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0 Some theory concepts

e Counting 2N correlations?
© 3N correlations

o Tagging SRC by CoM motion

e Conclusions



@ With proton charge radius of ~ 0.9fm one gets a nuclear packing
fraction of 42 %.

@ The nucleus is quite a dense quantum liquid.

@ Mean-field approaches have been very successful but nucleus is
more than the sum of A nucleons.

@ A time-honored method to account for the effect of correlations
(classical and quantum systems): Correlation functions

@ Realistic wave functions | W) after applying a many-body
correlation operator to a Slater determinant | V=)
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@ The nuclear G is complicated but is dominated by the central and
tensor correlations
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@ very high relative pair
momenta: central correlations

@ moderate relative pair
momenta: tensor correlations

o |f-(ki2)[? is well constrained!
(D-state deuteron wave
function)

@ the g¢ (ki2) looks like the
correlation function of a
monoatomic classical liquid
(reflects finite-size effects)

@ the g. (ki2) are ill constrained!



@ Correlations are dynamically generated by operating with G on
IPM wave functions (UCOM etc.)

@ In practice: perturbative (cluster, virial) expansions are required

@ Nucleon-nucleon correlations are highly local which naturally
truncates the expansions (2N > 3N)

@ Part of the mean-field wave function with strength at r = 0 (equiv.
to relative S-wave!) receives largest corrections.

@ Effective one-body operator receives two-body etc. contributions
through the correlation operators.
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@ Two-body contributions reflect the correlated part of the spectral
function and induce two-nucleon knockout!

@ The corresponding cross sections do NOT scale according to
Koenp®) (Bm)

@ FACTORIZED CROSS SECTION FOR 2N KNOCKOUT:
J. Ryckebusch et al. PLB 383 (1996) 1

do . »
NiNp) = E;p1 Expof
de'dQ.dQ1dQd Ty, (&, & NiNz) 1P152P21rec
xaen, N, (Ki-» k=, @) Fhy p, (P)

» Factorization requires relative S states!
» Fp, n(P): Probability to find a dinucleon with c.o.m. momentum P

» oen,N, (Ko, Kk, q): Probability to have an electromagnetic interaction
with a dinucleon with relative momentum k..
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Triple coincidence measurements A(e, € pp) at low Q? determined the
quantum number of the correlated pairs!

~ 16O(e,e’pp)14C(0+; E,=0.0 MeV) @ High resolution

3 160(e, € pp) studies

= ] (MAMI)

o o

k-] i @ Ground-state transition:

gg 10 160 (0+) _4c (0+)

o @ Quantum numbers of

é‘l 10~ the af:tive diproton

3 [relative (c.m.)]:

g 1So(A = 0) (lower P)

S L0 w0 @0 aw 4o and*Py(A=1) (higher

pair c.m. momentum (MeV/c) P)
@ only 'Sy(A = 0)

Unfactorized theory (MEC, IC, central + diprotons are subject to
tensor correlations) EPJA 20 (2004) 435 SRC
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@ Suggestion: number of relative S states is a measure for the
ammount of 2N correlated pairs in A(N, 2)

@ Requires transformation from (7, 2) to <r12 =122 2 R = %)

@ In a HO basis a normalized and antisymmetrized two-body state
reads (ag = (Nalajata)) [Moshinsky transformation]

a0 JAMR)pas = DD D DD e

LM, nC NA SMs TMr 2(1 - 5aa°‘b
« [1 - (_1)E+S+T]
x C (OéaOébJRMR; (nEN/\)LM,_SMS TMT)

x ([n£ (7i2), NA (Ri2) ] LML,( )SMS, <22) TMT> :

\nC (F2)) (‘N/\ (§12>>) is the relative (c.m.) pair wave function




@ Normalization: one has

Y D> Y {aaonJpMg aacs; JaAMR)pas = NZ . (1)
JrMp aa<af ap<af
Fermi level for the proton and neutron: o and o/
@ Similar expressions for the number of proton-proton (@) and
neutron-neutron pairs (W)

@ One can compute how much |(nL, NA)LM,, SMs, TM7)
contributes for each IPM pair |camaapmp)

@ IPM pairs in a relative |n = 0L = 0 (ry2) ) are prone to SRC
(“central” + “tensor”)!
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@ with increasing A: a smaller fraction of the pairs reside
in a relative S state

© strong isospin dependence: fraction of the pn pairs residing in a

relative S state is substantially larger than for proton-proton and
neutron-neutron pairs.
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@ number of pairs prone to SRC effects: a ~ A1-44+0.01

@ the power law is very robust .



—— ——— @ quantify scaling behavior:
6f 3e T o1z . (3
o IS L (A)_ 204 (. )
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Y + Y . .
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Hall-C, arXiv:1107.3583 [n=07=0) state)



Corrections to the ratio’s of

cross-section data which

affect the extracted value of

ax(A/D): unlike the 1000

deuteron

@ A — 2 fragment can be

left with excitation
energy

@ Pairs have c.o.m.
motion
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Corrections to the ratio’s of
cross-section data which Effect of c.m. motion of pn pairs )
affect the extracted value of
ax(A/D): unlike the e
deuteron

@ A— 2 fragment can be

left with excitation
energy

@ Pairs have c.o.m.
motion 200 |

800

kip [MeV]

@ Final-state interactions
on the ejected two %0 0s 1 15 2 25
nucleons (?) . _ e
e Contribution of the pp MC s:mulgthnfzof breakup of 2N
- correlated pairs in '=C fore = 5.766 GeV
and nn correlations d(Q2)=2 7 Ge\2
(small) A (CART EEE




Corrections to the ratio’s of

o

I = =

cross-section data which o 002 — — ,
affect the extracted value of § -
a>(A/D): unlike the 5 0015
deuteron g
@ A — 2 fragment can be g 0o
left with excitation E
energy % 0.005
@ Pairs have c.o.m. ° 0 e 1
motion 14 16 18 2 2.2
@ Final-state interactions XB
on the ejected two A .
nucleons (?) ’ oc.m. |C.m. correction factor
o C [115 MeV 1.64 +0.23
@ Contribution of the pp 56Fe |128 MeV 1.70 + 0.27
and nn correlations 208pp|141 MeV 1.71 +0.29
(small)
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8 T @ Correction of the c.m.
r y motion applied to the
6F k 1 computed values of

s St x I a:(A/D)

2 4f ¥ * o : i - ioti

& 3t L ] @ Prediction: ay(*°Ca) ~
5L x . . 32(4803)
Lr ‘ . ] @ Missing strength at low
0 1 10 100 Adue to CIUStering?

mass number A @ overestimation at high

Data: CLAS PRL96 082501 (2006), A.

N.Fomin et al. PRL108 092502 (2012)



3 | [emat ozesssa| @ Recent observation
Yy that ap(A) and EMC
o slope show a linear
° correlation.

@ Suggests that both
phenomena might be
driven by local density
fluctuations.

e
a,(A/d)

L.B.Weinstein et al. PRL106 052301 (2011)

N -



0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15

-dR/dxg

— 33 = (0.108 £ 0.028) + ZNpn(s—1) -

(2/A) Non(s=1)

(0.074 + 0.010).

OgAg
97Au
e £
o tu\, v
AAAAA ‘{2 -
He
1 : 3 | |

@ Recent observation
that a>(A) and EMC
slope show a linear
correlation.

@ Suggests that both
phenomena might be
driven by local density
fluctuations.

@ Number of relative
S-pairs per nucleon
shows linear correlation
with EMC slopes.



Three-body correlations induced by tensor correlations
S=1,T=1 pairs originate from 3N correlations
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uncorrelated correlated

Feldmeier, Horiuchi, Neff, Suzuki: arXiv:1107.4956
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@ seek for those wave-function

"yt components where all three nucleons
v are “close”
ol e v ires transformation from
'y .\ ,"53, ° r(iqulref 1ol r |
o ¢, (A1, P2, 13) to <f12,f(12)3, 5’123) (Jacobi
1) ! (/n' ) di
3 coordinates)
'
(hags o) b s R
12 = ; =
9" NG 12 NG
’ - _ R —v27
(12)3 — /3
Rizs = V2hie + 75
v3



(f127f(12)3, F"123)

In a HO basis one can perform the transformation from (7, 12, 13) to

\mh (7)), nak (R2) , sk (73))
‘n12/12 (Fi2) , Ni2A12 (ﬁm) Y (Fs)>

’n12/12 (i2) s N2)al12)s (T12)3) » Ni2aAi2s (§123)>
Brackets (STB)

by making use of Moshinsky Brackets and Standard Transformation



@ Antisymmetrized three-nucleon states

|aMa, apMpacMe) s = [1 — Pi2] ’aama(
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@ One has

Z Z Z (aaMaapMporeMe |aMaop MpcicMe)
oaop<al ac<al MampMenas
Z(Z —1
NEE=1)
2

nas

@ For given A(N, Z) the antisymmetrized (ppn) states with
(n12 =0h2 = 0[7(12)3 =0 /(12)3 = 0) are prone to SRC

[m] = = =



@ ratio of raw data
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Hall-C, arXiv:1107.3583

@ ratio of raw data

3 UA (XB, QZ)

3 S e B VA
R(A"He) = 7 ore (x5, Q%)

@ acceptance and ogp # Ten
corrections: r(A,2 He)

@ very naive counting: all ppn pairs
contribute r(A,2 He) ~ A2



@ ratio of raw data
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% | ﬂH R(A2 He) = A—sHe s
£ R(*Her’He) o (XB Q )
Ez _,MHM;;E i +
g ; @ acceptance and o¢p # Ten
. corrections: r(A,2 He)
1 15 2 25 3 . .
x @ very naive counting: all ppn pairs
Hall-C, arXiv:1107.3583 contribute (A% He) ~ A?
Suggestion: as(A/3He) = R(A? He) ~ 8" l1z—0(A) (number of
ppn pairs in a |niz = 0 iz = 0,n(12)3 = 0 f12)3 = 0) state)
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az(A/2He) as a measure of the per-nucleon probability of ppn
SRC relative to *He (calculations are NOT corrected for c.m.
motion, FSI, . ..)
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@ Compare width of pair c.o.m.
mom. distribution for all
possible pp pairs and only
pairs with relative S quantum
numbers

@ Robust results for HO and WS
wave functions

@ Significant difference in width
between the two, 'S, pairs
give bigger width



56Fg all pairs WS

o= 182 +/- 2 MeV

Py(P,,) (GeV?)

02 04 06 08

@ Compare width of pair c.o.m.
mom. distribution for all
possible pp pairs and only
pairs with relative S quantum
numbers

@ Robust results for HO and WS
wave functions

@ Significant difference in width
between the two, 'S, pairs
give bigger width



o= 198 +/- 1 MeV

Py(P,,) (GeV?)

02 04 06 08

1

@ Compare width of pair c.o.m.
mom. distribution for all
possible pp pairs and only
pairs with relative S quantum
numbers

@ Robust results for HO and WS
wave functions

@ Significant difference in width
between the two, 'S, pairs
give bigger width
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2
F ®  Measurement

20 A Ryckebusch et al., 'S, pairs
190 f_ ¥ Ryckebusch et al., All pairs
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@ Compare width of pair c.o.m.
mom. distribution for all
possible pp pairs and only
pairs with relative S quantum
numbers

@ Robust results for HO and WS
wave functions

@ Significant difference in width
between the two, 'S, pairs
give bigger width

@ 'Sy widths agree very nicely
with extracted values from the
data mining
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@ Suggestion that the number of correlated nucleon pairs in a
nucleus A(N, Z)is proportional with the number of relative S states
(nucleon pairs are prone to correlations when they are “close”)

@ The number of relative / = 0 states follows a power law
d x A1.44:|:0.01

@ Power law is robust: independent of choices for mean-field wave
functions

@ The computed number of (£ =0, T = 0) pn can be used to predict
the a, (g).

@ Influence of c.0o.m. motion quantified.

@ Predictions for a, are not inconsistent with trends and magnitude
of the data



@ Technique can be extended to count the number of correlated
nucleon triples in a nucleus

@ Tag correlated pairs by looking at the width of c.o.m. momentum
with FSI, delta d.o.f., etc.

distribution, good agreement with data mining values

@ Future!l: reaction model for two nucleon knockout at high energies



@ Technique can be extended to count the number of correlated
nucleon triples in a nucleus
with FSI, delta d.o.f., etc.

@ Tag correlated pairs by looking at the width of c.o.m. momentum
distribution, good agreement with data mining values

@ Future!: reaction model for two nucleon knockout at high energies
Thanks!
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