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Outline 
• Introduction to neutrinos and oscillations 
• Reactor antineutrino experiments 
• KamLAND 
• θ13  experiments 
• Outlook 

Thanks to: 
 K. Heeger, W. Wang, X. Qian 
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Super-Kamiokande (1998) 

First evidence for neutrino oscillations! 
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Two Generation Model 

Eν= 1 GeV, ∆m2=10-3 eV2 ,  L = 1240 km •  Neutrinos have mass! 
•  Substantial flavor mixing! 
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Progress Since 2000 

• Sudbury Neutrino Observatory (SNO)  
 → flavor change responsible for solar νe deficit 
• KamLAND  
 → observes oscillation pattern, δm12

2 
• K2K & MINOS 
 → precise determination of δm23

2, θ23 
• Daya Bay (2012) 
  measurement of θ13 
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• νe from n-rich fission products 
• detection via inverse beta decay (νe+pe++n) 
• Measure flux and energy spectrum 
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~ 200 MeV per fission 

~ 6 νe per fission 

~ 2 x 1020 νe/GWth-sec 

Reactor Isotopes 

The Reactor Neutrino  
Flux and Spectrum 

• 235U, 239Pu, 241Pu from β measurements  
• 238U calculated 
• Time dependence due to fuel cycle 
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Detection Signal 

Coincidence signal:  
• Prompt:    e+   annihilation    Eν=Eprompt+En+0.8 MeV 
• Delayed:  n+p 180 µs capture time, 2.2 MeV 
      n+Gd 30 µs capture time, 8 MeV 

p + e 

511keV γ 

511keV γ 
2.2 MeV γ 

d 

n 

ν + p  n + e+ 



R. D. McKeown  June 27, 2012        9 R. D. McKeown  June 27, 2012        9 



R. D. McKeown  June 27, 2012        10 

Precise Measurements 
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New Reactor Flux Analysis (2011) 

0.937±0.027 

arXiv:1101.2755 
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KamLAND used 
the entire Japanese 
nuclear power 
industry as a 
longbaseline  
neutrino source 

Kashiwazaki 

Takahama 

Ohi 
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Energy Spectrum 
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KamLAND Result (2008) 

Best combined fit values: 
 ∆m2 = 7.59+0.21

-0.21 x 10-5 eV2 

  tan2θ = 0.47+0.06
-0.05  

PRL 100, 221803 (2008) 
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Pontecorvo Maki – Nakagawa – Sakata Matrix 

Gateway to 
CP Violation! 

CP violation 

PMNS 
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CHOOZ/Palo Verde limits for θ13 

Allowed region 

sin22θ13 < 0.15 
(90% CL) 

2008 MINOS result: 
|∆m2

32| = 2.43±0.13×10-3eV2 

(2001-3) 
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νe Survival Probability  
(3 generations) 

• “Clean” measurements of θ, ∆m2 

•   Use 2 detector sites 

Dominant θ12 Oscillation 

Subdominant θ13  
Oscillation 

near far 
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New Reactor θ13 Neutrino Experiments 

Chooz, France 

RENO, Korea 

Daya Bay, China 
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1051 m 380 m 

Two identical detectors:10 tons each. 
Phase 1 (2010-12): Far Detector in 
   existing lab.  
Phase 2 (2013): running with Near 
   detector in new lab. 
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Far site only result (2011) 

Systematic Uncertainties 
 
• Detector: 2.1% 
• Reactor: 1.8% (mostly Bugey-4) 
• Background: 2.94% (mostly 9Li) 
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Daya Bay NPP 
2 × 2.9 GWth 

Ling Ao NPP 
2 × 2.9 GWth 

Ling Ao II NPP 
2 × 2.9 GWth 

 

Daya Bay - A Powerful Neutrino Source 

• Among the top 5 most powerful reactor complexes in the world, 
producing 17.4 GWth  (6 x 2.95 GWth) 

• Adjacent to mountains; convenient to construct tunnels and 
underground labs with sufficient overburden to suppress cosmic rays 

• All 6 reactors are in commercial operation 

Reactors produce ~2×1020 antineutrinos/sec/GW 
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Daya Bay Experiment Layout 

6 antineutrino detectors in 3 
underground experimental halls 

6 reactor cores 
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Antineutrino Detectors 

3 nested cylinders: 
   Inner: 20 tons Gd-doped LS (d=3.1m) 
   Mid: 20 tons LS (d=4m) 
   Outer: 40 tons mineral oil buffer (d=5m) 
 
Each detector: 
  192 8-inch Photomultipliers 
  Reflectors at top/bottom of cylinder 
  Provides (7.5 / √E  + 0.9)% energy resolution 

6 ‘functionally identical’ 
detectors:  
  Reduce systematic uncertainties 

Calibration units 
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Detector Filling and Target Mass Measurement 

Detectors are filled from 
same reservoirs “in-pairs” 
within < 2 weeks. 

ISO tank on 
load cells 

coriolis flow 
meters 

detector in 
scintillator hall 

Target mass determination error ± 
3kg out of 20,000  
 
<0.03% during data taking period 

Gd-LS MO LS 
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Antineutrino Detector Installation - Far Hall 
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R=0 R=1.7725 m R=1.35m Top view 

3 sources for each z axis on a turntable (position 
accuracy < 5 mm): 
• 10 Hz 68Ge (0 KE e+ = 2×0.511 MeV γ’s) 
• 0.5 Hz 241Am-13C neutron source (3.5 MeV n 
without γ) + 100 Hz 60Co gamma source 
(1.173+1.332 MeV γ) 
• LED diffuser ball (500 Hz) for T0 and gain Three axes: center, edge of target, 

middle of gamma catcher 

3 Automatic calibration units (ACUs)  
on each detector   

Automated Calibration System 
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Data Period 

Current Oscillation Analysis  
 - Dec. 24, 2011 – Feb. 17, 2012 
 - All 3 halls (6 ADs) operating  
 - DAQ uptime: >97% 
 - Antineutrino data: ~89%     

Two Detector Comparison 
 - Sep. 23, 2011 – Dec. 23, 2011 
 - Side-by-side comparison of 2 detectors 
 - Demonstrated detector systematics better than requirements. 

Daya Bay Collab.  
arXiv:1202:6181 (2012) 

Daya Bay Collab.  
arXiv: 1203.1669 (2012) 
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Antineutrino (IBD) Selection 

Selection driven by uncertainty in relative 
detector efficiency 

Selection of Prompt + Delayed 
  - Reject Flashers 
  - Prompt Positron: 0.7 MeV < Ep < 12 MeV 
  - Delayed Neutron: 6.0 MeV < Ed < 12 MeV 
  - Capture time: 1 μs < Δt < 200 μs 
  - Muon Veto: 
       Pool Muon:  Reject 0.6ms 
       AD Muon (>20 MeV): Reject 1ms 
       AD Shower Muon (>2.5GeV): Reject 1s 
  - Multiplicity:  
      No other signal > 0.7 MeV 
      in -200 μs to 200 μs of IBD.    

Uncertainty in relative Ed efficiency (0.12%) 
between detectors is largest systematic. 
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Uncertainty Summary 

For near/far oscillation,  
only uncorrelated uncertainties 
are used. 

Largest systematics are 
smaller 
than far site statistics (~1%) 

Influence of uncorrelated 
reactor 
systematics reduced (~1/20) 
by far vs. near measurement. 
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Far vs. Near Comparison  
Compare measured rates and spectra 

R = 0.940 ± 0.011 (stat) ± 0.004 (syst) 

Clear observation of far site deficit. 

Spectral distortion consistent with 
oscillation.* 
* Caveat: Spectral systematics not fully studied;  
θ13 value from shape analysis is not recommended. 

Mn are the measured rates in each 
detector. Weights αi,βi are determined 
from baselines and reactor fluxes. 
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Rate Analysis 

Uses standard χ2 approach. 
 
Far vs. near relative measurement. 
[Absolute rate is not constrained.] 
 
Consistent results obtained by  
independent analyses, different 
reactor flux models. 

Estimate θ13 using measured rates in each detector. 

sin22θ13 = 0.092 ± 0.016 (stat) ± 0.005 (syst) 

sin22θ13 = 0 excluded at 5.2σ 
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RENO Measurement in South Korea 
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Summary of θ13 Measurements 
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Updated Rate Analysis  
(June 2012) 

sin22θ13 = 0.089 ± 0.010 (stat) ± 0.005 (syst) 

Most precise 
measurement of 
sin22θ13 to date. 

Dec. 24, 2011 – May 11, 2012 
 - More than 2.5x the previous data set 
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Future 
Sensitivity to sin22θ13    

June 2012 
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Outlook 
• Many exciting discoveries in neutrino 

oscillation physics over the last decade 
• We now have determined θ13 !  
• Future experiments are being planned to 

study mass hierarchy, CP violation, 
supernova neutrinos … 

Perhaps the best is yet to come! 
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