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El Josephson oscillations [ Self-trapping
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Summary

Introduction. Josephson’s

oscillations 1n a bosonic junction.

Single component case. GP.

Static properties of the two-site
Bose-Hubbard Hamiltonian

Mean-field vs exact dynamics

Beyond standard two-mode
dynamics.
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Josephson in BECs

Lets consider a cigar-shaped
cloud of ultracold bosons trapped
by a double-well potential along

the x-direction

The atom-atom scattering 1s
assumed to be well represented
by a contact interaction

o

Energy

The single particle hamiltonian |
(kinetic + external double-well)
has a quasidegenerate doublet

(1,2) and two more states below
the barrier (3,4) 0
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Mean field description

m  For large enough number of atoms (>1000) a mean-field
approach describes the relevant physics (time dependent
Gross-Pitaevskii equation)

U (r; ¢ h . ..
ih _(1 ) S LS Ve V(r)+ gN|W(r;t)]*| ¥(r;t)
ot 2m

m  ¥: wave function shared by all atoms 1n the cloud
(normalized to 1)

m  N: Total number of atoms (assumed constant)

m g: coupling constant measuring the strength of the atom-

atom contact interaction (proportional to the s-wave scattering
length)

m  V(r), external trapping potential (double-well)
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m  N~1000 atoms 3’Rb, trap
conditions as Heidelberg
experiments (Albiez 2005)
ihm = —LVQ + V(r)+ gN|U(r;t)|?| W(r;t) E
ot 2m
m  Definitions (usual),
Z(t) = (Nleft(t)-Nright(t))/ Niotal o
Phase difference= d¢p=0right-Qrett £
m  Note:
- Phase coherence at each side
- Clear coupling between 0¢ and Z(t) _
The dynamics in this regime%

Is essentially bimodal!!
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Usual two mode ansatz

Introduce the following ansatz,

W(r; 1) =V (1)Pp(r) + Ve(1)DPr(r).

\Ifj(vf) _ /_Nj(f) ei¢j(f)

One gets (neglecting certain
overlaps) a coupled system:

0.1

0.08 &5
0.06
0.04
0.02
0 6
4
52
| s 2 y (um)
“x (un) 6

0.1

0.08 cblrst
0.08
0.04
0.02
0 46
02
oYy (um)
- TW 4
X (unt) o

0.2

0.15 L
0.1
0.05
. — 6
74
Jy A
TN 5

0.2

0.15 N
0.1
0.05
2 6
4
02
oYy (um)
L -~ 6.4
X (um) )

oW (t
n 2O B w0+ UL (0w (1) — KW()
2B B wa(t) + U (W R() —~ K (1)

Smerzi et al. (1997)
Raghavan et al (1998)
Zapata et al (1998)

See review by Leggett (2001)

n? >
E0L= 0R E} » =/dr [ﬂ |V<DL(R)(r)|“+<I>2L(R)(r) V(r):| .

Tunneling

U=U,=Up Vi =g [arfm.

2m

Atom-aton

|

interaction

7&2
K=—/dr[ : V¢L(r).v<bR(r)+ch<r)V(r)ch(r)].
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Usual two mode ansatz

2(t) = —/1 —22(t) sind¢ (1),

8(15'(1‘) = Az(f)+ < cos o (7).
V1 =22(1)

z(t) : population imbalance, (N; (t)-Ng(t))/N
OP(t) : phase difference, {r-¢;
A=NU/(2K) Ratio between the interaction

term and Rabi term

There are different regimes depending on the value of A, and the
initial values of the population imbalance and phase difference
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Self trapping (GP)

1150 atoms, trap conditions as
before

If the initial imbalance is large
enough, no Josephson
oscillation occurs. Instead a self
trapping regime appears

Smerzi et al. (1997).
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population imbalance z

relative phase ¢ [7]
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a) Josephson oscillations

b) Self-trapping
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A simple, but many-body H

Lets consider the following two-site Bose-Hubbard model:

H = ff’ (nr(ng — 1) +nr(ng — 1))

— .J ((IE(IL - (IE(IR) — 6('I'AIL —NR)

J: hopping parameter >0

U: atom-atom interaction >0 (proportional to g)(attractive)

Epsilon: Bias>0, promotes the left well

The bias 1s here taken very small, Epsilon<<]J
It 1s customary to define, A=NU/J

Milburn et al (1997)
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semiclassics

The semiclassics 1s governed by the well known:

P L(R)

”‘L(R) = \/‘”L(R)

Heisenberg equations

of motion
Z: population imbalance, (N, -N)/N
L phase difference, QPg-@;
2J: Rabi time (the time it takes for the atoms to go

from left to right and back in absence of atom-
atom interactions)

Smerzi et al. (1997) (Assuming a two mode ansatz for the Gross Pitaevskii equation)
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Ground and highest excited

state

Black, ground state
Red, highest excited

With the usual base: =

IN; ,Ng>={|N-k,k>}=
{IN,0>,IN-1,1>,...,|0,N>}

The hamiltonian can be written

as an N+1 square matrix (here
50+1)

Any N particle vector can be
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Ground state: imbalance
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Blue dashed: Semiclassical prediction: sqrt(1-4/AA2) >

Red solid: quantum result for the imbalance
Band: dispersion of the imbalance
N=50, bias=J/10"10
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One body density matrix

The one body density matrix reads,

. l(aZaL aZaR)

+ +
N\aza, aza,
Eigenvalues, n,+n,=1

If the system is fully condensed,Vmr = [[V1(0. ¢))]*"
then the eigenvalues are 1 and O. |
The eigenvector corresponding to 1 is, | V1(0. ¢))

Departure from 0,1 indicates the system is fragmented
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Occupations of the orbitals

0 2 4 6 8 10
NU/J

Blue dashed: Semiclassical prediction =2 1,0

Red solid: quantum result for the eigenvalues of the one body
density matrix

N=50, e=J/10"10
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Properties of the whole

JUL J GS: binomial
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- A=8

GS: Trapped
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In the plot,
x-axis: k index
y-axis: eigenvector index
1, ground,
N+1 highest excited
Blue shading corresponds to zero
And white to the maximum value of Ic |

N=50, bias=J/10"10
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The semiclassical behavior is
the same in all cases (the bias is
taken the same)

The size of the highly disperse
region decreases as N is
increased
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Time evolution of |N,0>

For fixed N and
starting from a ‘mean-
field’ like state: o 3
O O
The smaller the ==
interaction, the e
better the mean- g5 -] Y
field describes the g & A1 -uwu ,ﬁ "',r"'*-r*.r'j._-_j.'_‘fr**j~ft':';':""f
exact result. S ORIV H it ay
Fragmentation 22 -
builds up with time &~ <
O .-
-1k | | | NU/J=
0 5 10 15 20
Blue solid: Semiclassical t/ tRabi
Black solid: quantum for the imbalance Self-trapping due to the large
Red dashed: n,, black dotted, n, overlap of |N,0> with the g.s of H

N=50, epsilon=J/10"10
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Time evolution of |N,0>

When starting from a ‘mean-field state’:

For large N (here 1000), the mean field
provides an excellent account of the full
dynamics during long times (here almost
two Rabi periods)

The cloud, thus, remains condensed for a
while.

Population imbalance
And orbitalocupations
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Self-trapped

(A>2)
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Beyond the usual two-

modes

m Lets still consider a large enough number of atoms
(>1000), so that the mean field description remains valid

m Consider in all cases the same 1nitial condition
m All atoms are on the left well at t=0

m  Study the dynamics as we increase the non-linear term
(g,p)- Either by increasing N or g

m  The time dependent GP ,

a”?

—_

9 !
57V ="757 x,1) 4+ Ve[V (x,0)]r (x,1).
FTAA 53V + ett [V (X, 1) (x,1)

Ve[V (x,1)] = V(x) + LN | (x,1)|? gip = AoV,
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Beyond two mode
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Effective potential

chf
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The dynamics 1s essentially ‘quasi-self-trapped’

1.e. the effective potential (containing the non-linearity)
remains ‘almost time independent’ during the time
evolution

(Fig) the bands are generated by plotting V. for a full
Rabi period
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From usual, (1,2), to beyond,

J

In the figure:

Evolution of the first four
eigenvalues of the single
particle hamiltonian using the -
V.4 as a function of the
nonlinearity.

Energ

The bands correspond to
using the two extremes of the
potential on a Rabi period.
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From usual, (1,2), to beyond,

We analyze the signal of%,

population imbalance during several
Rabi periods, z(t), and extract the
main frequencies.

These are compared to the

frequencies corresponding to the
transitions (1,2) and (2,3) of the
single particle hamiltonian (with V )
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Signature on the atomic

clouds

From the experimental point ' ' ' | Py

“1D

of view a trace of entering -
the (2,3) regime would be

the appearance of anode in  ~_
the center of the cloudonthe £
less populated well oo =
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Summary

Static properties of the Bose-Hubbard Hamiltonian with
small bias. Beyond mean field.

Existence of strongly correlated ‘cat-like’ ground states
for attractive interactions

Relation of the self-trapping to the properties of the
spectrum.
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