TRIUMF

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio calculations of light-ion reactions

Workshop on "Electron-Nucleus Scattering XII" June 25-29, 2012 Elba, Italy

Petr Navratil | TRIUMF

Collaborators: Sofia Quaglioni (LLNL), Robert Roth (TU Darmstadt), W. Horiuchi (RIKEN), C. Romero-Redondo (TRIUMF), M. Kruse (UA), S. Baroni (ULB), J. Langhammer (TU Darmstadt), G. Hupin (LLNL)

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienr

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Marciana Marina, Isola d'Elba, Italy.

Outline

Connection to QCD

- Nuclear forces from chiral EFT
- Many-body techniques NCSM, NCSM/RGM
- Results for bound states, resonances, reactions

Connection to Astrophysics

Nuclei from the first principles

First principles for Nuclear Physics: QCD

- Non-perturbative at low energies
- Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order
 - Hierarchy

RIUMF

- Consistency
- Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

The NN interaction from chiral EFT

PHYSICAL REVIEW C 68, 041001(R) (2003)

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. $Entem^{1,2,*}$ and R. Machleidt^{1,†}

Phase Shift (deg)

-10

-20

-30

0

- 24 LECs fitted to the *np* scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pion-nucleon Lagrangian

Determination of NNN LECs c_D and c_E from the triton binding energy and the half life

- **Chiral EFT**: *c*_D also in the two-nucleon contact vertex with an external probe
- Calculate $\langle E_1^A \rangle = |\langle^3 \text{He}||E_1^A||^3 \text{H} \rangle|$
 - Leading order GT
 - N²LO: one-pion exchange plus contact
- A=3 binding energy constraint: $c_{\rm D}$ =-0.2±0.1 $c_{\rm E}$ =-0.205±0.015

A=3,4 bound states

					-	-
	³ H		³ He		⁴ He	
	$E_{\rm g.s.}$	$\langle r_p^2 \rangle^{1/2}$	$E_{\rm g.s}$	$\langle r_p^2 angle^{1/2}$	$E_{\rm g.s}$	$\langle r_p^2 \rangle^{1/2}$
NN	-7.852(4)	1.651(5)	-7.124(4)	1.847(5)	-25.39(1)	1.515(2)
NN + NNN	-8.473(4)	1.605(5)	-7.727(4)	1.786(5)	-28.50(2)	1.461(2)
Expt.	-8.482	1.60	-7.718	1.77	-28.296	1.467(13) [31]

Proton-³He elastic scattering with χEFT NN+NNN

- Variational calculations in hypherspherical-harmonics basis
 - M. Viviani, L. Girlanda, A. Kievski, L. E. Marcucci, and S. Rosati, arXiv:1004.1306
- A_v puzzle resolved with the chiral N³LO NN plus local chiral N²LO NNN

Chiral NN+NNN Hamiltonian provides the best agreement with the cross section and analyzing power data and with the new TUNL PSA analysis

No-core shell model combined with the resonating group method (NCSM/RGM)

- **The NCSM:** An approach to the solution of the *A*-nucleon bound-state problem
 - Accurate nuclear Hamiltonian
 - Finite harmonic oscillator (HO) basis
 - Complete $N_{max} \hbar \Omega$ model space
 - Effective interaction due to the model space truncation
 - Similarity-Renormalization-Group evolved NN(+NNN) potential
 - Short & medium range correlations
 - No continuum

RIUMF

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi^{A}_{Ni}$$

- **The RGM:** A microscopic approach to the A-nucleon scattering of clusters
 - Long range correlations, relative motion of clusters

$$\Psi^{(A)} = \sum_{\nu} \int d\vec{r} \, \varphi_{\nu}(\vec{r}) \hat{\mathcal{A}} \, \Phi^{(A-a,a)}_{\nu \vec{r}}$$

Ab initio NCSM/RGM: Combines the best of both approaches Accurate nuclear Hamiltonian, consistent cluster wave functions Correct asymptotic expansion, Pauli principle and translational invariance

The ab initio NCSM/RGM in a snapshot

• Ansatz: $\Psi^{(A)} = \sum_{\nu} \int d\vec{r} \, \phi_{\nu}(\vec{r}) \hat{\mathcal{A}} \, \Phi^{(A-a,a)}_{\nu \vec{r}}$

(*A*-*a*)
$$\vec{r}_{A-a,a}$$
 (*a*)
(*A*-*a*) $\vec{r}_{A-a,a}$ (*a*)
(*a*) $H_{(A-a)}$ and $H_{(a)}$
in the *ab initio*
NCSM basis

Many-body Schrödinger equation:

$$H\Psi^{(A)} = E\Psi^{(A)}$$

$$\downarrow$$

$$\sum_{v} \int d\vec{r} \left[\mathcal{H}^{(A-a,a)}_{\mu\nu}(\vec{r}',\vec{r}) - E\mathcal{N}^{(A-a,a)}_{\mu\nu}(\vec{r}',\vec{r}) \right] \phi_{v}(\vec{r}) = 0$$
realistic nuclear Hamiltonian
$$\langle \Phi^{(A-a,a)}_{\mu\vec{r}'} | \hat{\mathcal{A}} H \hat{\mathcal{A}} | \Phi^{(A-a,a)}_{v\vec{r}} \rangle$$
Hamiltonian kernel
Norm kernel
Norm kernel

Norm kernel (Pauli principle) Single-nucleon projectile

$$N_{v'v}^{J^{\pi}T}(r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1)\sum_{n'n} R_{n'\ell'}(r')R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{\pi}T} \middle| \hat{P}_{A-1,A} \middle| \Phi_{vn}^{J^{\pi}T} \right\rangle$$

$$\sum_{n'n} \left\langle \psi_{\mu_{1}}^{(A-1)} \middle| a^{+}a \middle| \psi_{v_{1}}^{(A-1)} \right\rangle_{\text{SD}}$$

$$\sum_{n'n} \left\langle \psi_{\mu_{1}}^{(A-1)} \middle| a^{+}a \middle| \psi_{v_{1}}^{(A-1)} \right\rangle_{\text{SD}}$$

$$\sum_{n'n} \left\langle \psi_{\mu_{1}}^{(A-1)} \middle| a^{+}a \middle| \psi_{v_{1}}^{(A-1)} \right\rangle_{\text{SD}}$$

$$\sum_{n'n'} \left\langle \psi_{\mu_{1}}^{(A-1)} \middle| a^{+}a \middle| a^{+}a$$

Hamiltonian kernel (projectile-target potentials)

Single-nucleon projectile

$$\left\langle \Phi_{v'r'}^{I^{T}} \left| \hat{A}_{v} H \hat{A}_{v} \right| \Phi_{vr}^{J^{T}} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ r' \\ r' \\ (a'=1) \end{array} \right| H \left(1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right) \left| \begin{array}{c} (A-1) \\ (a=1) \end{array} \right\rangle$$

$$H_{v'v}^{J^{T}T} (r',r) = \left[T_{rel}(r) + \bar{V}_{Coul}(r) + \varepsilon_{\alpha_{1}}^{I^{T}T} \right] N_{v'v}^{J^{T}T} (r',r)$$

$$+ (A-1) \sum_{n'n} R_{n'\ell'}(r') R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{T}T} \right| V_{A-1,A} \left(1 - \hat{P}_{A-1,A} \right) \left| \Phi_{vn}^{J^{T}T} \right\rangle$$

$$- (A-1)(A-2) \sum_{n'n} R_{n'\ell'}(r') R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{T}T} \right| \hat{P}_{A-1,A} V_{A-2,A-1} \left| \Phi_{vn}^{J^{T}T} \right\rangle$$

$$+ (A-1) \times \left\{ \left(\begin{array}{c} + 1 \\ + 1 \end{array} \right) \left(\begin{array}{c} + 1 \end{array} \right) \left(\begin{array}{c} + 1 \\ + 1 \end{array} \right) \left(\begin{array}{c} + 1 \end{array} \right) \left(\begin{array}{c}$$

Solving the RGM equations

- Input: Realistic nuclear Hamiltonian, eigenfunctions of nucleon clusters
 - Macroscopic degrees of freedom: nucleon clusters
 - Unknowns: relative wave function between the two clusters
- Non-local integral-differential coupled-channel equations:

$$\left[T_{rel}(r) + V_C(r) + E_{\alpha_1}^{(A-a)} + E_{\alpha_2}^{(a)}\right] u_v^{(A-a,a)}(r) + \sum_{a'v'} \int dr'r' \ W_{av,a'v'}(r,r') u_{v'}^{(A-a',a')}(r') = 0$$

- Solve with R-matrix theory on Lagrange mesh imposing

 - − Scattering state boundary conditions → Scattering matrix
 - Phase shifts
 - Cross sections

• ...

The R-matrix theory on Lagrange mesh is an elegant and powerful technique, particularly for calculations with non-local potentials

The best system to start with: *n*+⁴He, *p*+⁴He

NNN missing: Good agreement only for energies beyond low-lying 3/2⁻ resonance

p+⁴He differential cross section and analyzing power

®TRIUMF N-⁴He scattering with NN+NNN interactions

G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress

 $n + {}^{4}\text{He}(g.s.)$, SRG-(N³LO *NN* + N²LO NNN potential with (λ =2 fm⁻¹).

Largest splitting between *P* waves obtained with NN+NNN. Need ⁴He exited states and study with respect to SRG λ

Solar *p-p* chain

S

⁷Be(*p*,γ)⁸B S-factor

- S_{17} one of the main inputs for understanding the solar neutrino flux
 - Needs to be known with high precision
- Current evaluation has uncertainty ~ 10%
 - Theory needed for extrapolation to ~ 10 keV

$$\eta(E) = E\sigma(E) \exp[2\pi\eta(E)]$$
$$\eta(E) = Z_{A-a}Z_a e^2 / \hbar v_{A-a,a}$$

$$\left< {}^{8}\mathbf{B}_{g.s.} \left| E1 \right| {}^{7}\mathbf{Be}_{g.s.} + \mathbf{p} \right>$$

⁷Be(*p*,γ)⁸B radiative capture: Input - *NN* interaction, ⁷Be eigenstates

- Similarity-Renormalization-Group (SRG) evolved chiral N³LO NN interaction
 - Accurate
 - Soft: Evolution parameter Λ
 - Study dependence on A

• ⁷Be

RIUMF

- NCSM up to N_{max} =10, Importance Truncated NCSM up to N_{max} =14
- Variational calculation
 - optimal HO frequency from the ground-state minimum
 - For the selected NN potential with Λ =1.86 fm⁻¹: h Ω =18 MeV

Input: ⁷Be eigenstates

• Excited states at the optimal HO frequency, $\hbar\Omega$ =18 MeV

Structure of the ⁸B ground state

- NCSM/RGM p-⁷Be calculation
 - five lowest ⁷Be states: 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻, 5/2⁻, 5/2⁻
 - Soft NN SRG-N³LO with Λ = 1.86 fm⁻¹
- ⁸B 2⁺ g.s. bound by 136 keV (Expt 137 keV)
 - Large P-wave 5/2⁻₂ component

⁷Be

p-⁷Be scattering

⁷Be(*p*,γ)⁸B radiative capture

- NCSM/RGM calculation of ⁷Be(p,γ)⁸B radiative capture
 - ⁷Be states 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻, 5/2⁻, 5/2⁻
 - Soft NN potential (SRG-N³LO with Λ = 1.86 fm⁻¹)

Physics Letters B 704 (2011) 379

7.21

4.57

NCSM/RGM *ab initio* calculation of *d*-⁴He scattering

- NCSM/RGM calculation with $d + {}^{4}\text{He}(g.s.)$ up to $N_{\text{max}} = 12$
 - SRG-N³LO potential with Λ = 1.5 fm⁻¹
 - Deuteron breakup effects included by continuum discretized by pseudo states in ${}^{3}S_{1}$ - ${}^{3}D_{1}$, ${}^{3}D_{2}$ and ${}^{3}D_{3}$ - ${}^{3}G_{3}$ channels

• The 1⁺0 ground state bound by 1.9 MeV (expt. 1.47 MeV)

• Calculated T=0 resonances: 3⁺, 2⁺ and 1⁺ in correct order close to expt. energies

NCSM/RGM *ab initio* calculation of *d*-⁴He scattering

PHYS. REV. C 83, 044609 (2011)

Scattering provides a strict test of NN and NNN forces Important to include 6-nucleon correlations – deuteron (virtual) breakup ...

Ab initio calculation of the ${}^{3}H(d,n){}^{4}He$ fusion

$$\int dr r^{2} \left\{ \begin{pmatrix} r \\ n \\ n \end{pmatrix} \left| \hat{A}_{1}(H-E) \hat{A}_{1} \right| \left| \frac{r}{\alpha} \right| n \\ \langle r \\ d^{2} d$$

RIUMF

d+³H and n+⁴He elastic scattering: phase shifts

- d+³H elastic phase shifts:
 - Resonance in the ⁴S_{3/2} channel
 - Repulsive behavior in the ²S_{1/2}
 channel → Pauli principle
 - d^* deuteron pseudo state in ${}^3S_1 {}^3D_1$ channel: deuteron polarization, virtual breakup

- *n*+⁴He elastic phase shifts:
 - d+³H channels produces slight increase of the *P* phase shifts
 - Appearance of resonance in the 3/2⁺ *D*-wave, just above *d*-³H threshold

The d^{-3} H fusion takes place through a transition of d^{+3} H is *S*-wave to n^{+4} He in *D*-wave: Importance of the **tensor force**

${}^{3}H(d,n){}^{4}He \& {}^{3}He(d,p){}^{4}He$ fusion

NCSM/RGM with SRG-N³LO NN potentials

Potential to address unresolved fusion research related questions:

 ${}^{3}\text{H}(d,n){}^{4}\text{He}$ fusion with polarized deuterium and/or tritium, ${}^{3}\text{H}(d,n \gamma){}^{4}\text{He}$ bremsstrahlung,

Electron screening at very low energies ...

P.N., S. Quaglioni, PRL **108**, 042503 (2012)

Borromean halo nuclei: He isotopes

- ⁶He and ⁸He with chiral N³LO NN + N²LO 3N
 - chiral N³LO NN: ⁴He underbound, ⁶He and ⁸He unbound
 - chiral N³LO NN + N²LO 3N(500): ⁴He OK, both ⁶He and ⁸He bound

Three-body clusters in ab initio NCSM/RGM

• Starts from:

Transfer reactions with three-body continuum final states

Norm kernel for *n*+*n*+⁴He

Ab initio calculations of ³He+α scattering: First results (preliminary, incomplete)

Calculations for *a*=3 projectile under way: Soft SRG interactions (Λ =1.5 fm⁻¹, Λ =1.86 fm⁻¹) Virtual breakup of ³He included by pseudostates (in 1/2⁺, 5/2⁺ channels so far)

New developments: NCSM with continuum

NCSM.

 $\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{Ni} c_{Ni} \left|ANiJ^{\pi}T\right\rangle$

New developments: NCSM with continuum

New developments: NCSM with continuum

NCSM with continuum: ⁷He \leftrightarrow ⁶He+n

NCSM with continuum: ⁷He \leftrightarrow ⁶He+n

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the *ab initio* effort to describe low-energy reactions and weakly-bound systems
- The first ${}^{7}Be(p,\gamma){}^{8}B$ ab initio S-factor calculation

PLB 704 (2011) 379

- Deuteron-projectile results with SRG-N³LO *NN* potentials:
 - d-⁴He scattering
 - First *ab initio* study of ${}^{3}H(d,n){}^{4}He \& {}^{3}He(d,p){}^{4}He$ fusion
- Under way:
 - *n*-⁸He scattering and ⁹He structure
 - ³He-⁴He and ³He-³He scattering calculations
 - Ab initio NCSM with continuum (NCSMC)
 - Three-cluster NCSM/RGM and treatment of three-body continuum
 - Inclusion of NNN force
- To do:
 - Alpha clustering: ⁴He projectile

PRL 108, 042503 (2012)

PRC 83, 044609 (2011)

