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 Connection 
 to 

 QCD 

 Connection  
to 

 Astrophysics 

Outline 

§  Nuclear forces – from chiral EFT 
§  Many-body techniques – NCSM, NCSM/RGM 
§  Results for bound states, resonances, reactions 



Nuclei from the first principles 

•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order 
–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 



The NN interaction from chiral EFT 

•  24 LECs fitted to the np scattering 
data and the deuteron properties 

–  Including ci LECs (i=1-4) from 
pion-nucleon Lagrangian  



Determination of NNN LECs cD and cE  
from the triton binding energy and the half life 

•  Chiral EFT: cD also in the two-nucleon 
contact vertex with an external probe 

•  Calculate  
–  Leading order GT 
–  N2LO: one-pion exchange plus contact 

•  A=3 binding energy constraint:  
     cD=-0.2±0.1 cE =-0.205±0.015 
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The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.
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The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.
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A=3,4 bound states 
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mainly on the MEC cutoff and weakly on the cutoff
imposed in the nuclear potential.

With this calibration of cD and cE, for this potential, in
principle, any other calculation is a prediction of !PT. In
Table I we present a collection of A ¼ 3 and 4 data,
obtained with and without inclusion of the NNN force
for cD ¼ "0:2 (cE ¼ "0:205), a choice in the middle of
the constrained interval. Besides triton and 3He g.s. ener-
gies, which are by construction within few keV from
experiment, the NN þ NNN results for the 4He are in
good agreement with measurement. Note that " particle
g.s. energy and point-proton radii change minimally with
respect to variations of cD in the interval ½"0:3;"0:1%, and
the results at the extremes are both within the numerical
uncertainties quoted in Table I. This result is not incon-
sistent with the study of Ref. [10], which showed prefer-
ence for cD &"1, since for p-shell nuclei one expects the
(neglected) higher-orderNNN force terms to affect, proba-
bly through a shift, the value of cD [12].

Summarizing, we have used the A ¼ 3 BE and the half-
life of triton to constrain the undetermined N3LO !PT
parameters of the NNN force. We have demonstrated the
robustness of the constraint on cD by showing the weak
sensitivity of the hEA

1 i matrix element with respect to the
NNN force. In particular, we find "0:3 ' cD ' "0:1,
and, correspondingly, "0:220 ' cE ' "0:189. The latter
is expected to change due to N3LO terms of the NNN
interaction, which were not included thus far. In conclu-
sion, we have identified a clear path towards determining
the NNN force that, once the NN interaction will be
pinned down, will pave the way to parameter-free predic-
tions of QCD in the consistent approach provided by !PT.
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and P. N. acknowledge support from the U.S. DOE/SC/
NP (Work Proposal No. SCW0498), and from the U.S.
Department of Energy Grant No. DE-FC02-07ER41457.
D. G. acknowledges support from U.S. DOE Grant
No. DE-FG02-00ER41132.
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Proton-3He elastic scattering  
with χEFT NN+NNN 

•  Variational calculations in hypherspherical-harmonics basis 
–  M. Viviani, L. Girlanda, A. Kievski, L. E. Marcucci, and S. Rosati, arXiv:1004.1306 

•  Ay puzzle resolved with the chiral N3LO NN plus local chiral N2LO NNN  

Chiral NN+NNN Hamiltonian provides the best agreement with the cross 
section and analyzing power data and with the new TUNL PSA analysis 



§  The RGM: A microscopic approach to the A-nucleon scattering of clusters 
•  Long range correlations, relative motion of clusters 

No-core shell model combined with  
the resonating group method (NCSM/RGM) 

§  The NCSM: An approach to the solution of the A-nucleon bound-state problem  
–  Accurate nuclear Hamiltonian 
–  Finite harmonic oscillator (HO) basis  

•  Complete NmaxhΩ model space 

–  Effective interaction due to the model space truncation 
•  Similarity-Renormalization-Group evolved NN(+NNN) potential 

–  Short & medium range correlations  
–  No continuum 

N=0
N=1
N=2

N=4
N=3

N=5

Ab initio NCSM/RGM: Combines the best of both approaches 
Accurate nuclear Hamiltonian, consistent cluster wave functions 

Correct asymptotic expansion, Pauli principle and translational invariance 

2 4 6 8 10 12 14 16 18 20 22

N
max

−29

−28

−27

−26

−25
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LO (500 MeV)

 E. Jurgenson et al., PRL 103, 082501 (2009) 
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∑



The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 

9 
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Direct potential: in the model space 
(interaction is localized!) 

Exchange potential: 
in the model space 



Solving the RGM equations 

•  Input: Realistic nuclear Hamiltonian, eigenfunctions of nucleon clusters  
–  Macroscopic degrees of freedom: nucleon clusters 

–  Unknowns: relative wave function between the two clusters 

•  Non-local integral-differential coupled-channel equations: 

•  Solve with R-matrix theory on Lagrange mesh imposing 
–  Bound state boundary conditions è eigenenergy + eigenfunction 

–  Scattering state boundary conditions è Scattering matrix 

•  Phase shifts 
•  Cross sections 
•  … 

€ 

Trel (r) + VC (r) + Eα1

(A−a ) + Eα2

(a )[ ]uν
(A−a,a )(r) + d % r ∫

% a % v 
∑ % r Wav, % a % v (r, % r )u % ν 

(A− % a , % a )( % r ) = 0

The R-matrix theory on Lagrange mesh is an !
elegant and powerful technique, particularly !
for calculations with non-local potentials!



The best system to start with: n+4He, p+4He 

•  NCSM/RGM calculations with 
–  N + 4He(g.s., 0+0) 
–  SRG-N3LO NN potential with Λ=2.02 fm-1 

•  Differential cross section and analyzing  
power @17 MeV neutron energy 

–  Polarized neutron experiment at Karlsruhe 

4He 
n 

NNN missing: Good agreement only for energies beyond low-lying 3/2- resonance 
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p+4He differential cross section and analyzing power 



N-4He scattering with NN+NNN interactions 
G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress 

n + 4He(g.s.), SRG-(N3LO NN + N2LO NNN potential with (λ=2 fm-1).  

4He(n,n)4He phase shifts !

Largest splitting between P waves !
obtained with NN+NNN. Need 4He exited !
states and study with respect to SRG λ !



Solar p-p chain 

16 

p-p chain 

7 

Solar neutrinos 

   Eν < 15 MeV 



7Be(p,γ)8B S-factor 

•  S17 one of the main inputs for understanding the solar neutrino flux 
–  Needs to be known with high precision 

•  Current evaluation has uncertainty ~ 10% 
–  Theory needed for extrapolation to ~ 10 keV  

aaAaaA veZZE
EEEES

,
2 /)(

)](2exp[)()(

−−=

=

η

πησ

pBe1B g.s.
7

g.s.
8 +E



•  Similarity-Renormalization-Group 
(SRG) evolved chiral N3LO NN 
interaction 

•  Accurate 
•  Soft: Evolution parameter Λ 

§  Study dependence on Λ 

•  7Be 
–  NCSM up to Nmax=10, Importance 

Truncated NCSM up to Nmax=14 
–  Variational calculation 

•  optimal HO frequency from the 
ground-state minimum  

•  For the selected NN potential 
with Λ=1.86 fm-1: hΩ=18 MeV 

7Be(p,γ)8B radiative capture: 
Input - NN interaction, 7Be eigenstates  

18 
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•  Excited states at the optimal HO frequency, hΩ=18 MeV 

Input: 7Be eigenstates 
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•  NCSM/RGM p-7Be calculation 
–  five lowest 7Be states: 3/2-, 1/2-, 7/2-, 5/2-

1, 5/2-
2 

–  Soft NN SRG-N3LO with Λ = 1.86 fm-1 

•  8B 2+ g.s. bound by 136 keV (Expt 137 keV) 
–  Large P-wave 5/2-

2 component  

Structure of the 8B ground state 

20 
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 should be included  
in 7Be(p,γ)8B  
calculations 



§  NCSM/RGM calculation of p-7Be scattering 
§  7Be states 3/2-,1/2-, 7/2-, 5/2-

1, 5/2-
2

 

§  Soft NN potential (SRG-N3LO with Λ = 1.86 fm-1) 
 

p-7Be scattering 
7Be 

p 

8B 2+ g.s. bound by 136 keV  
(expt. bound by 137 keV) 

New 0+, 1+, and two 2+ resonances  
predicted  

21 

PRC 82, 034609 (2010) 

s =1 l =1 2+ clearly visible  
in (p,p’) cross sections 
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§  NCSM/RGM calculation of  7Be(p,γ)8B radiative capture 
§  7Be states 3/2-,1/2-, 7/2-, 5/2-

1, 5/2-
2

 

§  Soft NN potential (SRG-N3LO with Λ = 1.86 fm-1) 
 

7Be(p,γ)8B radiative capture 
7Be 

p 
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8B 2+ g.s. bound by  
136 keV  

(expt. 137 keV) 

S(0) ~ 19.4(0.7) eV b 

Data evaluation: 
S(0)=20.8(2.1) eV b 

 

Physics Letters B 704 (2011) 379 



NCSM/RGM ab initio calculation  
of d-4He scattering 

•  NCSM/RGM calculation with d + 4He(g.s.) up to Nmax = 12  
–  SRG-N3LO potential with Λ = 1.5 fm-1 

–  Deuteron breakup effects included by continuum discretized by pseudo states in 3S1-3D1, 
3D2 and 3D3-3G3 channels 

4He 
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§  The 1+0 ground state bound by 1.9 MeV (expt. 1.47 MeV) 
§  Calculated T=0 resonances: 3+, 2+ and 1+ in correct order close to expt. energies 

6Li 



NCSM/RGM ab initio calculation  
of d-4He scattering 
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Scattering provides a strict test of NN and NNN forces 
Important to include 6-nucleon correlations  

 – deuteron (virtual) breakup …  

PHYS. REV. C 83, 044609 (2011) 



Ab initio calculation of the 3H(d,n)4He fusion 
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d+3H and n+4He elastic scattering: phase shifts 

•  d+3H elastic phase shifts: 
–  Resonance in the 4S3/2 channel 
–  Repulsive behavior in the 2S1/2 

channel è Pauli principle 

•  n+4He elastic phase shifts: 
–  d+3H channels produces slight 

increase of the P phase shifts 
–  Appearance of resonance in the 
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•  NCSM/RGM with SRG-N3LO NN potentials 

3H(d,n)4He & 3He(d,p)4He fusion 
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Potential to address unresolved fusion research related questions: 
3H(d,n)4He fusion with polarized deuterium and/or tritium, 

3H(d,nγ)4He bremsstrahlung, 
Electron screening at very low energies … 

P.N., S. Quaglioni, 
PRL 108, 042503 (2012) 
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•  6He and 8He with chiral N3LO NN + N2LO 3N  
–  chiral N3LO NN: 4He underbound, 6He and 8He unbound  
–  chiral N3LO NN + N2LO 3N(500): 4He OK, both 6He and 8He bound 
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•  Starts from: 

 

•  Two-neutron halo nuclei 

 

•  Transfer reactions with three-body continuum final states 

Three-body clusters in ab initio NCSM/RGM 
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Norm kernel for n+n+4He 
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Ab initio calculations of 3He+α scattering:  
First results (preliminary, incomplete) 

(A-3) 
(3) 

Calculations for a=3 projectile under way:  
Soft SRG interactions (Λ=1.5 fm-1, Λ=1.86 fm-1) 

Virtual breakup of 3He included by pseudostates (in 1/2+, 5/2+ channels so far) 



New developments: NCSM with continuum 
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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Â�J⇡T (A�a,a)

⇥⌅r

New developments: NCSM with continuum 

ΨA
JπT = cNi ANiJ

πT
Ni
∑

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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Â�J⇡T (A�a,a)

⇥⌅r

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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NCSM with continuum: 7He       6He+n 
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NCSMC 
with up to three 6He states 
and three 7He eigenstates 

More 7-nucleon correlations 
Fewer target states needed 
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NCSM with continuum: 7He       6He+n 
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Conclusions and Outlook 

•  With the NCSM/RGM approach we are extending the ab initio effort to 
describe low-energy reactions and weakly-bound systems 

•  The first 7Be(p,γ)8B ab initio S-factor calculation  

•  Deuteron-projectile results with SRG-N3LO NN potentials:  
–   d-4He scattering 
–  First ab initio study of 3H(d,n)4He & 3He(d,p)4He fusion              

   

•  Under way: 
–  n-8He scattering and 9He structure 
–  3He-4He and 3He-3He scattering calculations  
–  Ab initio NCSM with continuum (NCSMC)  
–  Three-cluster NCSM/RGM and treatment of three-body continuum 

–  Inclusion of NNN force  

•  To do: 
–  Alpha clustering: 4He projectile 
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PLB 704 (2011) 379 


