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1.  Introduction. Josephson’s 
oscillations in a bosonic junction.	


2.  Single component case. GP.	

3.  Static properties of the two-site 

Bose-Hubbard Hamiltonian	

4.  Mean-field vs exact dynamics	

5.  Beyond standard two-mode 

dynamics.                     	


Summary 



• Lets consider a cigar-shaped 
cloud of ultracold bosons trapped 
by a double-well potential along 

the x-direction	


• The atom-atom scattering is 
assumed to be well represented 

by a contact interaction	


• The single particle hamiltonian 
(kinetic + external double-well) 
has a quasidegenerate doublet 

(1,2) and two more states below 
the barrier (3,4)	


Josephson in BECs 



Mean field description 

  For large enough number of atoms (>1000) a mean-field  
approach describes the relevant physics (time dependent 
Gross-Pitaevskii equation)	


  Ψ: wave function shared by all atoms in the cloud 
(normalized to 1)	


  N: Total number of atoms (assumed constant)	

  g: coupling constant measuring the strength of the atom-

atom contact interaction (proportional to the s-wave scattering 
length)	


  V(r), external trapping potential (double-well)	




One simulation 
  N~1000 atoms 87Rb, trap 

conditions as Heidelberg 
experiments (Albiez 2005)	


  Definitions (usual), 	

•  Z(t) = (Nleft(t)-Nright(t))/Ntotal	


•  Phase difference= δφ=φright-φleft	


  Note:	

•  Phase coherence at each side	

•  Clear coupling between δφ and Z(t)	


       The dynamics in this regime  
       is essentially bimodal!! 



Introduce the following ansatz, 	


 Usual two mode ansatz 

Smerzi et al. (1997) 
Raghavan et al (1998) 

Zapata et al (1998) 
See review by Leggett (2001) 

U=UL=UR	


E0L=E0R	


Atom-atom 
interaction	


Tunneling	


One gets (neglecting certain 
overlaps) a coupled system:	




z(t) : 	
 	
population imbalance, (NL(t)-NR(t))/N	

δφ(t) : 	
 	
phase difference, φR-φL	


Λ=NU/(2K) 	
Ratio between the interaction 	

	
 	
term and Rabi term	


 Usual two mode ansatz 

 There are different regimes depending on the value of  Λ , and the 
 initial values of  the  population imbalance and phase difference 



Self trapping (GP)  
  1150 atoms, trap conditions as 

before	


  If the initial imbalance is large 
enough, no Josephson 
oscillation occurs. Instead a self 
trapping regime appears 	

	
Smerzi et al. (1997).  	
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 Albiez Thesis 



Lets consider the following two-site Bose-Hubbard model:	


J: 	
  hopping parameter >0 	

U: 	
  atom-atom interaction >0 (proportional to g)(attractive)	

Epsilon: Bias>0, promotes the left well	

The bias is here taken very small, Epsilon<<J	

It is customary to define, Λ=NU/J	


A simple, but many-body H 

Milburn et al (1997) 



The semiclassics is governed by the well known:	


z: 	
 	
population imbalance, (NL-NR)/N	

   : 	
 	
phase difference, ϕR-ϕL	

2J: 	
 	
Rabi time (the time it takes for the atoms to go 

	
 	
from left to right and back in absence of atom-
	
 	
atom interactions)	


semiclassics 

Smerzi et al. (1997) (Assuming a two mode ansatz for the Gross Pitaevskii equation) 

Heisenberg equations 
of motion 



Black, ground state 
Red, highest excited 

Ground and highest excited 
state  

Cat-like state	


With the usual base:	

 |NL,NR>={|N-k,k>}=                           
{ |N,0>,|N-1,1>,…,|0,N>} 

The hamiltonian can be written 
as an N+1 square matrix (here 
50+1)	


Any N particle vector can be 
written as,	


|c
k|2

 



Blue dashed: Semiclassical  prediction: sqrt(1-4/Λ^2)	

Red solid: quantum result for the imbalance	

Band: dispersion of the imbalance	

N=50, bias=J/10^10	


Ground state: imbalance 
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The one body density matrix reads,	


Eigenvalues, n1+n2=1	


If the system is fully condensed,	

then the eigenvalues are 1 and 0. 	

The eigenvector corresponding to 1 is, 	


Departure from 0,1 indicates the system is fragmented	


One body density matrix 



Blue dashed: Semiclassical  prediction  1,0	

Red solid: quantum result for the eigenvalues of the one body 
density matrix	

N=50, ε=J/10^10	


Occupations of the orbitals 



GS: binomial	


In the plot,	

	
 x-axis: k index	

	
y-axis: eigenvector index 	

	
 	
1, ground, 	

	
 	
N+1 highest excited	


Blue shading corresponds to zero 	

And white to the maximum value of |ck|2	


N=50, bias=J/10^10	


Properties of the whole 
spectrum 

Λ=0 

Λ=4 

Λ=8 

Λ=12 

GS: Cat-like	


GS: Trapped	


GS: Trapped	




Variation with N 
The semiclassical behavior is 
the same in all cases (the bias is 
taken the same)	


The size of the highly disperse 
region decreases    as N is 
increased	




Blue solid: Semiclassical 	

Black solid: quantum for the imbalance	

Red dashed: n1, black dotted, n2	

N=50, epsilon=J/10^10	


Time evolution of |N,0> 
For fixed N and 
starting from a ‘mean-
field’ like state:	


• The smaller the 
interaction, the 
better the mean-
field describes the 
exact result. 	

• Fragmentation 
builds up with time	
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Self-trapping due to the large 
overlap of |N,0> with the g.s of  H 



Time evolution of |N,0> 
When starting from a ‘mean-field state’:	


• For large N (here 1000), the mean field 
provides an excellent account of the full 
dynamics during long times (here almost 
two Rabi periods) 	

• The cloud, thus, remains condensed for a 
while.	
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 Usual two mode ansatz 

Self-trapped	

(Λ>2)	




 Beyond the usual two-
modes 

  Lets still consider a large enough number of atoms 
(>1000), so that the mean field description remains valid	


  Consider in all cases the same initial condition 	

  All atoms are on the left well at t=0	


  Study the dynamics as we increase the non-linear term 
(g1D). Either by increasing N or g	


  The time dependent GP , 	




 Different regimes 

Az: Amplitude of the oscillation	

	
Az=2, maximum possible	


Usual two mode (1,2)	

Two mode (2,3)	




 Effective potential 

The dynamics is essentially ‘quasi-self-trapped’	

•  i.e. the effective potential (containing the non-linearity) 

remains ‘almost time independent’ during the time 
evolution	


•  (Fig) the bands are generated by plotting Veff for a full 
Rabi period	




 From usual, (1,2), to beyond, 
(2,3) 

In the figure:	


•  Evolution of the first four 
eigenvalues of the single 

particle hamiltonian using the 
Veff.  as a function of the 

nonlinearity.	


•  The bands correspond to 
using the two extremes of the 

potential on a Rabi period.	


E1	


E2	


E3	


E4	




From usual, (1,2), to beyond, 
(2,3) 

•  We analyze the signal of the 
population imbalance during several 

Rabi periods, z(t), and extract the 
main frequencies.	


•  These are compared to the 
frequencies corresponding to the 
transitions (1,2) and (2,3) of the 

single particle hamiltonian (with Veff)	


Usual two mode (1,2)	


Two mode (2,3)	




 Signature on the atomic 
clouds 

From the experimental point 
of view a  trace of entering 
the (2,3) regime would be 

the appearance of a node in 
the center of the cloud on the 

less populated well	




Summary 
  Static properties of the Bose-Hubbard Hamiltonian with 

small bias. Beyond mean field.	

  Existence of strongly correlated ‘cat-like’ ground states 

for attractive interactions	

  Relation of the self-trapping to the properties of the 

spectrum.	

  Squeezing	
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