1/31

"Hard probes" of strongly-interacting atomic gases

Yusuke Nishida (LANL)

Elba XII Workshop on "Electron-Nucleus Scattering" June 25-29 (2012) Energetic atom propagating through strongly-interacting atomic gases

✓ energetic atom ⇒ many-body system
 ✓ energetic atom ⇐ many-body system

Energetic atom propagating through strongly-interacting atomic gases

- 1. Motivations
 - close connection to nuclear physics
 - ✓ useful to locally probe many-body physics

2. Ideas & methods

- ✓ large-momentum expansion à la OPE
- 3. Results and discussions
 - ✓ energetic atom ⇒ many-body system
 - ✓ energetic atom ⇐ many-body system

4/31

Motivations

How to probe target systems?

Typically in ultracold atoms, light is used to probe atoms

How to probe target systems?

Often in nuclear and particle physics, "hard probes" (= high-energy particles) are used to probe target systems 6/31

JLab, Science 320, 1476 (2008)

How to probe target systems?

"Hard probes" (= enegetic atoms) may be useful to probe target atomic gases What can be probed? And how? 7/31

Microscopic Hamiltonian is simple

$$H=-\int\!dx \sum_{\sigma=\uparrow,\downarrow}\psi^{\dagger}_{\sigma}\,rac{
abla^2}{2m}\,\psi_{\sigma}+g\!\int\!dxdy\,\psi^{\dagger}_{\uparrow}\psi_{\uparrow}(x)\delta(x-y)\psi^{\dagger}_{\downarrow}\psi_{\downarrow}(y)$$

- Systematic approach is possible to develop strict results (without relying on phenomenology)
- Seen as an idealization of nuclear physics (by neglecting relativistic effects, isospins, finite range of interactions, 3-body forces, ...)

8/31

Energetic atom ⇒ many-body system

Probe atomic gas with atoms

Shoot a probe atom into the target atomic gas and measure its differential scattering rate

131

What can we learn from the scattering data on the (strongly-interacting) target atomic gas?

Probe atomic gas with atoms

Shoot a probe atom into the target atomic gas and measure its differential scattering rate

10/31

Large $k \gg n^{1/3} \Rightarrow$ Few-body scattering problems

$$\frac{d\Gamma(k)}{d\Omega} = \cdots$$

Leading contribution

Shoot a probe atom into the target atomic gas and measure its differential scattering rate

Large $k \gg n^{1/3} \Rightarrow$ Few-body scattering problems

$$\frac{d\Gamma(k)}{d\Omega} = f(\theta) \frac{n}{k} + \cdots$$

Sub-leading contribution

Shoot a probe atom into the target atomic gas and measure its differential scattering rate

2/31

Large $k \gg n^{1/3} \Rightarrow$ Few-body scattering problems

$$\frac{d\Gamma(k)}{d\Omega} = f(\theta) \frac{n}{k} + g(\theta) \frac{C}{k^2} + \cdots$$

What is "C"?

Probability of finding 2 particles at small separation

- noninteracting gas : $\langle \hat{n}(r) \hat{n}(0)
angle = n^2$

• interacting gas : $\langle \hat{n}(r)\hat{n}(0)\rangle \rightarrow \frac{C}{(4\pi|r|)^2}$

$$\int_{|r| < R} \langle \hat{n}(r) \hat{n}(0) \rangle \sim \begin{cases} n^2 R^3 \\ C R \end{cases}$$

Anomalously enhanced probability is quantified by the "contact density" C

Important characteristic of strongly-int atomic gases

S. Tan, Ann. Phys. (2009); E. Braaten & L. Platter PRL (2008)

Viewpoint: How the tail wags the dog in ultracold atomic gases

Article Options

Article Options

Printable Version Share/Email This

Download PDF

Subject Areas

Export Citation (E S

)08)

Viewpoint: Fermi gases as a test bed for strongly interacting systems

Daniel E. Sheehy, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

Published June 7, 2010 | Physics 3, 48 (2010) | DOI: 10.1103/Physics.3.48

A new perspective on strongly interacting fermions emerges from the experimental confirmation of a universal formula.

Some of the most vexing present-day problems in physics center on understanding the many-body properties and phases of strongly interacting fermions. Part of the difficulty arises from the fact that while

lr

Verification of Universal Relations in a Strongly Interacting Fermi Gas

J. T. Stewart, J. P. Gaebler, T. E. Drake, and

Formulations à la OPE

- scattering rate : $\Gamma(k) = -2 \operatorname{Im} \Sigma(k)$
- optical theorem : $\Gamma(k) = \int d\Omega \, \frac{d\Gamma(k)}{d\Omega}$

$$egin{aligned} &iG(k) = \int dx \, e^{ikx} \, \langle T \, \psi(x) \psi^\dagger(0)
angle \ &= \sum_i A_i(k) \langle O_i
angle \ &n = \langle \psi^\dagger \psi
angle, \ \ C = \langle (\psi^\dagger \psi)^2
angle, \ \ldots \end{aligned}$$

15/31

Lowest few O_i are needed at large k Systematic large-k expansion !

16/31

Few-body physics plays an important role to probe many-body physics !

18/31

Backward scattering rate measures contact density New local probe of strongly-int atomic gases

19/31

Azimuthal (φ) anisotropy reveals currents in many-body states

Ultracold atom "colliders"

Duke (2011)

NIST (2012)

MIT (2011)

Otago (2012)

Ultracold atom "colliders"

"A laser based accelerator for ultracold atoms"

University of Otago (New Zeeland) Optics Letters (2012)

22/31

Energetic atom ⇒ many-body system

23/31

Energetic atom ⇐ many-body system

Energy in a Fermi gas

$$E_{\uparrow}(k) = rac{k^2}{2m}$$

 $\Gamma_{\uparrow}(k)=0$

24/31

Energetic spin-[†] fermion

Energy in a Fermi gas

$$E_{\uparrow}(k) = rac{k^2}{2m}$$

$$\Gamma_{\uparrow}(k)=0$$

25/31

Energetic spin-1 fermion in a Fermi gas with scattering length a

Energy in a Fermi gas

$$E_{\uparrow}(k) = \left[1 + 32\pi \frac{n_{\downarrow}}{ak^4} - 7.54\frac{C}{k^4} + O(k^{-6})\right]\frac{k^2}{2m}$$

$$\Gamma_{\uparrow}(k) = \left[32\pi \left(1 - \frac{4}{a^2 k^2}\right) \frac{n_{\downarrow}}{k^3} + 44.2 \frac{C}{a k^5} + O(k^{-6})\right] \frac{k^2}{2m}$$

Energetic spin-[†] fermion in a Fermi gas with scattering length a

How large is large?

$$E_{\uparrow}(k) = \left[1 + 32\pi \frac{n_{\downarrow}}{ak^4} - 7.54\frac{C}{k^4} + O(k^{-6})\right] \frac{k^2}{2m}$$

Comparison of $E(k)/\epsilon_{
m F}$ with QMC P. Magierski et al., PRL (2011)

- Energetic atoms ⇒ New tool to locally probe strongly-interacting atomic gases
- Systematic large-k expansions are possible
 ✓ backward scattering ⇒ contact density
 ✓ azimuthal anisotropy ⇒ current density

- Energetic atoms ⇒ New tool to locally probe strongly-interacting atomic gases
- Systematic large-k expansions are possible

- ✓ backward scattering ⇒ contact density
- ✓ azimuthal anisotropy ⇒ current density
- Close connection to nuclear/particle physics

- Energetic atoms ⇒ New tool to locally probe strongly-interacting atomic gases
- Systematic large-k expansions are possible
 - ✓ backward scattering ⇒ contact density
 - ✓ azimuthal anisotropy ⇒ current density
- Close connection to nuclear/particle physics

"Hard probes" are useful to reveal short-range pair correlations both in nuclei and atomic gases

Nuclear physics

Ultracold atoms

New ideas wanted !