isola d'Elba, Italy.

Elba-12

Meson Spectroscopy at CLAS and CLAS12

Jefferson Lab (now)

E _{max}	~ 6 0
l _{max}	~ 20
Duty Factor	~ 10
σ _ε /Ε	~ 2.5
Beam P	~ 80
E	~ 0.8

- GeV
- **Ο μΑ**
- 0%
 - **5 10**-5
- %
- 8-5.7 GeV

Elba-12

Meson Spectroscopy at CLAS and CLAS12

From CEBAF at 6 GeV to CEBAF at 12 GeV

12 GeV Upgrade Project Schedule

12 M.Battaglieri INFN-GE

add Hall D

Meson Spectroscopy at CLAS and CLAS12

Elba-12

The tool: electromagnetic interaction

- weaker than strong interactions
- therefore calculable perturbatively
- based on the well-known QED

The scattering is normally analyzed in term of the <u>One-Photon-Exchange</u> approximation (OPE)

 $-q^m q_m = Q^2 = photon virtuality$

- Direct γ_v qqq system coupling
- Establish the excitation spectrum
- Access to strong interaction dynamics (Q² evolution of resonance form factors)

JLab today!

- $q\bar{q}$ system \rightarrow easier to study
- Access to gluonic degrees of freedom
- towards a quantitative understanding of quark and gluon confinement

JLab tomorrow!

Elba-12

Meson Spectroscopy at CLAS and CLAS12

Meson spectrum

inside colorless hadrons they combine to 'neutralize' color force

Meson come in nonets of the same quantum number (last two members mix)

q

Consider light quarks: u,d,s

Meson Spectroscopy at CLAS and CLAS12

QCD Lattice calculations

This mass range is accessible in photoproduction experiments with a beam energy in the range 5 GeV < E_{γ} <12 GeV **Perfectly matched to JLab12 energy!**

8)

Meson spectroscopy program in CLAS12

Exp-11-005

M.Battaglieri, R.De Vita, D.Glazier, C.Salgado, S.Stepanyan, D.Weygand and the CLAS Collaboration

Study the meson spectrum in the 1-3 GeV mass range to identify gluonic excitation of mesons (hybrids) and other quark configuration beyond the CQM

***** Hybrid mesons and Exotics

- Search for hybrids looking at many different final states
- Charged and neutral-rich decay modes
- $\gamma \mathbf{p} \rightarrow \mathbf{p} \ \mathbf{3}\pi, \ \gamma \mathbf{p} \rightarrow \mathbf{p} \ \eta \ \pi, \ \dots$

* Hybrids with hidden strangeness and strangeonia

- Intermediate mass of s quarks links long to short distance QCD potential
- Good resolution and kaon Id required
- $\gamma p \rightarrow p \phi \pi$, $\gamma p \rightarrow p \phi \eta$, $\gamma p \rightarrow p 2K \pi$, ...

* Scalar mesons

- Poorly know f₀ and a₀ mesons in the mass range 1-2 GeV
- Theoretical indications of unconventional configurations ($q\overline{q}q\overline{q}$ or gg)
- $\gamma p \rightarrow p \ 2\pi$, $\gamma p \rightarrow p \ 2K$,

One of the most important issue in hadron physics and main motivation for the JLab 12 GeV upgrade

M.Battaglieri INFN-GE

Elba-12

Partial Wave Analysis

- * Parametrize the cross section in term of partial waves
- * Fit to data to extract amplitudes
- * A model is needed to parametrize amplitudes: Isobar Model, Dispersion Relations, ...
- * Strong interaction between theoreticians and experimentalists to develop the best analysis framework

PWA were successfully performed on CLAS data ($\gamma p \rightarrow p \pi^+ \pi^-, \gamma p \rightarrow n \pi^+ \pi^- \pi^-, ...$) using different models

e.g. first observation of the f₀(980) in a photoproduction experiment M.B. et al. PRL 102 2009 102001

Partial Wave Analysis

Meson Spectroscopy at CLAS and CLAS12

1.8

2

1.6

PWA in CLAS is feasible!

1.2

1.6

 $M(\pi^{+}\pi^{+}\pi^{-})$ (GeV)

1.4

 $M(\pi^{+}\pi^{+}\pi^{-})$ (GeV)

Elba-12

PWA 1-+ Exotic Wave

P.Eugenio ATHOS2012

Meson Spectroscopy at CLAS and CLAS12

PWA 1-+ Exotic Wave

P.Eugenio ATHOS2012

PWA 1-+ Exotic Wave

P.Eugenio ATHOS2012

Partial Wave Analysis with CLAS **Moments + Dispersion relations**

 $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^+ \pi^-$

$M(\pi^+\pi^-)$ spectrum below 1.5 GeV:

M_{ππ} (GeV)

P-wave: p meson D-wave: f₂(1270) S-wave: σ, f₀(980) and f₀(1320)

-t (GeV²)

Meson Spectroscopy at CLAS and CLAS12

Elba-12

17)

Meson spectroscopy with photons at JLab-12GeV

***** The Detector

- Determination of J^{PC} of meson states requires Partial Wave Analysis
- Decay and Production of exclusive reactions
- Good acceptance, energy resolution, particle Id

Hall-B - CLAS12 Detector

- Good resolution
- Good pID
- Reasonable hermeticity
- Un-uniform acceptance

18)

Meson Spectroscopy at CLAS and CLAS12

Why photoproduction?

* Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

No spin-flip for exotic quantum number

Linear polarization acts like a filter to disentangle the production mechanisms and suppress backgrounds
A Afanasey and B. Page et al. PB A57 1998 6771

★ Production rate for exotics is expected comparable as for regular mesons

Few data (so far) but expected similar production rate as regular mesons

Meson spectroscopy with photons at JLab-12GeV

Photon beam requirement

- High luminosity
- Tagger
- Linear polarization

With a 12 GeV electron beam only few choices

1) Bremsstrahlung (Hall-D)
 2) Low Q² electroprod (Hall-B)

The Hall-B real photon tagger

Quasi-real photoproduction with CLAS12 (Low Q² electron scattering)

$E_{scattered}$	0.5 - 4.5 GeV
θ	$2.5^{o} - 4.5^{o}$
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 \ (< Q^2 > 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

★ Electron scattering at "0" degrees (2.5° - 4.5°) low Q² virtual photon ⇔ real photon

★ Photon tagged by detecting the scattered electron at low angles High energy photons $6.5 < E_{\gamma} < 10.5$ GeV

*** Quasi-real photons are linearly polarized** Polarization ~ 70% - 10% (measured event-by-event)

- High Luminosity (unique opportunity to run thin gas target!) Equivalent photon flux N_y ~ 5 10⁸ on 5cm H_y (L=10³⁵ cm⁻²s⁻¹)
- Multiparticle hadronic states detected in CLAS12 High resolution and excellent PID (kaon identification)

Complementary to Hall-D (GLUEX)

Meson Spectroscopy at CLAS and CLAS12

Calorimeter + hodoscope + tracker

Electron energy/momentum

Photon energy (v=E-E') Polarization $\epsilon^{-1} \sim 1 + v^2/2EE'$

Veto for photons

Electron angles

Q²= 4 E E' sin² ∂/2 Scattering plane

Meson Spectroscopy at CLAS and CLAS12

Calorimeter + hodoscope + tracker

Electron energy/momentum

Photon energy (v=E-E') Polarization $\epsilon^{-1} \sim 1 + v^2/2EE'$

Veto for photons

Electron angles

Q²= 4 E E' sin² ∂/2 Scattering plane

 $\delta v / v =$

δE'/(E-E')

Calorimeter + hodoscope + tracker

Electron energy/momentum

Photon energy (ν =E-E') Polarization $\epsilon^{-1} \sim 1 + \nu^2/2EE'$

Veto for photons

Electron angles

Q²= 4 E E' sin² ∂/2 Scattering plane

Calorimeter

Specs

Radiation hard
Good light yield
Energy resolution
Time resolution
Light read-out (APD/SiPM)

Homogeneous, fast, dense, inorganic-crystals (PbWO4)

Calorimeter + hodoscope + tracker

Electron energy/momentum

Photon energy (v=E-E') Polarization $\epsilon^{-1} \sim 1 + v^2/2EE'$

Veto for photons

Electron angles

Q²= 4 E E' sin² ∂/2 Scattering plane

Hodoscope

Specs * Good timing (<ns) for MIPs * High segmentation (same as the cal or higher) * 100% efficient to charged particles

Plastic scintillator tiles with WLS fibres coupled to SiPM

CLAS-HODO

Calorimeter + hodoscope + tracker

Electron energy/momentum

Photon energy (v=E-E') Polarization $\epsilon^{-1} \sim 1 + v^2/2EE'$

Veto for photons

Electron angles

Q²= 4 E E' sin² ∂/2 Scattering plane

Sustain high rate, moderate resolution, low material budget (Micromegas)

Specs ★ 5T solenoidal field ★ High pixel density (FW) ★ 100-300 µm resolution ★ Integrated in the CLAS12 base equipment

Tracker

Meson Spectroscopy at CLAS and CLAS12

The Forward Tagger in CLAS12

The Forward Tagger in CLAS12

***** Compatible with standard electron runs

Calorimeter Tracker Scintillation Holler Shield

Photon detector for leading DVCS experiments
 Extend the CLAS12 coverage for neutrals at small angles

Photons and electrons can run in parallel!

Meson Spectroscopy at CLAS and CLAS12

FT R&D and prototyping

* Tender for 370 PbWO-II crystals completed * 9/16 ch FT-Cal and FT-Hodo proto tested at JLab and BTF@LNF

Final energy resolution:

- σ/E = 2.5 % at 1.31 GeV (MC: 2.2%)
- σ/E = 2.2 % at 1.92 GeV (MC: 1.9 %)

***** APDs procurement in 2013 and full detector assembly in 2014

Search for strangeonia in CLAS12

Elba-12

Meson Spectroscopy at CLAS and CLAS12

Partial Wave Analysis in CLAS12

Black = generated blue/red = fit $t=0.2 \text{ GeV}^2$ (0.5 GeV²) $\gamma \mathbf{p} \rightarrow \mathbf{n} \pi^+ \pi^- \pi^$ $a_1 \rightarrow \rho \pi$ (D-wave) $a_{\gamma} \rightarrow \rho \pi$ (D-wave) $a_1 \rightarrow \rho \pi$ (S-wave) The process is described as sum of 8 isobar channels: 40000 $a_2 \rightarrow \rho \pi$ (D-wave) 30000 $a_1 \rightarrow \rho \pi$ (S-wave) 20000 10000 $a_1 \rightarrow \rho \pi$ (D-wave) 1.4 1.6 1.8 2 2.2 3 a Invariant Mass (GeV/c²) 1.2 1.4 1.6 1.8 2 3x Invariant Mass IGeV/ $\pi_2 \rightarrow \rho \pi$ (P-wave) $\pi_2 \rightarrow f_2 \pi(S\text{-wave})$ $\pi_2 \rightarrow \rho \pi$ (F-wave) $\pi_2 \rightarrow \rho \pi$ (P-wave) $\pi_2 \rightarrow \rho \pi$ (F-wave) 2500 $\pi_2 \rightarrow f_2 \pi(S-wave)$ $\pi_2 \rightarrow f_2 \pi$ (D-wave) $\pi \mathbf{1} \rightarrow \rho \pi$ (P-wave) (exotic) 1000 ***** Amplitudes calculated by 4 1.6 1.8 2 3π Invariant Mass (GeV/c³ 1.6 1.8 2 3π Invariant Mass IGeV/c 4 1.6 1.8 2 3π Invariant Mass (GeV/c) A.Szczepaniak and P.Guo $\pi \mathbf{1} \rightarrow \rho \pi$ (P-wave) $\pi_2 \rightarrow \mathbf{f}_2 \, \pi \, (\mathbf{D}\text{-wave})$ 3π All waves CLAS12 acceptance (exotic) projected and fitted 50000 ★ PWA is stable against 40000 CLAS12 acceptance/ 30000 resolution distortion 20000 500 10000 PWA in CLAS12 3 z Invariant Mass (GeV/c²) 3x Invariant Mass (GeV is feasible !

Meson Spectroscopy at CLAS and CLAS12

M.Battaglieri INFN-GE

Elba-12

Partial Wave Analysis in CLAS12

The photon linear polarization is necessary to extract production mechanisms and filter-out specific processes

 $\pi \mathbf{1} \rightarrow \rho \pi$ P-wave (exotic) Two possible production mechanisms

π-exchange (un-natural parity) ρ-exchange (natural parity)

In red: fit result including the linear polarization In blue: fit result ignoring the polarization

The sum of the two can be fit with or w/o polarization

Including linear polarization in the fit the two exchanges can be reliably separated

Meson Spectroscopy at CLAS and CLAS12

Elba-12

Expected results

Production

 $\sigma(\gamma \mathbf{p} \rightarrow \mathbf{p} \phi \eta)$

Cross sections

$\sigma(\gamma \mathbf{p} \rightarrow \mathbf{p} \ 3\pi)$	~	10 μb
	~	.2 μb
$\sigma(\gamma \mathbf{p} \rightarrow \mathbf{p} \mathbf{K} \mathbf{K} \pi)$	~	10 nb

Assuming exotic meson production $\sim 1\%$

Yield/Mass bin to run PWA ~5000 ev

80 days of production beam time

Can be scheduled in parallel to already approved electron runs

Commissioning and calibration

~ 10 nb

★ 15d FT commissioning ★ 20d+4d low luminosity (L_x~5 10³³ cm⁻² s⁻¹) & minimum bias trigger (2-prongs)

Elba-12

Meson Spectroscopy at CLAS and CLAS12

Meson spectroscopy at JLab with CLAS and CLAS12

- * Comprehensive meson spectroscopy program using up-to-6-GeV photon-beam and the CLAS detector in Hall-B
- ★ Exotics and strangeness-rich mesons search will be extended to CLAS12 in the JLab 12 GeV era
- * Low Q² electron scattering is a complementary technique to the Hall-D coherent Bremsstrahlung
- New equipment: Forward Tagger (calorimeter + hodoscope + tracker) compatible with standard operation of CLAS12
- *** Excellent CLAS12 resolution and particle Id**
- *** Complete PWA feasible in CLAS12**

Dedicated detectors and high intensity photon beams at JLab-12 are under construction, ready to run in a near future!