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1.  Introduction. Josephson’s 
oscillations in a bosonic junction.	



2.  Single component case. GP.	


3.  Static properties of the two-site 

Bose-Hubbard Hamiltonian	


4.  Mean-field vs exact dynamics	


5.  Beyond standard two-mode 

dynamics.                     	



Summary 



• Lets consider a cigar-shaped 
cloud of ultracold bosons trapped 
by a double-well potential along 

the x-direction	



• The atom-atom scattering is 
assumed to be well represented 

by a contact interaction	



• The single particle hamiltonian 
(kinetic + external double-well) 
has a quasidegenerate doublet 

(1,2) and two more states below 
the barrier (3,4)	



Josephson in BECs 



Mean field description 

  For large enough number of atoms (>1000) a mean-field  
approach describes the relevant physics (time dependent 
Gross-Pitaevskii equation)	



  Ψ: wave function shared by all atoms in the cloud 
(normalized to 1)	



  N: Total number of atoms (assumed constant)	


  g: coupling constant measuring the strength of the atom-

atom contact interaction (proportional to the s-wave scattering 
length)	



  V(r), external trapping potential (double-well)	





One simulation 
  N~1000 atoms 87Rb, trap 

conditions as Heidelberg 
experiments (Albiez 2005)	



  Definitions (usual), 	


•  Z(t) = (Nleft(t)-Nright(t))/Ntotal	



•  Phase difference= δφ=φright-φleft	



  Note:	


•  Phase coherence at each side	


•  Clear coupling between δφ and Z(t)	



       The dynamics in this regime  
       is essentially bimodal!! 



Introduce the following ansatz, 	



 Usual two mode ansatz 

Smerzi et al. (1997) 
Raghavan et al (1998) 

Zapata et al (1998) 
See review by Leggett (2001) 

U=UL=UR	



E0L=E0R	



Atom-atom 
interaction	



Tunneling	



One gets (neglecting certain 
overlaps) a coupled system:	





z(t) : 	

 	

population imbalance, (NL(t)-NR(t))/N	


δφ(t) : 	

 	

phase difference, φR-φL	



Λ=NU/(2K) 	

Ratio between the interaction 	


	

 	

term and Rabi term	



 Usual two mode ansatz 

 There are different regimes depending on the value of  Λ , and the 
 initial values of  the  population imbalance and phase difference 



Self trapping (GP)  
  1150 atoms, trap conditions as 

before	



  If the initial imbalance is large 
enough, no Josephson 
oscillation occurs. Instead a self 
trapping regime appears 	


	

Smerzi et al. (1997).  	
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 Albiez Thesis 



Lets consider the following two-site Bose-Hubbard model:	



J: 	

  hopping parameter >0 	


U: 	

  atom-atom interaction >0 (proportional to g)(attractive)	


Epsilon: Bias>0, promotes the left well	


The bias is here taken very small, Epsilon<<J	


It is customary to define, Λ=NU/J	



A simple, but many-body H 

Milburn et al (1997) 



The semiclassics is governed by the well known:	



z: 	

 	

population imbalance, (NL-NR)/N	


   : 	

 	

phase difference, ϕR-ϕL	


2J: 	

 	

Rabi time (the time it takes for the atoms to go 

	

 	

from left to right and back in absence of atom-
	

 	

atom interactions)	



semiclassics 

Smerzi et al. (1997) (Assuming a two mode ansatz for the Gross Pitaevskii equation) 

Heisenberg equations 
of motion 



Black, ground state 
Red, highest excited 

Ground and highest excited 
state  

Cat-like state	



With the usual base:	


 |NL,NR>={|N-k,k>}=                           
{ |N,0>,|N-1,1>,…,|0,N>} 

The hamiltonian can be written 
as an N+1 square matrix (here 
50+1)	



Any N particle vector can be 
written as,	



|c
k|2

 



Blue dashed: Semiclassical  prediction: sqrt(1-4/Λ^2)	


Red solid: quantum result for the imbalance	


Band: dispersion of the imbalance	


N=50, bias=J/10^10	



Ground state: imbalance 

NU/J 
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The one body density matrix reads,	



Eigenvalues, n1+n2=1	



If the system is fully condensed,	


then the eigenvalues are 1 and 0. 	


The eigenvector corresponding to 1 is, 	



Departure from 0,1 indicates the system is fragmented	



One body density matrix 



Blue dashed: Semiclassical  prediction  1,0	


Red solid: quantum result for the eigenvalues of the one body 
density matrix	


N=50, ε=J/10^10	



Occupations of the orbitals 



GS: binomial	



In the plot,	


	

 x-axis: k index	


	

y-axis: eigenvector index 	


	

 	

1, ground, 	


	

 	

N+1 highest excited	



Blue shading corresponds to zero 	


And white to the maximum value of |ck|2	



N=50, bias=J/10^10	



Properties of the whole 
spectrum 

Λ=0 

Λ=4 

Λ=8 

Λ=12 

GS: Cat-like	



GS: Trapped	



GS: Trapped	





Variation with N 
The semiclassical behavior is 
the same in all cases (the bias is 
taken the same)	



The size of the highly disperse 
region decreases    as N is 
increased	





Blue solid: Semiclassical 	


Black solid: quantum for the imbalance	


Red dashed: n1, black dotted, n2	


N=50, epsilon=J/10^10	



Time evolution of |N,0> 
For fixed N and 
starting from a ‘mean-
field’ like state:	



• The smaller the 
interaction, the 
better the mean-
field describes the 
exact result. 	


• Fragmentation 
builds up with time	

 Po

pu
la

tio
n 

im
ba

la
nc

e	


A

nd
 o

rb
ita

l o
cu

pa
tio

ns
	



Self-trapping due to the large 
overlap of |N,0> with the g.s of  H 



Time evolution of |N,0> 
When starting from a ‘mean-field state’:	



• For large N (here 1000), the mean field 
provides an excellent account of the full 
dynamics during long times (here almost 
two Rabi periods) 	


• The cloud, thus, remains condensed for a 
while.	



t/tRabi	
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 Usual two mode ansatz 

Self-trapped	


(Λ>2)	





 Beyond the usual two-
modes 

  Lets still consider a large enough number of atoms 
(>1000), so that the mean field description remains valid	



  Consider in all cases the same initial condition 	


  All atoms are on the left well at t=0	



  Study the dynamics as we increase the non-linear term 
(g1D). Either by increasing N or g	



  The time dependent GP , 	





 Different regimes 

Az: Amplitude of the oscillation	


	

Az=2, maximum possible	



Usual two mode (1,2)	


Two mode (2,3)	





 Effective potential 

The dynamics is essentially ‘quasi-self-trapped’	


•  i.e. the effective potential (containing the non-linearity) 

remains ‘almost time independent’ during the time 
evolution	



•  (Fig) the bands are generated by plotting Veff for a full 
Rabi period	





 From usual, (1,2), to beyond, 
(2,3) 

In the figure:	



•  Evolution of the first four 
eigenvalues of the single 

particle hamiltonian using the 
Veff.  as a function of the 

nonlinearity.	



•  The bands correspond to 
using the two extremes of the 

potential on a Rabi period.	



E1	



E2	



E3	



E4	





From usual, (1,2), to beyond, 
(2,3) 

•  We analyze the signal of the 
population imbalance during several 

Rabi periods, z(t), and extract the 
main frequencies.	



•  These are compared to the 
frequencies corresponding to the 
transitions (1,2) and (2,3) of the 

single particle hamiltonian (with Veff)	



Usual two mode (1,2)	



Two mode (2,3)	





 Signature on the atomic 
clouds 

From the experimental point 
of view a  trace of entering 
the (2,3) regime would be 

the appearance of a node in 
the center of the cloud on the 

less populated well	





Summary 
  Static properties of the Bose-Hubbard Hamiltonian with 

small bias. Beyond mean field.	


  Existence of strongly correlated ‘cat-like’ ground states 

for attractive interactions	


  Relation of the self-trapping to the properties of the 

spectrum.	


  Squeezing	
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