THE TMD EXPERIMENTAL PROGRAM

Contalbrigo Marco INFN Ferrara

ELBA XII Workshop June 26, 2012 Marciana Marina

The Spin Degree of Freedom

Spin degrees of freedom can explain otherwise surprising phenomena and bring new insights into nuclear matter structure

Fundamental: do not neglect it !!

The Spin Surprising Phenomenology

<

The Spin Structure of the Nucleon

Describe the complex nucleon structure in terms of partonic degrees of freedom of QCD

Important testing ground for QCD

Latest news from Deep Inelastic Scattering (DIS) Phys Lett B647 (2007) 8-17 Phys. Rev. D 75 (2007) 012007

Proton's spin

Understanding of the orbital motion of quarks is crucial!

The real experience: 3D !

Quantum Phase-space Distributions of Quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

TMD STUDIES AT PRESENT FACILITIES

Physics reactions

ELBA XII Workshop, 26th June 2012, Marciana Marina

Jefferson Lab

Fermilab

 $\otimes \sigma^{qq arrow qq} \otimes \overline{FF}$

Leading Twist TMDs

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

quark polarisation

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

The SIDIS Case

quark polarisation

$$x = \frac{Q^2}{2 P \cdot q} = \frac{Q^2}{2 M \nu}$$

Bjorken scaling variable

$$z = \frac{P \cdot p}{P \cdot q} \stackrel{\text{lab}}{=} \frac{E_h}{\nu}$$

Fractional energy of the observed final state hadron

 $\frac{d^{6}\sigma}{dx \ dQ^{2}dz \ d\phi_{S}d\phi \ dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$ $+ S_{T} \left\{ \varepsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \right\}$ $+ S_{T} \lambda_{e} \left\{ \sqrt{1 - \varepsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi - \phi_{S})} \right\} + \dots$

The SIDIS Case

First Evidences

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep→e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

Non-zero Sivers function !!

Non-zero transversity !! Non-zero Collins function !!

NUMBER DENSITY

The hadron multiplicities

LO interpretation:

$$M_N^h = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}$$

SIDIS data constrain fragmentation at low c.m. energy and bring enhanced flavor sensitivity

Proton-deuteron asymmetry:

$$A_{d-p}^{h} = \frac{M_d^h - M_p^h}{M_d^h + M_p^h}$$

Reflects different flavor content Correlated systematics cancels

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $f_1 \cdot D_1$

The P_{hi}-unintegrated multiplicities $(f_1 \otimes D_1)$

arXiv: 1008.5125

COMPASS 2004 LiD (part)

Preliminary

Disentanglement of z and $P_{h I}$: access to the transverse intrinsic quark k_{T} and fragmentation p_{T}

i.e. from gaussian anstaz

ELBA XII Workshop, 26th June 2012, Marciana Marina

0.2

arXiv: 0709.3020

0.2

0.20<z<0.25</p>

0.25<z<0.30

0.30<z<0.35 0.35<z<0.40

0.40<z<0.50 - 0.50<z<0.60

₽ 0.60<z<0.70 0.70<z<0.80

′ P_{h1} (GeV/c)²

0.8

 π^{\star} from H

^{╭╋╋}╋╋╋╋╋╋╋

0.1

 π^+ from D

0.1

 $P_{h1}^{2}(GeV^{2})$

The evolution

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $f_1 \otimes D_1$

The evolution

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $f_1 \otimes D_1$

TRANSVERSITY

(THE COLLINEAR MISSING PIECE)

The Collins SIDIS amplitude

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $h_1 \otimes H_1^\perp$

Collins frag. @ B-factories

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $H_1^\perp \otimes H_1^\perp$

Transversity signals

 $h_1 \otimes H_1^\perp$

Two hadron asymmetries

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $h_1 \otimes H_1^{\triangleleft}$

Transversity signals

 $h_1 \otimes H_1^{\triangleleft}$

Transversity signals

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $h_1 \otimes H_1^{\triangleleft}$

CAHN & BOER-MULDERS

Naïve-T-odd Chirally-odd Spin effect in unpolarized reactions

(THE NEGLECTED EFFECTS)

The Lam-Tung relation

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

 $h_1^{\perp} \otimes h_1^{\perp}$

The azimuthal modulation

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

The azimuthal modulation

- No charge separation
- Poor statistics for cos2

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS cos2¢ dependence

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS cos2¢ dependence

 $h_1^{\perp} \otimes H_1^{\perp}$

(THE TMD CHALLENGE)

The Sivers signals

ELBA XII Workshop, 26th June 2012, Marciana Marina

The Sivers challenges

The Sivers challenges

ELBA XII Workshop, 26th June 2012, Marciana Marina

The Sivers challenges

ELBA XII Workshop, 26th June 2012, Marciana Marina

Honour and Duty

TMDs describe a new class of phenomena providing novel insights into the rich nuclear structure

Experiments have got access to all PDFs and FFs, but in a convoluted way, first generation non-zero results provide promises but also open questions

Full coverage of valence region not achieved
Limited knowledge on P_{h⊥} dependences
Flavor decomposition often missing
Evolution properties to be defined
Role of the higher twist to be quantified
Universality ↔ Fundamental test of QCD

large x coverage wide P_{h⊥} acceptance hadron ID large Q² coverage multi-dimensional analysis complementary channels

Still incomplete phenomenology is asking for new inputs

 $\label{eq:crucial:completeness} Crucial: completeness \\ flavor tagging, wide acceptance and four-fold differential extraction \\ in all variables (x,z,Q^2,P_T) to have all dependencies resolved \\ \end{array}$

TMD STUDIES AT FUTURE FACILITIES

A World-wide Challenge

Fragmentation @ e+e- Colliders

Hadrons in opposite hemispheres:

$$\frac{d\sigma(e^+e^- \to h_1h_2X)}{dz_1 dz_2 d\Omega} = \frac{3\alpha^2}{Q^2} A(y) \sum_{a,\bar{a}} e_a^2 D_1 \overline{D}_1$$

Dependence on transverse momentum

FFs for various hadron: 2π , kaons, (ρ , ... Λ)

Scale dependence: look for different c.m. energies

pp, pd Drell-Yan in the States

Contalbrigo M.

Valence antiquark Drell-Yan in Europe

- solid and dashed: Efremov et al, PLB612(2005)233;
- dot-dashed: Collins et al, PRD73(2006)014021;
- solid, dot-dashed: Anselmino et al, PRD79(2009)054010;
- boxes: Bianconi et al, PRD73(2006)114002;
- short-dashed: Bacchetta et al, PRD78(2008)074010.

Anti-proton beam @ FAIR

PANDA: unpolarized target (s=30 GeV²) PAX: polarized collider (s=200 GeV²)

$$A_{TT} = \frac{\mathrm{d}\sigma^{\uparrow\uparrow} - \mathrm{d}\sigma^{\uparrow\downarrow}}{\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}} \approx \hat{a}_{TT} \frac{h_{1u}(x_1) \ h_{1u}(x_2)}{u(x_1) \ u(x_2)}$$

• u-dominance • $|h_{1u}| > |h_{1d}|$

THE TMDS ON THE SIDIS LANSCAPE

The SIDIS Landscape

 $Q^2 (GeV^2)$

Electron Ion Collider

30-225 GeV protons 3 – 9 GeV electrons \sqrt{s} ~ 20-90 GeV L~ 0.7-6 10³⁴ cm⁻² s⁻¹

e,p polarization greater than 70 % 50-250 GeV protons 3 - 10 GeV electrons $\sqrt{s} \sim 25-100$ GeV L~ 0.5-3 10^{33} cm⁻² s⁻¹

High luminosity is better than high-energy: Sudakov suppression (soft gluon radiation)

SIDIS @ JLab12

Hall-C

Super High Momentum Spectrometer (SHMS) unpolarized SIDIS, hadron ID

Hall-A

Hall-A

Spectrometer Pair, polarized ³He target up to to 10³⁷ cm² s⁻¹ hadron ID

CLAS12 H,D polarized targets up to 10³⁵ cm⁻² s⁻¹ complete" acceptance, hadron ID

SOLID ³He, NH₃ polarized targets up to 10³⁶ cm⁻² s⁻¹ large acceptance, pion ID

Contalbrigo M.

Leading Twist TMDs

Contalbrigo M.

JLab PAC 39, 18th June 2012, Newport News

The Hall-C High-momentum Spectrometers

HMS 7 GeV/c spectrometer 10°-90° angular range e/h, π/K ID by Cherenkov

Super-HMS 11 GeV/c spectrometer 5°-25° angular range e/h, π/K ID by Cherenkov

Longitudinal Cross-section E12-06-104

P_{h1} Dependence

Map pf p_T dependence for pion off proton and deuteron targets

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

E12-09-017

The CLAS12 Spectrometer

Luminosity up to 10³⁵ cm⁻² s⁻¹

Highly polarized electron beam

H and D polarized targets

Broad kinematic range coverage (current to target fragmentation)

TOF + RICH for hadron ID

CLAS12 Kinematic Coverage

The CLAS12 forward detector is perfectly suitable for high- Q^2 and high- p_T measurements since designed to cover up to 40 degrees angles

Unpolarized Target @ CLAS12

Polarized Beam @ CLAS12

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

Transversely Polarized HD-Ice Target

HD-ice ran from Nov/11 to May/12 at Jlab R&D work required to run with electron beams

Contalbrigo M.

CLAS12 Projections

Contalbrigo M.

ELBA XII Workshop, 26th June 2012, Marciana Marina

Statistical Precision

The Hall-A High-Luminosity Spectrometers

Present: spectrometer pair

Future: large acceptance detector

³He(n) Polarized Target

- Use 3 COMET lasers (narrow line, high power) for optical pumping of Rb vapor
- Fast spin exchange (via K) by ³He hyperfine interaction in oven; small part of N₂ to quench soft photon depolarization of Rb
- Polarized ³He diffuses to the target chamber
- 3D holding magnet field: spin to any direction
- 20 minutes spin flip / NMR and EPR polarimetries
- Superior performances:
 - Steady 65% polarization @ 15 uA beam (world record)

SIDIS with Super-BigBite

J. Benlloch et al, IEEE NS-45(1998)234

~20% of the HERMES RICH PMT array

SIDIS with Super-BigBite

SIDIS with SOLID

Luminosity: up to 10³⁶ cm⁻² s⁻¹

Acceptance:

Electron 8-26 degrees Pion 8-16 degrees

Particle ID with Cherenkov Detectors: Electrons $CF_4 + CSI GEMs$ $CO_2 + MA-PMTs$

Pions C_4F_{10} + PMTs

SIDIS with SOLID

Contalbrigo M.

SOLID with Proton Target

Ø25

680

35°

3 cm NH₃ polarized target Dynamic Nuclear Polarization (DNP) by microwave 1k refrigerator

5T holding field:

Upgrade to enlarge opening in transverse direction ±25°

99

Beam chicane to compensate target deflection

Sheet of flame background: high rates prevent measurement in localized area

ELBA XII Workshop, 26th June 2012, Marciana Marina

(degree)

SIDIS with SOLID

 $Q^2 = 1.0 (GeV/c)^2$

Multi-dimensional binning in x, Q², p_T, z

(674 bins in total)

6 4 2 2 1 1 1 0 30 < z < 0.35	II 10.35 < Z < 0.40	111 90.40 < z < 0.45 111 . 111 . 1111 . 1111 1	III 10.45 < z < 0.50 III - IIII - IIII - IIII - IIII -	H 10.50 < z < 0.55 H 10.50 < z < 0.55 H 111 - H 111 - H 111 - H 111 -	III 10.55 < z < 0.60 IIII : IIII : IIII : IIII : IIII :	11 : 0.60 < z < 0.65 1111 : 1111 : 1111 : 1111 :	1 0.65 < z < 0.70 10 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 < Q ² < 3 1 0.30 4 z < 0.35 6 111 1 4 111 - 2 IIII 1 0	2 < Q ² < 3 0.35 < z < 0.40 111 1 111 1 111 1 111 1 111 1	2 < Q ² < 3 0.40 < z < 0.45 1 I I I I I I I I I I I I I I I I I I I	2 < Q ² < 3 0145 < z < 0.50 1 1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1	2 < Q ² < 3 0450 < z < 0.55 1 * 1111 1 1111 1 111 1 1 1	2 < Q ² < 3 d.55 < z < 0.60 I I III I III I I II I I I	2 < Q ² < 3 0.60 < z < 0.65 1 1 1 1 1 1 1 1 1 1 1 1 1	2 < Q ² < 3 0.65 < z < 0.79 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
3 < Q ² < 4 1 0.30 < z < 0.35 6 I 4 I I 2] I 0	3 < Q ² < 4 0.35 < z < 0.40 I I I I I	3 < Q ² < 4 0.40 < z < 0.45 I I I	3 < Q ² < 4 0.45 < z < 0.50	3 < Q ² < 4 0.50 < z < 0.55	3 < Q ² < 4 0.55 < z < 0.60	3 < Q ² < 4 0.60 < z < 0.65 !	3 < Q ² < 4 0. 0.65 < z < 0.79 0. 1 00 1 00 1 00 1 00 0 00 0 00 0 00 0
2 4 < Q ² < 5 1 0.30 < z < 0.35 6 4 1 1 2 0	4 < Q ² < 5 0.35 < z < 0.40	4 < Q ² < 5 0.40 < z < 0.45	4 < Q ² < 5 0.45 < z < 0.50	4 < Q ² < 5 0.50 < z < 0.55 i	4 < Q ² < 5 0.55 < z < 0.60 I	4 < Q ² < 5 0.60 < z < 0.65	4 < Q ² < 5 0.65 < z < 0.70 0 0 1
2 5 < Q ² < 6 1 0.30 < z < 0.35 8 4 4 2 0	5 < Q ² < 6 0.35 < z < 0.40	5 < Q ² < 6 0.40 < z < 0.45 I	5 < Q ² < 6 0.45 < z < 0.50	5 < Q ² < 6 0.50 < z < 0.55	5 < Q ² < 6 0.55 < z < 0.60	5 < Q ² < 6 0.60 < z < 0.65	5 < Q ² < 6 0.65 < z < 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 6 < Q ² < 8 8 0.30 < z < 0.35 6 4 2 0 0 1 0 2 0 3 0 4 0 5	6 < Q ² < 8 0.35 < z < 0.40	6 < Q ² < 8 0.40 < z < 0.45	6 < Q ² < 8 0.45 < z < 0.50	6 < Q ² < 8 0.50 < z < 0.55	6 < Q ² < 8 0.55 < z < 0.60	6 < Q ² < 8 0.60 < z < 0.65	6 < Q ² < 8 0, 0.65 < z < 0.69
	$\begin{array}{c} 3 \\ 6 \\ 4 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a_1 <t< td=""><td>6 100 - 1 100 - 1 100 - 1 100 - 1 100 - 1 4 100 - 1 100 - 2 100 - 1 100 - 1 100 - 1 2 $Q^2 < 3$ $2 < Q^2 < 3$ 0.30 $4 z < 0.35$ 0.35 < $z < 0.40$ 0.40 < $z < 0.45$ 0145 < $z < 0.50$ 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 11 1 11 1 111 1 111 1 11 1 11 1 11 1 111 1 11 1 11 1 11 1 111 1 11 1 11 1 11 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1</td><td>A Im Im Im Im Im Im Im Im 1 <t< td=""><td>Image: Second secon</td><td>Image: Second second</td></t<></td></t<>	6 100 - 1 100 - 1 100 - 1 100 - 1 100 - 1 4 100 - 1 100 - 2 100 - 1 100 - 1 100 - 1 2 $Q^2 < 3$ $2 < Q^2 < 3$ 0.30 $4 z < 0.35$ 0.35 < $z < 0.40$ 0.40 < $z < 0.45$ 0145 < $z < 0.50$ 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 11 1 11 1 111 1 111 1 11 1 11 1 11 1 111 1 11 1 11 1 11 1 111 1 11 1 11 1 11 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1	A Im Im Im Im Im Im Im Im 1 <t< td=""><td>Image: Second secon</td><td>Image: Second second</td></t<>	Image: Second secon	Image: Second

 $Q^2 = 8 (GeV/c)^2$

SIDIS with SOLID

The JLab12 Charge

Complete 3D mapping (momentum space) of the nucleon in the valence region High potentiality of the complementary programs of 3 experimantal halls

- Access to leading-twist poorly known or unmeasured TMDs
 (3D picture in momentum space, relativistic effects, spin-orbit effects, nucleon tomography);
 - * UPA: Number density, Cahn, Boer-Mulders
 - * SSA: Transversity, Sivers, Pretzelosity, h_{1L} worm-gear functions;
 - * DSA: *Helicity, g*_{1T} worm-gear function;
- > Multi dimensional analysis in x, Q^2 , z, p_T thanks to large-acceptance and high-luminosity;
 - * **precise mapping of the valence** (tensor charge);
 - * disentangle parton distribution from fragmentation functions (x vs z);
 - * isolate sub-leading-twist effects from 1/Q dependence (g₂ as side product);
 - * flavor decomposition of pT dependence (Bessel analysis);
 - * *investigate perturbative to non-perturbative QCD transient* from p_T dependence;