Ab initio calculations of light-ion reactions

Workshop on "Electron-Nucleus Scattering XII" June 25-29, 2012

Elba, Italy

Petr Navratil | TRIUMF

Collaborators: Sofia Quaglioni (LLNL), Robert Roth (TU Darmstadt), W. Horiuchi (RIKEN), C. Romero-Redondo (TRIUMF), M. Kruse (UA), S. Baroni (ULB), J. Langhammer (TU Darmstadt), G. Hupin (LLNL)

TRIUMF

Outline

Connection

 toAstrophysics

- Nuclear forces - from chiral EFT
- Many-body techniques - NCSM, NCSM/RGM
- Results for bound states, resonances, reactions

Nuclei from the first principles

- First principles for Nuclear Physics: QCD
- Non-perturbative at low energies
- Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
- Based on the symmetries of QCD
- Degrees of freedom: nucleons + pions
- Systematic low-momentum expansion to a given order
- Hierarchy
- Consistency
- Low energy constants (LEC)
- Fitted to data
- Can be calculated by lattice QCD

The NN interaction from chiral EFT

PHYSICAL REVIEW C 68, 041001(R) (2003)

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. Entem ${ }^{1,2, *}$ and R. Machleidt ${ }^{1, \uparrow}$

- 24 LECs fitted to the $n p$ scattering data and the deuteron properties
- Including c_{i} LECs (i=1-4) from pion-nucleon Lagrangian

Determination of NNN LECs C_{D} and C_{E} from the triton and the

- Chiral EFT: c_{D} also in the two-nucleon contact vertex with an external probe
- Calculate $\left\langle E_{1}^{A}\right\rangle=\left|{ }^{3} \mathrm{He}\right|\left|E_{1}^{A}\right|\left|{ }^{3} \mathrm{H}\right\rangle \mid$
- Leading order GT
- N2LO: one-pion exchange plus contact
- $A=3$ binding energy constraint:

$$
c_{D}=-0.2 \pm 0.1 c_{E}=-0.205 \pm 0.015
$$

$$
\begin{array}{|llll|}
\hline \text { PRL 103, } 102502(2009) & \text { PHYSICAL REVIEW } & \text { LETTERS } & \begin{array}{c}
\text { week ending } \\
\hline
\end{array} \\
\hline
\end{array}
$$

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory

$A=3,4$ bound states

	${ }^{3} \mathrm{H}$		${ }^{3}{ }^{3} \mathrm{He}$			${ }^{4} \mathrm{He}$	
	$E_{\text {g.s. }}$		$\left\langle r_{p}^{2}\right\rangle^{1 / 2}$	$E_{\text {g.s }}$		$\left\langle r_{p}^{2}\right\rangle^{1 / 2}$	$E_{\text {g.s }}$

Proton $-{ }^{3} \mathrm{He}$ elastic scattering with χ EFT NN+NNN

- Variational calculations in hypherspherical-harmonics basis
- M. Viviani, L. Girlanda, A. Kievski, L. E. Marcucci, and S. Rosati, arXiv:1004.1306
- A_{y} puzzle resolved with the chiral $\mathrm{N}^{3} \mathrm{LO}$ NN plus local chiral $\mathrm{N}^{2} \mathrm{LO}$ NNN

Chiral NN+NNN Hamiltonian provides the best agreement with the cross section and analyzing power data and with the new TUNL PSA analysis

No-core shell model combined with the resonating group method (NCSM/RGM)

- The NCSM: An approach to the solution of the A-nucleon bound-state problem
- Accurate nuclear Hamiltonian
- Finite harmonic oscillator (HO) basis
- Complete $N_{\text {max }} \not \pi \Omega$ model space
- Effective interaction due to the model space truncation
- Similarity-Renormalization-Group evolved NN(+NNN) potential
- Short \& medium range correlations
- No continuum

$$
\Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{A}
$$

- The RGM: A microscopic approach to the A-nucleon scattering of clusters
- Long range correlations, relative motion of clusters

$$
\Psi^{(A)}=\sum_{\nu} \int d \vec{r} \varphi_{\nu}(\vec{r}) \hat{\mathcal{A}} \Phi_{\nu \vec{r}}^{(A-a, a)}
$$

Ab initio NCSM/RGM: Combines the best of both approaches

$$
\psi_{1 v}^{(A-a)} \psi_{2 v}^{(a)} \delta\left(\vec{r}-\vec{r}_{A-a, a}\right)
$$ Accurate nuclear Hamiltonian, consistent cluster wave functions Correct asymptotic expansion, Pauli principle and translational invariance

BTRIUMF

The ab initio NCSM/RGM in a snapshot

- Ansatz: $\quad \Psi^{(A)}=\sum_{v} \int d \vec{r} \varphi_{v}(\vec{r}) \hat{\mathscr{A}} \Phi_{v \vec{r}}^{(A-a, a)}$

- Many-body Schrödinger equation:

$$
\begin{array}{cc}
{ }^{\wedge} H \Psi^{(A)}=E \Psi^{(A)} & T_{\text {rel }}(r)+\mathcal{V}_{\text {rel }}+\bar{V}_{\text {Coul }}(r)+H_{(A-a)}+H_{(a)} \\
\sum_{v} \int d \vec{r}\left[\mathcal{H}_{\mu \nu}^{(A-a, a)}\left(\vec{r}^{\prime}, \vec{r}\right)-E \mathcal{N}_{\mu \nu}^{(A-a, a)}\left(\vec{r}^{\prime}, \vec{r}\right)\right] \varphi_{v}(\vec{r})=0 & \text { realistic nuclear Hamiltonian } \\
\begin{array}{c}
\left\langle\Phi_{\mu \vec{r}^{\prime}}^{(A-a, a)}\right| \hat{\mathcal{A}} H \hat{\mathcal{A}}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle \\
\text { Hamiltonian kernel }
\end{array} \frac{\left\langle\Phi_{\mu \vec{r}^{\prime}}^{(A-a, a)}\right| \hat{\mathscr{A}}^{2}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle}{\text { Norm kernel }}
\end{array}
$$

Norm kernel (Pauli principle)

Single-nucleon projectile

$$
N_{v^{\prime} v}^{J^{\pi} T}\left(r^{\prime}, r\right)=\underbrace{\delta_{v^{\prime} v} \frac{\delta\left(r^{\prime}-r\right)}{r^{\prime} r}}_{v^{\prime}}-(A-1) \underbrace{\left.J_{v^{\prime} n^{\prime} T}\left|\hat{P}_{A-1, A}\right| \Phi_{v n}^{J^{\pi} T}\right\rangle}_{n_{\mathrm{ND}} \sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\psi_{\mu_{1}}^{(A-1)}\right| a^{+} a\left|\psi_{v_{1}}^{(A-1)}\right\rangle_{\mathrm{SD}}}
$$

Direct term: Treated exactly! (in the full space)

Exchange term:
Obtained in the model space! (Many-body correction due to the exchange part of the intercluster antisymmetrizer)

$$
\delta\left(r-r_{A-a, a}\right)=\sum_{n} R_{n \ell}(r) R_{n \ell}\left(r_{A-a, a}\right)
$$

Hamiltonian kernel (projectile-target potentials)
Single-nucleon projectile

$$
\left\langle\Phi_{v^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{A}_{v^{\prime}} H \hat{A}_{v}\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\langle\underbrace{(A-1)}_{r^{\prime}}| H\left(1-\sum_{i=1}^{A-1} \hat{P}_{i A}\right)| |_{(a=1)}^{(A-1)} \overbrace{r}^{(A)}\rangle
$$

Solving the RGM equations

- Input: Realistic nuclear Hamiltonian, eigenfunctions of nucleon clusters
- Macroscopic degrees of freedom: nucleon clusters
- Unknowns: relative wave function between the two clusters
- Non-local integral-differential coupled-channel equations:

$$
\left[T_{r e l}(r)+V_{C}(r)+E_{\alpha_{1}}^{(A-a)}+E_{\alpha_{2}}^{(a)}\right] u_{v}^{(A-a, a)}(r)+\sum_{a^{\prime} v^{\prime}} \int d r^{\prime} r^{\prime} W_{a v, a^{\prime} v^{\prime}}\left(r, r^{\prime}\right) u_{v^{\prime}}^{\left(A-a^{\prime}, a^{\prime}\right)}\left(r^{\prime}\right)=0
$$

- Solve with R-matrix theory on Lagrange mesh imposing
- Bound state boundary conditions \rightarrow eigenenergy + eigenfunction
- Scattering state boundary conditions \rightarrow Scattering matrix
- Phase shifts
- Cross sections
- ...

The R-matrix theory on Lagrange mesh is an elegant and powerful technique, particularly for calculations with non-local potentials

BTRIUMF

The best system to start with: $n+{ }^{4} \mathrm{He}, p+{ }^{4} \mathrm{He}$

- NCSM/RGM calculations with
- $N+{ }^{4} \mathrm{He}\left(\right.$ g.s., $\left.0^{+} 0\right)$

- SRG-N3LO NN potential with $\wedge=2.02 \mathrm{fm}^{-1}$

- Differential cross section and analyzing power @17 MeV neutron energy
- Polarized neutron experiment at Karlsruhe

NNN missing: Good agreement only for energies beyond low-lying 3/2- resonance

\&triumf

p+4He differential cross section and analyzing power

$\mathrm{N}-4 \mathrm{He}$ scattering with NN+NNN interactions

G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress

$$
n+{ }^{4} \mathrm{He} \text { (g.s.), SRG-(N3LO NN }+\mathrm{N}^{2} \text { LO NNN potential with (} \lambda=2 \mathrm{fm}^{-1} \text {). }
$$

Largest splitting between P waves obtained with NN+NNN. Need ${ }^{4} \mathrm{He}$ exited states and study with respect to SRG λ

\&triumf

Solar p-p chain

${ }^{7} \mathrm{Be}(p, \gamma)^{8} \mathrm{~B}$ S-factor

- S_{17} one of the main inputs for understanding the solar neutrino flux
- Needs to be known with high precision
- Current evaluation has uncertainty $\sim 10 \%$
- Theory needed for extrapolation to $\sim 10 \mathrm{keV}$

$$
\begin{gathered}
S(E)=E \sigma(E) \exp [2 \pi \eta(E)] \\
\eta(E)=Z_{A-a} Z_{a} e^{2} / \hbar v_{A-a, a} \\
\left.\left.\left\langle{ }^{8} \mathrm{~B}_{\mathrm{g} . \mathrm{s} .}\right| E 1\right|^{7} \mathrm{Be}_{\mathrm{g} . \mathrm{s} .}+\mathrm{p}\right\rangle
\end{gathered}
$$

${ }^{7} \mathrm{Be}(p, \mathrm{y})^{8} \mathrm{~B}$ radiative capture:

Input - NN interaction, ${ }^{7} \mathrm{Be}$ eigenstates

- Similarity-Renormalization-Group (SRG) evolved chiral ${ }^{3}$ LO NN interaction
- Accurate
- Soft: Evolution parameter \wedge
- Study dependence on \wedge

${ }^{7} \mathrm{Be}$

- NCSM up to $N_{\max }=10$, Importance Truncated NCSM up to $N_{\max }=14$
- Variational calculation
- optimal HO frequency from the ground-state minimum
- For the selected NN potential with $\wedge=1.86 \mathrm{fm}^{-1}: \mathrm{h} \Omega=18 \mathrm{MeV}$

Input: 'Be eigenstates

- Excited states at the optimal HO frequency, $\hbar \Omega=18 \mathrm{MeV}$

Structure of the ${ }^{8} \mathrm{~B}$ ground state

- NCSM/RGM p-7 ${ }^{7}$ Be calculation
- five lowest ${ }^{7}$ Be states: $3 / 2^{-}, 1 / 2^{-}, 7 / 2^{-}, 5 / 2^{-1}, 5 / 2^{-}{ }_{2}$
- Soft NN SRG-N³LO with $\Lambda=1.86 \mathrm{fm}^{-1}$
- ${ }^{8} \mathrm{~B} 2^{+}$g.s. bound by 136 keV (Expt 137 keV)
- Large P-wave $5 / 2_{2}$ component

$5 / 2_{2}^{-}$state of ${ }^{7} \mathrm{Be}$ should be included in ${ }^{7} \mathrm{Be}(\boldsymbol{p}, \boldsymbol{\gamma})^{8} \mathrm{~B}$ calculations

p-7Be scattering

- NCSM/RGM calculation of $p-{ }^{-7}$ Be scattering
- ${ }^{7}$ Be states 3/2,1/2-, 7/2-, $5 / 2^{-1}, 5 / 2^{-}{ }_{2}$
- Soft NN potential (SRG-N3LO with $\left.\wedge=1.86 \mathrm{fm}^{-1}\right)$
${ }^{8} \mathrm{~B} 2^{+}$g.s. bound by 136 keV (expt. bound by 137 keV)

New $0^{+}, 1^{+}$, and two 2^{+}resonances predicted
$s=1 l=12^{+}$clearly visible in $\left(p, p^{\prime}\right)$ cross sections

PRC 82, 034609 (2010)

${ }^{7} \mathrm{Be}(p, \mathrm{y})^{8} \mathrm{~B}$ radiative capture

- NCSM/RGM calculation of ${ }^{7} \mathrm{Be}(p, \gamma)^{8} \mathrm{~B}$ radiative capture
- ${ }^{7}$ Be states 3/2,1/2-, 7/2-, $5 / 2_{1}^{-1}, 5 / 2_{2}^{2}$
- Soft NN potential (SRG-N ${ }^{3}$ LO with $\wedge=1.86 \mathrm{fm}^{-1}$)
${ }^{8} \mathrm{~B}^{2}$ g.s. bound by
136 keV
$($ expt. 137 keV$)$
$\mathrm{S}(0) \sim 19.4(0.7) \mathrm{eV} \mathrm{b}$
Data evaluation:
$\mathrm{S}(0)=20.8(2.1) \mathrm{eV} \mathrm{b}$

Physics Letters B 704 (2011) 379

NCSM/RGM ab initio calculation of d-4 He scattering

- NCSM/RGM calculation with $d+{ }^{4} \mathrm{He}($ g.s. $)$ up to $N_{\max }=12$
- SRG-N²LO potential with $\Lambda=1.5 \mathrm{fm}^{-1}$
- Deuteron breakup effects included by continuum discretized by pseudo states in ${ }^{3} S_{1}{ }^{-3} D_{1}$, ${ }^{3} D_{2}$ and ${ }^{3} D_{3}{ }^{3} G_{3}$ channels

- The $1^{+} 0$ ground state bound by 1.9 MeV (expt. 1.47 MeV)
- Calculated $\mathrm{T}=0$ resonances: $3^{+}, 2^{+}$and 1^{+}in correct order close to expt. energies

NCSM/RGM ab initio calculation of $d-4 \mathrm{He}$ scattering

PHYS. REV. C 83, 044609 (2011)

Scattering provides a strict test of NN and NNN forces Important to include 6-nucleon correlations

- deuteron (virtual) breakup ...

Rtriumf

Ab initio calculation of the ${ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He}$ fusion

$\mathrm{d}+{ }^{3} \mathrm{H}$ and $n+{ }^{4} \mathrm{He}$ elastic scattering: phase shifts

- $d+{ }^{3} \mathrm{H}$ elastic phase shifts:
- Resonance in the ${ }^{4} S_{3 / 2}$ channel
- Repulsive behavior in the ${ }^{2} S_{1 / 2}$ channel \rightarrow Pauli principle
d^{*} deuteron pseudo state in ${ }^{3} S_{1}-{ }^{3} D_{1}$ channel: deuteron polarization, virtual breakup

- $n+{ }^{4} \mathrm{He}$ elastic phase shifts:
- $d+{ }^{3} \mathrm{H}$ channels produces slight increase of the P phase shifts
- Appearance of resonance in the $3 / 2^{+}$D-wave, just above $d-{ }^{3} \mathrm{H}$ threshold

The $d-{ }^{-} \mathrm{H}$ fusion takes place through a transition of $d+{ }^{3} \mathrm{H}$ is S-wave to $n+{ }^{4} \mathrm{He}$ in D-wave: Importance of the tensor force

${ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He} \&{ }^{3} \mathrm{He}(d, p)^{4} \mathrm{He}$ fusion

- NCSM/RGM with SRG-N³LO NN potentials

Potential to address unresolved fusion research related questions:
${ }^{3} \mathrm{H}(d, n){ }^{4} \mathrm{He}$ fusion with polarized deuterium and/or tritium, ${ }^{3} \mathrm{H}(d, n \gamma){ }^{4} \mathrm{He}$ bremsstrahlung, Electron screening at very low energies ...
P.N., S. Quaglioni, PRL 108, 042503 (2012)

Borromean halo nuclei: He isotopes

${ }^{4} \mathrm{He}$

${ }^{6} \mathrm{He}$

${ }^{8} \mathrm{He}$

- ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ with chiral $\mathrm{N}^{3} \mathrm{LO} \mathrm{NN}+\mathrm{N}^{2} \mathrm{LO} 3 \mathrm{~N}$
- chiral N³LO NN: ${ }^{4} \mathrm{He}$ underbound, ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ unbound
- chiral N ${ }^{3}$ LO NN + N2LO 3N(500): ${ }^{4} \mathrm{He} \mathrm{OK}$, both ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ bound

NNN interaction important to bind neutron rich nuclei

Retriump

Three-body clusters in ab initio NCSM/RGM

- Starts from:

$$
\begin{aligned}
& \Psi_{R G M}^{(A)}=\sum_{v_{2}} \int g_{v_{2}}(\vec{r}) \hat{A}_{v_{2}} \underbrace{\left|\phi_{v_{2} \vec{r}}\right\rangle} d \vec{r}+\sum_{v_{3}} \iint G_{v_{3}}(\vec{x}, \vec{y}) \hat{A}_{v_{3}} \underbrace{\left|\Phi_{v_{3} \vec{x} \vec{y}}\right\rangle} d \vec{x} d \vec{y} \\
& \text { 3-body } \\
& \text { channels }
\end{aligned}
$$

- Two-neutron halo nuclei

- Transfer reactions with three-body continuum final states

$$
\Theta_{{ }^{3} \mathrm{H}}^{+\infty} \rightarrow \underbrace{4 \mathrm{He}}_{{ }^{3} \mathrm{H}}{ }^{n}
$$

这TRIUMF

Norm kernel for $n+n+{ }^{4} \mathrm{He}$

Ab initio calculations of ${ }^{3} \mathrm{He}+\alpha$ scattering: First results (preliminary, incomplete)

Calculations for $a=3$ projectile under way: Soft SRG interactions ($\Lambda=1.5 \mathrm{fm}^{-1}, \Lambda=1.86 \mathrm{fm}^{-1}$)
Virtual breakup of ${ }^{3} \mathrm{He}$ included by pseudostates (in $1 / 2^{+}, 5 / 2^{+}$channels so far)

New developments: NCSM with continuum

NCSM

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N i} c_{N i}\left|A N i J^{\pi} T\right\rangle
$$

\&triumf

New developments: NCSM with continuum

NCSM

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N i} c_{N i}\left|A N i J^{\pi} T\right\rangle
$$

NCSM/RGM

$$
\begin{aligned}
& \left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d \vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi} T(A-a, a)} \\
& \mathcal{H} \chi=E \mathcal{N} \chi \\
& \bar{\chi}=\mathcal{N}^{+\frac{1}{2}} \chi \quad\left(\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right) \bar{\chi}=E \bar{\chi}
\end{aligned}
$$

\&triumf

New developments: NCSM with continuum

NCSM

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N i} c_{N i}\left|A N i J^{\pi} T\right\rangle
$$

NCSM/RGM

$$
\begin{aligned}
& \left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d \vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi} T(A-a, a)} \\
& \mathcal{H} \chi=E \mathcal{N} \chi \\
& \bar{\chi}=\mathcal{N}^{+\frac{1}{2}} \chi \quad\left(\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right) \bar{\chi}=E \bar{\chi}
\end{aligned}
$$

NCSMC

$$
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{\lambda} c_{\lambda}\left|A \lambda J^{\pi} T\right\rangle+\sum_{\nu} \int d \vec{r}\left(\sum_{\nu^{\prime}} \int d \vec{r}^{\prime} \mathcal{N}_{\nu \nu^{\prime}}^{-\frac{1}{2}}\left(\vec{r}, \vec{r}^{\prime}\right) \bar{\chi}_{\nu^{\prime}}\left(\vec{r}^{\prime}\right)\right) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi} T(A-a, a)}
$$

$$
\left(\begin{array}{cc}
H_{N C S M} & \bar{h} \\
\bar{h} & \mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}
\end{array}\right)\binom{c}{\bar{\chi}}=E\left(\begin{array}{ll}
1 & \bar{g} \\
\bar{g} & 1
\end{array}\right)\binom{c}{\bar{\chi}}
$$

NCSM with continuum: ${ }^{7} \mathrm{He} \leftrightarrow{ }^{6} \mathrm{He}+n$

\uparrow
NCSM/RGM
with up to three ${ }^{6} \mathrm{He}$ states

\uparrow
NCSMC
with up to three ${ }^{6} \mathrm{He}$ states and three ${ }^{7} \mathrm{He}$ eigenstates
More 7-nucleon correlations
Fewer target states needed

NCSM with continuum: ${ }^{7} \mathrm{He} \leftrightarrow{ }^{6} \mathrm{He}+n$

\uparrow
NCSM/RGM
with three ${ }^{6} \mathrm{He}$ states

5.8 HACHHCHIA

${ }^{7} \mathrm{He}$

\uparrow
NCSMC
with three ${ }^{6} \mathrm{He}$ states and three ${ }^{7} \mathrm{He}$ eigenstates More 7-nucleon correlations

Fewer target states needed

Experimental controversy: Existence of low-lying $1 / 2^{-}$state ... not seen in this calculations

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the ab initio effort to describe low-energy reactions and weakly-bound systems
- The first ${ }^{7} \mathrm{Be}(p, \mathrm{y})^{8} \mathrm{~B}$ ab initio S -factor calculation

$$
\text { PLB } 704 \text { (2011) } 379
$$

- Deuteron-projectile results with SRG-N3LO NN potentials:
- d-4 ${ }^{4} \mathrm{He}$ scattering PRC 83, 044609 (2011)
- First ab initio study of ${ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He} \&{ }^{3} \mathrm{He}(d, p)^{4} \mathrm{He}$ fusion

PRL 108, 042503 (2012)

- Under way:
- $n-{ }^{8} \mathrm{He}$ scattering and ${ }^{9} \mathrm{He}$ structure
- ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}-{ }^{3} \mathrm{He}$ scattering calculations
- Ab initio NCSM with continuum (NCSMC)
- Three-cluster NCSM/RGM and treatment of three-body continuum
- Inclusion of NNN force
- To do:
- Alpha clustering: ${ }^{4} \mathrm{He}$ projectile

