Few-Body Physics with ultracold atoms

FRANCESCA FERLAINO

UNIVERSITÄT INNSBRUCK, AUSTRIA WWW.ultracold.at

ELECTRON-NUCLEUS SCATTERING XII

Marciana Marina, Isola d'Elba

Marciana Marina, Isola d'Elba

FEW-BODY PHYSICS setting a common dictionary

Neutral bosonic atoms (Alkali: Li, Na, K, Rb, Cs)
 Massive particles M=lsotope*M_{proton}

- Ultracold dilute ($n \sim 10^{13} \text{ cm}^{-3}$)
- Macroscopic ensemble (10⁵ atom) Confined into a trap

FEW-BODY PHYSICS setting a common dictionary

Very different systems – different experimental techniques – common effects

$\textbf{3x10^8}$ atoms at 15 μK

ULTRACOLD ATOMS: WHY?

MAIN MOTIVATION: MANY-BODY QUANTUM STATES

Few-Body Physics and ... Ultracold Atoms How three particles interact?

esonar

ona

x22.7

EFIMOV EFFECT

How three particles interact in the universal regime (three identical bosons)

x22.7

Infinite many three-body bound states (Trimers)

- accumulation point at the threshold
- binding energies differ by factors of 1/22.7²

x22.7

sizes differ by factors of 22.7

SOVIET JOURNAL OF NUCLEAR PHYSICS

VOLUME 12, NUMBER 5

MAY, 1971

WEAKLY-BOUND STATES OF THREE RESONANTLY-INTERACTING PARTICLES

V. N. EFIMOV

A. F. Ioffe Physico-technical Institute, USSR Academy of Sciences

Submitted February 16, 1970

Yad. Fiz. 12, 1080-1091 (November, 1970)

It is shown that if the pair forces of three identical particles are sufficiently resonant, a family of bound states of low energy is produced. The quantum numbers of all the states are the same: for spinless bosons 0^+ and for nucleons $\frac{1}{2^+}$, $T = \frac{1}{2}$. The dimension of the states is larger than the radius of the pair forces. The most favorable conditions for the appearance of a family of levels occur for three spinless neutral bosons: the conditions are less favorable for charged particles and particles with spin and isospin. The possibility of existence of such levels in a system of three particles (in the C^{12} nucleus) and of three nucleons (H^3) is considered.

ENERGY SPECTRUM

SOVIET JOURNAL OF NUCLEAR PHYSICS

VOLUME 12, NUMBER 5

MAY, 1971

FIG. 1. Level spectrum of three spinless neutral particles. The cross hatching denotes the boundary of the continuous spectrum of the three particles. Neighboring level trajectories differ only in a scale transformation by an approximate factor of 22. For clarity, this ratio is not maintained in the figure.

Energy Spectrum of the Efimov Trimers

OUR OBSERVABLES: LOSS

$$\dot{n} = -L_3 n^3$$

 L_3 : three-body loss coefficient [cm⁶/s]

$$L_3 = 3 C \frac{\hbar}{m} a^4$$

Fedichev et al., PRL 77, 2921 (1996) Prediction of a⁴ scaling C = 3.9

E. Nielsen et al., PRL. 83, 1751 (1999)
B. D. Esry, et al., PRL 83, 1751 (1999)
E. Braaten et al., Phys. Rep. 428, 259 (2006)

Efimov effect adapted to our world

OUR OBSERVABLES: LOSS

Efimov effect adapted to our world

Efimov physics $\leftarrow \rightarrow$ three-body recombination

RECOMBINATION LENGTH

E. Braaten and H.-W. Hammer, Phys. Rep., vol. 428, pp. 259–390, 2006.

Kraemer et al., Nature 440, 315 (2006)

EXPERIMENTAL OBSERVATIONS

Efimov physics $\leftarrow \rightarrow$ three-body recombination

Reviews:

Many important experimental steps forwards First Experimental observation (Cs, 2005)

Heidelberg (2008,...), Penn State (2009,...), Tokyo (2010, ...) Three-component spin mixture of fermions

Rice (2009), Bar-Ilan (2009,...) three identical bosons

LENS (2009) three identical bosons

JILA (2012) three identical bosons

133 Cs

RbK

Innsbruck (2005....) three identical bosons

LENS (2009), JILA (2012) Heteronuclear mixture

T. Kraemer et al. , Nature 440, 315-318 (2006)

F. Ferlaino and R. Grimm, Physics 3, 9 (2010)

C. H. Greene, Phys. Today 63(3), 40 (2010)

A very intriguing issue

Our general understanding till mid 2011:

is a fully system-dependent parameter (short-ranged, non-universal, uncorrelated)

M. D. Lee, T. Köhler, and P. S. Julienne PRA **76** (2007) J. P. D'Incao, C. H Greene and B. D. Esry J. Phys. B (2009)

Tuning the scattering length

Uniqueness of Cesium: 3 broad s-wave Feshbach resonances

Change short-range (2B, 3B) physics while keeping the <u>universal character</u> at long range

Cs as test bed for the 3BP

Efimov resonances in Cs

In collaboration with P. Julienne and J. Hutson

Efimov resonance over 1000G

Intensive collaboration with P. Julienne and J. Hutson on a(B) conversion

Universal three-body parameter

... 3BP fairly insensitive to short-range physics (3BP for other systems?)

Universal three-body parameter

... 3BP fairly insensitive to short-range physics (3BP for other systems?)

Four-body states tied to an Efimov trimer

J. von Stecher, J. P. D'Incao, and C. H. Greene, Nature Physics 5, 417 (2009)

EXP. RESULTS REVISITED BY C. GREENE ET AL. (2008)

J. von Stecher, J. P. D'Incao, and C. H. Greene, Nature Physics 5, 417 - 421 (2009)

Kraemer et al., Nature 440, 315 (2006)

NEW SET OF EXPERIMENTS prepare sample very close to BEC Ferlaino et al., PRL 102, 140401 (2009)

Four-body states tied to an Efimov trimer

Universal cluster states tied to Efimov trimer

Family of universally connected N-body states

IOP PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 101002 (5pp)

FAST TRACK COMMUNICATION

Weakly bound cluster states of Efimov character

Javier von Stecher

JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309-0440, USA

Major conceptual advance

Few-body catches up many-body physics

New challenge

Standard observables lessen in visibility with increasing N

 \rightarrow Call for novel Theo/Exp approaches

Universal five-body states

Five-body state $\leftarrow \rightarrow$ Five-body recombination

Required a combined experimental and theoretical effort and specific tools Strong evidence of the existence of a family of Efimov-related universal clusters

EFIMOV'S FAMILY TREE

Building an universal picture

Few-body Team

www.ultracold.at