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The myths about lattice spectroscopy

Myths: lattice QCD can . . .

. . . only study hadronic ground-states

. . . not study states with high spin

. . . not study isoscalar meson with precision

. . . not deal with resonances or compute scattering
properties

• Where do these myths come from?
• How close to solving these problems are we?
• New results: most of these myths need to be re-examined



Where do these myths come from?

Mostly restrictions with standard techniques
used to perform numerical simulations, par-
ticularly those needed to study quarks

Are we close to solving these problems?

• New methods have enabled many of these
challenges to be overcome.

• Can study excited and high spin states reliably
• New data on isoscalar mesons are almost as
precise as isovector states

• Many collaborations publishing results on
scattering and resonances.



Methods for
lattice spectroscopy



Lattice regularisation

• Lattice provides a non-perturbative, gauge-
invariant regulator for QCD

• Quarks live on sites
• Gluons live on links
• a - lattice spacing
• a ∼ 0.1 fm

Quark fields

on sites

on links

Gauge fields

• The Nielson-Ninomiya theorem means chirally symmetric
quarks are missing, but can discretise quarks by trading-oU
some symmetry

• In a Vnite volume V = L4, Vnite number of degrees of
freedom

Finite V: path-integral is an ordinary (but large) integral. Make
predictions from the QCD lagrangian byMonte Carlo



Spectroscopy in lattice QCD

• Energies of colourless QCD states can be extracted from
two-point functions in Euclidean time

C(t) = 〈0| Φ(t)Φ†(0) |0〉

• Euclidean time: Φ(t) = eHtΦe−Ht so C(t) = 〈Φ|e−Ht|Φ〉.
Insert a complete set of energy eigenstate and:

C(t) =
∞∑
k=0

|〈Φ|k〉|2e−Ekt

• limt→∞ C(t) = Ze−E0t, so if observe large-t fall-oU, then
energy of ground-state is measured.

Euclidean metric very useful for spectroscopy; it provides a way
of isolating and examining low-lying states



Excited states

• Excited-state energies can be measured by correlating
between operators in a bigger set, {Φ1,Φ2, . . . ,ΦN}

Cij(t) = 〈0| Φi(t)Φ†j (0) |0〉

• Solve generalised eigenvalue problem:

C(t1) v = λ C(t0) v

for diUerent t0 and t1 [Lüscher & WolU, C. Michael]

• Then lim(t1−t0)→∞ λn = e−En(t1−t0)

• Method constructs optimal ground-state creation operator,
then builds orthogonal states.

Excited states accessed if basis of creation operators is used and
the matrix of correlators can be computed



Spin on the lattice

• Lattice breaks O(3)→ Oh

• Lattice states classiVed by quantum
letter, R ∈ {A1,A2, E, T1, T2}.

• Continuum: subduce O(3) irreps→ Oh

• Look for degeneracies. Problem: spin-4
has same pattern as 0⊕ 1⊕ 2.

• Better spin assignment by constructing operators from
lattice representation of convariant derivative.

• Start in continuum with operator of deVnite J, then
subduce this into Oh and then replace derivatives with
their lattice equivalent. Measure 〈0|Φ| JPC〉 and look for
remnants of continuum symmetries.

Remnants of continuum spin can be found on the lattice if we
build operators more carefully and can measure their correlators



Isoscalar meson correlation functions

• Isovector mesons: Wick
contraction gives

• Isoscalar meson correlator has extra diagram. Wick
contraction:

〈ψiψ̄jψkψ̄l〉 = M−1ij M
−1
kl −M−1il M

−1
jk

〈0|Φ(I=0)(t)Φ†(I=0)(0)|0〉 =

〈0|Φ(I=1)(t)Φ†(I=1)(0)|0〉 − 〈0|Tr M−1Γ(t)Tr M−1Γ(0)|0〉

Measuring isoscalar meson correlation functions means also
computing the disconnected Wick graphs by Monte Carlo.



Scattering

Scattering matrix elements not directly accessible from Eu-
clidean QFT [Maiani-Testa theorem]

• Scattering matrix elements:
asymptotic |in〉, |out〉 states.
〈out |eiĤt| in〉 → 〈out |e−Ĥt| in〉

• Euclidean metric: project onto
ground-state
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[D. McManus, P. Giudice & MP]

• Lüscher’s formalism:
information on elastic scattering
inferred from volume
dependence of spectrum

• Requires precise data, resolution
of two-hadron and excited states.



Monte Carlo sampling the QCD lattice vacuum

Variance of Monte Carlo estimators is huge unless use impor-
tance sampling in Euclidean space-time

• In a Euclidean metric:

C(t1, t0) =∫
DUDψ̄Dψ ψ̄u(t1)Γψd(t1) ψ̄d(t0)Γψu(t0) e−SG−ψ̄uMψu−ψ̄dMψd∫

DUDψ̄Dψ e−SG−ψ̄uMψu−ψ̄dMψd

• Hard to deal with Grassmann algebra

. . . so integrate out quark Velds
• Quenched approximation was to ignore det M2

• Nf = 2 importance sampling measure. Non-negative,
thanks to Euclidean metric
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The numerical tool-kit for quarks

• Physics focus of LQCD has been matrix elements, not
spectroscopy.

• Traditionally, quark propagation
computed starting with point source:
η(x, t) = δt,0δx,0

• Solve Mψ = η, then ψ is one column
of M−1

• QCD is translationally invariant

• With this trick, make simple mesons and baryons cheaply.
• Not so well suited to studying isoscalar mesons,
higher-spin states, hybrids, large operator bases . . .

The “point-to-all” propagator has limited the scope of physics
lattice QCD has addressed. Better calculations need “all-to-all”



New methods: distillation

• We can ameliorate the problems coming from measuring
quark propagation by looking more carefully at how
hadrons are constructed most eXciently

• Smeared Velds: determine ψ̃ from the “raw” Veld in the
path-integral, ψ:

ψ̃(t) = �[U(t)]ψ(t)

• Extract conVnement-scale degrees of
freedom while preserving symmetries

• Build creation operators on smeared Velds
• Re-deVne smearing to be a projection
operator into a small vector space smooth
Velds: distillation



Results



Spin identiVcation — J = 3 example
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Isovector meson spectroscopy
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[Dudek et.al. Phys.Rev.D82:034508,2010]

• mπ = 400 MeV
• No 2-meson operators

Should be a dense spectrum of
two-meson states:

— Not seen at all



Light quark mass dependence
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[Dudek et.al. Phys.Rev.D82:034508,2010]



Isoscalar mesons
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[Dudek et.al. Phys.Rev.D83:111502,2011]
• mπ = 400 MeV, Vnite a
• No 0++ data presented
• No glueball or two-meson
operators

Statistical precision:
η 0.5 %
η′ 1.9 %



N and ∆ spectroscopy
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[Edwards et.al. Phys.Rev.D84:074508,2011]



Light quark mass dependence — the Roper?

1.0

1.5

2.0

2.5

3.0

 0  0.05  0.1  0.15  0.2  0.25

CSSM
BGR

this paper

[Edwards et.al. Phys.Rev.D84:074508,2011]



Charmonium spectrum
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Hadron Spectrum: arXiv:1204.5425
• Resolve states up to J = 4; most Vt into quark model
• 1S, 1P, 2S, 1D, 2P, 1F, 2D all seen
• Beyond quark model: exotic (and non-exotic) hybrids seen



Charmonium hyperVne structure
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• HyperVne structure is sensitive to Vnite-lattice-spacing
artefacts

• Change lattice action to investigate their inWuence
• Spin-exotic 1−+ moves only about 50MeV



Hadrons in a Vnite box: scattering
• On a Vnite lattice with periodic b.c., hadrons have quantised
momenta; p = 2π

L

{
nx, ny, nz

}
• Two hadrons with total P = 0 have a discrete spectrum
• These states can have same quantum numbers as those created by
q̄Γq operators and QCD can mix these

• This leads to shifts in the
spectrum in Vnite volume

• This is the same physics that
makes resonances in an
experiment

• Lüscher’s method - relate
elastic scattering to energy
shifts
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I = 2 π − π phase shift
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• Lüscher’s method: Vrst
determine energy shifts
as volume changes

• Data for
L = 16as, 20as, 24as

• Small energy shifts are
resolved

• Measured δ0 and δ2 (δ4 is very small)
• I = 2 a useful Vrst test - simplest Wick contractions

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]



I = 2 π − π phase shift
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I = 1 scattering using distillation

[C.Lang et.al. arXiv:1105.5636]

• Number of groups have measured Γρ on the lattice.
• Need non-zero relative momentum of pions in Vnal state
(P-wave decay)

• New calculation using distillation
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I = 1 ππ phase shift

[C.Lang et.al. arXiv:1105.5636]

• mπ ≈ 266 MeV
• Better resolution by
studying moving ρ as
well

• ρ resonance resolved
clearly, with
mρ = 792(7)(8) MeV

• gρππ = 5.13(20)
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Conclusions

• Precision spectroscopy from the lattice is improving
rapidly:
• Variational methods have enabled excited states to be
studied

• More sophisticated operator construction allows us to
disentangle higher spins in lattice data

• Isoscalar mesons are determined at similar precision
• Lüscher’s method links the spectrum in Vnite volume to
scattering properties.

• These developments have been enabled by extending the
toolkit for measuring quark propagation on the lattice

• Look out for better data on scattering soon . . .
• . . . but inelastic thresholds remain a challenge


