

The Neutron Structure Functions from BoNuS using CLAS

Keith Griffioen College of William & Mary Helmholtz-Institut Mainz (for the CLAS Collaboration)

griff@physics.wm.edu

Elba XII Workshop Electron-Nucleus Scattering XII Marciana Marina, Isola d'Elba, Italy 25-29 June 2012

25-29 June 2012

- There is no free lunch neutron target
- Nuclear uncertainties inhibit extracting F_2^n from d(e,e')X at large x
- We need to measure the neutron free of nuclear effects

²⁵⁻²⁹ June 2012

Elba XII Workshop

A Solution: CLAS with RTPC

N.Baillie, S. Tkachenko,

 Bound Nucleon Structure Experiment W. Melnitchouk, K. Griffioen, d(e,e'p_s)X [(deep) inelastic] S. Kuhn, C. Keppel, M.E. Christy, Deuterium target, spectator proton H. Fenker, J. Zhang, S. Bültmann 70 < p_s < 150 MeV/c CEBAF JLab Hall B CLAS with an RTPC Large Acceptance • Measure F₂ⁿ at high x Spectrometer DC: Drift Chamber CC: Cerenkov Counter . 100 cm SC: Scintillation Counter EC: Electromagnetic Calorimeter

25-29 June 2012

PWIA Spectator Formalism

25-29 June 2012

Off-Shell Structure Functions

Liuti & Gross PLB**356**(95)157

Melnitchouk et al., PLB335(94)11

- R_n decreases with p_s or α_s
- At x*=0.5 and p_s=400 MeV/c, R_n deviates from unity by 7-20% in these models

25-29 June 2012

Palli et al., PRC80(09)054610

- Target fragmentation enhances the proton yield only at forward angles (cos Θ_{pq} >0.6)
- This can be ignored

BoNuS Experiment

- Bound Nucleon Structure Experiment
- Hall B, JLab, CLAS
- $d(e,e'p_s)X$ with 70 < p_s < 150 MeV/c
- E_{beam}=1.1, 2.1, 4.2, 5.3 GeV
- Radial time projection chamber for ps
- Data taking in 2005

BoNuS Detector

BoNuS RTPC Performance

- Upper left: dE/dx vs. p/Z for He target
- Lower left: dE/dx vs. p for deuterium target
- Below RTPC+CLAS resolution for common e⁻ events

25-29 June 2012

Elba XII Workshop

- \bullet VIPs are 17% of the p_s distribution
- Corrections make resonances stand out

ps distribution

210

280

350

• F_2^n/F_2^p can be measured at high x*

BoNuS

Region

140

Spectator Momentum (MeV/c)

VIPs

- The Ratio Method
 - measure tagged counts divided by inclusive counts
 - correct this ratio for backgrounds
 - one scale factor gives F₂ⁿ/F₂^d
- The Monte Carlo Method
 - measure tagged counts
 - divide by spectator model Monte Carlo results
 - * multiply by F₂ⁿ used in the model
- The two methods have different systematic errors, but give very similar results.

- Z is the position along the beam direction
- Tracking of the electron gives Z(CLAS)
- Tracking of the spectator proton gives Z(BoNuS)
- ΔZ=Z(CLAS)-Z(BoNuS) shows a coincidence peak and a triangular background
- Fits to the triangular background allows us to measure backgrounds underneath the peak
- Blue area = R_{bg} x Pink area
- R_{bg} is independent of kinematics

CLAS Detection Efficiency

- Top Row: Raw inclusive ed scattering in CLAS [vs. W, 4 plots in Q²]
- Middle Row: Inclusive *ed* radiated cross sections from world data fit (Bosted)
- Bottom Row: Relative efficiency ε (*i.e.* Top Row / Middle Row)

- *R*_{corr} is the tagged to untagged ratio corrected for CLAS efficiency and accidentals
- C_{e^+} and C_{π} are corrections for pair-symmetric and π^- backgrounds
- *r*_{rc} is the radiative correction
- *n* is an overall normalization constant that ensures agreement with world data at *x*=0.3

25-29 June 2012

Corrections C_{e+} , C_{p-} , and r_{rc}

- C_{e^+} correction < 2 %
- C_{π} correction < 1/2 %
- $r_{\rm rc}$ correction < 10% in the region 1.2<W<2.7 GeV
- $1/n = 0.02535 \pm 3.37\%$

Kinematic Coverage

BoNuS F2ⁿ

4 of 16 spectra: $0.8 < Q^2 < 4.5$; $E_{beam} = 4.2 \& 5.3 \text{ GeV}$; Bosted/Christy world fits

Monte Carlo Method

Left: Black=raw tagged data; blue=accidental subtracted data; red=elastic and radiative tail

- Deviations from unity at low W* comes from difficulties of getting the model right for the resonances
- Generally the ratio is close to unity
- Perhaps some effects at high ps

- At low ps the data agree with the spectator model quite well
- At higher p_s the distributions deviate significantly from unity, indicating that VIP particles should have p_s<100 MeV/c

F_2^n for various p_s

- Data show resonance peaks.
- Data agree quite well with resonance model of world data
- Dependence on spectator momentum is slight

Final Data

Various data compared to a state of the art nuclear physics extraction of neutron structure functions from deuterium (red points, Malace, et al.)

Baillie *et al.*,PRL **108**(12)142001

25-29 June 2012

Elba XII Workshop

10

8

 F_2^{n/F_2^d}

4

2

0

 F_2^n/F_2^d

4 GeV Data

х

5 GeV Data

х

BoNuS primary results: n/d structure function ratios for Q²>1 GeV²

BoNuS F2n/F2p

- $F_2^n/F_2^p =$ (F_2^n/F_2^d)_{exp}(F_2^d/F_2^p)_{world} Bosted/Christy fits: PRC**77**(08)065206, PRC**81**(10)055213
- Curves are CJ error bands [Accardi, *et al.*, PRD 84(11)014008]
- CJ cuts off at low x because Q² is too low
- Lower cuts in W* yield higher x values but the inclusion of resonance contributions.
- Results are consistent with CJ trends at high x.

Baillie *et al.*,PRL **108**(12)142001

EMC Effect

EMC ratio for the deuteron: $[(F_2^n/F_2^d)_{exp} + (F_2^p/F_2^d)_{world}]^{-1}$ Normalization: unity at x = 0.31 (the world EMC average for nuclei)

BoNuS Plans for 12 GeV

Data taking:

- 35 days on D₂
- 5 days on H₂
- $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

DIS region:

- $Q^2 > 1 GeV^2$
- W* > 2 GeV
- p_s < 100 MeV/c

$$- \theta_{pq} > 110^{\circ}$$

$$- x^*_{max} = 0.80$$

W* > 1.8 GeV: $x^*_{max} = 0.83$

25-29 June 2012

- BoNuS has measured F_{2^n} on a "free" neutron target
- Virtually no effects from Fermi motion and final-state interactions
- No evidence for off-shell structure for p_s <100 MeV/c
- $F_2^{n/}F_2^p$ behaves at high x much like CJ high-x fits
- F₂ⁿ resonance data will significantly improve the world's data set, which up to now came from d with nuclear corrections
- In the works: a long paper with details of the off-shell study (S. Tkachenko), a paper on D(e,e'π⁻p_sp) (J. Zhang), and a paper on the deuteron EMC effect.

END OF TALK

Spectral Functions

Melnitchouk et al., ZPA359(97)99

Heller & Thomas, PRC41(90)2756

x = 0.6

Rn

120

Elba XII Workshop

160

Systematic Errors

- Full analysis of F_{2ⁿ} is done after shifting or broadening various quantities
- $\Delta F_{2^n} = 0$ at x=0.3 where normalization takes place (total value there is interpolated)
- Blue line, all changes are made at once; total error rises from 1% to 4% vs x.
 Elba XII Workshop

Ratio and MC Method Comparison

Elba XII Workshop