Nuclear Symmetry Energy & the R-mode Instability of Neutron Stars

Isaac Vídaña CFC, Uníversíty of Coímbra

"Elba XII Workshop. Electron-Nucleus Scattering XII" Elba International Physics Center, June 25th - 29th 2012

The birth of a Neutron Star

Neutron stars are a type of stellar compact remnant that can result from the gravitational collapse of a massive star ($8 M_{\odot} < M < 25 M_{\odot}$) during a Type II, Ib or Ic supernova event.

Some known facts about neutron stars

- Mass: M ~ 1 ~ 2 M_☉
- Radíus: R ~ 10 12 km
- Density: $\rho \sim 10^{14} 10^{15} \text{ g/cm}^3$

 $\begin{array}{l} \rho_{universe} \sim \ 10^{-30} \ g/cm^3 \\ \rho_{sun} \quad \sim \ 1.4 \ g/cm^3 \\ \rho_{earth} \quad \sim \ 5.5 \ g/cm^3 \end{array}$

- Baryonic number: $N_b \sim 10^{57}$ ("giant nuclei")
- Magnetic field: $B \sim 10^{8...16} G (10^{4...12} T)$

- Electric field: $E \sim 10^{18}$ V/cm
- Temperature: T ~ 10^{6...11} K
- Rotational period distribution
 two types of pulsars:
 - pulsars with P ~ s
 - pulsars with P ~ ms

Shortest rotational period: $P_{B1937+2} = 1.58$ ms until the last discovery: PSR in Terzan 5: $P_{J1748-2446ad} = 1.39$ ms

• Accretion rates: 10^{-10} to 10^{-8} M_{\odot}/year

Observation of neutron stars

X- and γ -ray telescopes

Chandra

Fermí Atmospheríc opacíty Most of the Visible Light Long-wavelengt Infrared spectrum Radio Waves observable Radio Waves observable Gamma Rays, X-Rays and Ultraviolet absorbed by from Earth. from Earth blocked Light blocked by the upper atmosphere atmospheric with some (best observed from space). gasses (best atmospheric observed distortion. from space

Space telescopes

HST (Hubble)

Optical telescopes

VLT (Atacama, Chile)

Arecibo (Puerto Rico): 305 m

Radío telescopes

Green Banks (USA): 100 m Nançay (France): 94 m

Nowadays more than 2000 pulsars are known

Observables

- Períod (P, dP/dt)
- Masses
- Lumínosíty
- Temperature
- Magnetic Field
- Gravitational Waves (future)

http://www.phys.ncku.edu.tw/~astrolab/mirrors/apod_e/ap090709.html

The 1001 astrophysical faces of neutron stars

Anomalous X-ray Pulsars

Soft Gamma Repeaters

Rotating Radio Transients

dim isolated neutron stars

X-ray binaries

pulsars

Compact Central Objects

bursting pulsars

binary pulsars

planets around pulsar

Anatomy of a Neutron Star

Structure equations for neutron stars

Tolman-Oppenheimer-Volkoff (TOV) equations describe the hydrostatic equilibrium of a non-rotating neutron star in GR

$$\frac{dP}{dr} = -G \frac{m(r)\varepsilon(r)}{r^2} \left(1 + \frac{P(r)}{c^2\varepsilon(r)}\right) \left(1 + \frac{4\pi r^3 P(r)m(r)}{c^2}\right) \left(1 - \frac{Gm(r)}{c^2 r}\right)^{-1}$$
$$\frac{dm}{dr} = 4\pi r^2 \varepsilon(r)$$
boundary conditions
$$\begin{array}{l}P(0) = P_o, \quad m(0) = 0\\P(R) = 0, \quad m(R) = M\end{array}$$

The role of the Equation of State

The only ingredient needed to solve the structure equations of neutron stars is the (poorly known) EoS (i.e., $p(\epsilon)$) of dense matter

Equation of State of Asymmetric Nuclear Matter

Charge symmetry \rightarrow expansion of (E/A)_{ANM} on even powers of isospin asymmetry $\beta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$

$$\frac{E}{A}(\rho,\beta) = E_{SNM}(\rho) + S_2(\rho)\beta^2 + S_4(\rho)\beta^4 + O(6)$$
$$E_{SNM}(\rho) = \frac{E}{A}(\rho,\beta=0), \quad S_2(\rho) = \frac{1}{2}\frac{\partial^2 E/A}{\partial\beta^2}\Big|_{\beta=0}, \quad S_4(\rho) = \frac{1}{24}\frac{\partial^4 E/A}{\partial\beta^4}\Big|_{\beta=0}$$

 $E_{\text{SNM}}(\rho)$ commonly expanded around saturation density ρ_0

$$E_{SNM}(\rho) = E_0 + \frac{K_0}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \frac{Q_0}{6} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^3 + O(4)$$

$$E_{0} = E_{SNM} (\rho = \rho_{0}) \approx -16 \, MeV$$

$$K_{0} = 9\rho_{0}^{2} \frac{\partial^{2} E_{SNM}(\rho)}{\partial \rho^{2}} \bigg|_{\rho = \rho_{0}} \approx 240 \pm 20 \, MeV$$

$$Q_{0} = 27\rho_{0}^{3} \frac{\partial^{3} E_{SNM}(\rho)}{\partial \rho^{3}} \bigg|_{\rho = \rho_{0}} \approx -500 \div 300 \, MeV$$

Similarly $S_2(\rho)$ can be also characterized with few bulk parameters around ρ_0

$$S_{2}(\rho) = E_{sym} + L\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right) + \frac{K_{sym}}{2}\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{2} + \frac{Q_{sym}}{6}\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{3} + O(4)$$
$$L = 3\rho_{0}\frac{\partial S_{2}(\rho)}{\partial \rho}\Big|_{\rho = \rho_{0}} K_{sym} = 9\rho_{0}^{2}\frac{\partial^{2}S_{2}(\rho)}{\partial \rho^{2}}\Big|_{\rho = \rho_{0}} Q_{sym} = 27\rho_{0}^{3}\frac{\partial^{3}S_{2}(\rho)}{\partial \rho^{3}}\Big|_{\rho = \rho_{0}}$$

Less certain & predictions of different models vary largely

Symmetry Energy Sensítíve Observables

- Sub-saturation densities
- ✓ Neutron skin thickness in heavy nuclei
- ✓ Giant & pygmy resonances in neutron-rich nuclei
- ✓ n/p & t/³He ratios in nuclear reactions
- ✓ Isospin fragmentation & isospin scaling in nuclear multi-fragmentation
- ✓ Neutron-proton correlation functions at low relative momenta
- ✓ Isosín díffusíon/transport in heavy ion collisions
- ✓ Neutron-proton differial flow
- Supra-saturation densities
- ✓ π^-/π^+ & K⁻/K⁺ ratios in heavy ion collisions
- ✓ Neutron-proton differential transverse flow

✓ n/p ratio of squeezed out nucleons perpendicular to the reaction plane

✓ Nucleon ellíptic flow at high transverse momenta

Symmetry Energy versus L

Recent extracted values of L

M. B. Tsang et al, PRC in press arXiv 1204.0466 (2012)

(Adapted from D. V. Shetty & S. J. Yennello, Pramana 75, 259 (2010))

Neutron Star Cooling & Symmetry Energy

• Fast: e.g., Direct URCA $n \rightarrow p + l + \overline{v}_l$ $l + p \rightarrow n + v_l$ • Slow: e.g., Modified URCA

$$N + n \rightarrow N + p + l + \overline{v}_l$$
$$N + l + p \rightarrow N + n + v_l$$

Dírect URCA cannot occur unless x_p> 11%-15%

Larger Symmetry Energy \rightarrow Larger $x_p \rightarrow$ Earlier onset of Direct URCA

$$\mu_n - \mu_p = 4(1 - 2x_p)S_2(\rho) = \mu_l - \mu_{v_l} \Longrightarrow \frac{x_p}{1 - 2x_p} = \frac{4S_2(\rho)}{\hbar c(3\pi^2 \rho)^{1/3}}$$

Crust-core Transition & Symmetry Energy

Pressure - Radíus Correlation

Lattimer & Prakash, ApJ 550, 426 (2001)

I.V., C. Provídência, A. Polls & A. Ríos, PRC 80, 045806 (2009)

Nevertheless, in spite of the experimental & theoretical efforts carried out $S_2(\rho)$ is still uncertain, specially at high densities

In this talk ...

Study the role of the symmetry energy slope parameter L on the r-mode instability of neutron stars by using both microscopic (BHF, APR & AFDMC) and phenomenological (Skyrme & RMF) approaches of the nuclear matter EoS

based on:

Phys. Rev. C 85, 045808 (2012)

$$\begin{split} &\Omega_{\text{Kepler}}: \text{absolute upper limit on the rotational} \\ & \text{frequency of neutron stars} \\ & \text{(matter ejected from equator for } \Omega > \Omega_{\text{Kepler}}) \end{split}$$

$$\Omega_{Kepler} \approx 7800 \sqrt{\left(\frac{M}{M_{sun}}\right) \left(\frac{10km}{R}\right)^3} s^{-1}$$

But instabilities can prevent neutron \rightarrow more stringent limit in rotation stars from reaching $\Omega_{\rm Kepler}$

R-mode instability : toroidal mode of oscillation

- ✓ restoring force: Coriolis
- ✓ emission of GW in hot & rapidly rotating NS (CFS mechanism)
 - GW (viscosity) grow (stabilizes) the mode
 - GW potentially detectable → information on information on internal structure of NS
 → constraints on EoS (particularly E_{sym} (ρ))

Pícture by Prof. B. J. Owen

Microscopic approaches

* BHF with Av18 + UIX

$$= \frac{E}{A}(\rho,\beta) = \frac{1}{A} \sum_{\tau} \sum_{k \le k_{F_{\tau}}} \left(\frac{\hbar^2 k^2}{2m_{\tau}} + \frac{1}{2} \operatorname{Re}\left[U_{\tau}(\vec{k})\right] \right)$$

Infinite sumation of two-hole line diagrams

$$\checkmark \quad G(\omega) = V + V \frac{Q}{\omega - E - E' + i\eta} G(\omega)$$

$$\checkmark \quad E_{\tau}(k) = \frac{\hbar^2 k^2}{2m_{\tau}} + \operatorname{Re}[U_{\tau}(k)]$$

$$\checkmark \quad U_{\tau}(k) = \sum_{\tau'} \sum_{k' \le k_{F_{\tau'}}} \left\langle \vec{k} \vec{k'} \middle| G(\omega = E_{\tau}(k) + E_{\tau'}(k')) \middle| \vec{k} \vec{k'} \right\rangle_{\mathcal{A}}$$

APR & AFDMC parametrized

$$= \frac{E}{A}(\rho,\beta) = E_0 u \frac{u-2-s}{1+us} + S_0 u^{\gamma} \beta^2, \quad u = \rho/\rho_0 \quad \text{Heiselberg & Hjorth-Jensen Phys. Rep. 328, 237 (2000)}$$

$$= \frac{E}{A}(\rho,\beta) = E_0 + a(\rho - \rho_0)^2 + b(\rho - \rho_0)^3 e^{\gamma(\rho - \rho_0)} + C_s \left(\frac{\rho}{\rho_0}\right)^{\gamma_s} \beta^2 \quad \text{Gandolfietal., MNRAS 404, L35 (2010)}$$

Phenomenologícal approaches

- Lyon group SLy: SLy0-SLy10, Sly230a
- Ski famíly: Skii-Ski6
- Rs, Gs, SGI, SkMP, SkO, SkO', SkT4-5, SV
- Relatívistic mean field models
 - Non-línear Walecka models (NLWM) with constant coupling constants: GM1, GM3, TM1, NL3, NL3-II, NL-SH
 - Density dependent hadronic models (DDH) with density dependent coupling constants: DDME1, DDME2, TW99, PK1, PK1R, PKDD

Bulk & shear viscosities

Haensel et al., AA 357, 1157 (2000); AA 372, 130 (2001)

$$\eta = \eta_n + \eta_e$$

✓ n scattering¹

$$\eta_n = 2 \times 10^{18} \left(\frac{\rho}{10^{15} g c m^{-3}}\right)^{9/4} \left(\frac{T}{10^9 K}\right)^{-2}$$

✓ e⁻ scattering²
 $\eta_e = 4.26 \times 10^{-26} (x_p n_b)^{14/9} T^{-5/3}$

¹ Cutler & Líndblom., ApJ 314, 234 (1987) ² Shternín & Yakovlev, PRD 78, 063006 (2008)

L dependence of ξ and η

R-mode instability region

• time dependence of an r-mode $\sim e^{i\omega t - t/\tau}$

$$\frac{1}{\tau(\Omega,T)} = -\frac{1}{\tau_{GW}(\Omega)} + \frac{1}{\tau_{\xi}(\Omega,T)} + \frac{1}{\tau_{\eta}(T)}$$

 $\rightarrow \frac{1}{\tau(\Omega_c, T)} = 0 \quad \text{r-mode instability region}$ $\Omega < \Omega_c \quad \text{stable}$ $\Omega > \Omega_c \text{ unstable}$

- ✓ instability region smaller for models with larger L (increase of $\xi & \eta$ with L)
- ✓ instability region larger for more massive star (time scales decrease when M increases)

Constraining L from LMXBs

- observational constraints from pulsar in LMXB 4U 1608-52
 - ✓ estimated core temperature T ~ 4.55 x 10⁸ K ✓ measured spin frequency 620 Hz radius: 10, 11.5, 12 or 13 km $\Omega_{Kepler} \approx 7800 \sqrt{\left(\frac{M}{M_{sun}}\right) \left(\frac{10km}{R}\right)^3} s^{-1}$
- ✓ No constraint on L if
 - $R_{4U1608-52} < 11 \text{ km} (\Omega_c > \Omega)$
 - $R_{4U1608-52} > 12(13) \text{ km & M=1.4(2)} M_{\odot} (\Omega_c < \Omega)$
- ✓ L > 50 MeV if (assuming 4U 1608-52 stable)
 - $R_{4U1608-52}$ is 11.5-12(11.5-13) km & M=1.4(2) M_{\odot}

This is in contrast with the recent work of Wen, Newton & Li where they obtain L< 60 MeV (PRC 85, 025801 (2012))

However, they consider electron-electron scattering at the crust-core ($\rho < \rho_0$) boundary as the main dissipation mechanism. Therefore, their calculation of is done in a region wher η decreases with L

Summary & Conclusions

Study the role of the symmetry energy slope parameter L on the r-mode instability of neutron stars by using both microscopic and phenomenological approaches of the nuclear matter EoS

 $\ensuremath{\,\,^{\ensuremath{\#}}}$ r-mode instability region smaller for models with larger L (increase of ξ & η with L).

* Constraints on L from LMXB 4U 1608-52: L > 50 MeV if 4U 1608-52 assumed stable with 11.5-12 (11.5-13) km and M=1.4(2) M_{\odot} . Otherwise no constraints.

